On SDP and ESDP Relaxation of Sensor Network Localization

Paul Tseng

Mathematics, University of Washington

Seattle

IASI, Roma September 16, 2008 (joint work with Ting Kei Pong)

Talk Outline

- Sensor network localization
- SDP, ESDP relaxations: formulation and properties

Talk Outline

- Sensor network localization
- SDP, ESDP relaxations: formulation and properties
- A robust version of ESDP to handle noises
- BCGD-barrier method

Talk Outline

- Sensor network localization
- SDP, ESDP relaxations: formulation and properties
- A robust version of ESDP to handle noises
- BCGD-barrier method
- Numerical simulations
- Conclusion & Ongoing work

Sensor Network Localization

Basic Problem:

- n pts in \Re^2 .
- Know last n m pts ('anchors') $x_{m+1}, ..., x_n$ and Eucl. dist. estimate for pairs of 'neighboring' pts

$$d_{ij} \ge 0 \quad \forall (i,j) \in \mathcal{A}$$

with $\mathcal{A} \subseteq \{(i, j) : 1 \leq i < j \leq n\}.$

• Estimate first m pts ('sensors').

Sensor Network Localization

Basic Problem:

- n pts in \Re^2 .
- Know last n m pts ('anchors') $x_{m+1}, ..., x_n$ and Eucl. dist. estimate for pairs of 'neighboring' pts

$$d_{ij} \ge 0 \quad \forall (i,j) \in \mathcal{A}$$

with $\mathcal{A} \subseteq \{(i, j) : 1 \leq i < j \leq n\}.$

• Estimate first *m* pts ('sensors').

History? Graph realization, position estimation in wireless sensor network, ...

Optimization Problem Formulation

$$v_{\text{opt}} := \min_{x_1, \dots, x_m} \sum_{(i,j) \in \mathcal{A}} ||x_i - x_j||^2 - d_{ij}^2|$$

Optimization Problem Formulation

$$v_{\text{opt}} := \min_{x_1, \dots, x_m} \sum_{(i,j) \in \mathcal{A}} \left| \|x_i - x_j\|^2 - d_{ij}^2 \right|$$

- Objective function is nonconvex. m can be large (m > 1000).
- Problem is NP-hard (reduction from PARTITION). $\overset{\sim}{\angle}$
- Use a convex (SDP, SOCP) relaxation. Low soln accuracy OK. Distributed methods.

SDP Relaxation

Let
$$X := \begin{bmatrix} x_1 \cdots x_m \end{bmatrix}$$
.
 $Z = \begin{bmatrix} X & I \end{bmatrix}^T \begin{bmatrix} X & I \end{bmatrix} \iff Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \succeq 0, \text{ rank} Z = 2$

SDP Relaxation

Let
$$X := \begin{bmatrix} x_1 \cdots x_m \end{bmatrix}$$
.
 $Z = \begin{bmatrix} X & I \end{bmatrix}^T \begin{bmatrix} X & I \end{bmatrix} \iff Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \succeq 0, \text{ rank} Z = 2$

SDP relaxation (Biswas, Ye '03):

$$v_{sdp} := \min_{Z} \sum_{\substack{(i,j) \in \mathcal{A}, j > m \\ + \sum_{\substack{(i,j) \in \mathcal{A}, j \leq m \\ (i,j) \in \mathcal{A}, j \leq m \\ \text{s.t.}}} \left| Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2 \right|$$

s.t.
$$Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix} \succeq 0$$

Adding the nonconvex constraint rank Z = 2 yields original problem.

But SDP relaxation is still expensive to solve for m large..

ESDP Relaxation

ESDP relaxation (Wang, Zheng, Boyd, Ye '06):

$$\begin{split} v_{\text{esdp}} &:= \min_{Z} \sum_{\substack{(i,j) \in \mathcal{A}, j > m \\ (i,j) \in \mathcal{A}, j \leq m \\ (i,j) \in \mathcal{A}, j \leq m \\ }} \left| Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2 \right| \\ \text{s.t.} \quad Z &= \begin{bmatrix} Y & X^T \\ X & I \\ Y_{ij} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \succeq 0 \quad \forall (i,j) \in \mathcal{A}, j \leq m \\ \begin{bmatrix} Y_{ii} & x_i^T \\ x_i & x_j & I \\ x_i & I \end{bmatrix} \succeq 0 \quad \forall i \leq m \end{split}$$

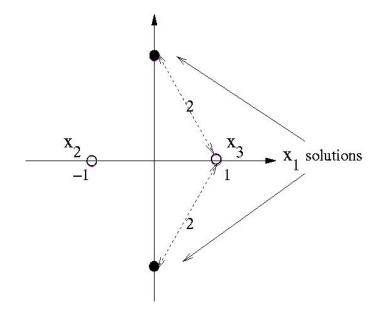
 $0 \le v_{\rm esdp} \le v_{\rm sdp} \le v_{\rm opt}$. In simulation, ESDP is nearly as strong as SDP, and solvable much faster by IP method.

