Accelerated Proximal Gradient Methods for Convex Optimization

Paul Tseng Mathematics, University of Washington

Seattle

MOPTA, University of Guelph August 18, 2008

• A Convex Opimization Problem

- A Convex Opimization Problem
- Proximal Gradient Method

- A Convex Opimization Problem
- Proximal Gradient Method
- Accelerated Proximal Gradient Method I
- Accelerated Proximal Gradient Method II

- A Convex Opimization Problem
- Proximal Gradient Method
- Accelerated Proximal Gradient Method I
- Accelerated Proximal Gradient Method II
- Example: Matrix Game

- A Convex Opimization Problem
- Proximal Gradient Method
- Accelerated Proximal Gradient Method I
- Accelerated Proximal Gradient Method II
- Example: Matrix Game
- Conclusions & Extensions

A Convex Optimization Problem

$$\min_{x \in \mathcal{E}} f^P(x) := f(x) + P(x)$$

 \mathcal{E} is a real linear space with norm $\|\cdot\|$.

 \mathcal{E}^* is the dual space of cont. linear functionals on \mathcal{E} , with dual norm $\|x^*\|_* = \sup_{\|x\| \le 1} \langle x^*, x \rangle$.

 $P: \mathcal{E} \to (-\infty, \infty]$ is proper, convex, lsc (and "simple").

 $f: \mathcal{E} \to \Re$ is convex diff. $\|\nabla f(x) - \nabla f(y)\|_* \leq L \|x - y\| \ \forall x, y \in \operatorname{dom} P$ ($L \geq 0$).

A Convex Optimization Problem

$$\min_{x \in \mathcal{E}} f^P(x) := f(x) + P(x)$$

 \mathcal{E} is a real linear space with norm $\|\cdot\|$.

 \mathcal{E}^* is the dual space of cont. linear functionals on \mathcal{E} , with dual norm $\|x^*\|_* = \sup_{\|x\| \le 1} \langle x^*, x \rangle$.

 $P: \mathcal{E} \to (-\infty, \infty]$ is proper, convex, lsc (and "simple").

 $f: \mathcal{E} \to \Re$ is convex diff. $\|\nabla f(x) - \nabla f(y)\|_* \leq L \|x - y\| \ \forall x, y \in \operatorname{dom} P$ ($L \geq 0$).

Constrained case: $P \equiv \delta_X$ with $X \subseteq \mathcal{E}$ nonempty, closed, convex.

$$\delta_X(x) = \begin{cases} 0 & \text{if } x \in X \\ \infty & \text{else} \end{cases}$$

Examples:

- $\mathcal{E} = \Re^n$, $P(x) = \|x\|_1$, $f(x) = \|Ax b\|_2^2$ Basis Pursuit/Lasso
- $\mathcal{E} = \Re^{n_1} \times \dots \times \Re^{n_N}$, $P(x) = w_1 \|x_1\|_2 + \dots + w_N \|x_N\|_2$ ($w_j > 0$), f(x) = g(Ax) with $g(y) = \sum_{i=1}^m \ln(1 + e^{y_i}) - b_i y_i$ group Lasso

•
$$\mathcal{E} = \Re^n$$
, $P \equiv \delta_X$ with $X = \{x \mid x \ge 0, x_1 + \dots + x_n = 1\}$, $f(x) = g^*(Ax)$
with $g(y) = \begin{cases} \sum_{i=1}^m y_i \ln y_i & \text{if } y \ge 0, y_1 + \dots + y_m = 1\\ \infty & \text{else} \end{cases}$ matrix game

•
$$\mathcal{E} = \mathcal{S}^n$$
, $P \equiv \delta_X$ with $X = \{x \mid |x_{ij}| \le \rho \ \forall i, j\}$, $f(x) = g^*(x+s)$ with $g(y) = \begin{cases} -\ln \det y & \text{if } \alpha I \le y \le \beta I \\ \infty & \text{else} \end{cases}$ $(\rho, \alpha, \beta > 0)$ covariance selection

How to solve this (nonsmooth) convex optimization problem? In applications, m and n are large ($m, n \ge 1000$), A may be dense.

2nd-order methods (Newton, interior-point)? Few iterations, but each iteration can be too expensive (e.g., $O(n^3)$ ops).

1st-order methods (gradient)? Each iteration is cheap (by using suitable "prox function"), but often too many iterations. Accelerate convergence by interpolation Nesterov.

