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On  the  Goldstein - Levitin - Polyak Gradient 
Projection  Method 

DIMITRI P. BERTSEKAS 

Abstract-This paper  considers  some aspects of a gradient  projection 
method  proposed  by  Goldstein [l], Levitin and  Polyak [3], and  more 
recently, in a less general  context, by  McCormick [lo]. We  propose  and 
analyze  some  convergent step-size rules to be used in conjunction  with  the 
method. These rules are similar in spirit  to  the  efficient Armijo rule  for  the 
method  of steepest descent  and  under  mild  assumptions  they  have  the 
desirable  property  that  they  identify  the set of  active inequality consbaints 
in a f ~ t e  number  of  iterations. As a resnlt  the  method may be converted 
towards  the  end  of the process to a conjugate direction, quasi-Newton  or 
Newton’s  method,  and  achieve  the  attendant  superlinear convergence rate. 
As an example we propose  some  quadratically  convergent  combinations  of 
the method  with  Newton’s  method. Such combined  methods  appear  to  be 
very efficient  for large-de problems  with m a n y  simple constraints such 
as those often  appearing in optimal control. 

I. INTRODUCTION 

I N 1964 Goldstein [ 11,  [2 ]  proposed  a projection method 
€or minimizing a continuously differentiable  function 

f: H+R over a closed  convex subset Q of a  Hilbert space 
H .  The  method consists of the  iteration 

where P,(z) denotes  the  unique projection of a vector 
z E H on Q, V f ( x k )  denotes  the  gradient off  at the  point 
x,, and a, 2 0 denotes  the  step size. The same  method was 
independently  proposed by Levitin and Polyak [3] one 
year  later and  further discussed in the books by  De- 
myanov and Rubinov [4] and Daniel [12].  Goldstein, 
Levitin, and Polyak, under  the Lipschitz assumption 

lVf(x) - V f ( Y ) l  < J+-Yl, VX,Y E Q (2) 

where 1 .  I denotes  the  norm on H ,  proved various conver- 
gence properties of their method  for  the  case where the 
step size a, satisfies 

2(1-E) 
O < E < a , < -  V k  L ’  

with E any  scalar with O< E < 2/(2+ L). These  conver- 
gence results are extensions of known results [5] ,  [6] for the 
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method of steepest descent  for  unconstrained minimiza- 
tion (Q = H ) .  

It should be  noted, of course, that  in  order  for  the 
method (1) to  be effective, the set Q must be such that  the 
projection operation Pe( .) can  be easily carried  out. 
Levitin and Polyak point out several such cases, the most 
representative of which  is  when H = R “  and Q implies 
upper and (or) lower bounds  on all the  variables of the 
problem: 

When Q is  given  by (4) the  iteration (1) takes the  form 

af 
if x; - a,- <A, axi 

and is  very  easy to  carry  out. A similar easily imple- 
mented  formula  holds  for  the  case of the  constraint (5). 
However  when Q is a general polyhedron  the projection 
required  in  the  iteration (1) requires the  solution of a 
quadratic  programming  problem, and when Q is a general 
convex set things may  become  even more  complicated. 
Thus the  method is effectively limited to  problems involv- 
ing simple constraint sets such  as (4), ( 9 ,  spheres, Carte- 
sian  products of spheres. etc. 

On the other hand the Goldstein-Levitin-Polyak algo- 
rithm  has  a  unique  characteristic which  makes  it  ex- 
tremely attractive for large-scale problems with many 
simple constraints.  Contrary to other  algorithms  for  con- 
strained minimization  which maintain feasibility, it pro- 
ceeds  along  arcs on the  constraint  surface rather-  than 
along  straight  line  segments.  In  algorithms  such  as 
Zoutendijk’s feasible direction  methods, Rosen’s gradient 
projection method,  the  reduced  gradient  method, and the 
Frank-Wolfe or conditional  gradient  algorithm (see, e.g., 
[7],[8].[9]) the  motion  along the descent  direction  stops  as 
soon as a new constraint is encountered.  In large-scale 
problems with many  constraints  binding at  the optimal 
solution, this fact may result in slow  convergence and 
possibly jamming in a  computational  environment. Such 
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problems arise typically in optimal  control where the 
optimal  control variables are often at the  boundary of the 
constraint set for  a large portion of the time interval and 
sometimes lie entirely on the boundary of the  constraint 
set.  As an example  consider an optimal  control  problem 
of the  form 