An Example

$$n = 3, m = 1, d_{12} = d_{13} = 2$$

Problem:

$$0 = \min_{x_1 \in \Re^2} ||x_1 - (1,0)||^2 - 4| + ||x_1 - (-1,0)||^2 - 4|$$



 \mathbf{x}_3

SDP/ESDP Relaxation:

SDP X_1 solutions

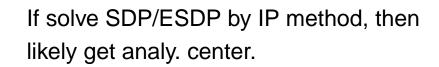
х<u>2</u>

-1

analytic center

$$0 = \min_{\substack{x_1 = (\alpha, \beta) \in \Re^2 \\ Y_{11} \in \Re}} |Y_{11} - 2\alpha - 3| + |Y_{11} + 2\alpha - 3|$$

s.t.
$$\begin{bmatrix} Y_{11} & \alpha & \beta \\ \alpha & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix} \succeq 0$$



Properties of SDP & ESDP Relaxations

Assume each $i \leq m$ is conn. to some j > m in the graph $(\{1, ..., n\}, A)$.

Fact 0:

• Sol(SDP) and Sol(ESDP) are nonempty, closed, convex, bounded.

• If

$$d_{ij} = \|x_i^{\text{true}} - x_j^{\text{true}}\| \quad \forall \ (i,j) \in \mathcal{A}$$
 "noiseless case"

 $(x_i^{ ext{true}} = x_i \ \forall \ i > m)$, then

$$\upsilon_{\rm opt}=\upsilon_{\rm sdp}=\upsilon_{\rm esdp}=0$$

and

 $Z^{\text{true}} := \begin{bmatrix} X^{\text{true}} & I \end{bmatrix}^T \begin{bmatrix} X^{\text{true}} & I \end{bmatrix}$ is a soln of SDP and ESDP (i.e., $Z^{\text{true}} \in \text{Sol}(\text{SDP}) \subseteq \text{Sol}(\text{ESDP})$).

Let
$$\operatorname{tr}_{i}[Z] := Y_{ii} - ||x_{i}||^{2}, \quad i = 1, ..., m.$$
 "*i*th trace"

Fact 1 (Biswas, Ye '03, T '07, Wang et al '06): For each *i*,

$$\operatorname{tr}_i[Z] = 0 \; \exists Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP})) \quad \Longrightarrow \quad$$

 x_i is invariant over Sol(ESDP) (so $x_i = x_i^{\text{true}}$ in noiseless case)

Still true with "ESDP" changed to "SDP".

Let
$$\operatorname{tr}_{i}[Z] := Y_{ii} - ||x_{i}||^{2}, \quad i = 1, ..., m.$$
 "*ith* trace"

Fact 1 (Biswas, Ye '03, T '07, Wang et al '06): For each *i*,

 $\operatorname{tr}_i[Z] = 0 \ \exists Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP})) \implies x_i \text{ is invariant over } \operatorname{Sol}(\operatorname{ESDP})$

 x_i is invariant over Sol(ESDP) (so $x_i = x_i^{\text{true}}$ in noiseless case)

Still true with "ESDP" changed to "SDP".

Fact 2 (Pong, T '08): Suppose $v_{opt} = 0$. For each *i*,

 $\operatorname{tr}_i[Z] = 0 \ \forall Z \in \operatorname{Sol}(\operatorname{ESDP}) \iff x_i \text{ is invariant over } \operatorname{Sol}(\operatorname{ESDP}).$

Proof is by induction, starting from sensors that neighbor anchors. (Q: True for SDP?)

In practice, there are measurement noises:

$$d_{ij}^2 = \|x_i^{\text{true}} - x_j^{\text{true}}\|^2 + \delta_{ij} \quad \forall (i,j) \in \mathcal{A}.$$

When $\delta := (\delta_{ij})_{(i,j) \in \mathcal{A}} \approx 0$, does $\operatorname{tr}_i[Z] = 0$ (with $Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP}))$) imply $x_i \approx x_i^{\operatorname{true}}$?