Proximal Gradient Method

Let

$$\begin{split} \ell(x;y) &:= f(y) + \langle \nabla f(y), x - y \rangle + P(x) \\ D(x,y) &:= h(x) - h(y) - \langle \nabla h(y), x - y \rangle, \qquad \text{Bregman, ...} \end{split}$$

with $h : \mathcal{E} \to (-\infty, \infty]$ strictly convex, differentiable on $X_h \supseteq int(dom P)$, and

$$D(x,y) \ge \frac{1}{2} ||x-y||^2 \qquad \forall x \in \operatorname{dom} P, \ y \in X_h.$$

Proximal Gradient Method

Let

$$\begin{array}{lll} \ell(x;y) &:= & f(y) + \langle \nabla f(y), x - y \rangle + P(x) \\ D(x,y) &:= & h(x) - h(y) - \langle \nabla h(y), x - y \rangle, & & & & & \\ \end{array}$$

with $h : \mathcal{E} \to (-\infty, \infty]$ strictly convex, differentiable on $X_h \supseteq int(dom P)$, and

$$D(x,y) \ge \frac{1}{2} ||x-y||^2 \qquad \forall x \in \operatorname{dom} P, \ y \in X_h.$$

For k = 0, 1, ...,

$$x_{k+1} = \underset{x}{\operatorname{arg\,min}} \left\{ \ell(x; x_k) + LD(x, x_k) \right\}$$

with $x_0 \in \text{dom}P$. Assume $x_k \in X_h \ \forall k$.

Special cases: steepest descent, gradient-projection Goldstein, Levitin, Polyak, ..., mirror-descent Yudin, Nemirovski, iterative thresholding Daubechies et al., ... For the earlier examples, x_{k+1} has closed form when h is chosen suitably:

•
$$\mathcal{E} = \Re^n$$
, $P(x) = \|x\|_1$, $h(x) = \|x\|_2^2/2$.

- $\mathcal{E} = \Re^{n_1} \times \cdots \times \Re^{n_N}$, $P(x) = w_1 \|x_1\|_2 + \cdots + w_N \|x_N\|_2$ ($w_j > 0$), $h(x) = \|x\|_2^2/2$.
- $\mathcal{E} = \Re^n$, $P \equiv \delta_X$ with $X = \{x \mid x \ge 0, x_1 + \dots + x_n = 1\}$, $h(x) = \sum_{j=1}^n x_j \ln x_j$.
- $\mathcal{E} = \mathcal{S}^n$, $P \equiv \delta_X$ with $X = \{x \mid |x_{ij}| \le \rho \ \forall i, j\}$, $h(x) = ||x||_F^2/2$.

Fact 1:
$$f^{P}(x) \ge \ell(x;y) \ge f^{P}(x) - \frac{L}{2} ||x - y||^{2} \quad \forall x, y \in \text{dom}P.$$

Fact 2: For any proper convex lsc $\psi : \mathcal{E} \to (-\infty, \infty]$ and $z \in X_h$, let

$$z_+ = \operatorname*{arg\,min}_x \left\{ \psi(x) + D(x, z) \right\}.$$

If $z_+ \in X_h$, then

$$\psi(z_+) + D(z_+, z) \le \psi(x) + D(x, z) - D(x, z_+) \quad \forall x \in \operatorname{dom} P.$$

Prop. 1: For any $x \in \text{dom}P$,

$$\min\{e_1, \dots, e_k\} \le \frac{LD(x, x_0)}{k}, \quad k = 1, 2, \dots$$

with $e_k := f^P(x_k) - f^P(x)$.

Prop. 1: For any $x \in \text{dom}P$,

$$\min\{e_1, \dots, e_k\} \le \frac{LD(x, x_0)}{k}, \quad k = 1, 2, \dots$$

with $e_k := f^P(x_k) - f^P(x)$. Proof:

$$f^{P}(x_{k+1}) \leq \ell(x_{k+1}; x_{k}) + \frac{L}{2} ||x_{k+1} - x_{k}||^{2} \quad \text{Fact 1}$$

$$\leq \ell(x_{k+1}; x_{k}) + LD(x_{k+1}, x_{k})$$

$$\leq \ell(x; x_{k}) + LD(x, x_{k}) - LD(x, x_{k+1}) \quad \text{Fact 2}$$

$$\leq f^{P}(x) + LD(x, x_{k}) - LD(x, x_{k+1}), \quad \text{Fact 1}$$

SO

$$0 \leq LD(x, x_{k+1}) \leq LD(x, x_k) - e_{k+1}$$

$$\leq LD(x, x_0) - (e_1 + \dots + e_{k+1})$$

$$\leq LD(x, x_0) - (k+1) \min\{e_1, \dots, e_{k+1}\}$$

We will improve the global convergence rate by interpolation.

Idea: At iteration k, use a stepsize of O(k/L) instead of 1/L and backtrack towards x_k .

