
Accelerated Proximal Gradient Methods for
Convex Optimization

Paul Tseng
Mathematics, University of Washington

Seattle

MOPTA, University of Guelph
August 18, 2008



ACCELERATED PROXIMAL GRADIENT METHODS 1

Talk Outline

• A Convex Opimization Problem



ACCELERATED PROXIMAL GRADIENT METHODS 1

Talk Outline

• A Convex Opimization Problem

• Proximal Gradient Method



ACCELERATED PROXIMAL GRADIENT METHODS 1

Talk Outline

• A Convex Opimization Problem

• Proximal Gradient Method

• Accelerated Proximal Gradient Method I

• Accelerated Proximal Gradient Method II



ACCELERATED PROXIMAL GRADIENT METHODS 1

Talk Outline

• A Convex Opimization Problem

• Proximal Gradient Method

• Accelerated Proximal Gradient Method I

• Accelerated Proximal Gradient Method II

• Example: Matrix Game



ACCELERATED PROXIMAL GRADIENT METHODS 1

Talk Outline

• A Convex Opimization Problem

• Proximal Gradient Method

• Accelerated Proximal Gradient Method I

• Accelerated Proximal Gradient Method II

• Example: Matrix Game

• Conclusions & Extensions



ACCELERATED PROXIMAL GRADIENT METHODS 2

A Convex Optimization Problem

min
x∈E

fP (x) := f(x) + P (x)

E is a real linear space with norm ‖ · ‖.

E∗ is the dual space of cont. linear functionals on E , with dual norm
‖x∗‖∗ = sup‖x‖≤1〈x∗, x〉.

P : E → (−∞,∞] is proper, convex, lsc (and “simple”).

f : E → < is convex diff. ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ domP (L ≥ 0).
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x∈E

fP (x) := f(x) + P (x)

E is a real linear space with norm ‖ · ‖.

E∗ is the dual space of cont. linear functionals on E , with dual norm
‖x∗‖∗ = sup‖x‖≤1〈x∗, x〉.

P : E → (−∞,∞] is proper, convex, lsc (and “simple”).

f : E → < is convex diff. ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ domP (L ≥ 0).

Constrained case: P ≡ δX with X ⊆ E nonempty, closed, convex.

δX(x) =
{

0 if x ∈ X
∞ else
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Examples:

• E = <n, P (x) = ‖x‖1, f(x) = ‖Ax− b‖2
2 Basis Pursuit/Lasso

• E = <n1 × · · · × <nN , P (x) = w1‖x1‖2 + · · ·+ wN‖xN‖2 (wj > 0),
f(x) = g(Ax) with g(y) =

∑m
i=1 ln(1 + eyi)− biyi group Lasso

• E = <n, P ≡ δX with X = {x | x ≥ 0, x1 + · · ·+ xn = 1}, f(x) = g∗(Ax)

with g(y) =
{ ∑m

i=1 yi ln yi if y ≥ 0, y1 + · · ·+ ym = 1
∞ else

matrix game

• E = Sn, P ≡ δX with X = {x | |xij| ≤ ρ ∀i, j}, f(x) = g∗(x+ s) with

g(y) =
{− ln dety if αI � y � βI
∞ else

(ρ, α, β > 0) covariance selection
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How to solve this (nonsmooth) convex optimization problem? In applications,
m and n are large (m,n ≥ 1000), A may be dense.

2nd-order methods (Newton, interior-point)? Few iterations, but each iteration
can be too expensive (e.g., O(n3) ops).

1st-order methods (gradient)? Each iteration is cheap (by using suitable “prox
function”), but often too many iterations. Accelerate convergence by
interpolation Nesterov.
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Proximal Gradient Method
Let

`(x; y) := f(y) + 〈∇f(y), x− y〉+ P (x)

D(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉, Bregman, ...

with h : E → (−∞,∞] strictly convex, differentiable on Xh ⊇ int(domP ), and

D(x, y) ≥ 1
2
‖x− y‖2 ∀ x ∈ domP, y ∈ Xh.
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`(x; y) := f(y) + 〈∇f(y), x− y〉+ P (x)

D(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉, Bregman, ...

with h : E → (−∞,∞] strictly convex, differentiable on Xh ⊇ int(domP ), and

D(x, y) ≥ 1
2
‖x− y‖2 ∀ x ∈ domP, y ∈ Xh.

