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Talk Outline

• (Block) Coordinate Minimization

• Application to Basis Pursuit

• Block Coordinate Gradient Descent

? Convergence
? Numerical Tests

• Applications to group Lasso regression and SVM

• Conclusions & Future Work
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Coordinate Minimization

min
x=(x1,...,xn)

f(x)

f : <n → < is convex, cont. diff.

Given x ∈ <n, choose i ∈ {1, ..., n}. Update

x
new

= arg min
u|uj=xj ∀j 6=i

f(u).

Repeat until “convergence”.

Gauss-Seidel: Choose i cyclically, 1, 2,..., n, 1, 2,...

Gauss-Southwell: Choose i with | ∂f
∂xi

(x)| maximum.
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Example: min
x=(x1,x2)

(x1 + x2)2 +
1
4
(x1 − x2)2
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• This method extends to update a block of coordinates at each iteration.

• It is simple, and efficient for large “weakly coupled” problems (off-diagonals
of ∇2f(x) not too large).

• Every cluster point of the x-sequence is a minimizer. Zadeh ’70

• If f is nonconvex, then G-Seidel can cycle Powell ’73 but G-Southwell still
converges.

• Can get stuck if f is nondifferentiable.
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Example: min
x=(x1,x2)

(x1 + x2)2 +
1
4
(x1 − x2)2 + |x1 + x2|
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But, if the nondifferentiable part is separable, then convergence is possible.

Example: min
x=(x1,x2)

(x1 + x2)2 +
1
4
(x1 − x2)2 + |x1|+ |x2|
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Block Coord. Minimization for Basis Pursuit

min
x

Fc(x) := ‖Ax− b‖22 + c‖x‖1 “Basis Pursuit”

A ∈ <m×n, b ∈ <m, c ≥ 0.

• Typically m ≥ 1000, n ≥ 8000, and A is dense. ‖ · ‖1 is nonsmooth.
. .
6
_

• Can reformulate this as a convex QP and solve using an IP method. Chen,

Donoho, Saunders ’99
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Assume the columns of A come from an overcomplete set of basis functions
associated with a fast transform (e.g., wavelet packets).

BCM for BP:

Given x, choose I ⊆ {1, ..., n} with |I| = m and {Ai}i∈I orthog. Update

x
new

= arg min
ui=xi ∀i 6∈I

Fc(u) has closed

← form soln

Repeat until “convergence”.

Gauss-Southwell: Choose I to maximize min
v∈∂xIFc(x)

‖v‖2.

• Finds I in O(n + m log m) opers. by algorithm of Coifman & Wickerhauser.

• The x-sequence is bounded & each cluster point is a minimizer. Sardy, Bruce, T ’00
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Convergence of BCM depends crucially on

• differentiability of ‖ · ‖22

• separability of ‖ · ‖1

• convexity ⇒ global minimum
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Application: Electronic surveillance

0

10

20

30

40

50

60

bp.cptable.spectrogram

50 55 60 65

0

10

20

30

40

50

60

ew.cptable.spectrogram

microseconds

KH
z

-40

-30

-20

-10

  0

 10

 20

m = 211 = 2048, c = 4, local cosine transform, all but 4 levels



GAUSS-SEIDEL FOR CONSTRAINED NONSMOOTH OPTIMIZATION 11

Method efficiency :
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Generalization to ML Estimation

min
x
−`(Ax; b) + c

∑
i∈J

|xi|

` is log likelihood, {Ai}i 6∈J are lin. indep “coarse-scale Wavelets”, c ≥ 0

• −`(y; b) = 1
2‖y − b‖22 Gaussian noise

• −`(y; b) =
m∑

i=1

(yi − bi ln yi) (yi ≥ 0) Poisson noise

Can solve this problem by adapting IP method. But IP method is slow (many
CG steps per IP iteration).

. .
6
_

Adapt BCM method?
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General Problem Model

P1 min
x=(x1,...,xn)

Fc(x) := f(x)+cP (x)

f : <N → < is cont. diff. (N ≥ n). c ≥ 0.

P : <N → (−∞,∞] is proper, convex, lsc, and block-separable, i.e.,
P (x) =

∑n
i=1 Pi(xi) (xi ∈ <ni).

• P (x) = ‖x‖1 generalized basis pursuit

• P (x) =
{

0 if l ≤ x ≤ u
∞ else

bound constrained NLP



GAUSS-SEIDEL FOR CONSTRAINED NONSMOOTH OPTIMIZATION 14

Block Coord. Gradient Descent Method for P1

Idea: Do BCM on a quadratic approx. of f .

For x ∈ domP , I ⊆ {1, ..., n}, and H � 0N , let dH(x; I) and qH(x; I) be the
optimal soln and obj. value of

min
d|di=0 ∀i 6∈I

{∇f(x)Td +
1
2
dTHd + cP (x + d)− cP (x)} direc.

subprob

Facts :

• dH(x; {1, ..., n}) = 0 ⇔ F ′
c(x; d) ≥ 0 ∀d ∈ <N . stationarity

• H is diagonal ⇒ dH(x; I) =
∑
i∈I

dH(x; i), qH(x; I) =
∑
i∈I

qH(x; i). separab.
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BCGD for P1:

Given x ∈ domP , choose I ⊆ {1, ..., n}, H � 0N . Let d = dH(x; I).

