Gauss-Seidel for Constrained Nonsmooth Optimization and Applications

Paul Tseng Mathematics, University of Washington

Seattle

UBC April 10, 2007

(Joint works with Sylvain Sardy (EPFL) and Sangwoon Yun (UW))

Talk Outline

- (Block) Coordinate Minimization
- Application to Basis Pursuit
- Block Coordinate Gradient Descent
 - * Convergence
 - Numerical Tests
- Applications to group Lasso regression and SVM
- Conclusions & Future Work

Coordinate Minimization

$$\min_{x=(x_1,\ldots,x_n)} f(x)$$

 $f: \Re^n \to \Re$ is convex, cont. diff.

Given $x \in \Re^n$, choose $i \in \{1, ..., n\}$. Update

$$x^{\text{new}} = \operatorname*{arg\,min}_{u|u_j = x_j \,\forall j \neq i} f(u).$$

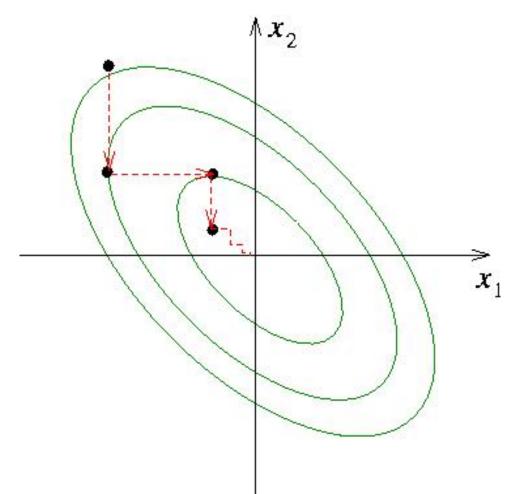
Repeat until "convergence".

Gauss-Seidel: Choose *i* cyclically, 1, 2,..., *n*, 1, 2,... Gauss-Southwell: Choose *i* with $\left|\frac{\partial f}{\partial x_i}(x)\right|$ maximum.

GAUSS-SEIDEL FOR CONSTRAINED NONSMOOTH OPTIMIZATION

Example:

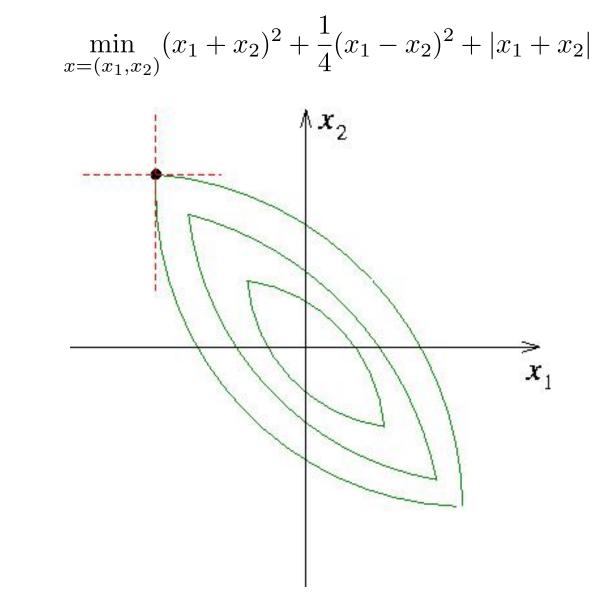
$$\min_{x=(x_1,x_2)} (x_1 + x_2)^2 + \frac{1}{4} (x_1 - x_2)^2$$