Accelerated Proximal Gradient Method I

For k = 0, 1, ...,

$$y_{k} = (1 - \theta_{k})x_{k} + \theta_{k}z_{k}$$

$$z_{k+1} = \arg\min_{x} \{\ell(x; y_{k}) + \theta_{k}LD(x, z_{k})\}$$

$$x_{k+1} = (1 - \theta_{k})x_{k} + \theta_{k}z_{k+1}$$

$$\frac{1 - \theta_{k+1}}{\theta_{k+1}^{2}} \leq \frac{1}{\theta_{k}^{2}} \quad (0 < \theta_{k+1} \leq 1)$$

with $\theta_0 = 1$, $x_0, z_0 \in \mathrm{dom}P$ Nesterov, Auslender, Teboulle, Lan, Lu, Monteiro, ... Assume $z_k \in X_h \; \forall k$.

For example,
$$\theta_k = \frac{2}{k+2}$$
 or $\theta_{k+1} = \frac{\sqrt{\theta_k^4 + 4\theta_k^2} - \theta_k^2}{2}$

Prop. 2: For any $x \in \text{dom}P$,

$$\min\{e_1, \dots, e_k\} \le LD(x, z_0)\theta_k^2, \quad k = 1, 2, \dots$$

with $e_k := f^P(x_k) - f^P(x)$.

Prop. 2: For any $x \in \text{dom}P$,

$$\min\{e_1, \dots, e_k\} \le LD(x, z_0)\theta_k^2, \quad k = 1, 2, \dots$$

with $e_k := f^P(x_k) - f^P(x)$.

Proof:

$$f^{P}(x_{k+1}) \leq \ell(x_{k+1}; y_{k}) + \frac{L}{2} ||x_{k+1} - y_{k}||^{2} \quad \text{Fact 1} \\ = \ell((1 - \theta_{k})x_{k} + \theta_{k}z_{k+1}; y_{k}) + \frac{L}{2} ||(1 - \theta_{k})x_{k} + \theta_{k}z_{k+1} - y_{k}||^{2} \\ \leq (1 - \theta_{k})\ell(x_{k}; y_{k}) + \theta_{k}\ell(z_{k+1}; y_{k}) + \frac{L}{2}\theta_{k}^{2}||z_{k+1} - z_{k}||^{2} \\ \leq (1 - \theta_{k})\ell(x_{k}; y_{k}) + \theta_{k}(\ell(z_{k+1}; y_{k}) + \theta_{k}LD(z_{k+1}, z_{k})) \\ \leq (1 - \theta_{k})\ell(x_{k}; y_{k}) + \theta_{k}(\ell(x; y_{k}) + \theta_{k}LD(x, z_{k}) - \theta_{k}LD(x, z_{k+1})) \quad \text{Fact 2} \\ \leq (1 - \theta_{k})f^{P}(x_{k}) + \theta_{k}(f^{P}(x) + \theta_{k}LD(x, z_{k}) - \theta_{k}LD(x, z_{k+1})) \quad \text{Fact 1}$$

so, subtracting by $f^P(x)$ and then dividing by θ_k^2 , we have

$$\frac{1}{\theta_k^2} e_{k+1} \le \frac{1 - \theta_k}{\theta_k^2} e_k + LD(x; z_k) - LD(x; z_{k+1})$$

etc.

Thus, global convergence rate improves from O(1/k) to $O(1/k^2)$ with little extra work per iteration!

Can also replace $\ell(x; y_k)$ by a certain weighted sum of $\ell(x; y_0), \ell(x; y_1), \ldots, \ell(x; y_k)$.

Accelerated Proximal Gradient Method II

For k = 0, 1, ...,

$$y_{k} = (1 - \theta_{k})x_{k} + \theta_{k}z_{k}$$

$$z_{k+1} = \arg\min_{x} \left\{ \sum_{i=0}^{k} \frac{\ell(x; y_{i})}{\vartheta_{i}} + Lh(x) \right\}$$

$$x_{k+1} = (1 - \theta_{k})x_{k} + \theta_{k}z_{k+1}$$

$$\frac{1 - \theta_{k+1}}{\theta_{k+1}\vartheta_{k+1}} = \frac{1}{\theta_{k}\vartheta_{k}} \quad (\vartheta_{k+1} \ge \theta_{k+1} > 0)$$

with $\vartheta_0 \ge \theta_0 = 1$, $x_0 \in \operatorname{dom} P$, and $z_0 = \underset{x \in \operatorname{dom} P}{\operatorname{arg min}} h(x)$ Nesterov, d'Aspremont et al., Lu, ... Assume $z_k \in X_h \ \forall k$.

