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• Log-barrier penalty CGD method
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Sensor Network Localization

Basic Problem:

• n pts in <2.

• Know last n−m pts (‘anchors’) xm+1, ..., xn and Eucl. dist. estimate for
pairs of ‘neighboring’ pts

dij ≥ 0 ∀(i, j) ∈ A

with A ⊆ {(i, j) : 1 ≤ i, j ≤ n}.

• Estimate first m pts (‘sensors’).
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Sensor Network Localization

Basic Problem:

• n pts in <2.

• Know last n−m pts (‘anchors’) xm+1, ..., xn and Eucl. dist. estimate for
pairs of ‘neighboring’ pts

dij ≥ 0 ∀(i, j) ∈ A

with A ⊆ {(i, j) : 1 ≤ i, j ≤ n}.

• Estimate first m pts (‘sensors’).

History? Graph realization/rigidty, Euclidean matrix completion, position
estimation in wireless sensor network, ...
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Optimization Problem Formulation

υopt := min
x1,...,xm

∑
(i,j)∈A

∣∣‖xi − xj‖2 − d2
ij

∣∣
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• Objective function is nonconvex. m can be large (m ≥ 1000).
. .
6
_

• Problem is NP-hard (reduction from PARTITION).
. .
6
_

• Local improvement heuristics can fail badly.
. .
6
_
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• Use a convex (SDP, SOCP) relaxation (& local improvement).
Low soln accuracy OK. Distributed computation?



ON SDP/ESDP RELAXATION OF SENSOR NETWORK LOCALIZATION 4

SDP Relaxation

Let X := [x1 · · · xm]. Y = XTX ⇐⇒ Z =
[

Y XT

X I

]
� 0, rankZ = 2
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SDP Relaxation

Let X := [x1 · · · xm]. Y = XTX ⇐⇒ Z =
[

Y XT

X I

]
� 0, rankZ = 2

SDP relaxation (Biswas,Ye ’03):

υ
sdp

:= min
Z

∑
(i,j)∈A,i≤m<j

∣∣yii − 2xT
j xi + ‖xj‖2 − d2

ij

∣∣
+

∑
(i,j)∈A,i<j≤m

∣∣yii − 2yij + yjj − d2
ij

∣∣
s.t. Z =

[
Y XT

X I

]
� 0

Adding the nonconvex constraint rankZ = 2 yields original problem.

But SDP relaxation is still expensive to solve for m large..
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ESDP Relaxation

ESDP relaxation (Wang, Zheng, Boyd, Ye ’06):

υ
esdp

:= min
Z

∑
(i,j)∈A,i≤m<j

∣∣yii − 2xT
j xi + ‖xj‖2 − d2

ij

∣∣
+

∑
(i,j)∈A,i<j≤m

∣∣yii − 2yij + yjj − d2
ij

∣∣
s.t. Z =

[
Y XT

X I

]
 yii yij xT

i

yij yjj xT
j

xi xj I

 � 0 ∀(i, j) ∈ A, i < j ≤ m

0 ≤ υ
esdp

≤ υ
sdp
≤ υopt. In simulation, ESDP is nearly as strong as SDP, and

solvable much faster by IP method.
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Example 1

n = 3, m = 1, d12 = d13 = 2

Problem:

0 = min
x1∈<2

|‖x1 −
[
1
0

]
‖2 − 4|+ |‖x1 −

[−1
0

]
‖2 − 4|
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SDP/ESDP Relaxation:

0 = min
x1=[α

β ]∈<2

y11∈<

|y11 − 2α− 3|+ |y11 + 2α− 3|

s.t.

 y11 α β
α 1 0
β 0 1

 � 0

If solve SDP/ESDP by IP method, then
likely get analy. center y11 = 3, x1 =

[
0
0

]
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Example 2

n = 4, m = 1, d12 = d13 = 2, d14 = 1

Problem:

