On SDP and ESDP Relaxation of Sensor Network Localization

Paul Tseng
Mathematics, University of Washington
Seattle

August 9, 2009
(joint work with Ting Kei Pong)
Talk Outline

- Sensor network localization
- SDP, ESDP relaxations: properties and soln accuracy certificate
Talk Outline

- Sensor network localization
- SDP, ESDP relaxations: properties and soln accuracy certificate
- A robust version of ESDP to handle noises
- Log-barrier penalty CGD method
Talk Outline

• Sensor network localization

• SDP, ESDP relaxations: properties and soln accuracy certificate

• A robust version of ESDP to handle noises

• Log-barrier penalty CGD method

• Numerical simulations

• Conclusion & Ongoing work
Sensor Network Localization

Basic Problem:

- n pts in \mathbb{R}^2.

- Know last $n - m$ pts (‘anchors’) x_{m+1}, \ldots, x_n and Eucl. dist. estimate for pairs of ‘neighboring’ pts

\[d_{ij} \geq 0 \quad \forall (i, j) \in A \]

with $A \subseteq \{(i, j) : 1 \leq i, j \leq n\}$.

- Estimate first m pts (‘sensors’).
Sensor Network Localization

Basic Problem:

- n pts in \mathbb{R}^2.
- Know last $n-m$ pts (‘anchors’) x_{m+1}, \ldots, x_n and Eucl. dist. estimate for pairs of ‘neighboring’ pts

$$d_{ij} \geq 0 \quad \forall (i, j) \in \mathcal{A}$$

with $\mathcal{A} \subseteq \{(i, j) : 1 \leq i, j \leq n\}$.

- Estimate first m pts (‘sensors’).

History? Graph realization/rigidity, Euclidean matrix completion, position estimation in wireless sensor network, ...
Optimization Problem Formulation

\[
\nu_{\text{opt}} := \min_{x_1, \ldots, x_m} \sum_{(i,j) \in \mathcal{A}} \left(\|x_i - x_j\|^2 - d_{ij}^2 \right)
\]
Optimization Problem Formulation

\[
\upsilon_{\text{opt}} := \min_{x_1, \ldots, x_m} \sum_{(i,j) \in A} \left(\left\| x_i - x_j \right\|^2 - d_{ij}^2 \right)
\]

- Objective function is nonconvex. \(m \) can be large (\(m \geq 1000 \)).
- Problem is NP-hard (reduction from PARTITION).
- Local improvement heuristics can fail badly.
Optimization Problem Formulation

\[\nu_{\text{opt}} := \min_{x_1, \ldots, x_m} \sum_{(i,j) \in A} \left(\|x_i - x_j\|^2 - d_{ij}^2 \right) \]

- Objective function is nonconvex. \(m \) can be large (\(m \geq 1000 \)).

- Problem is NP-hard (reduction from PARTITION).

- Local improvement heuristics can fail badly.

- Use a convex (SDP, SOCP) relaxation (& local improvement). Low soln accuracy OK. Distributed computation preferred.
SDP Relaxation

Let $X := [x_1 \cdots x_m]$. $Y = X^T X \iff Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \succeq 0$, rank$Z = 2$
SDP Relaxation

Let \(X := [x_1 \cdots x_m] \). \(Y = X^T X \iff Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \succeq 0, \ \text{rank} Z = 2 \)

SDP relaxation (Biswas, Ye ’03):

\[
\begin{align*}
\nu_{\text{sdp}} &:= \min_Z \sum_{(i,j) \in A, i \leq m < j} |y_{ii} - 2x_j^T x_i + \|x_j\|^2 - d_{ij}^2| \\
&+ \sum_{(i,j) \in A, i < j \leq m} |y_{ii} - 2y_{ij} + y_{jj} - d_{ij}^2| \\
\text{s.t.} \quad Z &= \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \succeq 0
\end{align*}
\]

Adding the nonconvex constraint \(\text{rank} Z = 2 \) yields original problem.