For example,
$$\vartheta_k = \frac{2}{k+1}$$
, $\theta_k = \frac{2}{k+2}$ or $\vartheta_{k+1} = \theta_{k+1} = \frac{\sqrt{\theta_k^4 + 4\theta_k^2} - \theta_k^2}{2}$

Prop. 3: For any $x \in \text{dom}P$,

$$\min\{e_1, \dots, e_k\} \le L(h(x) - h(z_0))\theta_{k-1}\vartheta_{k-1}, \quad k = 1, 2, \dots$$

with $e_k := f^P(x_k) - f^P(x)$.

Prop. 3: For any $x \in \text{dom}P$,

$$\min\{e_1, \dots, e_k\} \le L(h(x) - h(z_0))\theta_{k-1}\vartheta_{k-1}, \quad k = 1, 2, \dots$$

with $e_k := f^P(x_k) - f^P(x)$.

Proof replaces Fact 2 with:

Fact 3: For any proper convex lsc $\psi : \mathcal{E} \to (-\infty, \infty]$, let

$$z = \underset{x}{\operatorname{arg\,min}} \left\{ \psi(x) + h(x) \right\}.$$

If $z \in X_h$, then

$$\psi(z) + h(z) \le \psi(x) + h(x) - D(x, z) \quad \forall x \in \operatorname{dom} P.$$

Advantage?

Example: Matrix Game

 $\min_{x \in X} \max_{v \in V} \langle v, Ax \rangle$

with X and V unit simplices in \Re^n and \Re^m , and $A \in \Re^{m \times n}$. Generate $A_{ij} \sim U[-1,1]$ with probab. p; otherwise $A_{ij} = 0$. Nesterov, Nemirovski

Set
$$P \equiv \delta_X$$
 and $f(x) = g^*(Ax/\mu)$, with $\mu = \frac{\epsilon}{2 \ln m}$ ($\epsilon > 0$) and
 $g(v) = \begin{cases} \sum_{i=1}^m v_i \ln v_i & \text{if } v \in V \\ \infty & \text{else} \end{cases}$ $(L = \frac{1}{\mu}, \| \cdot \| = 1 \text{-norm})$

Example: Matrix Game

 $\min_{x \in X} \max_{v \in V} \langle v, Ax \rangle$

with X and V unit simplices in \Re^n and \Re^m , and $A \in \Re^{m \times n}$. Generate $A_{ij} \sim U[-1,1]$ with probab. p; otherwise $A_{ij} = 0$. Nesterov, Nemirovski

Set
$$P \equiv \delta_X$$
 and $f(x) = g^*(Ax/\mu)$, with $\mu = \frac{\epsilon}{2 \ln m}$ ($\epsilon > 0$) and
 $g(v) = \begin{cases} \sum_{i=1}^m v_i \ln v_i & \text{if } v \in V \\ \infty & \text{else} \end{cases}$ $(L = \frac{1}{\mu}, \| \cdot \| = 1\text{-norm})$

• Implement PGM, APGM I & II in Matlab, with $h(x) = \sum_{j=1}^{n} x_j \ln x_j$. Dynamically adjust *L*.

• Initialize $x_0 = z_0 = (\frac{1}{n}, \dots, \frac{1}{n})$. Terminate when

$$\max_{i} (Ax_k)_i - \min_{j} (A^*v_k)_j \le \epsilon$$

with $v_k \in V$ a weighted sum of dual vectors associated with x_0, x_1, \ldots, x_k .

		PGM	APGM I	APGM II
n/m/p	ϵ	k/cpu (sec)	k/cpu (sec)	k/cpu (sec)
1000/100/.01	.001	1082480/1500	3325/5	10510/9
	.0001	—	20635/23	61865/45
10000/100/.01	.001	_	10005/142	10005/128
10000/100/.1	.001	_	10005/201	10005/185
10000/1000/.01	.001	_	10005/202	10005/191
10000/1000/.1	.001	_	10005/706	10005/695

 Table 1: Performance of PGM, APGM I & II for different n, m, sparsity p, and soln accuracy

 ϵ .

 Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.

- Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.
- 2. Application to matrix completion, where $\mathcal{E} = \Re^{m \times n}$ and $P(x) = \|\sigma(x)\|_1$?

- Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.
- 2. Application to matrix completion, where $\mathcal{E} = \Re^{m \times n}$ and $P(x) = \|\sigma(x)\|_1$?
- 3. Extending the interpolation technique to incremental gradient methods and coordinate-wise gradient methods?

- Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.
- 2. Application to matrix completion, where $\mathcal{E} = \Re^{m \times n}$ and $P(x) = \|\sigma(x)\|_1$?
- 3. Extending the interpolation technique to incremental gradient methods and coordinate-wise gradient methods?

Thanks for coming!