0 = min
x1∈<2

|‖x1 −
[
1
0

]
‖2 − 4|+ |‖x1 −

[−1
0

]
‖2 − 4|+ |‖x1 −

[
1√
3

]
‖2 − 1|
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SDP/ESDP Relaxation:

0 = min
x1=[α

β ]∈<2

y11∈<

|y11 − 2α− 3|+ |y11 + 2α− 3|+ |y11 − 2α− 2
√

3β + 3|

s.t.

 y11 α β
α 1 0
β 0 1

 � 0

SDP/ESDP has unique soln y11 = 3,
x1 =

[
0√
3

]
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Properties of SDP & ESDP Relaxations

Assume each i ≤ m is conn. to some j > m in the graph ({1, ..., n},A).

Fact 0 :

• Sol(SDP) and Sol(ESDP) are nonempty, closed, convex.

• If

dij = ‖xtrue

i − x
true

j ‖ ∀ (i, j) ∈ A “noiseless case”

(x
true

i = xi ∀ i > m), then

υopt = υ
sdp

= υ
esdp

= 0

and
Z

true
:=

[
X

true
I

]T [
X

true
I

]
is a soln of SDP and ESDP (i.e., Z

true ∈ Sol(SDP) ⊆ Sol(ESDP)).
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Let tri[Z] := yii − ‖xi‖2, i = 1, ...,m. “ith trace”

Fact 1 (Biswas,Ye ’03, T ’07, Wang et al ’06): For each i,

tri[Z] = 0 ∃Z ∈ ri(Sol(ESDP)) =⇒ xi is invariant over Sol(ESDP)
(so xi = x

true

i in noiseless case)

Still true with “ESDP” changed to “SDP”.
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Let tri[Z] := yii − ‖xi‖2, i = 1, ...,m. “ith trace”

Fact 1 (Biswas,Ye ’03, T ’07, Wang et al ’06): For each i,

tri[Z] = 0 ∃Z ∈ ri(Sol(ESDP)) =⇒ xi is invariant over Sol(ESDP)
(so xi = x

true

i in noiseless case)

Still true with “ESDP” changed to “SDP”.

Fact 2 (Pong, T ’09): Suppose υopt = 0. For each i,

tri[Z] = 0 ∀Z ∈ Sol(ESDP) ⇐= xi is invariant over Sol(ESDP).

Proof is by induction, starting from sensors that neighbor anchors.
(Q: True for SDP?)
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Proof idea :

• If (i, j) ∈ A and xi, xj are invar. over Sol(ESDP), then tri[Z] = trj[Z]
∀Z ∈ Sol(ESDP).

• Suppose ∃i ≤ m such that xi is invar. over Sol(ESDP) but tri[Z̄] > 0 for
some Z̄ ∈ Sol(ESDP). Consider maximal Ī ⊂ {1, . . . ,m} such that xi is
invar. over Sol(ESDP) and tri[Z̄] > 0 ∀i ∈ Ī.

• Then xi is not invar. over Sol(ESDP) ∀i ∈ N (Ī).
So ∃Z ∈ ri(Sol(ESDP)) with xi 6= x̄i ∀i ∈ N (Ī).

• Let Zα = αZ̄ + (1− α)Z with α > 0 suff. small.
Can rotate xα

i ∀i ∈ Ī and Zα still remains in Sol(ESDP). ⇒⇐



ON SDP/ESDP RELAXATION OF SENSOR NETWORK LOCALIZATION 13

In practice, there are measurement noises:

d2
ij = ‖x

true

i − x
true

j ‖2 + δij ∀(i, j) ∈ A.

When δ := (δij)(i,j)∈A ≈ 0, does tri[Z] = 0 (with Z ∈ ri(Sol(ESDP))) imply
xi ≈ x

true

i ?
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In practice, there are measurement noises:

d2
ij = ‖x

true

i − x
true

j ‖2 + δij ∀(i, j) ∈ A.