But SDP relaxation is still expensive to solve for \(m \) large..
ESDP Relaxation

ESDP relaxation (Wang, Zheng, Boyd, Ye ’06):

\[v_{\text{esdp}} := \min_Z \sum_{(i,j) \in A, i \leq m < j} |y_{ii} - 2x_j^T x_i + \|x_j\|^2 - d_{ij}^2| \]

\[+ \sum_{(i,j) \in A, i < j \leq m} |y_{ii} - 2y_{ij} + y_{jj} - d_{ij}^2| \]

s.t. \[Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \begin{bmatrix} y_{ii} & y_{ij} & x_i^T \\ y_{ij} & y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \succeq 0 \quad \forall (i,j) \in A, i < j \leq m \]

\[0 \leq v_{\text{esdp}} \leq v_{\text{sdp}} \leq v_{\text{opt}}. \] In simulation, ESDP is nearly as strong as SDP, and solvable much faster by IP method.
Example 1

\(n = 3, \ m = 1, \ d_{12} = d_{13} = 2\)

\[
\text{Problem:} \quad 0 = \min_{x_1 \in \mathbb{R}^2} \left| \left\| x_1 - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\|^2 - 4 \right| + \left| \left\| x_1 - \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\|^2 - 4 \right|
\]
SDP/ESDP Relaxation:

\[
0 = \min_{x_1 = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{R}^2, y_{11} \in \mathbb{R}} |y_{11} - 2\alpha - 3| + |y_{11} + 2\alpha - 3|
\]

s.t. \[
\begin{bmatrix}
y_{11} & \alpha & \beta \\
\alpha & 1 & 0 \\
\beta & 0 & 1
\end{bmatrix} \succeq 0
\]

If solve SDP/ESDP by IP method, then likely get analy. center \(y_{11} = 3, x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)
Example 2

\[n = 4, \ m = 1, \ d_{12} = d_{13} = 2, \ d_{14} = 1 \]

Problem:

\[
0 = \min_{x_1 \in \mathbb{R}^2} \left| \|x_1 - \begin{bmatrix} 1 \\ 0 \end{bmatrix}\|^2 - 4 \right| + \left| \|x_1 - \begin{bmatrix} -1 \\ 0 \end{bmatrix}\|^2 - 4 \right| + \left| \|x_1 - \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}\|^2 - 1 \right|
\]
SDP/ESDP Relaxation:

\[
0 = \min_{x_1 = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \in \mathbb{R}^2} y_{11} - 2\alpha - 3 + |y_{11} + 2\alpha - 3| + |y_{11} - 2\alpha - 2\sqrt{3}\beta + 3|
\]

s.t.

\[
\begin{bmatrix}
 y_{11} & \alpha & \beta \\
 \alpha & 1 & 0 \\
 \beta & 0 & 1
\end{bmatrix} \succeq 0
\]

SDP/ESDP has unique soln \(y_{11} = 3 \),

\[
x_1 = \begin{bmatrix}
 0 \\
 \sqrt{3}
\end{bmatrix}
\]
Properties of SDP & ESDP Relaxations

Assume each $i \leq m$ is conn. to some $j > m$ in the graph $\{1, \ldots, n\}, A$.

Fact 0:

- $\text{Sol}(\text{SDP})$ and $\text{Sol}(\text{ESDP})$ are nonempty, closed, convex.