Update x
new

= x + αd (α > 0)

until “convergence.” (dH(x; I) has closed form when H is diagonal and
P (·) = ‖ · ‖1.)

Gauss-Southwell-d: Choose I with ‖dD(x; I)‖∞ ≥ υ‖dD(x; {1, ..., n})‖∞
(0 < υ ≤ 1, D � 0N is diagonal, e.g., D = I or D = diag(H)).

Gauss-Southwell-q: Choose I with qD(x; I) ≤ υ qD(x; {1, ..., n}).

Inexact Armijo LS: α = largest element of {s, sβ, sβ2, ...} satisfying

Fc(x + αd)− Fc(x) ≤ σαqH(x; I)

(s > 0, 0 < β < 1, 0 < σ < 1)
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Convergence Results : (a) If 0 < λ ≤ λi(D), λi(H) ≤ λ̄ ∀i, then
every cluster point of the x-sequence generated by BCGD method is a
stationary point of Fc.

(b) If in addition P and f satisfy any of the following assumptions and I is
chosen by G-Southwell-q, then the x-sequence converges at R-linear rate.

C1 f is strongly convex, ∇f is Lipschitz cont. on domP .

C2 f is (nonconvex) quadratic. P is polyhedral.

C3 f(x) = g(Ex) + qTx, where E ∈ <m×N , q ∈ <N , g is strongly convex, ∇g
is Lipschitz cont. on <m. P is polyhedral.

C4 f(x) = maxy∈Y {(Ex)Ty − g(y)}+ qTx, where Y ⊆ <m is polyhedral,
E ∈ <m×N , q ∈ <N , g is strongly convex, ∇g is Lipschitz cont. on <m. P is
polyhedral.

• BCGD has stronger global convergence property (and cheaper iteration)
than BCM.
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Numerical Tests :

• Implement BCGD, with additional acceleration steps, in Matlab.

• Numerical tests on minx f(x) + c‖x‖1 with f from Moré-Garbow-Hillstrom
set (least square), and different c (e.g., c = .1, 1, 10). Initial x = (1, . . . , 1).

• Compared with L-BFGS-B (Zhu, Byrd, Nocedal ’97) and MINOS 5.5.1 (Murtagh,
Saunders ’05), applied to a reformulation of P1 with P (x) = ‖x‖1 as

min
x+≥0

x−≥0

f(x+ − x−) + c eT (x+ + x−).

• BCGD seems more robust than L-BFGS-B and faster than MINOS on avg
(on a HP DL360 workstation, Red Hat Linux 3.5). However, MINOS is general
NLP solver. L-BFGS-B is a bound constrained NLP solver.
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f(x) n Description
BAL 1000 Brown almost-linear func, nonconvex, dense Hessian.
BT 1000 Broyden tridiagonal func, nonconvex, sparse Hessian.

DBV 1000 Discrete boundary value func, nonconvex, sparse Hessian.
EPS 1000 Extended Powell singular func, convex, 4-block diag. Hessian.
ER 1000 Extended Rosenbrook func, nonconvex, 2-block diag. Hessian.

LFR 1000 f(x) =

n∑
i=1

xi −
2

n + 1

n∑
j=1

xj − 1

2

+

 2

n + 1

n∑
j=1

xj + 1

2

,

strongly convex, quad., dense Hessian.

VD 1000 f(x) =

n∑
i=1

(xi − 1)
2
+

 n∑
j=1

j(xj − 1)

2

+

 n∑
j=1

j(xj − 1)

4

,

strongly convex, dense ill-conditioned Hessian.

Table 1: Least square problems from Moré, Garbow, Hillstrom, 1981
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MINOS L-BFGS-B BCGD-GS-q-acc
f(x) c ]nz/objec/cpu ]nz/objec/cpu ]nz/objec/cpu