When δ := (δij)(i,j)∈A ≈ 0, does tri[Z] = 0 (with Z ∈ ri(Sol(ESDP))) imply
xi ≈ x

true

i ? No!
. .
6
_

Fact 3 (Pong, T ’09): For δ ≈ 0 and for each i,

tri[Z] = 0 ∃Z ∈ ri(Sol(ESDP)) 6=⇒ xi ≈ x
true

i .

Still true with “ESDP” changed to “SDP”.

Proof is by counter-example.
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An example of sensitivity of ESDP solns to measurement noise:

Input distance data: ε > 0
d12 =

√
4 + (1− ε)2, d13 = 1 + ε, d14 = 1− ε, d25 = d26 =

√
2; m = 2, n = 6.

Thus, even when Z ∈ Sol(ESDP) is unique, tri[Z] = 0 fails to certify accuracy
of xi in the noisy case!
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Robust ESDP

Fix any ρij > |δij| ∀(i, j) ∈ A (ρ > |δ|).

Let Sol(ρESDP) denote the set of Z =
[

Y XT

X I

]
satisfying

|yii − 2xT
j xi + ‖xj‖2 − d2

ij| ≤ ρij ∀(i, j) ∈ A, i ≤ m < j
|yii − 2yij + yjj − d2

ij| ≤ ρij ∀(i, j) ∈ A, i < j ≤ m yii yij xT
i

yij yjj xT
j

xi xj I

 � 0 ∀(i, j) ∈ A, i < j ≤ m

Note : Z
true

=
[
X

true
I

]T [
X

true
I

]
∈ Sol(ρESDP).
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Let

Zρ,δ := arg min
Z∈Sol(ρESDP)

∑
(i,j)∈A,i<j≤m

− ln det

 yii yij xT
i

yij yjj xT
j

xi xj I
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Let

Zρ,δ := arg min
Z∈Sol(ρESDP)

∑
(i,j)∈A,i<j≤m

− ln det

 yii yij xT
i

yij yjj xT
j

xi xj I



Fact 4 (Pong, T ’09): ∃ η > 0 and ρ̄ > 0 such that for each i,

tri[Zρ,δ] < η ∃|δ| < ρ ≤ ρ̄e =⇒ lim
|δ|<ρ→0

xρ,δ
i = x

true

i

tri[Zρ,δ] > η
10 ∃|δ| < ρ ≤ ρ̄e =⇒ xi not invar. over Sol(ESDP) when δ = 0

Moreover,

‖xρ,δ
i − x

true

i ‖ ≤
√

2|A|+ m
√

tri[Zρ,δ] ∀ |δ| < ρ.
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Log-barrier Penalty CGD Method

Efficiently compute Zρ,δ? Let

ha(t) :=
1
2
(t− a)2+ +

1
2
(−t− a)2+

(|t| ≤ a ⇐⇒ ha(t) = 0) and

fµ(Z) :=
∑

(i,j)∈A,i≤m<j

hρij
(yii − 2xT

j xi + ‖xj‖2 − d2
ij)

+
∑

(i,j)∈A,i<j≤m

hρij
(yii − 2yij + yjj − d2

ij)

+µ
∑

(i,j)∈A,i<j≤m

− ln det

 yii yij xT
i

yij yjj xT
j

xi xj I
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• fµ is partially separable, strictly convex & diff. on its domain.

• For each fixed ρ > |δ|, argminfµ → Zρ,δ as µ → 0.
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• fµ is partially separable, strictly convex & diff. on its domain.

• For each fixed ρ > |δ|, argminfµ → Zρ,δ as µ → 0.

Idea: Minimize fµ approx. by block-coordinate gradient descent (BCGD). (T,
Yun ’06)
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Log-barrier Penalty CGD Method :

Given Z in domfµ, compute gradient ∇Zi
fµ of fµ w.r.t.