- If

$$d_{ij} = \|x_i^{\text{true}} - x_j^{\text{true}}\| \quad \forall (i, j) \in A$$

"noiseless case"

$$(x_i^{\text{true}} = x_i \quad \forall i > m), \text{then}$$

$$\nu_{\text{opt}} = \nu_{\text{sdp}} = \nu_{\text{esdp}} = 0$$

and

$$Z^{\text{true}} := \begin{bmatrix} X^{\text{true}} & I \end{bmatrix}^T \begin{bmatrix} X^{\text{true}} & I \end{bmatrix}$$

is a soln of SDP and ESDP (i.e., $Z^{\text{true}} \in \text{Sol}(\text{SDP}) \subseteq \text{Sol}(\text{ESDP})$).
Let
\[\text{tr}_i[Z] := y_{ii} - \|x_i\|^2, \quad i = 1, \ldots, m. \]

“ith trace”

Fact 1 (Biswas, Ye ’03, T ’07, Wang et al ’06): For each \(i \),

\[\text{tr}_i[Z] = 0 \ \exists Z \in \text{ri}(\text{Sol(ESDP)}) \implies \ x_i \text{ is invariant over } \text{Sol(ESDP)} \]

(\(\text{so } x_i = x_i^{\text{true}} \text{ in noiseless case} \))

Still true with “ESDP” changed to “SDP”.

Let $\text{tr}_i[Z] := y_{ii} - \|x_i\|^2, \quad i = 1, \ldots, m$.

Fact 1 (Biswas, Ye ’03, T ’07, Wang et al ’06): For each i,

$$\text{tr}_i[Z] = 0 \quad \exists Z \in \text{ri}(\text{Sol(ESDP)}) \quad \implies \quad x_i \text{ is invariant over } \text{Sol(ESDP)}$$

(so $x_i = x_i^{\text{true}}$ in noiseless case)

Still true with “ESDP” changed to “SDP”.

Fact 2 (Pong, T ’09): Suppose $\nu_{\text{opt}} = 0$. For each i,

$$\text{tr}_i[Z] = 0 \quad \forall Z \in \text{Sol(ESDP)} \quad \iff \quad x_i \text{ is invariant over } \text{Sol(ESDP)}.$$

Proof is by induction, starting from sensors that neighbor anchors.
(Q: True for SDP?)
Proof idea:

- If \((i, j) \in \mathcal{A}\) and \(x_i, x_j\) are invar. over \(\text{Sol}(\text{ESDP})\), then \(\text{tr}_i[Z] = \text{tr}_j[Z] \quad \forall Z \in \text{Sol}(\text{ESDP})\).

- Suppose \(\exists i \leq m\) such that \(x_i\) is invar. over \(\text{Sol}(\text{ESDP})\) but \(\text{tr}_i[\bar{Z}] > 0\) for some \(\bar{Z} \in \text{Sol}(\text{ESDP})\). Consider maximal \(\tilde{I} \subset \{1, \ldots, m\}\) such that \(x_i\) is invar. over \(\text{Sol}(\text{ESDP})\) and \(\text{tr}_i[\bar{Z}] > 0 \quad \forall i \in \tilde{I}\).

- Then \(x_i\) is not invar. over \(\text{Sol}(\text{ESDP})\) \(\forall i \in \mathcal{N}(\tilde{I})\).
 So \(\exists Z \in \text{ri}(\text{Sol}(\text{ESDP}))\) with \(x_i \neq \bar{x}_i \quad \forall i \in \mathcal{N}(\tilde{I})\).

- Let \(Z^\alpha = \alpha \bar{Z} + (1 - \alpha)Z\) with \(\alpha > 0\) suff. small.
 Can rotate \(x_i^\alpha \quad \forall i \in \tilde{I}\) and \(Z^\alpha\) still remains in \(\text{Sol}(\text{ESDP})\).

\[\Rightarrow \Leftarrow\]
In practice, there are measurement noises:

\[d_{ij}^2 = \| x_i^{\text{true}} - x_j^{\text{true}} \| ^2 + \delta_{ij} \quad \forall (i, j) \in \mathcal{A}. \]

When \(\delta := (\delta_{ij})_{(i, j) \in \mathcal{A}} \approx 0 \), does \(\text{tr}_i[Z] = 0 \) (with \(Z \in \text{ri}(\text{Sol}(\text{ESDP})) \)) imply \(x_i \approx x_i^{\text{true}} \)?
In practice, there are measurement noises:

\[d_{ij}^2 = \| x_i^{\text{true}} - x_j^{\text{true}} \|^2 + \delta_{ij} \quad \forall (i, j) \in \mathcal{A}. \]

When \(\delta := (\delta_{ij})_{(i, j) \in \mathcal{A}} \approx 0 \), does \(\text{tr}_i[Z] = 0 \) (with \(Z \in \text{ri}(\text{Sol}(\text{ESDP})) \)) imply \(x_i \approx x_i^{\text{true}} \)? No!

