Parametrized Variational Inequality Approaches to the Generalized Nash Equilibrium Problem

Paul Tseng
Mathematics, University of Washington
Seattle

INFORMS, Seattle
November 6, 2007

Joint work with Koichi Nabetani and Masao Fukushima (Kyoto University)
Talk Outline

• Generalized Nash Equilibrium with Shared Constraints

• VI Approach to Finding Some GNEs

• Parametrized VI Approach to Finding “All” GNEs
 ✤ Price-Directed Parametrization
 ✤ Resource-Directed Parametrization

• Some Numerical Results

• Conclusions & Future Directions
Generalized Nash Equilibrium with Shared Constraints

N players. Each player ν has a “cost” function $\theta_{\nu} : \mathbb{R}^n \rightarrow \mathbb{R}$ and a “feasible” set $X_{\nu} \in \mathbb{R}^{n_{\nu}}$, $\nu = 1, \ldots, N$ ($n_1 + \cdots + n_N = n$).

There is a shared constraint function $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$.

A Generalized Nash Equilibrium (GNE) is any $x^* = (x^*_1, \ldots, x^*_N) \in \mathbb{R}^n$ satisfying

$$x^*_\nu \in \arg \min_{x_{\nu} \in X_{\nu}} \{ \theta_{\nu}(x_{\nu}, x^*_{-\nu}) \mid g(x_{\nu}, x^*_{-\nu}) \leq 0 \}, \quad \nu = 1, \ldots, N$$

Assumption:

- Each X_{ν} is nonempty, closed, convex.
- $\theta_{\nu}(\cdot, x_{-\nu})$ is convex for each ν and $x_{-\nu} \in X_{-\nu}$.
- $g = (g_1, \ldots, g_m)^T$, with each g_i differentiable, convex.
Under suitable CQ at x^*, there exist $\lambda^*_\nu \in \mathbb{R}^m$, $\nu = 1, \ldots, N$, satisfying the GNE-KKT condition:

\[
0 \in \nabla_{x\nu} \theta_{\nu}(x^*) + \nabla_{x\nu} g(x^*) \lambda^*_\nu + N_{X_{\nu}}(x^*_\nu), \quad \nu = 1, \ldots, N
\]

\[
0 \leq \lambda^*_\nu \perp g(x^*) \leq 0, \quad x^*_\nu \in X_{\nu},
\]

GNE has many interesting applications. Facchinei, Fischer, Fukushima, Kanzow, Krawczyk, Pang, Robinson, Rosen, Smeers, Uryasev, Wei, ...

Existing approaches, based on penalty method Fukushima, Pang or VI formulation Facchinei, Fischer, Piccialli, Smeers, Wei or Nikaido-Isoda function von Heusinger, Kanzow, Krawczyk, Uryasev, find only one or some GNEs, but not all GNEs.

Like to find all GNEs or, at least, a “sufficiently rich” subset of GNEs.
VI Approach to Finding Some GNEs

Define

\[F(x) := (\nabla x_\nu \theta_\nu(x))_{\nu=1}^N \]
\[X := \{ x \in X_1 \times \cdots \times X_N \mid g(x) \leq 0 \} \]

\(x^* \) is a soln of \(VI(F, X) \) \(\iff \) \(x^* \in \arg \min_{x \in X} \langle F(x^*), x \rangle \)

Theorem 0: Wei & Smeers, Facchinei et al.

If \(x^* \) and \(\lambda_0^* \in \mathbb{R}^m \) satisfy KKT condition for \(VI(F, X) \), then \(x^* \) and \(\lambda_\nu^* = \lambda_0^*, \nu = 1, \ldots, N \), satisfy GNE-KKT condition.
Parameterized VI Approach to Finding “All” GNEs

1. Price-Directed Parametrization:

For any $\pi_\nu \in \mathbb{R}_+^m$, $\nu = 1, \ldots, N$, let $\pi = (\pi_\nu)_{\nu=1}^N$ and define

$$F^\pi(x) := F(x) + (\nabla x_\nu g(x) \pi_\nu)_{\nu=1}^N$$

Theorem 1: Fix any $\pi = (\pi_\nu)_{\nu=1}^N \in \mathbb{R}_+^{mN}$. If x^* and $\lambda_0^* \in \mathbb{R}^m$ satisfy KKT condition for $VI(F^\pi, X)$, then a sufficient condition for x^* and $\lambda_\nu^* = \lambda_0^* + \pi_\nu$, $\nu = 1, \ldots, N$, to satisfy GNE-KKT condition is

$$\langle g(x^*), \pi_\nu \rangle = 0, \quad \nu = 1, \ldots, N$$

If x^* satisfies GNE-LICQ, this condition is also necessary.