.N - I 

minimizeJ(u,;..,u,_,)=G(x,)+ gi (x i ,u i )  
i = O  

subject to 

where V,  is a  constraint set. It is not  unusual  for such 
problems to have as  many  as a  thousand  control variables, 
particularly when  they result from discretization of con- 
tinuous time  problems. If a large number of optimal 
control  variables lie on the  constraint  boundary then 
Rosen’s  projection  method  or  the  reduced  gradient 
method will inevitable take, except for  degenerate cases, a 
very large number of iterations to converge. By contrast, 
the Goldstein-Levitin-Polyak  algorithm does  not suffer 
from this particular difficulty since  it  does  not  stop when 
a new constraint is encountered  but  rather proceeds  along 
arcs on  the  boundary of the constraint set. It is to be 
noted  that in optimal  control problems the  control  con- 
straint sets are  often simple  sets. For example Ui above 
may be an interval, or the positive orthant,  or  a closed 
sphere,  etc. In such cases the projection required by the 
method  can  be very easily carried  out.  Iteration (1) takes 
the convenient form 

, i=O,l; . . ,N-l  

where ( u t ,  u:, . , u j -  ,) is the  kth  control  trajectory, 
( x , , x ,  k k  ; - e  ,x,- k and ( p f , p ? ; .  . , p j )  are the correspond- 
ing  state and costate trajectories, and Hi denotes the 
Hamiltonian.  The effectiveness of iterations such as  the 
one  above  for  optimal  control  problems was demonstrated 
recently in  a  paper by Quintana  and Davison [ 151. 

A weakness of the  implementation proposed in [I], [3] is 
that, since the Lipschitz constant L in (2), (3) is usually 
unavailable, it is not  known apriori how  small one  should 
take  the  step size ak in order  for  the  method to converge, 
and this in practice  may impose serious difficulties. A 
possible modification of the step-size rule  that comes to 
mind, and is often suggested in  the  literature, is to  start 
with an initial guess for the step size and then, if the 
resulting function value  is not decreased, reduce  the  step 
size successively by multiplication with a  constant  scalar 
until  a  decrease of the value of the  function is  observed. 
This step-size rule is quite unreliable since one may easily 
construct  one-dimensional examples  where the  method 
converges to  nonstationary  points of the minimized func- 
tion, even for  the  case where Q = H and the  problem is 
unconstrained. 

An alternative  method  for seIecting the  step size a, was 

proposed in 1969  by  McCormick [IO] for  the  case where 
the  constraint set is given  by (5). Three  years  later 
McCormick extended his results of [ 101 to the case of a 
general closed  convex set in a joint paper with Tapia [ 191. 
McCormick  suggested determining ak by means of the 
one-dimensional minimization 

and proved convergence of the resulting method  without 
assuming the Lipschitz condition (2). More recently he 
extended his ideas and gave a  reduction  method [ 111 for 
general linear  constraints which is different in spirit from 
the  method of [l]  and [3]. Step-size rules of the type 
proposed  here  should be useful in conjunction with 
methods of the  type  proposed in [ 11 1, however this subject 
has  not been investigated. McCormick’s proposal is quite 
impractical  for problems of large dimension since the 
one-dimensional minimization indicated  above involves a 
nondifferentiable  function of a, having  many points of 
discontinuity of the derivative. Furthermore this function 
need not be  convex or unimodal even if f is a convex 
function. As a result it is  very difficult to  carry  out  the 
minimization  even approximately.  Furthermore this mini- 
mization is almost  impossible to  carry  out  for problems 
involving the  constraint set (5)  which arise in a primal- 
dual framework  via  decomposition  (see,  e.g., [ 131). Daniel 
[12] has  also  proposed  a convergent  modification of the 
projection  method (1) which  does not require knowledge 
of the Lipschitz constant L in  (2) and is easily implement- 
able. However Daniel’s modified method is not  a special 
case of iteration (1) and relinquishes the feature of search- 
ing  along  the  boundary of the  constraint  for an acceptable 
step size.  This feature is  very important  in the author’s 
opinion  for  optimal  control problems. 