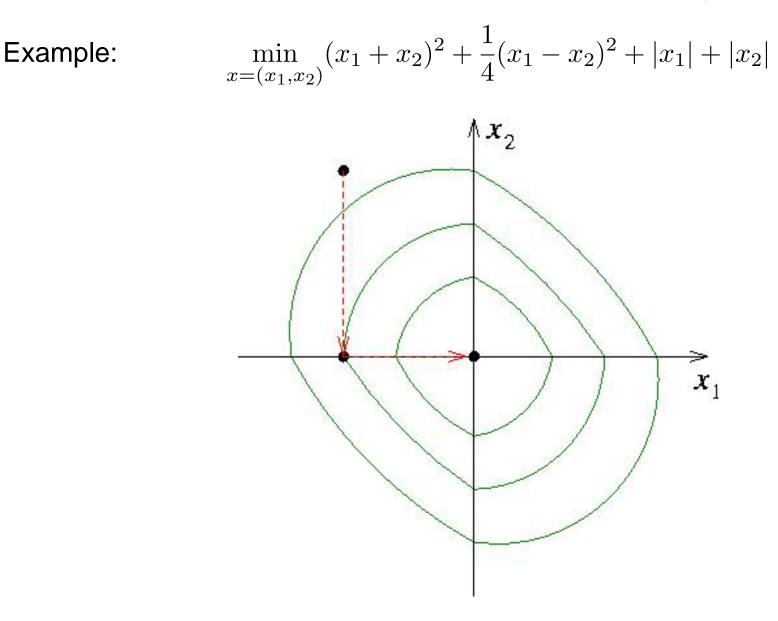
- This method extends to update a block of coordinates at each iteration.
- It is simple, and efficient for large "weakly coupled" problems (off-diagonals of $\nabla^2 f(x)$ not too large).
- Every cluster point of the x-sequence is a minimizer. Zadeh '70
- If f is nonconvex, then G-Seidel can cycle Powell '73 but G-Southwell still converges.
- Can get stuck if f is nondifferentiable.

GAUSS-SEIDEL FOR CONSTRAINED NONSMOOTH OPTIMIZATION

Example:



But, if the nondifferentiable part is separable, then convergence is possible.



Block Coord. Minimization for Basis Pursuit

$$\min_{x} F_c(x) := \|Ax - b\|_2^2 + c\|x\|_1$$

"Basis Pursuit"

 $A\in\Re^{m\times n}$, $b\in\Re^m$, $c\geq 0.$

• Typically $m \ge 1000, n \ge 8000$, and A is dense. $\|\cdot\|_1$ is nonsmooth.

 Can reformulate this as a convex QP and solve using an IP method. Chen, Donoho, Saunders '99 Assume the columns of A come from an overcomplete set of basis functions associated with a fast transform (e.g., wavelet packets).

BCM for BP:

Given x, choose $\mathcal{I} \subseteq \{1, ..., n\}$ with $|\mathcal{I}| = m$ and $\{A_i\}_{i \in \mathcal{I}}$ orthog. Update

 $x^{\text{new}} = \operatorname*{arg\,min}_{u_i = x_i \; \forall i \notin \mathcal{I}} F_c(u)$

has closed ← form soln

Repeat until "convergence".

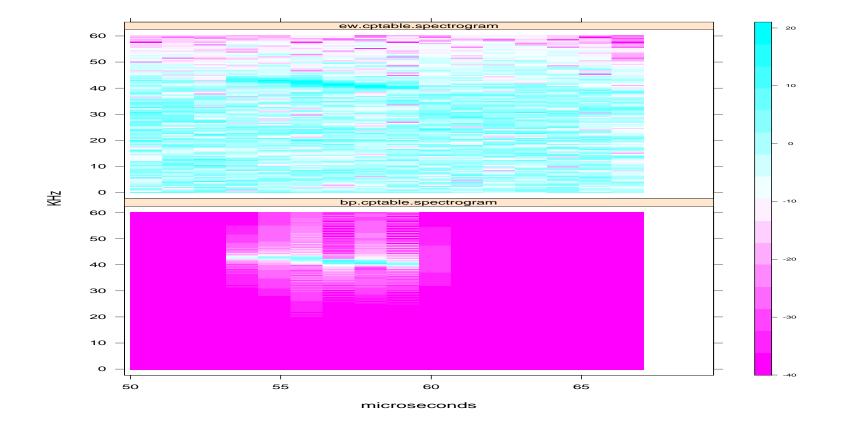
Gauss-Southwell: Choose \mathcal{I} to maximize $\min_{v \in \partial_{x_{\mathcal{I}}} F_c(x)} \|v\|_2$.