In practice, there are measurement noises:

$$d_{ij}^2 = \|x_i^{\text{true}} - x_j^{\text{true}}\|^2 + \delta_{ij} \quad \forall (i,j) \in \mathcal{A}.$$

When $\delta := (\delta_{ij})_{(i,j) \in \mathcal{A}} \approx 0$, does $\operatorname{tr}_i[Z] = 0$ (with $Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP}))$) imply $x_i \approx x_i^{\operatorname{true}}$? No! \angle

Fact 3 (Pong, T '08): For $\delta \approx 0$ and for each *i*,

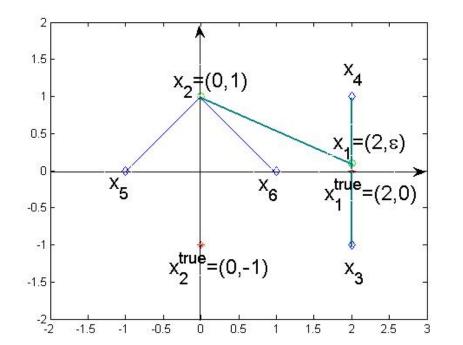
$$\operatorname{tr}_i[Z] = 0 \ \exists Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP})) \quad \not\Longrightarrow \quad x_i \approx x_i^{\operatorname{true}}$$

Still true with "ESDP" changed to "SDP".

Proof is by counter-example.

An example of sensitivity of ESDP solns to measurement noise:

Input distance data: $\epsilon > 0$ $d_{12} = \sqrt{4 + (1 - \epsilon)^2}, d_{13} = 1 + \epsilon, d_{14} = 1 - \epsilon, d_{25} = d_{26} = \sqrt{2}; m = 2, n = 6.$



Thus, even when $Z \in Sol(ESDP)$ is unique, $tr_i[Z] = 0$ fails to certify accuracy of x_i in the noisy case!

Robust ESDP

Fix any $\rho_{ij} > |\delta_{ij}| \ \forall (i,j) \in \mathcal{A} \ (\rho > |\delta|).$

Let Sol(ρ ESDP) denote the set of $Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix}$ satisfying

$$\begin{bmatrix} Y_{ii} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \succeq 0 \quad \forall (i,j) \in \mathcal{A}, j \leq m$$
$$\begin{bmatrix} Y_{ii} & x_i^T \\ x_i & I \end{bmatrix} \succeq 0 \quad \forall i \leq m$$
$$|Y_{ii} - 2x_j^T x_i + ||x_j||^2 - d_{ij}^2| \leq \rho_{ij} \quad \forall (i,j) \in \mathcal{A}, j > m$$
$$|Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2| \leq \rho_{ij} \quad \forall (i,j) \in \mathcal{A}, j \leq m$$

Note: $Z^{\text{true}} = \begin{bmatrix} X^{\text{true}} & I \end{bmatrix}^T \begin{bmatrix} X^{\text{true}} & I \end{bmatrix} \in \text{Sol}(\rho \text{ESDP}).$

Let

$$Z^{\rho,\delta} := \underset{Z \in \text{Sol}(\rho \text{ESDP})}{\operatorname{arg\,min}} - \underset{(i,j) \in \mathcal{A}, j \le m}{\sum} \ln \det \begin{bmatrix} Y_{ii} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} - \underset{i \le m}{\sum} \ln \det \begin{bmatrix} Y_{ii} & x_i^T \\ x_i & I \end{bmatrix}$$

Let

$$Z^{\rho,\delta} := \underset{Z \in \text{Sol}(\rho \text{ESDP})}{\operatorname{arg\,min}} - \underset{(i,j) \in \mathcal{A}, j \leq m}{\sum} \ln \det \begin{bmatrix} Y_{ii} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} - \underset{i \leq m}{\sum} \ln \det \begin{bmatrix} Y_{ii} & x_i^T \\ x_i & I \end{bmatrix}$$

Fact 4 (Pong, T '08): $\exists \eta > 0$ and $\bar{\rho} > 0$ such that for each *i*,

