SDP Relaxation of Quadratic Optimization with Few Homogeneous Quadratic Constraints

Paul Tseng
Mathematics, University of Washington

LIDS, MIT
March 22, 2006
(Joint work with Z.-Q. Luo, N. D. Sidiropoulos, and S. Zhang.)

Talk Outline

- Problem description \& motivation
- SDP relaxation
- Approximation upper and lower bounds
- Proof idea
- Numerical experience
- A related problem
- Conclusions \& open questions

Problem description

$$
\begin{aligned}
v_{\mathrm{qp}}:=\min _{z \in \mathcal{H}} & \|z\|^{2} \\
\text { s.t. } & \sum_{\ell \in I_{i}}\left|h_{\ell}^{H} z\right|^{2} \geq 1, \quad i=1, \ldots, m
\end{aligned}
$$

- $h_{\ell} \neq 0 \in \mathcal{H}\left(\mathcal{H}=\mathbb{C}^{\mathrm{n}}\right.$ or $\left.\mathbb{R}^{\mathrm{n}}\right), \quad I_{1} \cup \cdots \cup I_{m}=\{1, \ldots, M\}$
- $z=x+i y \quad\left(x, y \in \mathbb{R}^{\mathrm{n}}\right), \quad z^{H}=x^{T}-i y^{T}$

Motivation: Transmit beam forming

SDP Relaxation

- Finding a global minimum of QP is NP-hard (reduction from PARTITION). \leqslant
- Approximate QP by an "easy" convex optimization problem, a semidefinite program (SDP) relaxation (Lovász '91, Shor '87).

SDP Relaxation

$$
\begin{aligned}
& \text { Let } Z=z z^{H} \quad(\Longleftrightarrow Z \succeq 0, \operatorname{rank} Z \leq 1) \quad H_{i}=\sum_{\ell \in I_{i}} h_{\ell} h_{\ell}^{H} \\
& \qquad \begin{aligned}
v_{\mathrm{qp}}=\min & \operatorname{Tr}(Z) \\
\text { s.t. } & \operatorname{Tr}\left(H_{i} Z\right)=\sum_{\ell \in I_{i}} \operatorname{Tr}\left(h_{\ell} h_{\ell}^{H} Z\right) \geq 1, \quad i=1, \ldots, m \\
& Z \succeq 0, \quad \operatorname{rank} Z \leq 1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
v_{\text {sdp }}:=\min & \operatorname{Tr}(Z) \\
\text { s.t. } & \operatorname{Tr}\left(H_{i} Z\right) \geq 1, \quad i=1, \ldots, m \\
& Z \succeq 0
\end{aligned}
$$

Then

$$
0 \leq v_{\mathrm{sdp}} \leq v_{\mathrm{qp}} \stackrel{?}{\leq} C v_{\mathrm{sdp}} \quad(C \geq 1)
$$

Approximation upper \& lower bounds

Theorem 1 (LSTZ'05): $\quad v_{\mathrm{qp}} \leq C v_{\text {sdp }}$ where

$$
\begin{array}{cc}
\frac{1}{2 \pi^{2}} m^{2} \leq C \leq \frac{27}{\pi} m^{2} & \text { if } \quad \mathcal{H}=\mathbb{R}^{\mathrm{n}} \\
\frac{1}{2(3.6 \pi)^{2}} m \leq C \leq 8 m & \text { if } \quad \mathcal{H}=\mathbb{C}^{\mathrm{n}}
\end{array}
$$

Proof sketch

$\mathcal{H}=\mathbb{R}^{\mathrm{n}}$
Let Z^{*} be an optimal SDP soln, with rank $r \leq \sqrt{2 m}$ (such Z^{*} exists).
So $\quad Z^{*}=\sum_{k=1}^{r} z_{k} z_{k}^{H} \quad\left(z_{k} \in \mathcal{H}\right)$
Let $\quad \zeta:=\sum_{k=1}^{r} z_{k} \eta_{k}, \quad \eta_{k} \stackrel{\text { i.i.d. }}{\sim} N(0,1)$
Fact:

- $\mathrm{E}\left(\zeta^{H} H_{i} \zeta\right)=\operatorname{Tr}\left(H_{i} Z^{*}\right) \geq 1 \forall i$
- $\mathrm{E}\left(\|\zeta\|^{2}\right)=\operatorname{Tr}\left(Z^{*}\right)$
- $\mathrm{P}\left(\zeta^{H} H_{i} \zeta<\gamma\right) \leq \sqrt{\gamma} \quad \forall \gamma>0, \forall i$

$$
\left(\mathrm{P}\left(\left|\eta_{k}\right|^{2}<\gamma\right) \leq \sqrt{\frac{2 \gamma}{\pi}}\right)
$$

- $\mathrm{P}\left(\|\zeta\|^{2}>\mu \operatorname{Tr}\left(Z^{*}\right)\right) \leq \frac{1}{\mu} \forall \mu>0$
(Markov ineq.)