The  purpose of this paper is to  propose and analyze 
some efficient and easily implementable  variations of the 
gradient projection method ( 1 ) .  In the next section we 
propose  a convergent modification of the well-known 
Armijo step-size rule for  unconstrained minimization to 
be used in conjunction with iteration (1). We show  conver- 
gence for  the case of a general closed convex constraint 
set Q under  the Lipschitz assumption (2). In Section I11 
we concentrate  attention on the special cases where Q has 
the form (4) or (5),  we consider an additional step-size 
rule of the  same type, and we sharpen our results by 
dispensing  with  the  Lipschitz  assumption (2). We 
furthermore show under mild assumptions  that  the result- 
ing  methods  generate sequences  which  lie on the manifold 
of binding  constraints at the  solution  after  a finite number 
of iterations. This result reveals that the methods  after  a 
finite  number of iterations become versions of the steepest 
descent  method  restricted to the binding  constraint mani- 
fold and provides a  sharper convergence rate result than 
the  one  available in the  literature [3, th. 5.11. Furthermore 
the result provides  a  sound basis for  converting  the 
method  to  a  superlinearly convergent method  such  as  a 
conjugate  direction  method or Newton’s method  once  the 
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set of binding  constraints is identified. We  discuss  two 
such combined  methods which  switch automatically to 
Newton's method towards the end of the algorithmic 
process. and  attain  the  corresponding superlinear conver- 
gence rate. While other  Newton-type  methods based on 
gradient projection have been proposed  in the literature 
1121. [16].  [20] it  is  felt that the methods  proposed here are 
more  appropriate for optimal  control problems. The final 
section of the paper  contains  computational results. 

We conduct  our analysis for  the  case of a finite- 

The mode of operation of the step-size rule is depicted 
in Fig.  1. It is  to be noted that the proposed rule  is a direct 

steepest descent in unconstrained minimization (Q = R"). 
I t  is customaq IO write for the unconstrained case the 
inequality (.12)  in the  form 

c seneralization of the well-known  Armijo rule [14], 171 for 

or sometimes in the  form 

dimensional Euclidean space (H= R " ) .  The  norm  on R" f ( ~ k )  -f[ x k (  P m s ) ]  2 ~yf( -~ , : ) ' [  x,: - X,:( p r n ~ ) ] .  (14) 
is the usual one. 1x1 =[x:, , ( .Y ' )~ ] ' /~ .  The results of Section 

H is an arbitrary Hilbert space. 
11 have straightforward generalizations to the case where When the problem is unconstrained ( e  = R")  the inequal- 

ities (12). (13),  (14) are equivalent. For the  constrained 
case one may consider  the  natural possibility of repiac- 
ing the gradient Vf(x,:) in (13),  (14) by  the vector lim,_to+ 

gradient.  When  the set Q has special form,  such as, for 
example. the  form (4) or (5 ) ,  the vector l imu~o+(l/a)[xk- 

min . f ( s )  (7) sk(a)] is easy to  calculate. However one may construct 
.v E Q examples to show that when the inequality (13) (with 

where .i: R"+R is a continuously  differentiable  function limu4~+(l/a)[-Y,:- -xk(a)l replacing vf(-xk))  is used in Con- 
and Q is a closed subset of R".  we say that a junction with an Armijo  step-size  rule of the type consid- 
point -y E Q is a starionan. poirzt of problem (7) if it ered above,  then the resulting algorithm may converge to 
satisfies the first-order condition for optimality a nonstationary  point. On the  other hand we  show in  the 

next section that inequality (14)  when  used in conjunction 

rithm when Q has  the form (4) or (5). 

section. 