BAL 1 1000/1000/43.9 1000/1000/.02 1000/1000/.1
10 1000/9999.9/43.9 1000/9999.9/.03 1000/9999.9/.2

100 1000/99997.5/44.3 1000/99997.5/.1 1000/99997.5/.1

BT .1 1000/71.725/100.6 1000/84.00/.02 1000/71.74/.9
1 997/672.41/94.7 981/668.72/.2 1000/626.67/42.4

10 0/1000/56.0 0/1000/.01 0/1000/.01

DBV .1 0/0/51.5 999/83.45/.01 0/0/.5
1 0/0/50.8 0/0/.01 2/0/.3

10 0/0/52.5 0/0/.00 0/0/.01

EPS 1 1000/351.14/60.3 999/352.52/.05 1000/351.14/.3
10 243/1250/44.2 250/1250/.01 249/1250/.1

100 0/1250/51.5 0/1250/.01 0/1250/.01

ER 1 1000/436.25/71.5 1000/436.25/.1 1000/436.25/.1
10 0/500/50.2 500/1721.1/.00 0/500/.3

100 0/500/52.4 0/500/.00 0/500/.03

LFR .1 1000/98.5/77.2 1000/98.5/.00 1000/98.5/.03
1 1000/751/73.8 0/751/.01 0/751/.01

10 0/1001/53.3 0/1001/.01 0/1001/.01

VD 1 1000/937.59/43.0 1000/1000.0/.00 1000/937.66/.5
10 413/6726.80/56.9 974/5.8·1012/2.3 1000/6726.81/60.3

100 136/55043/57.4 996/75135/.2 1000/55043/88.1

Table 2: Performance of MINOS, LBFGS-B and BCGD, with n = N , x
init

= (1, . . . , 1)
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BCGD was recently applied to Group Lasso for logistic regression (Meier et al
’06)

min
x=(x1,...,xn)

−`(x) + c
n∑

i=1

ωi‖xi‖2

c > 0, ωi > 0.

` : <N → < is the log-likelihood for linear logistic regression.

Extension to constraints?
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Linearly Constrained Problem

P2 min
x∈X

f(x)

f : <n → < is cont. diff.

X = {x = (x1, ..., xn) ∈ <n | l ≤ x ≤ u, Ax = b}, A ∈ <m×n, b ∈ <m, l ≤ u.

Special case. Support Vector Machine QP (Vapnik ’82)

min
0≤x≤Ce, aT x=0

1
2
xTQx− eTx

C > 0, a ∈ <n, eT = (1, ..., 1), Qij = aiajK(zi, zj), and K : <p ×<p → <.

K(zi, zj) = zT
i zj Linear

K(zi, zj) = exp(−γ‖zi − zj‖2) (γ > 0) Gaussian
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Block Coord. Gradient Descent Method for P2

For x ∈ X, I ⊆ {1, ..., n}, and H � 0n, let dH(x; I) and qH(x; I) be the
optimal soln and obj. value of

min
d|x+d∈X, di=0 ∀i 6∈I

{∇f(x)Td +
1
2
dTHd} direc.

subprob

BCGD for P2:

Given x ∈ X, choose I ⊆ {1, ..., n}, H � 0n. Let d = dH(x; I).

Update x
new

= x + αd (α > 0)

until “convergence.”

• d is easily calculated when m = 1 and |I| = 2.
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Gauss-Southwell-q: Choose I with

qD(x; I) ≤ υ qD(x; {1, ..., n})

(0 < υ ≤ 1, D � 0n is diagonal, e.g., D = I or D = diag(H)).

For m = 1, such I with |I| = 2 can be found in O(n) ops by solving a
continuous quadratic knapsack problem and finding a “conformal realization”
of the solution.

Inexact Armijo LS: α = largest element of {s, sβ, sβ2, ...} satisfying

x + αd ∈ X, f(x + αd)− f(x) ≤ σαqH(x; I)

(s > 0, 0 < β < 1, 0 < σ < 1).
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Convergence Results : (a) If 0 < λ ≤ λi(D), λi(H) ≤ λ̄ ∀i, then
every cluster point of the x-sequence generated by BCGD method is a
stationary point of P2.

(b) If in addition f satisfies any of the following assumptions and I is chosen
by G-Southwell-q, then the x-sequence converges at R-linear rate.

C1 f is strongly convex, ∇f is Lipschitz cont. on X.

C2 f is (nonconvex) quadratic.

C3 f(x) = g(Ex) + qTx, where E ∈ <m×n, q ∈ <n, g is strongly convex, ∇g is
Lipschitz cont. on <m.

C4 f(x) = maxy∈Y {(Ex)Ty − g(y)}+ qTx, where Y ⊆ <m is polyhedral,
E ∈ <m×n, q ∈ <n, g is strongly convex, ∇g is Lipschitz cont. on <m.

• For SVM QP, BCGD has R-linear convergence (with no additional
assumption). Similar work as decomposition methods (Joachims ’98, Platt ’99, Lin
et al, ...)
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Numerical Tests :

• Implement BCGD in Fortran for SVM QP (two-class data classification).

• x
init

= 0. Cache most recently used columns of Q.

• On large benchmark problems

a7a (p = 122, n = 16100),
a8a (p = 123, n = 22696),
a9a (p = 123, n = 32561),
ijcnn1 (p = 22, n = 49990),
w7a (p = 300, n = 24692)

and using nonlinear kernel, BCGD is comparable in CPU time and solution
quality with the C++ SVM code LIBSVM (Lin et al). Using linear kernel, BCGD
is much slower (it doesn’t yet do variable fixing as in LIBSVM).
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Conclusions & Future Work

1. For ML estimation, `1-regularization induces sparsity in the solution and
avoids oversmoothing the signals.

2. The resulting estimation problem can be solved effectively by BCM or
BCGD, exploiting the problem structure, including nondiffer. of `1-norm.
Which to use? Depends on problem.

3. Applications to denoising, regression, SVM..

4. Improve BCGD speed for SVM QP using linear kernel? Efficient
implementation for m = 2 constraints?