$$
\begin{aligned}
& \mathrm{P}\left(\zeta^{H} H_{i} \zeta \geq \gamma, i=1, \ldots, m \&\|\zeta\|^{2} \leq \mu \operatorname{Tr}\left(Z^{*}\right)\right) \\
\geq & 1-\sum_{i=1}^{m} \mathrm{P}\left(\zeta^{H} H_{i} \zeta<\gamma\right)-\mathrm{P}\left(\|\zeta\|^{2}>\mu \operatorname{Tr}\left(Z^{*}\right)\right) \\
\geq & 1-m \sqrt{\gamma}-\frac{1}{\mu} \\
> & 0 \quad \text { if } \mu=3, \gamma=\frac{\pi}{9 m^{2}}
\end{aligned}
$$

so $\exists \zeta \in \Re^{n}$ such

$$
\zeta^{H} H_{i} \zeta \geq \frac{\pi}{9 m^{2}}, i=1, \ldots, m \quad\|\zeta\|^{2} \leq 3 \operatorname{Tr}\left(Z^{*}\right)=3 v_{\mathrm{sdp}}
$$

Then $\hat{z}:=\frac{\zeta}{\sqrt{\min _{i} \zeta^{H} H_{i} \zeta}}$ is a feas. soln of QP, $\|\hat{z}\|^{2}=\frac{\|\zeta\|^{2}}{\min _{i} \zeta^{H} H_{i} \zeta} \leq \frac{3 v_{\text {sdp }}}{\pi /\left(9 m^{2}\right)}$.
Thus

$$
v_{\mathrm{qp}} \leq\|\hat{z}\|^{2} \leq \frac{27}{\pi} m^{2} v_{\mathrm{sdp}}
$$

Take

$$
n=2, \quad\left|I_{i}\right|=1, \quad h_{i}=\left[\begin{array}{c}
\cos \left(\frac{2 \pi}{2 n} i\right) \\
\sin \left(\frac{2 \pi}{m} i\right)
\end{array}\right], i=1, \ldots, m
$$

- For any QP feas. soln $z, \exists i$ such $\left|h_{i}^{H} z\right| \leq \frac{\pi}{m}\|z\| \Rightarrow\|z\|^{2} \geq \frac{m^{2}}{\pi^{2}} \Rightarrow$

$$
v_{\mathrm{qp}} \geq \frac{m^{2}}{\pi^{2}}
$$

- $Z=I$ is a feas. soln of SDP, so $v_{\text {sdp }} \leq \operatorname{Tr}(I)=2$

Thus

$$
v_{\mathrm{qp}} \geq \frac{1}{2 \pi^{2}} m^{2} v_{\mathrm{sdp}}
$$

$\mathcal{H}=\mathbb{C}^{\mathrm{n}}$
Proof of upper bound is similar to the real case, but with

$$
\eta_{k} \stackrel{\text { i.i.d. }}{\sim} N_{c}(0,1) \quad\left(\text { density } \frac{e^{-\left|\eta_{k}\right|^{2}}}{\pi}\right)
$$

Then

$$
\mathrm{P}\left(\zeta^{H} H_{i} \zeta<\gamma\right) \leq \frac{4}{3} \gamma \quad \forall \gamma>0, \forall i
$$

SO

$$
\begin{aligned}
& \mathrm{P}\left(\zeta^{H} H_{i} \zeta \geq \gamma, i=1, \ldots, m \&\|\zeta\|^{2} \leq \mu \operatorname{Tr}\left(Z^{*}\right)\right) \\
\geq & 1-\sum_{i=1}^{m} \mathrm{P}\left(\zeta^{H} H_{i} \zeta<\gamma\right)-\mathrm{P}\left(\|\zeta\|^{2}>\mu \operatorname{Tr}\left(Z^{*}\right)\right) \\
\geq & 1-m \frac{4}{3} \gamma-\frac{1}{\mu} \\
> & 0 \quad \text { if } \mu=2, \gamma=\frac{1}{4 m}
\end{aligned}
$$

Proof of lower bound involves a more intricate example.

Improved approximation bound: bounded phase spread

Theorem 2 (LSTZ '05): $\quad \mathcal{H}=\mathbb{C}^{\mathrm{n}}$. If

$$
h_{\ell}=\sum_{i=1}^{p} \beta_{i \ell} g_{i}, \quad \ell=1, \ldots, M
$$

for some $p \geq 1, \beta_{i \ell} \in \mathbb{C}, g_{i} \in \mathbb{C}^{\mathrm{n}}$ with $\left\|g_{i}\right\|=1$ and $g_{i}^{H} g_{j}=0$ for all $i \neq j$;

- $\beta_{i \ell}=\left|\beta_{i \ell}\right| e^{i \phi_{i \ell}}$ satisfies, for some $0 \leq \phi<\frac{\pi}{2}$,

$$
\left|\phi_{i \ell}-\phi_{j \ell}\right| \leq \phi \quad \forall i, j, \forall \ell,
$$

then

$$
v_{\mathrm{qp}} \leq \frac{1}{\cos (\phi)} v_{\mathrm{sdp}}
$$

Numerical experience

- For measured VDSL channel data by France Telecom R\&D, SDP solution yields nearly doubling of minimum received signal power relative to no precoding.
$v_{\mathrm{qp}}=v_{\text {sdp }}$ in over 50% of instances. (SDL '05)
- Simulation with randomly generated $h_{\ell}(m=M=8, n=4)$ shows that both the mean and the maximum of the upper bound

$$
\frac{\|\hat{x}\|^{2}}{v_{\text {sdp }}}
$$

are lower in the $\mathcal{H}=\mathbb{C}^{\mathrm{n}}$ case (1.14 and 1.8) than the $\mathcal{H}=\mathbb{R}^{\mathrm{n}}$ case (1.17 and 6.2). Thus, SDP solution is better in the complex case not only in the worst case but also on average.