- Finds \mathcal{I} in $O(n + m \log m)$ opers. by algorithm of Coifman & Wickerhauser.
- The x-sequence is bounded & each cluster point is a minimizer. Sardy, Bruce, T '00

Convergence of BCM depends crucially on

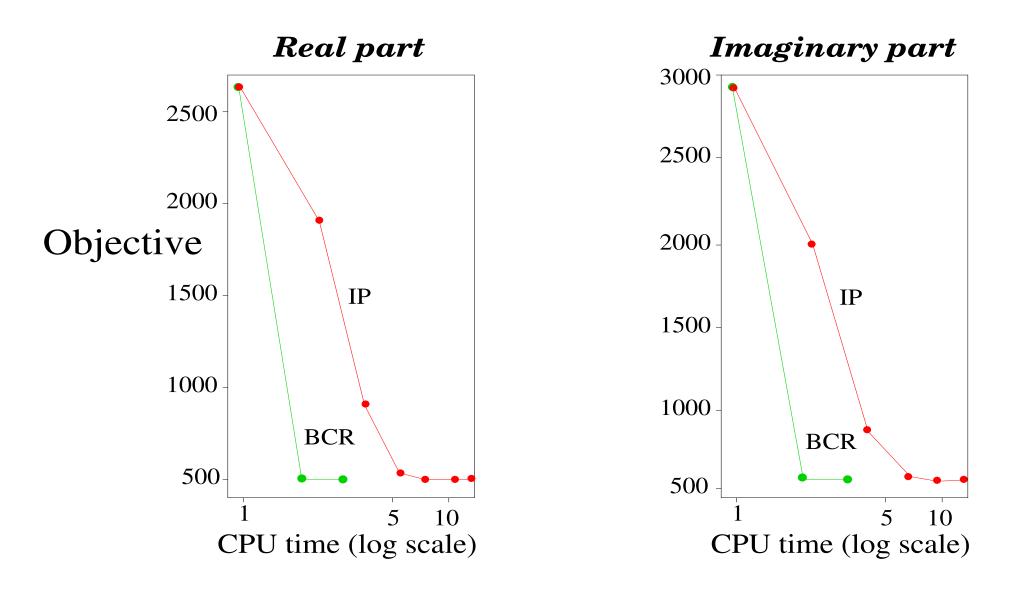
- differentiability of $\|\cdot\|_2^2$
- separability of $\|\cdot\|_1$
- convexity \Rightarrow global minimum

Application: Electronic surveillance



$$m = 2^{11} = 2048$$
, $c = 4$, local cosine transform, all but 4 levels

Method efficiency:



Comparing CPU times of IP and BCM (S-Plus, Sun Ultra 1).

Generalization to ML Estimation

$$\min_{x} -\ell(Ax; b) + c \sum_{i \in \mathcal{J}} |x_i|$$

 ℓ is log likelihood, $\{A_i\}_{i \notin \mathcal{J}}$ are lin. indep "coarse-scale Wavelets", $c \geq 0$

•
$$-\ell(y;b) = \frac{1}{2} ||y - b||_2^2$$
 Gaussian noise

•
$$-\ell(y;b) = \sum_{i=1}^{m} (y_i - b_i \ln y_i) \quad (y_i \ge 0)$$
 Poisson noise

Can solve this problem by adapting IP method. But IP method is slow (many CG steps per IP iteration). $\overset{?}{\angle}$

Adapt BCM method?

General Problem Model

P1

$$\min_{x=(x_1,...,x_n)} F_c(x) := f(x) + cP(x)$$

 $f: \Re^N \to \Re$ is cont. diff. $(N \ge n)$. $c \ge 0$.

 $P: \Re^N \to (-\infty, \infty]$ is proper, convex, lsc, and block-separable, i.e., $P(x) = \sum_{i=1}^n P_i(x_i)$ ($x_i \in \Re^{n_i}$).

• $P(x) = ||x||_1$ generalized basis pursuit

•
$$P(x) = \begin{cases} 0 & \text{if } l \le x \le u \\ \infty & \text{else} \end{cases}$$

bound constrained NLP

Block Coord. Gradient Descent Method for *P1*

Idea: Do BCM on a quadratic approx. of f.