11 .  A GESERALIZED ARMIJO STEP-SIZE RCLE (I/a)[x, - x,:(a)]  which  may be viewed as a projected 

Consider the problem 

T f (  S)'( s - F )  > 0. V X  E Q (8) with an Armijo  step-size rule leads to a convergent algo- 

where Uf(.y) denotes the gradient  of f at .Y and prime 
denotes  transposition. The following proposition is the basic result of this 

Proposition 1: Assume that,  for some  L > 0, we have Given  any  point x E Q. we denote by 

x ( a ) =  P,[ - x - acf(x)],  a > O (9) 
l V f ( ~ ) - V f ( ~ ) l  < L ~ x - Y ~ ,  Vx,yEQ (15) 

the  unique projection of the vector [ x -  aVf(x)] on Q 
where a > 0 is a nonnegative scalar  parameter. We con- and let {-x,:} be a sequence generated  by  iteration (1) 
sider algorithms of the form where a, is chosen according  to  the generalized Armijo 

rule of this section. Then every  limit point of {x,} is a x,:+, = x,:(a,:) = P,[ . Y ~  - a,:Vf(x,)] (10) stationary  point. - 
where the step size a,: is chosen according to some rule. 

size a,: in ( IO).  

It is to-be  noted  that the Lipschitz condition  assumption 
(15) is satisfied if f is a twice continuously  differentiable 
function and Q is a bounded set. I t  is convenient to prove 
Proposition I by proving first  two  lemmas  which  will also 

Consider now the following rule for selecting the step 

Generaked  Armijo  Step-Size  Rule be useful later  on. 
Lemma I :  For every x,? E Q and a > 0 we have 

Given a point .xk which  is nonstationary. set aCf( .x) ' [y-s(a)]   >[ .~-x(a)] ' [y-x(a)] .  (16) 

Proqf: By the definition (9) of x(a) as  the projection 
a,: = P mks (1 1) 

where m,: is the first nonnegative integer M such  that on Q of x - aVf(x). we have 

. 
and 0.p.s are  fixed scalars with O<o< 1, O<p< 1. O<s. Lemma i: Assume (ls>.  Then  for  any PointxEQ, and 
If x,: is a stationary point. set a,: = 0. any scalar o with 0 < o < 1, the inequality 

A generalization of the  above step-size  rule,  which  is 
sometimes useful.  is obtained when  the constant initial 
step-size s is replaced by a variable initial step-size s,. All is satisfied for all a with 
the results of this and the next section may  also be proved 
for a variable initial step-size s, provided s, is bounded 
above and below  by  fixed  positive numbers. 

a { f(x)-flx(a)]} > uIx - x(a)l' 

2( 1 - 0 )  
Oca<- L .  
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0 

Fig. 1. Generalized Armijo stepsize rule. 

Proof: We have,  for  any a > 0 and x E Q, 

X x ( a ) ] = f ( x ) + v f ( x ) ’ [ x ( a ) - x ]  

- i’{ Of[ x - r ( x  - x( . ) ) ]  - V f ( x ) } ’ [  x - x ( . ) ]  dt 

or,  equivalently, 

a{f(x)-f[x(a)l}=aVf(x)’[x-x(a)l 

- u s ,  { V f [ x - t ( x - x @ ) ) ] - V f ( x ) } ‘ [ x ( a ) - x p r  

. { f ( x ) - f [ x ( a ) I }  IX-X(.)I 2 - -lx-x(a)I2 aL 2 

1 

and  from (1 5), (16), 

from which the  result follows. Q.E.D. 
Proof of Proposition 1: If the  algorithm  stops at  a 

stationary  point we are  done. So assume otherwise. First 
notice  that by the  construction of the step-size a k ,  and 
Lemma 2 

Hence  the  algorithm is  well defined  in  the sense that is 
obtained by a  finite  number of function  evaluations. 