For k = 0, 1, . . .,

xk+1 = arg min
x

{`(x;xk) + LD(x, xk)}

with x0 ∈ domP . Assume xk ∈ Xh ∀k.

Special cases: steepest descent, gradient-projection Goldstein, Levitin, Polyak, ...,
mirror-descent Yudin, Nemirovski, iterative thresholding Daubechies et al., ...
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For the earlier examples, xk+1 has closed form when h is chosen suitably:

• E = <n, P (x) = ‖x‖1, h(x) = ‖x‖2
2/2.

• E = <n1 × · · · × <nN , P (x) = w1‖x1‖2 + · · ·+ wN‖xN‖2 (wj > 0),
h(x) = ‖x‖2

2/2.

• E = <n, P ≡ δX with X = {x | x ≥ 0, x1 + · · ·+ xn = 1},
h(x) =

∑n
j=1 xj lnxj.

• E = Sn, P ≡ δX with X = {x | |xij| ≤ ρ ∀i, j}, h(x) = ‖x‖2
F/2.
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Fact 1: fP (x) ≥ `(x; y) ≥ fP (x)− L
2‖x− y‖2 ∀x, y ∈ domP .

Fact 2: For any proper convex lsc ψ : E → (−∞,∞] and z ∈ Xh, let

z+ = arg min
x

{ψ(x) +D(x, z)} .

If z+ ∈ Xh, then

ψ(z+) +D(z+, z) ≤ ψ(x) +D(x, z)−D(x, z+) ∀x ∈ domP.
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Prop. 1: For any x ∈ domP ,

min{e1, . . . , ek} ≤
LD(x, x0)

k
, k = 1, 2, . . .

with ek := fP (xk)− fP (x).
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Prop. 1: For any x ∈ domP ,

min{e1, . . . , ek} ≤
LD(x, x0)

k
, k = 1, 2, . . .

with ek := fP (xk)− fP (x).

Proof:

fP (xk+1) ≤ `(xk+1;xk) +
L

2
‖xk+1 − xk‖2 Fact 1

≤ `(xk+1;xk) + LD(xk+1, xk)

≤ `(x;xk) + LD(x, xk)− LD(x, xk+1) Fact 2

≤ fP (x) + LD(x, xk)− LD(x, xk+1), Fact 1

so

0 ≤ LD(x, xk+1) ≤ LD(x, xk)− ek+1

≤ LD(x, x0)− (e1 + · · ·+ ek+1)

≤ LD(x, x0)− (k + 1) min{e1, . . . , ek+1}
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We will improve the global convergence rate by interpolation.

Idea: At iteration k, use a stepsize of O(k/L) instead of 1/L and backtrack
towards xk.
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Accelerated Proximal Gradient Method I

For k = 0, 1, . . .,

yk = (1− θk)xk + θkzk

zk+1 = arg min
x

{`(x; yk) + θkLD(x, zk)}

xk+1 = (1− θk)xk + θkzk+1

1− θk+1

θ2k+1

≤ 1
θ2k

(0 < θk+1 ≤ 1)

with θ0 = 1, x0, z0 ∈ domP Nesterov, Auslender, Teboulle, Lan, Lu, Monteiro, ... Assume zk ∈ Xh ∀k.

For example, θk =
2

k + 2
or θk+1 =

√
θ4k + 4θ2k − θ2k

2
.
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Prop. 2: For any x ∈ domP ,

min{e1, . . . , ek} ≤ LD(x, z0)θ2k, k = 1, 2, . . .

with ek := fP (xk)− fP (x).
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Prop. 2: For any x ∈ domP ,

min{e1, . . . , ek} ≤ LD(x, z0)θ2k, k = 1, 2, . . .

with ek := fP (xk)− fP (x).

Proof:

fP (xk+1)

≤ `(xk+1; yk) +
L

2
‖xk+1 − yk‖2 Fact 1

= `((1− θk)xk + θkzk+1; yk) +
L

2
‖(1− θk)xk + θkzk+1 − yk‖2

≤ (1− θk)`(xk; yk) + θk`(zk+1; yk) +
L

2
θ2k‖zk+1 − zk‖2

≤ (1− θk)`(xk; yk) + θk (`(zk+1; yk) + θkLD(zk+1, zk))

≤ (1− θk)`(xk; yk) + θk (`(x; yk) + θkLD(x, zk)− θkLD(x, zk+1)) Fact 2

≤ (1− θk)fP (xk) + θk

(
fP (x) + θkLD(x, zk)− θkLD(x, zk+1)

)
Fact 1
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so, subtracting by fP (x) and then dividing by θ2k, we have

1
θ2k
ek+1 ≤

1− θk

θ2k
ek + LD(x; zk)− LD(x; zk+1)

etc.

