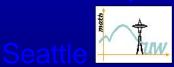
Gradient Methods for Sparse Optimization with Nonsmooth Regularization

Paul Tseng

Mathematics, University of Washington



SIMAI, Roma September 15, 2008

(Joint works with Sylvain Sardy (Univ. Geneva) and Sangwoon Yun (NUS))

Talk Outline

- First-Order Methods for Smooth Optimization
- Application I: Basis Pursuit/Lasso in Compressed Sensing

Talk Outline

- First-Order Methods for Smooth Optimization
- Application I: Basis Pursuit/Lasso in Compressed Sensing
- Optimization with Nonsmooth Regularization
- Block-Coordinate Gradient Descent Method
- Application II: Group Lasso for Logistic Regression
- Application III: Sparse Inverse Covariance Estimation

Talk Outline

- First-Order Methods for Smooth Optimization
- Application I: Basis Pursuit/Lasso in Compressed Sensing
- Optimization with Nonsmooth Regularization
- Block-Coordinate Gradient Descent Method
- Application II: Group Lasso for Logistic Regression
- Application III: Sparse Inverse Covariance Estimation
- Accelerated Gradient Method
- Conclusions & Future Work

First-Order Methods for Smooth Optimization

$$\min_{x=(x_1,\dots,x_n)} f(x)$$

 $f:\Re^n \to \Re$ is cont. diff.

First-Order Methods for Smooth Optimization

 $\min_{x=(x_1,\dots,x_n)} f(x)$

 $f: \Re^n \to \Re$ is cont. diff.

Given $x \in \Re^n$, choose $H \in \Re^{n \times n}$, $H \succ 0$, and $\alpha > 0$. Update

 $x^{\text{new}} = x - \alpha H^{-1} \nabla f(x).$

Gradient Desc.

First-Order Methods for Smooth Optimization

 $\min_{x=(x_1,\ldots,x_n)} f(x)$

 $f: \Re^n \to \Re$ is cont. diff.

Given $x \in \Re^n$, choose $H \in \Re^{n \times n}$, $H \succ 0$, and $\alpha > 0$. Update

$$x^{\text{new}} = x - \alpha H^{-1} \nabla f(x).$$

Gradient Desc.

Given $x \in \mathbb{R}^n$, choose $i \in \{1, ..., n\}$. Update

$$x^{\text{new}} = \underset{u|u_j = x_j}{\operatorname{arg \, min}} f(u).$$

Coordinate Min.

Gauss-Seidel: Choose i cyclically, 1, 2,..., n, 1, 2,...

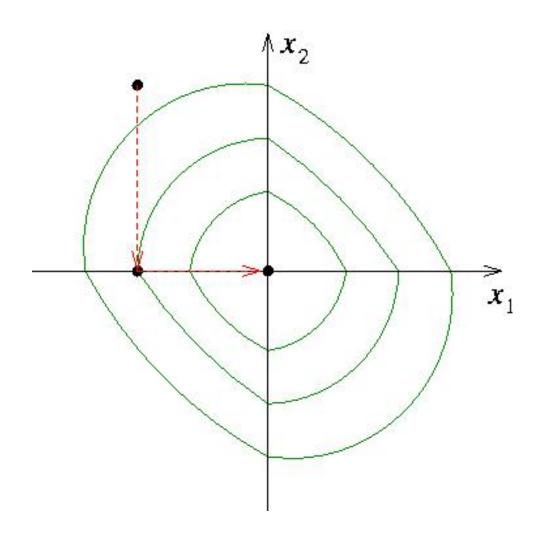
Gauss-Southwell: Choose i with $\left|\frac{\partial f}{\partial x_i}(x)\right|$ maximum.

• Coord. min. method is simple, and efficient for large "weakly coupled" problems (off-block-diagonals of $\nabla^2 f(x)$ not too large).

- Coord. min. method is simple, and efficient for large "weakly coupled" problems (off-block-diagonals of $\nabla^2 f(x)$ not too large).
- If f is convex, then very cluster point of the x-sequence is a minimizer. Zadeh $\frac{1}{70}$ If f is nonconvex, then G-Seidel can cycle Powell $\frac{1}{73}$ though G-Southwell still converges.

