On ESDP Relaxation of Sensor Network Localization

Paul Tseng Mathematics, University of Washington

Seattle

Chinese University of Hong Kong February 2008 (Ongoing work with Ting Kei Pong)

Talk Outline

- Sensor network localization and SDP, ESDP relaxations
- Properties of SDP, ESDP
- A robust version of ESDP for the noisy case
- Conclusion & Ongoing work

Sensor Network Localization

Basic Problem:

- n pts in \Re^2 .
- Know last n m pts ('anchors') $x_{m+1}, ..., x_n$ and Eucl. dist. estimate for pairs of 'neighboring' pts

$$d_{ij} \ge 0 \quad \forall (i,j) \in \mathcal{A}$$

with $\mathcal{A} \subseteq \{(i, j) : 1 \leq i < j \leq n\}.$

• Estimate first m pts ('sensors').

History? Graph realization, position estimation in wireless sensor network,

Optimization Problem Formulation

$$v_{\text{opt}} := \min_{x_1, \dots, x_m} \sum_{(i,j) \in \mathcal{A}} \left| \|x_i - x_j\|_2^2 - d_{ij}^2 \right|$$

- Objective function is nonconvex. m can be large (m > 1000).
- Problem is NP-hard (reduction from PARTITION). $\overset{\sim}{\angle}$
- Use a convex (SDP, SOCP) relaxation. High soln accuracy unnecessary.
- Seek "simple" distributed methods (important for practical implementation).

SDP Relaxation

Let
$$X := [x_1 \cdots x_m], \quad A := [x_{m+1} \cdots x_n].$$

SDP relaxation (Biswas, Ye '03):

$$v_{sdp} := \min_{Z} \sum_{\substack{(i,j) \in \mathcal{A}, j > m \\ + \sum_{\substack{(i,j) \in \mathcal{A}, j \leq m \\ (i,j) \in \mathcal{A}, j \leq m \\ \text{s.t. } Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix}} |Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2|$$

Adding the nonconvex constraint ${\rm rank}Z=2$ yields original problem. $v_{\rm sdp} \leq v_{\rm opt}$.

But SDP relaxation is still expensive to solve for m large..

SOCP Relaxation

$$v_{\text{opt}} = \min_{\substack{x_1, \dots, x_m, y_{ij} \\ \text{s.t.} \quad y_{ij} = \|x_i - x_j\|_2^2 \quad \forall (i,j) \in \mathcal{A}}} \sum_{\substack{(i,j) \in \mathcal{A} \\ |x_i - x_j||_2^2 \quad \forall (i,j) \in \mathcal{A}}} |y_{ij} - d_{ij}^2|$$

Relax "=" to ">" constraint (Doherty, Pister, El Ghaoui '03):

$$\begin{aligned} \upsilon_{\text{socp}} &:= \min_{\substack{x_1, \dots, x_m, y_{ij} \\ \text{s.t.}}} \sum_{\substack{(i,j) \in \mathcal{A} \\ |x_i - x_j||_2^2}} |y_{ij} - d_{ij}^2| \\ \text{s.t.} \quad y_{ij} &\geq ||x_i - x_j||_2^2 \quad \forall (i,j) \in \mathcal{A} \end{aligned}$$

 $v_{\rm socp} \leq v_{\rm sdp}$.

SOCP is much easier to solve than SDP relaxation (T '07), but can be much weaker.

ESDP Relaxation

ESDP relaxation (Wang, Zheng, Boyd, Ye '06):

$$\begin{split} v_{\text{esdp}} &:= \min_{Z} \sum_{\substack{(i,j) \in \mathcal{A}, j > m \\ (i,j) \in \mathcal{A}, j \leq m \\ }} \left| Y_{ii} - 2X_j^T x_i + \|x_j\|_2^2 - d_{ij}^2 \right| \\ &+ \sum_{\substack{(i,j) \in \mathcal{A}, j \leq m \\ (i,j) \in \mathcal{A}, j \leq m \\ }} \left| Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2 \right| \\ \text{s.t.} \quad Z &= \begin{bmatrix} Y & X^T \\ X & I \\ Y_{ij} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \succeq 0 \quad \forall (i,j) \in \mathcal{A}, j \leq m \\ \begin{bmatrix} Y_{ii} & x_i^T \\ x_i & I \end{bmatrix} \succeq 0 \quad \forall i \leq m \end{split}$$

 $\upsilon_{\rm socp} \le \upsilon_{\rm esdp} \le \upsilon_{\rm sdp}.$ In simulation, ESDP is nearly as strong as SDP, and solvable much faster by IP method.