Thus, global convergence rate improves from O(1/k) to O(1/k2) with little
extra work per iteration!
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Can also replace `(x; yk) by a certain weighted sum of
`(x; y0), `(x; y1), . . . , `(x; yk).
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Accelerated Proximal Gradient Method II

For k = 0, 1, . . .,

yk = (1− θk)xk + θkzk

zk+1 = arg min
x

{
k∑

i=0

`(x; yi)
ϑi

+ Lh(x)

}
xk+1 = (1− θk)xk + θkzk+1

1− θk+1

θk+1ϑk+1
=

1
θkϑk

(ϑk+1 ≥ θk+1 > 0)

with ϑ0 ≥ θ0 = 1, x0 ∈ domP , and z0 = arg min
x∈domP

h(x) Nesterov, d’Aspremont et al., Lu, ...

Assume zk ∈ Xh ∀k.

For example, ϑk =
2

k + 1
, θk =

2
k + 2

or ϑk+1 = θk+1 =

√
θ4k + 4θ2k − θ2k

2
.
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Prop. 3: For any x ∈ domP ,

min{e1, . . . , ek} ≤ L(h(x)− h(z0))θk−1ϑk−1, k = 1, 2, . . .

with ek := fP (xk)− fP (x).
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Prop. 3: For any x ∈ domP ,

min{e1, . . . , ek} ≤ L(h(x)− h(z0))θk−1ϑk−1, k = 1, 2, . . .

with ek := fP (xk)− fP (x).

Proof replaces Fact 2 with:

Fact 3: For any proper convex lsc ψ : E → (−∞,∞], let

z = arg min
x

{ψ(x) + h(x)} .

If z ∈ Xh, then

ψ(z) + h(z) ≤ ψ(x) + h(x)−D(x, z) ∀x ∈ domP.

Advantage?
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Example: Matrix Game

min
x∈X

max
v∈V

〈v,Ax〉

with X and V unit simplices in <n and <m, and A ∈ <m×n. Generate
Aij ∼ U [−1, 1] with probab. p; otherwise Aij = 0. Nesterov, Nemirovski

Set P ≡ δX and f(x) = g∗(Ax/µ), with µ = ε
2 ln m (ε > 0) and

g(v) =
{ ∑m

i=1 vi ln vi if v ∈ V
∞ else

(L = 1
µ, ‖ · ‖ = 1-norm)
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min
x∈X

max
v∈V

〈v,Ax〉

with X and V unit simplices in <n and <m, and A ∈ <m×n. Generate
Aij ∼ U [−1, 1] with probab. p; otherwise Aij = 0. Nesterov, Nemirovski

Set P ≡ δX and f(x) = g∗(Ax/µ), with µ = ε
2 ln m (ε > 0) and

g(v) =
{ ∑m

i=1 vi ln vi if v ∈ V
∞ else

(L = 1
µ, ‖ · ‖ = 1-norm)

• Implement PGM, APGM I & II in Matlab, with h(x) =
∑n

j=1 xj lnxj.
Dynamically adjust L.

• Initialize x0 = z0 = (1
n, . . . ,

1
n). Terminate when

max
i

(Axk)i −min
j

(A∗vk)j ≤ ε

with vk ∈ V a weighted sum of dual vectors associated with x0, x1, . . . , xk.
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PGM APGM I APGM II
n/m/p ε k/cpu (sec) k/cpu (sec) k/cpu (sec)

1000/100/.01 .001 1082480/1500 3325/5 10510/9
.0001 – 20635/23 61865/45

10000/100/.01 .001 – 10005/142 10005/128
10000/100/.1 .001 – 10005/201 10005/185
10000/1000/.01 .001 – 10005/202 10005/191
10000/1000/.1 .001 – 10005/706 10005/695

Table 1: Performance of PGM, APGM I & II for different n, m, sparsity p, and soln accuracy
ε.
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Conclusions & Extensions

1. Accelerated prox gradient method is promising in theory and practice.
Applicable to convex-concave optimization by using smoothing Nesterov.
Further extension to add cutting planes.
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Thanks for coming!
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