For $x \in \text{dom}P$, $\mathcal{I} \subseteq \{1, ..., n\}$, and $H \succ 0_N$, let $d_H(x; \mathcal{I})$ and $q_H(x; \mathcal{I})$ be the optimal soln and obj. value of

$$\min_{d|d_i=0 \ \forall i \notin \mathcal{I}} \{\nabla f(x)^T d + \frac{1}{2} d^T H d + cP(x+d) - cP(x)\}$$

direc. subprob

Facts:

•
$$d_H(x; \{1, ..., n\}) = 0 \iff F'_c(x; d) \ge 0 \ \forall d \in \Re^N$$
. stationarity

• *H* is diagonal
$$\Rightarrow d_H(x;\mathcal{I}) = \sum_{i\in\mathcal{I}} d_H(x;i), q_H(x;\mathcal{I}) = \sum_{i\in\mathcal{I}} q_H(x;i).$$
 separab.

BCGD for P1:

Given
$$x \in \text{dom}P$$
, choose $\mathcal{I} \subseteq \{1, ..., n\}$, $H \succ 0_N$. Let $d = d_H(x; \mathcal{I})$.
Update $x^{\text{new}} = x + \alpha d \quad (\alpha > 0)$

until "convergence." ($d_H(x; \mathcal{I})$ has closed form when H is diagonal and $P(\cdot) = \| \cdot \|_1$.)

Gauss-Southwell-*d*: Choose \mathcal{I} with $||d_D(x;\mathcal{I})||_{\infty} \ge v ||d_D(x;\{1,...,n\})||_{\infty}$ ($0 < v \le 1$, $D \succ 0_N$ is diagonal, e.g., D = I or D = diag(H)).

Gauss-Southwell-*q***:** Choose \mathcal{I} with $q_D(x; \mathcal{I}) \leq v q_D(x; \{1, ..., n\})$.

Inexact Armijo LS: α = largest element of $\{s, s\beta, s\beta^2, ...\}$ satisfying

$$F_c(x + \alpha d) - F_c(x) \le \sigma \alpha q_H(x; \mathcal{I})$$

(s>0, 0<eta<1, $0<\sigma<1$)

Convergence Results: (a) If $0 < \underline{\lambda} \leq \lambda_i(D), \lambda_i(H) \leq \overline{\lambda} \forall i$, then every cluster point of the *x*-sequence generated by BCGD method is a stationary point of F_c .

(b) If in addition P and f satisfy any of the following assumptions and \mathcal{I} is chosen by G-Southwell-q, then the x-sequence converges at R-linear rate.

C1 *f* is strongly convex, ∇f is Lipschitz cont. on dom*P*.

C2 f is (nonconvex) quadratic. P is polyhedral.

C3 $f(x) = g(Ex) + q^T x$, where $E \in \Re^{m \times N}$, $q \in \Re^N$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m . P is polyhedral.

C4 $f(x) = \max_{y \in Y} \{(Ex)^T y - g(y)\} + q^T x$, where $Y \subseteq \Re^m$ is polyhedral, $E \in \Re^{m \times N}$, $q \in \Re^N$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m . P is polyhedral.

 BCGD has stronger global convergence property (and cheaper iteration) than BCM.

Numerical Tests:

- Implement BCGD, with additional acceleration steps, in Matlab.
- Numerical tests on $\min_x f(x) + c \|x\|_1$ with f from Moré-Garbow-Hillstrom set (least square), and different c (e.g., c = .1, 1, 10). Initial x = (1, ..., 1).
- Compared with L-BFGS-B (Zhu, Byrd, Nocedal '97) and MINOS 5.5.1 (Murtagh, Saunders '05), applied to a reformulation of *P1* with $P(x) = ||x||_1$ as

$$\min_{\substack{x^+ \ge 0 \\ x^- \ge 0}} f(x^+ - x^-) + c \ e^T(x^+ + x^-).$$

 BCGD seems more robust than L-BFGS-B and faster than MINOS on avg (on a HP DL360 workstation, Red Hat Linux 3.5). However, MINOS is general NLP solver. L-BFGS-B is a bound constrained NLP solver.