An Example

$$n = 3, m = 1, d_{12} = d_{13} = 2$$

Problem:

$$0 = \min_{x_1 \in \Re^2} |||x_1 - (1,0)||_2^2 - 4| + |||x_1 - (-1,0)||_2^2 - 4|$$

x₃

SDP/ESDP Relaxation:

 $\frac{x_2}{-1}$

analytic center

SOCP Relaxation:

get analy. center.

SDP Relaxation: a larger example with noise:

n = 64, m = 60. Anchors at $(\pm .45, \pm .45)$ (" \circ "). Sensors uniformly distributed on $[-.5, .5]^2$ ("*").

 $(i,j) \in \mathcal{A}$ whenever $\|x_i^{ ext{true}} - x_j^{ ext{true}}\|_2 \leq 0.3$

Normally distributed noise: $d_{ij} = d_{ij}^{\text{true}} \cdot \max\{0, 1 + .2\nu\}, \ \nu \sim N(0, 1).$

The SDP soln found by SeDuMi 1.05 is shown (" \cdot ") joined to its true position ("*") by a line.

Properties of SDP & ESDP Relaxations

Fact 0: Sol(SDP) and Sol(ESDP) are nonempty, closed, convex, and bounded if each $i \le m$ is conn. to some j > m in the graph $(\{1, ..., n\}, A)$.

$$\operatorname{tr}_{i}[Z] := Y_{ii} - \|x_{i}\|_{2}^{2}, \quad i = 1, ..., m.$$
 "*i*th trace"

Fact 1 (Biswas, Ye '03, T '07, Wang et al '06): For each i,

 $\operatorname{tr}_i[Z] = 0 \ \exists Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP})) \implies x_i \text{ is invariant over } \operatorname{Sol}(\operatorname{ESDP}).$

Still true with "ESDP" changed to "SDP".

Fact 2 (Pong, T '08): Suppose $v_{opt} = 0$. For each *i*,

 $\operatorname{tr}_i[Z] = 0 \ \forall Z \in \operatorname{Sol}(\operatorname{ESDP}) \iff x_i \text{ is invariant over } \operatorname{Sol}(\operatorname{ESDP}).$

Proof is by induction, starting from sensors that neighbor anchors. (Q: True for SDP?)

Proof sketch for Fact 2:

1. For $(i, j) \in A$, j > m, if x_i is invariant over Sol(ESDP), then $tr_i(Z) = 0$ for all $Z \in Sol(ESDP)$.

Why: $v_{opt} = 0$ and x_i invariant over Sol(ESDP) imply, for any $Z \in Sol(ESDP)$,

$$Y_{ii} - 2x_j^T x_i + \|x_j\|_2^2 = d_{ij}^2, \qquad \|x_i - x_j\|_2^2 = d_{ij}^2$$

So $\operatorname{tr}_i(Z) = Y_{ii} - ||x_i||_2^2 = d_{ij}^2 - ||x_i - x_j||_2^2 = 0.$

2. For $(i, j) \in A$, $j \leq m$, if x_i is invariant over Sol(ESDP), then $tr_i(Z) = tr_j(Z)$ for all $Z \in Sol(ESDP)$.

Why? $v_{opt} = 0$ and x_i invariant over Sol(ESDP) imply, for any $Z \in Sol(ESDP)$,

$$Y_{ii} - 2Y_{ij} + Y_{jj} = d_{ij}^2, \qquad ||x_i - x_j||_2^2 = d_{ij}^2$$

So $Y_{ij} - x_i^T x_j = \frac{1}{2} (\operatorname{tr}_i(Z) + \operatorname{tr}_j(Z)).$

Then

This is psd, which implies ...that $tr_i(Z) = tr_j(Z)$.