 $\operatorname{tr}_{i}[Z^{\rho,\delta}] < \eta \ \exists |\delta| < \rho \leq \bar{\rho}e \implies \lim_{|\delta| < \rho \to 0} x_{i}^{\rho,\delta} = x_{i}^{\operatorname{true}}$ $\operatorname{tr}_{i}[Z^{\rho,\delta}] > \frac{\eta}{10} \ \exists |\delta| < \rho \leq \bar{\rho}e \implies x_{i} \text{ not invar. over Sol(ESDP) when } \delta = 0$

Moreover,

$$\|x_i^{\rho,\delta} - x_i^{\text{true}}\| \le \sqrt{2|\mathcal{A}| + m} \sqrt{\operatorname{tr}_i[Z^{\rho,\delta}]} \quad \forall \ |\delta| < \rho.$$

BCGD-Barrier Method

- For each $(i, j) \in \mathcal{A}$ with j > m (resp. $j \le m$), $h_{\rho_{ij}}(Y_{ii} - 2x_j^T x_i + ||x_j||^2 - d_{ij}^2) = 0 \iff |Y_{ii} - 2x_j^T x_i + ||x_j||^2 - d_{ij}^2| \le \rho_{ij}$ (resp. $h_{\rho_{ij}}(Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2) = 0 \iff |Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2| \le \rho_{ij}$).
- f_{μ} is partially separable, strictly convex & diff. on its domain.
- For each fixed $\rho > |\delta|$, $\operatorname{argmin} f_{\mu} \to Z^{\rho,\delta}$ as $\mu \to 0$.
- In the noiseless case ($\delta = 0$), if we set $\rho = 0$, then $\operatorname{argmin} f_{\mu} \to Z$ as $\mu \to 0$, for some $Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP}))$.

- For each $(i, j) \in \mathcal{A}$ with j > m (resp. $j \le m$), $h_{\rho_{ij}}(Y_{ii} - 2x_j^T x_i + ||x_j||^2 - d_{ij}^2) = 0 \iff |Y_{ii} - 2x_j^T x_i + ||x_j||^2 - d_{ij}^2| \le \rho_{ij}$ (resp. $h_{\rho_{ij}}(Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2) = 0 \iff |Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2| \le \rho_{ij}$).
- f_{μ} is partially separable, strictly convex & diff. on its domain.
- For each fixed $\rho > |\delta|$, $\operatorname{argmin} f_{\mu} \to Z^{\rho,\delta}$ as $\mu \to 0$.
- In the noiseless case ($\delta = 0$), if we set $\rho = 0$, then $\operatorname{argmin} f_{\mu} \to Z$ as $\mu \to 0$, for some $Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP}))$.

Idea: Approx. min f_{μ} by block-coordinate gradient descent (BCGD). (T, Yun '06)

BCGD-Barrier Method:

Given Z in dom f_{μ} , compute gradient $\nabla_{Z_i} f_{\mu}$ of f_{μ} w.r.t. $Z_i := \{x_i, Y_{ii}, Y_{ij} : (i, j) \in \mathcal{A}\}$ for each *i*.

- If $\|\nabla_{Z_i} f_{\mu}\| \ge \max\{\mu, 10^{-6}\}$ for some *i*, update Z_i by moving along the Newton direction $-\left(\nabla_{Z_i Z_i}^2 f_{\mu}\right)^{-1} \nabla_{Z_i} f_{\mu}$ with Armijo stepsize rule.
- Decrease μ when $\|\nabla_{Z_i} f_{\mu}\| < \max\{\mu, 10^{-6}\} \quad \forall i.$

 $\mu_{\text{initial}} = 100$, $\mu_{\text{final}} = 10^{-9}$. Decrease μ by a factor of 10 each time.

Coded in Fortran. Computation easily distributes.

Simulation Results

• Compare ρ ESDP as solved by BCGD-barrier with ESDP as solved by Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).

Simulation Results

- Compare ρ ESDP as solved by BCGD-barrier with ESDP as solved by Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).
- Anchors and sensors $x_1^{\text{true}}, ..., x_n^{\text{true}}$ uniformly distributed in $[-.5, .5]^2$, m = .9n. $(i, j) \in \mathcal{A}$ whenever $\|x_i^{\text{true}} x_j^{\text{true}}\| < rr$. Set

$$d_{ij} = \|x_i^{\text{true}} - x_j^{\text{true}}\| \cdot (1 + nf \cdot \epsilon_{ij})_+,$$

where $\epsilon_{ij} \sim N(0,1)$.