Zi := {xi, yii, yij : (i, j) ∈ A} for each i.

• If ‖∇Zi
fµ‖ ≥ max{µ, 10−7} for some i, update Zi by moving along the

Newton direction −
(
∂2

ZiZi
fµ

)−1

∇Zi
fµ with Armijo stepsize rule.

• Decrease µ when ‖∇Zi
fµ‖ < max{µ, 10−6} ∀ i.

µinitial = 10, µfinal = 10−14. Decrease µ by a factor of 10 each time.

Coded in Fortran. Compute Newton direc. by sparse Cholesky.
Computation easily distributes.
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Simulation Results

• Compare ρESDP as solved by LPCGD method with ESDP as solved by
Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).
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Simulation Results

• Compare ρESDP as solved by LPCGD method with ESDP as solved by
Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).

• Anchors and sensors x
true

1 , ..., x
true

n uniformly distributed in [−.5, .5]2,
m = .9n. (i, j) ∈ A whenever ‖xtrue

i − x
true

j ‖ < rr. Set

dij = ‖x
true

i − x
true

j ‖ · |1 + σ · εij|,

where εij ∼ N(0, 1).
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Simulation Results

• Compare ρESDP as solved by LPCGD method with ESDP as solved by
Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).

• Anchors and sensors x
true

1 , ..., x
true

n uniformly distributed in [−.5, .5]2,
m = .9n. (i, j) ∈ A whenever ‖xtrue

i − x
true

j ‖ < rr. Set

dij = ‖x
true

i − x
true

j ‖ · |1 + σ · εij|,

where εij ∼ N(0, 1).

• Sensor i is judged as “accurately positioned” if

tri[Z
found

] < (.01 + 30σ)d
avg

ij .
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ρESDPLPCGD ESDPSedumi

n m σ rr cpu/ map/errap cpu(cpus)/ map/errap

1000 900 0 .06 7/662/1.7e-3 182(104)/669/2.1e-3
1000 900 .01 .06 5/660/2.2e-2 119(42)/720/3.1e-2
2000 1800 0 .06 26/1762/3.1e-4 1157(397)/1742/3.9e-4
2000 1800 .01 .06 20/1699/1.4e-2 966(233)/1746/2.4e-2

10000 9000 0 .02 77/7844/2.3e-3 16411(1297)/6481/2.5e-3
10000 9000 .01 .02 63/8336/1.0e-2 16368(1264)/8593/8.7e-3

• cpu(sec) times are on a HP DL360 workstation, running Linux 3.5. ESDP is
solved by Sedumi; cpus:= run time for Sedumi.

• Set ρij = d2
ij · ((1− 2σ)−2 − 1).

• map := # accurately positioned sensors.
errap := maxi accurate. pos. ‖xi − x

true

i ‖.
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900 sensors, 100 anchors, rr = 0.06, σ = 0.01, solve ρESDP by LPCGD method. x
true

i

(shown as ∗) and xρ,δ
i (shown as •) are joined by blue line segment; anchors are shown as ◦.
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60 sensors, 4 anchors at corners, rr = 0.3, σ = 0.1. x
true

i (shown as ∗) and xρ,δ
i (shown as

•) are joined by blue line segment; anchors are shown as ◦. Left: Soln of ρESDP found by
LPCGD method. Right: After local gradient improvement.
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Conclusion & Ongoing work

• SDP and ESDP solns are sensitive to measurement noise. Lack soln accuracy certificate
(though the trace test works well enough in simulation).

• ρESDP has more stable solns. Has soln accuracy certificate (which works well enough in
simulation). Needs to estimate the noise level δ to set ρ. Can ρ > |δ| be relaxed?

• SDP, ESDP, ρESDP solns can be further refined by local improvement. This improves the
rmsd when noise level is high (10%).

• Approximation bounds? Extension to maxmin dispersion problem?

Thanks for coming!
. .
6
^