f(x)	n	Description		
BAL	1000	Brown almost-linear func, nonconvex, dense Hessian.		
BT	1000	Broyden tridiagonal func, nonconvex, sparse Hessian.		
DBV	1000	Discrete boundary value func, nonconvex, sparse Hessian.		
EPS	1000	Extended Powell singular func, convex, 4-block diag. Hessian.		
ER	1000	Extended Rosenbrook func, nonconvex, 2-block diag. Hessian.		
LFR	1000	$f(x) = \sum_{i=1}^{n} \left(x_i - \frac{2}{n+1} \sum_{j=1}^{n} x_j - 1 \right)^2 + \left(\frac{2}{n+1} \sum_{j=1}^{n} x_j + 1 \right)^2,$		
		strongly convex, quad., dense Hessian.		
VD	1000	$f(x) = \sum_{i=1}^{n} (x_i - 1)^2 + \left(\sum_{j=1}^{n} j(x_j - 1)\right)^2 + \left(\sum_{j=1}^{n} j(x_j - 1)\right)^4,$		
		strongly convex, dense ill-conditioned Hessian.		

 Table 1: Least square problems from Moré, Garbow, Hillstrom, 1981

		MINOS	L-BFGS-B	BCGD-GS-q-acc
f(x)	С	‡nz/objec/cpu	 ‡nz/objec/cpu	‡nz/objec/cpu
BAL	1	1000/1000/43.9	1000/1000/.02	1000/1000/.1
	10	1000/9999.9/43.9	1000/9999.9/.03	1000/9999.9/.2
	100	1000/99997.5/44.3	1000/99997.5/.1	1000/99997.5/.1
BT	.1	1000/71.725/100.6	1000/84.00/.02	1000/71.74/.9
	1	997/672.41/94.7	981/668.72/.2	1000/626.67/42.4
	10	0/1000/56.0	0/1000/.01	0/1000/.01
DBV	.1	0/0/51.5	999/83.45/.01	0/0/.5
	1	0/0/50.8	0/0/.01	2/0/.3
	10	0/0/52.5	0/0/.00	0/0/.01
EPS	1	1000/351.14/60.3	999/352.52/.05	1000/351.14/.3
	10	243/1250/44.2	250/1250/.01	249/1250/.1
	100	0/1250/51.5	0/1250/.01	0/1250/.01
ER	1	1000/436.25/71.5	1000/436.25/.1	1000/436.25/.1
	10	0/500/50.2	500/1721.1/.00	0/500/.3
	100	0/500/52.4	0/500/.00	0/500/.03
LFR	.1	1000/98.5/77.2	1000/98.5/.00	1000/98.5/.03
	1	1000/751/73.8	0/751/.01	0/751/.01
	10	0/1001/53.3	0/1001/.01	0/1001/.01
VD	1	1000/937.59/43.0	1000/1000.0/.00	1000/937.66/.5
	10	413/6726.80/56.9	974/5.8·10 ¹² /2.3	1000/6726.81/60.3
	100	136/55043/57.4	996/75135/.2	1000/55043/88.1
				init

Table 2: Performance of MINOS, LBFGS-B and BCGD, with n = N, $x^{\text{init}} = (1, \dots, 1)$

BCGD was recently applied to Group Lasso for logistic regression (Meier et al '06)

$$\min_{x=(x_1,...,x_n)} -\ell(x) + c \sum_{i=1}^n \omega_i ||x_i||_2$$

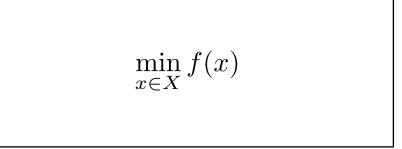
 $c > 0, \, \omega_i > 0.$

 $\ell: \Re^N \to \Re$ is the log-likelihood for linear logistic regression.

Extension to constraints?

Linearly Constrained Problem

P2



 $f: \Re^n \to \Re$ is cont. diff.