Converse Fact: If x^* and $\lambda^* = (\lambda_\nu^*)_{\nu=1}^N$ satisfy the GNE-KKT condition, then x^* is a soln of $VI(F^{\lambda^*}, X)$.
GNELICQ:

\[
\left\{ \begin{array}{l}
0 \in \nabla_{x^*} g(x^*) \lambda_{\nu} + N_{X_{\nu}}(x^*) + (-N_{X_{\nu}}(x^*)) \\
\lambda_{\nu} \perp g(x^*) \leq 0
\end{array} \right\} \implies \lambda_{\nu} = 0, \quad \nu = 1, \ldots, N.
\]

Fact: Assume \(g(x) = \sum_{\nu=1}^{N} g_{\nu}(x_{\nu}) \).

If \(F \) is (strongly) monotone on \(X \), then \(F^\pi \) is (strongly) monotone on \(X \) for any \(\pi \in \mathbb{R}_+^{mN} \).
2. Resource-Directed Parametrization:

Assume \(g(x) = \sum_{\nu=1}^{N} g_{\nu}(x_{\nu}) \).

For any \(\beta_{\nu} \in \mathbb{R}^{m}, \nu = 1, \ldots, N \), satisfying \(\sum_{\nu=1}^{N} \beta_{\nu} = 0 \), let \(\beta := (\beta_{\nu})_{\nu=1}^{N} \),

\[
X^{\beta} := X_{1}^{\beta_1} \times \cdots \times X_{N}^{\beta_N} \text{ with } X_{\nu}^{\beta_{\nu}} := \{ x_{\nu} \in X_{\nu} | g_{\nu}(x_{\nu}) \leq \beta_{\nu} \}
\]

Theorem 2: Fix any \(\beta = (\beta_{\nu})_{\nu=1}^{N} \) satisfying \(\sum_{\nu=1}^{N} \beta_{\nu} = 0 \). If \(x^{*} \) is a soln of \(\text{VI}(F, X^{\beta}) \), then a sufficient condition for \(x^{*} \) to be a GNE is that

for each \(i = 1, \ldots, m \), \[
\left\{ \begin{array}{c}
\text{either} \quad g_{\nu,i}(x_{\nu}^{*}) = \beta_{\nu,i} \quad \nu = 1, \ldots, N \\
\text{or} \quad g_{\nu,i}(x_{\nu}^{*}) < \beta_{\nu,i} \quad \nu = 1, \ldots, N
\end{array} \right\}
\]

Converse Fact: If \(x^{*} \) is a GNE, then \(x^{*} \) is a soln of \(\text{VI}(F, X^{\beta}) \), where \(\beta = (\beta_{\nu})_{\nu=1}^{N}, \beta_{\nu} = g_{\nu}(x_{\nu}^{*}) - \alpha_{\nu} g(x^{*}) \), with \(\alpha_{\nu} > 0 \) satisfying \(\sum_{\nu=1}^{N} \alpha_{\nu} = 1 \).
Some Numerical Results

1. Harker's example: $N = 2$, $n = 2$, $m = 1$.

$$x_1^* = \arg \min_{x_1 \in [0,10]} \left\{ x_1^2 + \frac{8}{3} x_1 x_2^* - 34 x_1 | x_1 + x_2^* \leq 15 \right\}$$

$$x_2^* = \arg \min_{x_2 \in [0,10]} \left\{ x_2^2 + \frac{5}{4} x_1^* x_2 - 24.25 x_2 | x_1^* + x_2 \leq 15 \right\}$$

$$F(x) = \begin{bmatrix} 2x_1 + \frac{8}{3} x_2 - 34 \\ \frac{5}{4} x_1 + 2x_2 - 24.25 \end{bmatrix}$$

$$X = \{(x_1, x_2) | 0 \leq x_1, x_2 \leq 10, x_1 + x_2 \leq 15\}$$

$VI(F, X)$ is strongly monotone, affine. Soln $(5, 9)$.

$g(x) = x_1 + x_2 - 15$ is separable.
Price-directed decomp:

Can restrict to $\pi_1 \in [0, 2], \pi_2 = 0$ or $\pi_1 = 0, \pi_2 \in [0, 2]$. Use 256 grid pts for each.

For each grid pt $\pi = (\pi_1, \pi_2)$, $\text{VI}(F^\pi, X)$ is strongly monotone, affine. Using Thm 1, soln x^* (found by PATHLCP.M Ferris, Munson) is declared GNE if

$$|\pi_{\nu}g(x^*)| < 10^{-6}, \quad \nu = 1, 2.$$
Resource-directed decomp:

Choose \(g_1(x_1) = x_1 - \frac{15}{2}, \quad g_2(x_2) = x_2 - \frac{15}{2} \).

Can restrict to \(\beta_1 + \beta_2 = 0, |\beta_1| \leq \frac{15}{2} \). Use 256 grid pts.

For each grid pt \(\beta = (\beta_1, \beta_2) \), VI \((F, X^\beta)\) is strongly monotone, affine.