Fact 3 (Pong, T’09): For \(\delta \approx 0 \) and for each \(i \),

\[\text{tr}_i[Z] = 0 \quad \exists Z \in \text{ri}(\text{Sol}(\text{ESDP})) \quad \not\iff \quad x_i \approx x_i^{\text{true}}. \]

Still true with “ESDP” changed to “SDP”.

Proof is by counter-example.
An example of sensitivity of ESDP solns to measurement noise:

Problem data: \(m = 2, n = 6; \)
\[
d_{12} = \sqrt{4 + (1 - \epsilon)^2}, \quad d_{13} = 1 + \epsilon, \quad d_{14} = 1 - \epsilon, \quad d_{25} = d_{26} = \sqrt{2} \quad (\epsilon > 0)
\]

Thus, even when \(Z \in \text{Sol(Esdp)} \) is unique, \(\text{tr}_i[Z] = 0 \) fails to certify accuracy of \(x_i \) in the noisy case!
Robust ESDP

Fix any $\rho_{ij} > |\delta_{ij}| \forall (i, j) \in A$ ($\rho > |\delta|$).

Let $\text{Sol}(\rho\text{ESDP})$ denote the set of $Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix}$ satisfying

$$
|y_{ii} - 2x_j^T x_i + \|x_j\|^2 - d_{ij}^2| \leq \rho_{ij} \quad \forall (i, j) \in A, i \leq m < j
$$
$$
|y_{ii} - 2y_{ij} + y_{jj} - d_{ij}^2| \leq \rho_{ij} \quad \forall (i, j) \in A, i < j \leq m
$$
$$
\begin{bmatrix}
 y_{ii} & y_{ij} & x_i^T \\
 y_{ij} & y_{jj} & x_j^T \\
 x_i & x_j & I
\end{bmatrix} \succeq 0 \quad \forall (i, j) \in A, i < j \leq m
$$

Note: $Z^{\text{true}} = \begin{bmatrix} X^{\text{true}} & I \end{bmatrix}^T \begin{bmatrix} X^{\text{true}} & I \end{bmatrix} \in \text{Sol}(\rho\text{ESDP})$.

Let

\[Z^{\rho,\delta} := \arg \min_{Z \in \text{Sol}(\rho \text{ESDP})} \sum_{(i,j) \in A, i < j \leq m} - \ln \det \begin{bmatrix} y_{ii} & y_{ij} & x_i^T \\ y_{ij} & y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \]
Let

\[Z_{\rho, \delta} := \arg \min_{Z \in \text{Sol}(\rho \text{ESDP})} \sum_{(i,j) \in A, i < j \leq m} - \ln \det \begin{bmatrix} y_{ii} & y_{ij} & x_i^T \\ y_{ij} & y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \]

Fact 4 (Pong, T ’09): \(\exists \eta > 0 \) and \(\bar{\rho} > 0 \) such that for each \(i \),

\[
\begin{align*}
\text{tr}_i[Z_{\rho, \delta}] &< \eta \quad \exists |\delta| < \rho \leq \bar{\rho}e \quad \implies \quad \lim_{|\delta| < \rho \rightarrow 0} x_{i}^{\rho, \delta} = x_{i}^{\text{true}} \\
\text{tr}_i[Z_{\rho, \delta}] &> \frac{\eta}{10} \quad \exists |\delta| < \rho \leq \bar{\rho}e \quad \implies \quad x_i \text{ not invar. over Sol(ESDP) when } \delta = 0
\end{align*}
\]

Moreover,

\[
\|x_i^{\rho, \delta} - x_i^{\text{true}}\| \leq \sqrt{2|A| + m\sqrt{\text{tr}_i[Z_{\rho, \delta}]}} \quad \forall |\delta| < \rho.
\]
On SDP/ESDP Relaxation of Sensor Network Localization

Log-barrier Penalty CGD Method

Efficiently compute $Z^{\rho, \delta}$?