Simulation Results

- Compare ρ ESDP as solved by BCGD-barrier with ESDP as solved by Sedumi 1.05 Sturm (with the interface to Sedumi coded by Wang et al).
- Anchors and sensors $x_1^{\text{true}}, ..., x_n^{\text{true}}$ uniformly distributed in $[-.5, .5]^2$, m = .9n. $(i, j) \in \mathcal{A}$ whenever $\|x_i^{\text{true}} x_j^{\text{true}}\| < rr$. Set

$$d_{ij} = \|x_i^{\text{true}} - x_j^{\text{true}}\| \cdot (1 + nf \cdot \epsilon_{ij})_+,$$

where $\epsilon_{ij} \sim N(0,1)$.

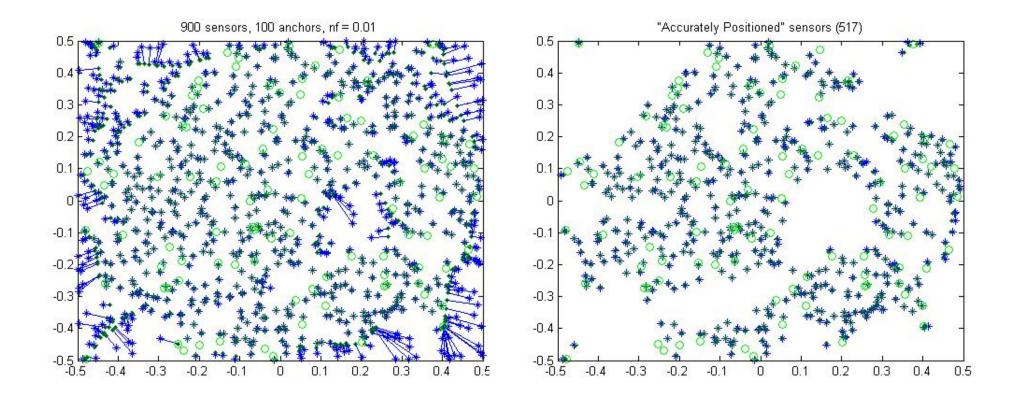
• Sensor *i* is judged as "accurately positioned" if

$$\mathrm{tr}_i[Z^{\text{found}}] < 5 \cdot 10^{-6} + 0.02 \ nf.$$

				$\rho \mathbf{ESDP}_{\mathrm{BCGD-barrier}}$	$\mathbf{ESDP}_{\mathrm{Sedumi}}$
n	m	nf	rr	cpu/ $m_{ m ap}$ / $err_{ m ap}$	cpu(cpus)/ $m_{ m ap}$ / $err_{ m ap}$
1000	900	0	.06	31/574/3.4e-4	189(106)/626/2.2e-4
1000	900	.001	.06	23/520/2.8e-3	170(89)/624/3.1e-3
1000	900	.01	.06	14/517/1.1e-2	128(48)/664/1.5e-2
2000	1800	0	.06	63/1626/1.7e-4	1157(397)/1689/2.7e-4
2000	1800	.001	.06	50/1596/8.5e-4	1255(503)/1653/1.3e-3
2000	1800	.01	.06	52/1602/6.2e-3	1374(417)/1689/1.2e-2

- cpu(sec) times are on a HP DL360 workstation, running Linux 3.5. ESDP is solved by Sedumi; cpus:= run time for Sedumi.
- Set $\rho_{ij} = d_{ij}^2 \cdot ((1 2 \cdot nf)^{-2} 1).$
- $m_{ap} := \#$ accurately positioned sensors. $err_{ap} := \max_{i \text{ accurate. pos.}} \|x_i - x_i^{\text{true}}\|.$

900 sensors, 100 anchors, rr = 0.06, nf = 0.01, solve ρ ESDP by BCGD-barrier. x_i^{true} (shown as *) and $x_i^{\rho,\delta}$ (shown as •) are joined by blue line segment; anchors are shown as •.



Conclusion & Ongoing work

• SDP and ESDP solns are sensitive to measurement noise. Lack soln accuracy certificate (though the trace test works well enough in simulation).

- ρ ESDP has more stable solns. Has soln accuracy certificate (which works well enough in simulation). Needs to estimate the noise level δ to set ρ . Can $\rho > |\delta|$ be relaxed?
- Approximation bounds? Extension to maxmin dispersion problem.