 $X = \{x = (x_1, ..., x_n) \in \Re^n \mid l \le x \le u, \ Ax = b\}, A \in \Re^{m \times n}, b \in \Re^m, l \le u.$

Special case. Support Vector Machine QP (Vapnik '82)

$$\min_{0 \le x \le Ce, a^T x = 0} \frac{1}{2} x^T Q x - e^T x$$

$$C > 0$$
, $a \in \Re^n$, $e^T = (1, ..., 1)$, $Q_{ij} = a_i a_j K(z_i, z_j)$, and $K : \Re^p \times \Re^p \to \Re$.

$$\begin{split} K(z_i,z_j) &= z_i^T z_j \\ K(z_i,z_j) &= \exp(-\gamma \|z_i-z_j\|^2) \quad (\gamma>0) \\ \end{split}$$
 Gaussian

Block Coord. Gradient Descent Method for *P2*

For $x \in X$, $\mathcal{I} \subseteq \{1, ..., n\}$, and $H \succ 0_n$, let $d_H(x; \mathcal{I})$ and $q_H(x; \mathcal{I})$ be the optimal soln and obj. value of

$$\min_{\substack{d|x+d\in X,\ d_i=0\ \forall i\notin\mathcal{I}}} \{\nabla f(x)^T d + \frac{1}{2} d^T H d\}$$

direc. subprob

BCGD for P2:

Given
$$x \in X$$
, choose $\mathcal{I} \subseteq \{1, ..., n\}$, $H \succ 0_n$. Let $d = d_H(x; \mathcal{I})$.
Update $x^{new} = x + \alpha d$ $(\alpha > 0)$

until "convergence."

• d is easily calculated when m = 1 and $|\mathcal{I}| = 2$.

Gauss-Southwell-q: Choose \mathcal{I} with

$$q_D(x;\mathcal{I}) \le \upsilon \ q_D(x;\{1,...,n\})$$

 $(0 < v \leq 1, D \succ 0_n \text{ is diagonal, e.g., } D = I \text{ or } D = \text{diag}(H)).$

For m = 1, such \mathcal{I} with $|\mathcal{I}| = 2$ can be found in O(n) ops by solving a continuous quadratic knapsack problem and finding a "conformal realization" of the solution.

Inexact Armijo LS: α = largest element of $\{s, s\beta, s\beta^2, ...\}$ satisfying

$$x + \alpha d \in X, \qquad f(x + \alpha d) - f(x) \le \sigma \alpha q_H(x; \mathcal{I})$$

 $(s > 0, 0 < \beta < 1, 0 < \sigma < 1).$

Convergence Results: (a) If $0 < \underline{\lambda} \le \lambda_i(D), \lambda_i(H) \le \overline{\lambda} \forall i$, then every cluster point of the *x*-sequence generated by BCGD method is a stationary point of P2.

(b) If in addition f satisfies any of the following assumptions and \mathcal{I} is chosen by G-Southwell-q, then the x-sequence converges at R-linear rate.

- **C1** *f* is strongly convex, ∇f is Lipschitz cont. on *X*.
- **C2** f is (nonconvex) quadratic.
- **C3** $f(x) = g(Ex) + q^T x$, where $E \in \Re^{m \times n}$, $q \in \Re^n$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m .
- **C4** $f(x) = \max_{y \in Y} \{(Ex)^T y g(y)\} + q^T x$, where $Y \subseteq \Re^m$ is polyhedral, $E \in \Re^{m \times n}$, $q \in \Re^n$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m .

 For SVM QP, BCGD has R-linear convergence (with no additional assumption). Similar work as decomposition methods (Joachims '98, Platt '99, Lin et al, ...)

Numerical Tests:

- Implement BCGD in Fortran for SVM QP (two-class data classification).
- $x^{\text{init}} = 0$. Cache most recently used columns of Q.
- On large benchmark problems

a7a
$$(p = 122, n = 16100),$$

a8a $(p = 123, n = 22696),$
a9a $(p = 123, n = 32561),$
ijcnn1 $(p = 22, n = 49990),$
w7a $(p = 300, n = 24692)$

and using nonlinear kernel, BCGD is comparable in CPU time and solution quality with the C++ SVM code LIBSVM (Lin et al). Using linear kernel, BCGD is much slower (it doesn't yet do variable fixing as in LIBSVM).

Conclusions & Future Work

- 1. For ML estimation, ℓ_1 -regularization induces sparsity in the solution and avoids oversmoothing the signals.
- 2. The resulting estimation problem can be solved effectively by BCM or BCGD, exploiting the problem structure, including nondiffer. of ℓ_1 -norm. Which to use? Depends on problem.
- 3. Applications to denoising, regression, SVM...
- 4. Improve BCGD speed for SVM QP using linear kernel? Efficient implementation for m = 2 constraints?