- Coord. min. method is simple, and efficient for large "weakly coupled" problems (off-block-diagonals of $\nabla^2 f(x)$ not too large).
- If f is convex, then very cluster point of the x-sequence is a minimizer. zadeh ⁷⁰ If f is nonconvex, then G-Seidel can cycle Powell ⁷³ though G-Southwell still converges.
- Can get stuck at non-stationary point if f is nondifferentiable. But if the nondifferentiable part is *separable*, then convergence is possible.

$$\min_{x=(x_1,x_2)} (x_1 + x_2)^2 + \frac{1}{4} (x_1 - x_2)^2 + |x_1| + |x_2|$$



Application I: Basis Pursuit/Lasso in Compressed Sensing

$$\min_{x} ||Ax - b||_{2}^{2} + c||x||_{1}$$

Tibshirani '96. Fu '98

Osborne et al. '98

Chen, Donoho, Saunders '99

...

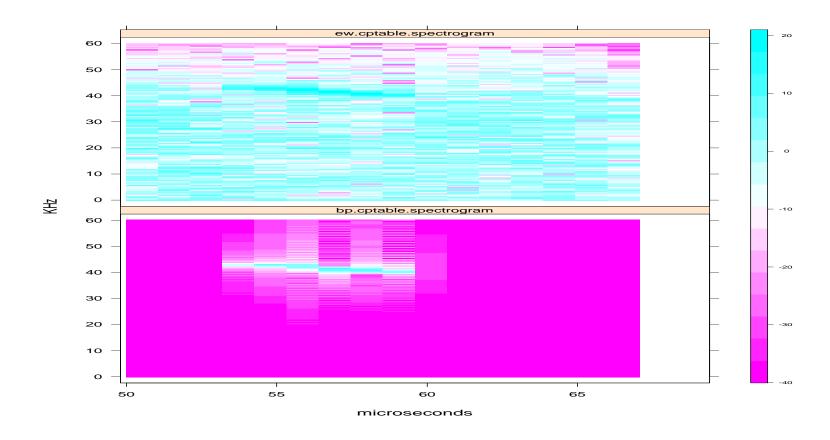
 $A \in \Re^{m \times n}$, $b \in \Re^m$, c > 0. ℓ_1 -regularization induces soln sparsity.

- Typically $m \ge 1000, n \ge 8000$, and A is dense. $\|\cdot\|_1$ is nonsmooth.
- Can reformulate this as a convex QP and solve using an IP method. Chen,

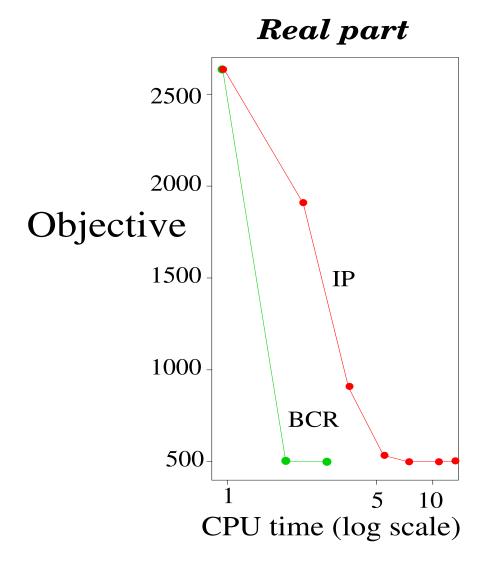
Donoho, Saunders '99

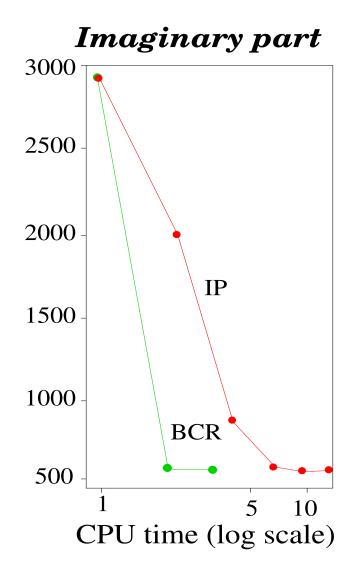
• When the columns of A come from an overcomplete set of basis functions associated with a fast transform (e.g., wavelet packets), this can be solved faster using block-coordinate minimization (Gauss-Southwell). Sardy, Bruce, T '00

Example: Electronic surveillance:



 $m=2^{11}=2048,\ c=4,\ b$: top image, A: local cosine transform, all but 4 levels





Comparing CPU times of IP and BCM (S-Plus, Sun Ultra 1).

Can BCM (Gauss-Seidel & Gauss-Southwell) be extended to efficiently solve more general nonsmooth problems?