Maximization QP with convex constraints

$$
\begin{aligned}
v_{\mathrm{qp}}:=\max _{z \in \mathcal{H}} & \|z\|^{2} \\
\text { s.t. } & \sum_{\ell \in I_{i}}\left|h_{\ell}^{H} z\right|^{2} \leq 1, \quad i=1, \ldots, m
\end{aligned}
$$

$$
v_{\mathrm{sdp}}:=\max \operatorname{Tr}(Z)
$$

$$
\text { s.t. } \quad \operatorname{Tr}\left(H_{i} Z\right) \leq 1, \quad i=1, \ldots, m
$$

$$
Z \succeq 0
$$

Then

$$
v_{\mathrm{sdp}} \geq v_{\mathrm{qp}} \stackrel{?}{\geq} C v_{\mathrm{sdp}} \quad(0<C \leq 1)
$$

Approximation upper \& lower bounds

Theorem 3 (NRT'99, LSTZ'05): $\quad v_{\mathrm{qp}} \geq C v_{\text {sdp }}$ where

$$
\begin{array}{ll}
O\left(\frac{1}{\ln (m)}\right) \geq C \geq \frac{1}{4 \ln (m)+2 \ln (2)} & \text { if } \quad \mathcal{H}=\mathbb{R}^{\mathrm{n}} \\
O\left(\frac{1}{\ln (m)}\right) \geq C \geq \frac{1}{6 \ln (m)+4 \ln (100)} & \text { if } \quad \mathcal{H}=\mathbb{C}^{\mathrm{n}}
\end{array}
$$

Proof uses $\quad \mathrm{P}\left(\zeta^{H} H_{i} \zeta>\gamma\right) \leq \operatorname{rank}\left(H_{i}\right) e^{-\gamma} \quad \forall \gamma>0, \forall i$

Conclusions \& Open Questions

1. For norm minimization on $\mathbb{R}^{\mathrm{n}}\left(\mathbb{C}^{\mathrm{n}}\right)$ with m concave quadratic constraints, SDP relaxation yields $O\left(m^{2}\right)(O(m))$ approximation.
2. If phase spread of h_{1}, \ldots, h_{M} are bounded by $0<\phi<\frac{\pi}{2}$, then SDP relaxation yields $O\left(\frac{1}{\cos (\phi)}\right)$ approximation.
3. For norm maximization on \mathbb{R}^{n} or \mathbb{C}^{n} with m convex quadratic constraints, SDP relaxation yields $O\left(\frac{1}{\ln (m)}\right)$ approximation.

Open Questions:

1. Can the approximation bounds be improved? Adapt SOS relaxation?
2. For nonconcave/convex constraints, SDP relaxation can be arbitrarily bad (for fixed m, n).

$$
\begin{aligned}
v_{\mathrm{qp}}:=\min _{(x, y) \in \mathbb{R}^{2}} & x^{2}+y^{2} \\
\text { s.t. } & y^{2} \geq 1, x^{2}-M x y \geq 1, x^{2}+M x y \geq 1
\end{aligned}
$$

$(M>0)$. Here $v_{\mathrm{qp}}=M+2$ while $v_{\text {sdp }}=2$. Performance of SOS relaxation also worsens with $M \uparrow$. Better approximation?

3. A nonhomogeneous QP:

$$
\begin{aligned}
\min _{z \in \mathcal{H}} & z^{H} H_{0} z+c_{0}^{H} z \\
\text { s.t. } & z^{H} H_{i} z+c_{i}^{H} z \geq 1, \quad i=1, \ldots, m
\end{aligned}
$$

can be transformed into a homogeneous QP:

$$
\begin{aligned}
\min _{(z, t) \in \mathcal{H}} & z^{H} H_{0} z+c_{0}^{H} z t \\
\text { s.t. } & z^{H} H_{i} z+c_{i}^{H} z t \geq 1, \quad i=1, \ldots, m, \quad t^{2}=1 .
\end{aligned}
$$

In the case of $m=2, H_{1}, H_{2} \preceq 0, c_{1}=c_{2}=0$, the approximation bound derived from the SDP relaxation of this homogeneous QP is further improved (from 2 to 1.8) by also using the SDP relaxation of

$$
\begin{aligned}
\min _{z \in \mathcal{H}} & z^{H} H_{0} z \\
\text { s.t. } & z^{H} H_{i} z \geq 1, \quad i=1, \ldots, m
\end{aligned}
$$

Can this idea be extended?