Now let { x k }  be a sequence  generated  by  the  algorithm 
and let { x k }  k E K  be a  subsequence converging to  a point 
E. Since { f ( x k ) }  is a  monotonically  decreasing  sequence 
we have { f ( x k ) } + f ( z )  and { f ( x k )  - f ( x k +  I)}+O. Hence 
by (12) we have 

~ x k - x k + l ~ ~ o *  ( 1 8 )  

Now we have, by using Lemma 1, for  any  vector y E Q 
and every xk,  k E K 

v f ~ X ~ ~ ’ ~ X k ~ ~ ~ ~ v f ~ X k ~ ‘ ~ X k + l ~ ~ ~ ~ V f ~ X k ~ ’ ~ X k ~ x k + I ~  

~ ~ ( x k ~ x k + l ~ ‘ ~ x k + l ~ ~ ~ ~ v f ~ x ~ ~ ’ ~ x k ~ x k + I ~  
1 

‘k 

Taking  limits as k-+w and using (17), (IS), and the  fact 
that we have 

vf(q’(E-y) < 0, vy E (2, 

i.e., the  point 3 is stationary. Q.E.D. 
We close this section by stating some corollaries, the 

first of which may be proved by a trivial modification of 
the proof of Proposition 1. 

Corollary 1.1: Under  the  assumption of Proposition  1 
let { x k }  be  a  sequence  generated by iteration ( 1 )  where a, 
is chosen  in a way that 

f ( x k ) - f ( X k + I ) ’ f ( X k ) - f [ X k ( i i k ) ] ,  V k  

where iik is the  step size corresponding  to  the  generalized 
Armijo step-size rule of this section.  Then every limit 
point of { x k }  is a stationary  point. 

Corolluly 1.2: Under  the  assumption of Proposition 1 
let { x k }  be  a  sequence  generated  by  iteration (1) where ak 
is chosen  according  to  the  minimization  rule 

f [ x k ( a k ) l =   e f [ X k ( u ) l r  V k  

or the limited minimization  rule 

where a> 0 is a fixed scalar.  Then every limit point of 
{ x k }  is a  stationary  point. 

111. THE  CASE OF A SWLE CONSTRAINT Sm- 
COMEWATIONS WITH NEWTON’S METHOD 

We now turn  our  attention  to  the  special  case where the 
constraint  set Q is given  by 

Q = { x = ( x 1 ; . . , x n ) l x i > O ,  i = l ; . -  J+ ( 5 )  

For this case the  coordinates of the  vector x(a) of (9) are 
given simply by 

All the  results of this section  can be similarly proved  in 
appropriate  form  for  the case of  the  constraint  set (4) or 
other  similar  constraint  sets where only some of the  vari- 
ables have upper and/or lower bounds. 

Consider now the following rule  for  selecting  the  step 
size a, in  the  iteration 

x k + l ‘ x k ( a k )  (20) 

where x k ( a k )  is  given  by (19). 

Generalized Armgo  Step-Size Rule 

Given  a  point xk which  is nonstationary, set 

ak = P mks (21 1 
where mk is the first nonnegative  integer m such that 

f ( X k ) - f [ X k ( P m S ) ]  > a V f ( X k ) ’ [ X k - X k ( P m S ) ]  (22) 

where a,P,s are fixed scalars with 0 < u < 1, 0 < p < 1, 
0 < s. If x k  is a  stationary  point, set a, = 0. 

The following proposition shows convergence of  the 
above stepsize rule as  well  as of the rule of the Drevious 
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section  under  assumptions which are weaker than  those of 
Proposition 1. The proof of the proposition is quite 
lengthy  and  has  been  relegated  to  the  Appendix. The 
author  communicated  the result of the  proposition below 
to Professor A. A.  Goldstein, who  was able  to show its 
validity for  a  more  general  class of convex constraint  sets 
than the one  considered  in this section  (including all 
polyhedral convex sets) and for  a step-size rule similar  to 
the  one  above [16]. It is as yet unclear  whether  the result 
holds for an  arbitrary closed convex constraint set Q. 

Proposition 2: Let { x k }  be a  sequence  generated by 
iteration (20), (19) where a, is chosen  according  to  the 
generalized Armijo step-size rule of this section or  the  one 
of  the previous section.  Then every limit point of the 
sequence { x k }  is a  stationary  point  for  problem (7) with 
the  constraint set Q given  by (5). 