ML Estimation with ℓ_1 -Regularization

$$\min_{x} -\ell(Ax; b) + c \sum_{i \in \mathcal{J}} |x_i|$$

 ℓ is log likelihood, $\{A_i\}_{i \notin \mathcal{J}}$ are lin. indep "coarse-scale Wavelets", c>0

•
$$-\ell(y;b) = \frac{1}{2}||y-b||_2^2$$

Gaussian noise

•
$$-\ell(y;b) = \sum_{i=1}^{m} (y_i - b_i \ln y_i) \quad (y_i \ge 0)$$
 Poisson noise

Optimization with Nonsmooth Regularization

$$\min_{x} F_c(x) := f(x) + cP(x)$$

 $f: \Re^n \to \Re$ is cont. diff. $c \ge 0$.

 $P: \Re^n \to (-\infty, \infty]$ is proper, convex, lsc, and block-separable, i.e., $P(x) = \sum_{\mathcal{I} \in \mathcal{C}} P_{\mathcal{I}}(x_{\mathcal{I}})$ ($\mathcal{I} \in \mathcal{C}$ partition $\{1, ..., n\}$).

- $P(x) = ||x||_1$
- $P(x) = \sum_{\mathcal{I} \in \mathcal{C}} \|x_{\mathcal{I}}\|_2$
- $\bullet \ P(x) = \left\{ \begin{matrix} 0 & \text{if } l \leq x \leq u \\ \infty & \text{else} \end{matrix} \right.$

Basis Pursuit/Lasso

group Lasso

bound constrained NLP

Optimization with Nonsmooth Regularization

$$\min_{x} F_c(x) := f(x) + cP(x)$$

 $f: \Re^n \to \Re$ is cont. diff. $c \ge 0$.

 $P: \Re^n \to (-\infty, \infty]$ is proper, convex, lsc, and block-separable, i.e., $P(x) = \sum_{\mathcal{I} \in \mathcal{C}} P_{\mathcal{I}}(x_{\mathcal{I}})$ ($\mathcal{I} \in \mathcal{C}$ partition $\{1, ..., n\}$).

• $P(x) = ||x||_1$

Basis Pursuit/Lasso

• $P(x) = \sum_{\mathcal{I} \in \mathcal{C}} \|x_{\mathcal{I}}\|_2$

group Lasso

 $P(x) = \begin{cases} 0 & \text{if } l \le x \le u \\ \infty & \text{else} \end{cases}$

bound constrained NLP

Idea: Do BCM on a quadratic approx. of f.

Block-Coord. Gradient Descent Method

For $x \in \text{dom}P$, $\emptyset \neq \mathcal{I} \subseteq \{1,...,n\}$, and $H \succ 0$, let $d_H(x;\mathcal{I})$ and $q_H(x;\mathcal{I})$ be the optimal soln and obj. value of

$$\min_{d|d_i=0 \ \forall i \notin \mathcal{I}} \{ \nabla f(x)^T d + \frac{1}{2} d^T H d + c P(x+d) - c P(x) \}$$

direc. subprob

Properties:

• $d_H(x; \{1, ..., n\}) = 0 \Leftrightarrow F'_c(x; d) \ge 0 \ \forall d \in \Re^n$.

stationarity

- H is diagonal, P is "simple" $\Rightarrow d_H(x;\mathcal{I})$ has "closed form".
- The case of H=I and $\mathcal{I}=\{1,...,n\}$ has been proposed previously. Fukushima & Mine '81, Daubechies et al. '04, ...

Given
$$x\in {
m dom} P$$
, choose $\mathcal{I}\subseteq \{1,...,n\}$, $H\succ 0$. Update
$$x^{\rm new}=x+\alpha d_H(x;\mathcal{I}) \qquad (\alpha>0)$$

until "convergence."

Gauss-Seidel: Choose $\mathcal{I} \in \mathcal{C}$ cyclically.

Gauss-Southwell: Choose I with

$$q_D(x; \mathcal{I}) \le v \ q_D(x; \{1, ..., n\})$$

(0 < $v \le 1$, D > 0 is diagonal, e.g., D = I or D = diag(H)).

Given
$$x\in {
m dom} P$$
, choose $\mathcal{I}\subseteq \{1,...,n\},\, H\succ 0.$ Update
$$x^{\rm new}=x+\alpha d_H(x;\mathcal{I}) \qquad (\alpha>0)$$

until "convergence."