Using Thm 2, soln \(x^* \) is declared GNE if

\[
\text{either} \quad |g_\nu(x^*_\nu) - \beta_\nu| < 10^{-6}, \quad \nu = 1, 2 \\
\text{or} \quad g_\nu(x^*_\nu) - \beta_\nu < -10^{-6}, \quad \nu = 1, 2.
\]
PARAMETRIZED VI APPROACHES TO GENERALIZED NASH EQUILIBRIUM

GNEP Solution

(5, 9)
(9, 6)
(10, 5)
PARAMETRIZED VI APPROACHES TO GENERALIZED NASH EQUILIBRIUM

2. River basin pollution Krawczyk, Uryasev: \(N = 3, n = 3, m = 2 \).

\[
x^*_\nu = \arg \min_{x_\nu \geq 0} \left\{ (\alpha_\nu x_\nu + 0.01(x_\nu + x_{-\nu}^*) - \chi_\nu)x_\nu | g(x_\nu, x_{-\nu}^*) \leq 0 \right\}, \ \nu = 1, 2, 3
\]

with \(\alpha_1 = \alpha_3 = 0.01, \alpha_2 = 0.05, \chi_1 = 2.9, \chi_2 = 2.88, \chi_3 = 2.85 \), and
\[
g(x) = \begin{bmatrix}
3.25x_1 + 1.25x_2 + 4.125x_3 - 100 \\
2.2915x_1 + 1.5625x_2 + 2.8125x_3 - 100
\end{bmatrix}
\]

\[
F(x) = \begin{bmatrix}
0.04 & 0.01 & 0.01 \\
0.01 & 0.12 & 0.01 \\
0.01 & 0.01 & 0.04
\end{bmatrix} x - \begin{bmatrix}
2.9 \\
2.88 \\
2.85
\end{bmatrix}
\]

\(X = \{ x \in \mathbb{R}^3_+ | g(x) \leq 0 \} \)

\(\text{VI} (F, X) \) is strongly monotone, affine. Soln = (21.14.., 16.03.., 2.73..)

\(g(x) \) is separable.
Price-directed decomp:

Restrict to $\pi_1, \pi_2, \pi_3 \in [0, 2]^2$ such that the ith component is zero in one or three of them, $i = 1, 2$. Randomly generate 1000 pts for each of 16 cases except the all-zero case. Total of 15,001 pts.

For each pt $\pi = (\pi_1, \pi_2, \pi_2)$, $\text{VI}(F^\pi, X)$ is strongly monotone, affine. Using Thm 1, soln x^* (found by PATHLCP.M) is declared GNE if

$$|\langle \pi_\nu, g(x^*) \rangle| < 10^{-6}, \quad \nu = 1, 2, 3.$$
Resource-directed decomp:

Choose

\[
g_1(x_1) = \left[\begin{array}{c} 3.25x_1 - \frac{100}{3} \\ 2.2915x_1 - \frac{100}{3} \end{array} \right], \quad g_2(x_2) = \left[\begin{array}{c} 1.25x_2 - \frac{100}{3} \\ 1.5625x_2 - \frac{100}{3} \end{array} \right], \quad g_3(x_3) = \left[\begin{array}{c} 4.125x_3 - \frac{100}{3} \\ 2.8125x_3 - \frac{100}{3} \end{array} \right]
\]

Can restrict to \(\beta_1 + \beta_2 + \beta_3 = 0, \beta_1, \beta_2 \geq -\left[\frac{100}{3} \right], \beta_1 + \beta_2 \leq \left[\frac{100}{3} \right] \). Use 3700 randomly generated pts.

For each pt \(\beta = (\beta_1, \beta_2, \beta_3) \), VI \((F, X_\beta)\) is strongly monotone, affine. Using Thm 2, soln \(x^* \) is declared GNE if

for each \(i = 1, 2 \),

\[
\begin{cases}
\text{either } |g_{\nu,i}(x_{\nu}^*) - \beta_{\nu,i}| < 10^{-6}, & \nu = 1, 2, 3 \\
\text{or } g_{\nu,i}(x_{\nu}^*) - \beta_{\nu,i} < -10^{-6}, & \nu = 1, 2, 3
\end{cases}
\]
PARAMETRIZED VI APPROACHES TO GENERALIZED NASH EQUILIBRIUM
Fact: If each θ_ν is quadratic, then $\{\text{GNEs}\} \cap \text{ri}Y$ is convex (possibly \emptyset) for each face Y of X. (So suffices to find extreme pts.)
Conclusions & Future Directions

1. More diverse GNEs can give more insight.

2. Price-directed decomposition does not require shared constraint function g be separable, but requires existence of multipliers. It samples in the space of prices. Sampling may not be “uniform” in the space of strategies.

3. Resource-directed decomposition does not require existence of multipliers but requires g be separable. Sampling appears more “uniform” in the space of strategies. Fewer samples are used.

4. More efficient ways to search the price/strategy space (beyond grid sampling or random sampling)? Restricting the search space?