Let

$$h_\alpha(t) := \frac{1}{2}(t - a)_+^2 + \frac{1}{2}(-t - a)_+^2$$

$(|t| \leq a \iff h_\alpha(t) = 0)$ and

$$f_\mu(Z) := \sum_{(i,j) \in A, i \leq m < j} h_{\rho_{ij}}(y_{ii} - 2x_j^T x_i + \|x_j\|^2 - d_{ij}^2)$$

$$+ \sum_{(i,j) \in A, i < j \leq m} h_{\rho_{ij}}(y_{ii} - 2y_{ij} + y_{jj} - d_{ij}^2)$$

$$+ \mu \sum_{(i,j) \in A, i < j \leq m} -\ln \det \begin{bmatrix} y_{ii} & y_{ij} & x_i^T \\ y_{ij} & y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix}$$
\begin{itemize}
 \item f_μ is partially separable, strictly convex & diff. on its domain.
 \item For each fixed $\rho > |\delta|$, $\arg\min f_\mu \to Z^{\rho,\delta}$ as $\mu \to 0$.
\end{itemize}
• f_μ is partially separable, strictly convex & diff. on its domain.

• For each fixed $\rho > |\delta|$, $\arg\min f_\mu \to Z^{\rho,\delta}$ as $\mu \to 0$.

Idea: Minimize f_μ approx. by block-coordinate gradient descent (BCGD). (T, Yun '06)
Log-barrier Penalty CGD Method:

Given Z in $\text{dom} f_\mu$, compute gradient $\nabla_{Z_i} f_\mu$ of f_μ w.r.t. $Z_i := \{x_i, y_{ii}, y_{ij} : (i, j) \in A\}$ for each i.

- If $\|\nabla_{Z_i} f_\mu\| \geq \max\{\mu, 10^{-7}\}$ for some i, update Z_i by moving along the Newton direction $-\left(\partial^2_{Z_i Z_i} f_\mu\right)^{-1} \nabla_{Z_i} f_\mu$ with Armijo stepsize rule.

- Decrease μ when $\|\nabla_{Z_i} f_\mu\| < \max\{\mu, 10^{-6}\}$ $\forall i$.

$\mu_{\text{initial}} = 10$, $\mu_{\text{final}} = 10^{-14}$. Decrease μ by a factor of 10 each time.

Simulation Results

- Compare ρESDP as solved by LPCGD method with ESDP as solved by Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).
Simulation Results

• Compare ρESDP as solved by LPCGD method with ESDP as solved by Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).

• Anchors and sensors $x_1^{true}, \ldots, x_n^{true}$ uniformly distributed in $[-.5, .5]^2$, $m = .9n$. $(i, j) \in A$ whenever $\|x_i^{true} - x_j^{true}\| \leq rr$. Set

$$d_{ij} = \|x_i^{true} - x_j^{true}\| \cdot |1 + \sigma \cdot \epsilon_{ij}|,$$

where $\epsilon_{ij} \sim N(0, 1)$.
Simulation Results

- Compare ρ_{ESDP} as solved by LPCGD method with ESDP as solved by Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).

- Anchors and sensors $x_1^{\text{true}}, \ldots, x_n^{\text{true}}$ uniformly distributed in $[-.5, .5]^2$, $m = .9n$. $(i, j) \in A$ whenever $\|x_i^{\text{true}} - x_j^{\text{true}}\| \leq rr$. Set

 \[
d_{ij} = \|x_i^{\text{true}} - x_j^{\text{true}}\| \cdot |1 + \sigma \cdot \epsilon_{ij}|,
\]

 where $\epsilon_{ij} \sim N(0, 1)$.