Gauss-Seidel: Choose $\mathcal{I} \in \mathcal{C}$ cyclically.

Gauss-Southwell: Choose I with

$$q_D(x;\mathcal{I}) \le v \ q_D(x;\{1,...,n\})$$

 $(0 < v \le 1, D \succ 0 \text{ is diagonal, e.g., } D = I \text{ or } D = \text{diag}(H)).$

Inexact Armijo LS: $\alpha = \text{largest element of } \{1, \beta, \beta^2, ...\}$ satisfying

$$F_c(x + \alpha d) - F_c(x) \leq 0.1 \alpha q_H(x; \mathcal{I}) \qquad (0 < \beta < 1)$$

Convergence properties T, Yun '06':

- (a) If $\underline{\lambda}I \leq D, H \leq \overline{\lambda}I$ ($0 < \underline{\lambda} \leq \overline{\lambda}$), then every cluster point of the x-sequence generated by BCGD method is a stationary point of F_c .
- (b) If in addition P and f satisfy any of the following assumptions, then the x-sequence converges linearly in the root sense.

A1 f is strongly convex, ∇f is Lipschitz cont. on domP.

A2 f is (nonconvex) quadratic. P is polyhedral.

A3 $f(x) = g(Ax) + q^T x$, where $A \in \Re^{m \times n}$, $q \in \Re^n$, g is strongly convex, ∇g is Lipschitz cont. on \Re^m . P is polyhedral.

Note: BCGD has stronger global convergence property (and cheaper iteration) than BCM.

Application II: Group Lasso for Logistic Regression

$$\min_{x} f(x) + c \sum_{\mathcal{I} \in \mathcal{C}} \omega_{\mathcal{I}} ||x_{\mathcal{I}}||_{2}$$

Yuan, Lin '06

Kim³ '06

Meier, van de Geer, Bühlmann '06

 $c > 0, \, \omega_{\mathcal{I}} > 0.$

$$f(x) = \sum_{j=1}^{N} \log\left(1 + e^{a_j^T x}\right) - b_j a_j^T x$$
 $(a_j \in \Re^n, b_j \in \{0, 1\})$

- f is convex, cont. diff. $\|\cdot\|_2$ is convex, nonsmooth. In prediction of short DNA motifs, n > 1000, N > 11,000.
- BCM-GSeidel has been used Yuan, Lin '06, but each iteration is expensive. Every cluster point of the x-sequence is a minimizer τ '01.
- BCGD-GSeidel is significantly more efficient Meier et al '06. Every cluster point of the x-sequence is a minimizer $\frac{1}{1}$, Yun '06. Linear convergence?

Application III: Sparse Inverse Covariance Estimation

$$\min_{X \in \mathcal{S}_+^n} f(X) + c ||X||_1$$

Meinshausen, Bühlmann '06

Yuan, Lin '07

Banerjee, El Ghaoui, d'Aspremont '07

Friedman, Hastie, Tibshirani '07

$$c>0, \ \|X\|_1=\sum_{ij}|X_{ij}|,$$
 $f(X)=-\log\det X+\operatorname{tr}(XS)$ ($S\in\mathcal{S}^n_+$ is empirical covariance matrix)

• f is strictly convex, cont. diff. on its domain, $O(n^3)$ ops to evaluate. $\|\cdot\|_1$ is convex, nonsmooth. In applications, n can exceed 6000.

The Fenchel dual problem Rockafellar '70 is a bound-constrained convex program:

$$\min_{W \in \mathcal{S}_+^n, ||W - S||_{\infty} \le c} - \log \det(W)$$

$$||Y||_{\infty} = \max_{ij} |Y_{ij}|.$$

• IP method requires $O(n^6\log(1/\epsilon))$ ops to find ϵ -optimal soln. Impractical! Nesterov's first-order smoothing method requires $O(n^{4.5}/\epsilon)$ ops Banerjee et al '07.

- IP method requires $O(n^6\log(1/\epsilon))$ ops to find ϵ -optimal soln. Impractical! Nesterov's first-order smoothing method requires $O(n^{4.5}/\epsilon)$ ops Banerjee et al '07.
- Use BCM-GSeidel to solve the dual problem, cycling thru columns i = 1, ..., n of W. Each iteration reduces (via determinant property & duality) to

$$\min_{\xi \in \Re^{n-1}} \frac{1}{2} \xi^T W_{i \neg i \neg \xi} - S_{i \neg i}^T \xi + c \|\xi\|_1.$$

Solve this using IP method ($O(n^3)$ ops) Banerjee et al '07 or BCM-GSeidel Friedman et al '07.