When there is measurement noise, does $tr_i[Z] = 0$ (with $Z \in ri(Sol(ESDP))$) imply x_i is near the true position of sensor *i*?

Let

$$d_{ij}^2 = d_{ij}^2 + \delta_{ij} \quad \forall (i,j) \in \mathcal{A},$$

where $\bar{d}_{ij} := \|x_i^{\text{true}} - x_j^{\text{true}}\|_2$ ($x_i^{\text{true}} = x_i \forall i > m$). $\bar{\delta} := \max_{(i,j) \in \mathcal{A}} |\delta_{ij}|.$

Fact 3 (Pong, T '08): For $\overline{\delta} \approx 0$ and for each *i*,

$$\operatorname{tr}_{i}[Z] = 0 \; \exists Z \in \operatorname{ri}(\operatorname{Sol}(\operatorname{ESDP})) \quad \not\Longrightarrow \quad \|x_{i} - x_{i}^{\operatorname{true}}\|_{2} \approx 0.$$

Still true with "ESDP" changed to "SDP".

Proof is by counter-example.

An example of sensitivity of SDP/ESDP solns to measurement noise:

Thus, even when $Z \in \text{Sol}(\text{SDP}/\text{ESDP})$ is unique, $\text{tr}_i[Z] = 0$ certifies accuracy of x_i only in the noiseless case!

Robust ESDP

Fix $\rho > \overline{\delta}$.

Sol(
$$\rho$$
ESDP) denotes the set of $Z = \begin{bmatrix} Y & X^T \\ X & I \end{bmatrix}$ satisfying

$$\begin{bmatrix} Y_{ii} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \succeq 0 \quad \forall (i,j) \in \mathcal{A}, j \leq m$$

$$\begin{bmatrix} Y_{ii} & x_i^T \\ x_i & I \end{bmatrix} \succeq 0 \quad \forall i \leq m$$

$$|Y_{ii} - 2x_j^T x_i + ||x_j||^2 - d_{ij}^2| \leq \rho \quad \forall (i,j) \in \mathcal{A}, j > m$$

$$|Y_{ii} - 2Y_{ij} + Y_{jj} - d_{ij}^2| \leq \rho \quad \forall (i,j) \in \mathcal{A}, j \leq m$$

Note: $\begin{bmatrix} X^{\text{true}} & I \end{bmatrix}^T \begin{bmatrix} X^{\text{true}} & I \end{bmatrix} \in \text{Sol}(\rho \text{ESDP}).$

Let

$$Z^{\rho} := \underset{Z \in \text{Sol}(\rho \text{ESDP})}{\operatorname{arg\,min}} - \underset{(i,j) \in \mathcal{A}, j \leq m}{\sum} \ln \det \left(\begin{bmatrix} Y_{ii} & Y_{ij} & x_i^T \\ Y_{ij} & Y_{jj} & x_j^T \\ x_i & x_j & I \end{bmatrix} \right)$$
$$- \underset{i \leq m}{\sum} \ln \det \left(\begin{bmatrix} Y_{ii} & x_i^T \\ x_i & I \end{bmatrix} \right)$$

Fact 4 (Pong, T '08): $\exists \bar{\rho} > \bar{\delta} \text{ and } \tau > 0 \text{ such that, for } \bar{\delta} < \rho \leq \bar{\rho} \text{ and for each } i$, $x_i \text{ is invariant over Sol}(\text{ESDP}|_{\bar{d}_{ij}}) \iff \operatorname{tr}_i[Z^{\rho}] < \tau$ $\implies ||x_i^{\rho} - x_i^{\operatorname{true}}||_2 \leq \sqrt{2|\mathcal{A}| + n} (\operatorname{tr}_i[Z^{\rho}])^{1/2}$

Conclusion & Ongoing work

SDP and ESDP are stronger relaxations, but inherit the soln instability relative to measurement noise. Lack soln accuracy certificate.

SOCP and ρ ESDP are weaker relaxations, but have more stable solns. Have soln accuracy certificate. Is ρ ESDP better?

- Distributed method to compute Z^{ρ} ?
- Simulation and numerical testing?