- Sensor i is judged as “accurately positioned” if

 \[
 \text{tr}_i[Z_{\text{found}}] < (.01 + 30\sigma)d_{ij}^{\text{avg}}.
 \]
Table 1: Performance Comparison

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>σ</th>
<th>rr</th>
<th>$\rho_{\text{ESDP}_{\text{LPCGD}}}$</th>
<th>$\rho_{\text{ESDP}_{\text{Sedumi}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\text{cpu}/m_{\text{ap}}/\text{err}_{\text{ap}}$</td>
<td>$\text{cpu(cpus)}/m_{\text{ap}}/\text{err}_{\text{ap}}$</td>
</tr>
<tr>
<td>1000</td>
<td>900</td>
<td>0</td>
<td>.06</td>
<td>7/662/1.7e-3</td>
<td>182(104)/669/2.1e-3</td>
</tr>
<tr>
<td>1000</td>
<td>900</td>
<td>.01</td>
<td>.06</td>
<td>5/660/2.2e-2</td>
<td>119(42)/720/3.1e-2</td>
</tr>
<tr>
<td>2000</td>
<td>1800</td>
<td>0</td>
<td>.06</td>
<td>26/1762/3.1e-4</td>
<td>1157(397)/1742/3.9e-4</td>
</tr>
<tr>
<td>2000</td>
<td>1800</td>
<td>.01</td>
<td>.06</td>
<td>20/1699/1.4e-2</td>
<td>966(233)/1746/2.4e-2</td>
</tr>
<tr>
<td>10000</td>
<td>9000</td>
<td>0</td>
<td>.02</td>
<td>77/7844/2.3e-3</td>
<td>16411(1297)/6481/2.5e-3</td>
</tr>
<tr>
<td>10000</td>
<td>9000</td>
<td>.01</td>
<td>.02</td>
<td>63/8336/1.0e-2</td>
<td>16368(1264)/8593/8.7e-3</td>
</tr>
</tbody>
</table>

- **cpu(sec) times** are on a HP DL360 workstation, running Linux 3.5. ESDP is solved by Sedumi; $\text{cpu} :=$ run time for Sedumi.

- Set $\rho_{ij} = d_{ij}^2 \cdot ((1 - 2\sigma)^{-2} - 1)$.

- $m_{\text{ap}} :=$ # accurately positioned sensors.

- $\text{err}_{\text{ap}} := \max i \text{ accurate. pos. } \| x_i - x_i^{\text{true}} \|$.
900 sensors, 100 anchors, $rr = 0.06$, $\sigma = 0.01$, solve ρESDP by LPCGD method. x_i^{true} (shown as *) and $x_i^{\rho, \delta}$ (shown as •) are joined by blue line segment; anchors are shown as o.
60 sensors, 4 anchors at corners, $rr = 0.3$, $\sigma = 0.1$. x_i^{true} (shown as *) and $x_i^{\rho,\delta}$ (shown as ●) are joined by blue line segment; anchors are shown as ◦. **Left**: Soln of ρESDP found by LPCGD method. **Right**: After local gradient improvement.
Conclusion & Ongoing work

- SDP and ESDP solns are sensitive to measurement noise. Has soln accuracy certificate under no noise only (though it works well enough in simulation).

- ρESDP solns are more stable. Has soln accuracy certificate under low noise (which works well enough in simulation). Needs to estimate the noise level δ to set ρ. Can $\rho > |\delta|$ be relaxed?

- SDP, ESDP, ρESDP solns can be further refined by local improvement. This improves the rmsd when noise level is high (e.g., $\sigma = 0.1$).

- Approximation bounds? Extensions to handle lower bounds on distances (e.g., $(i, j) \notin A$ imply $\|x_i^{\text{true}} - x_j^{\text{true}}\| > rr$)?

Thanks for coming! 😊