- IP method requires $O(n^6\log(1/\epsilon))$ ops to find ϵ -optimal soln. Impractical! Nesterov's first-order smoothing method requires $O(n^{4.5}/\epsilon)$ ops Banerjee et al '07.
- Use BCM-GSeidel to solve the dual problem, cycling thru columns i=1,...,n of W. Each iteration reduces (via determinant property & duality) to

$$\min_{\xi \in \Re^{n-1}} \frac{1}{2} \xi^T W_{i \neg i \neg \xi} - S_{i \neg i}^T \xi + c \|\xi\|_1.$$

Solve this using IP method ($O(n^3)$ ops) Banerjee et al '07 or BCM-GSeidel Friedman et al '07.

Can apply BCGD-GSeidel to either primal or dual problem. More efficient?
 Applied to the primal, each iteration entails

$$\min_{u \in \mathbb{R}^n} \left\{ \operatorname{tr}((-X^{-1} + S)D) + \frac{1}{2}u^T H u + c ||X + D||_1 \right\}_{D = u^T e_i + e_i u^T}.$$

For diagonal H, the minimizing D has closed form! For each trial α in the Armijo LS, $\det(X+\alpha D)$ can be evaluated from $\det X$ and X^{-1} in $O(n^2)$ ops. Update X^{-1} in $O(n^2)$ ops. Similar application to the dual. Toh, T, Yun, forthcoming.

When f is convex and ∇f is Lipschitz cont. on $\mathrm{dom}P$ with constant L, BCGD-GSeidel finds an ϵ -optimal solution in $O\left(\frac{L\|x^{\mathrm{init}}-x^{\mathrm{opt}}\|_2}{\epsilon}\right)$ iterations ($\epsilon>0$). T, Yun '08

Can global convergence be accelerated?

Accelerated Gradient Method

Given $x \in \text{dom}P$ and $\theta \in (0,1]$, choose $\mathcal{I} = \{1,...,n\}$, H = LI. Update

$$y = x + \left(\frac{\theta}{\theta_{\text{prev}}} - \theta\right) (x - x^{\text{prev}})$$

$$x^{\text{new}} = y + d_H(y; \mathcal{I})$$

$$\theta^{\text{new}} = \frac{\sqrt{\theta^4 + 4\theta^2} - \theta^2}{2}$$

until "convergence,"

with $heta_{
m init}=1$, $x^{
m init}\in{
m dom}P$ Nesterov, Auslender, Beck, Teboulle, Lan, Lu, Monteiro, ...

 $\theta = O(1/k)$ after k iterations.

This method finds an ϵ -optimal solution in $O\left(\sqrt{\frac{L\|x^{\text{init}}-x^{\text{opt}}\|_2}{\epsilon}}\right)$ iterations.

Conclusions & Future Work

- 1. Nonsmooth regularization induces sparsity in the solution, avoids oversmoothing signals, and is useful for variable selection.
- 2. The regularized problem can be solved effectively by BCM or BCGD or IP, exploiting the problem structure.

Conclusions & Future Work

- 1. Nonsmooth regularization induces sparsity in the solution, avoids oversmoothing signals, and is useful for variable selection.
- 2. The regularized problem can be solved effectively by BCM or BCGD or IP, exploiting the problem structure.
- 3. Extension of BCM, BCGD to handle linear constraints Ax = b is possible, including Support Vector Machine training T, Yun, '07, '08.
- 4. Other applications, including stochastic volatility models Neto, Sardy, T, forthcoming.

Conclusions & Future Work

- 1. Nonsmooth regularization induces sparsity in the solution, avoids oversmoothing signals, and is useful for variable selection.
- 2. The regularized problem can be solved effectively by BCM or BCGD or IP, exploiting the problem structure.
- 3. Extension of BCM, BCGD to handle linear constraints Ax = b is possible, including Support Vector Machine training T, Yun, '07, '08.
- 4. Other applications, including stochastic volatility models Neto, Sardy, T, forthcoming.
- 5. Extension of BCGD to nonconvex nonsmooth regularization is possible (e.g. ℓ_p -regularization, 0) sardy, T, forthcoming. Finds stationary points.
- 6. Incorporating Nesterov's acceleration approach within BCGD?

Grazie!