We note  that  results  analogous  to  Corollaries 1.1 and 
1.2 follow immediately  from  the  above  proposition.  The 
analog of Corollary 1.2 for the case of the  minimization 
rule (6)  has  already  been  proved by McConnick [ lo] .  

Now let i be a  stationary  point  for  problem (7) with Q 
having  the  form (3, which satisfies the following second- 
order  sufficiency'conditions  for an isolated  local mini- 
mum. 

Assumption I :  ( a f (X) /ax i )>O if i ' = O  and (a f (X) /ax ' )  
=Oif x ' > O ,  i = I , . - . , n .  

Assumption 2: f is twice continuously  differentiable 
within a  set of the  form Q n { x1  Ix - XI < E }  ( E  > 0 is some 
scalar) and 

m l Y - X 1 2 ~ ( Y - X ) ' V 2 f ( K ) ( Y - X ) ~ M l y - X ( 2  

for all y E { z ( z ' = O ,  i E A ( X ) } ,  where A(X)={ i lX'=O} ,  
V2f(X) denotes  the  Hessian  matrix off evaluated at X, and 
m, M are  some positive scalars. 

Notice  that  Assumption  2 implies the  Lipschitz  condi- 
tion 

l V f ( x )  - V f ( Y ) l  Llx  -YL 
V X , ~ E Q ~ { Z J I Z - X ~ < E }  (23) 

where L is a positive scalar  depending  on  the  Hessian 
matrix off. 

We have  the following proposition showing that  the 
algorithms  considered are  attracted by local  minima 
satisfying  Assumptions 1 and 2, and furthermore  that the 
generated  sequence  after  a  certain  index lies on the  mani- 
fold of binding  constraints at X. 

Proposition 3: Let X be an isolated  local minimum 
satisfying Assumptions 1 and 2 and let { x , }  be any 
sequence  generated by iteration (20), (19) with a, chosen 
according to the step-size rule of this section or the  one of 
the previous section.  Then  there exists a 6 >O such  that if 
for some index I we have \x i -  XI < 6 then  the  sequence 
{ x , }  converges to X. Furthermore we have for every 
k ) I + l  

x; = 0, for all i such  that 7' = 0. 

Again the proof of this proposition is lengthy and has 

been  relegated  to  the  Appendix.  The  proposition shows 
that once  the  algorithm gets close enough to  a point X 
satisfying  Assumptions 1 and 2, it eventually becomes 
equivalent to the  method of steepest  descent on the  sub- 
space { zIz ' = 0, i E A ( X ) }  where A (X) is the set of indices i 
with X'=O. It follows that  the  rate of convergence of the 
method is governed by the eigenvalue structure of the 
Hessian V2f(X) over the  subspace { z l z  = 0, i E A  (X)} 
rather  than over the whole space as suggested by an 
existing result [3, th. 5.11. Thus  a  sharper  rate of conver- 
gence  estimate is obtained  than  the  one existing. 
Furthermore  Proposition 3 suggests the possibility of con- 
verting  the  method  to Newton's method  (or some other 
superlinearly  convergent  method)  once  the  subspace of 
binding  constraints is reached  by  the  algorithm. Some 
possibilities along these lines are  presented below. 

Combined  Gradient Projection and Newton's Method 

Step I :  Select xoEQ,  PE(O,l), aE(O,f), s>O, c,E 
(0, l), c2 > 0. (Note: We take cl, c2 very small so as  to  make 
the  corresponding test in Step 4 below as "easy" as 
possible.) 

Step 2: Given xk if xk is a  stationary  point, set x k + ,  
= x,. Else determine A ( x k )  = { ilx; = 0} and xk(s)  as given 

Step 3: Set x,+!  = xk(ak) with ak = P". where mk is the 
by  (19). If A[Xk(S)]=A(Xk)  go to Step 4. Else go to  Step 3. 

smallest  nonnegative  integer m satisfying 

and return to Step 2. 
Step 4: Find z k  which renders  the  function fZ'V2f(Xk)t 

+ Vf(xk) ' z  stationary  subject  to  the  constraint z'=O Vi E 
A (xk) .  If there  does  not exist a  unique  such  point  return  to 
Step 3. If 

or 

or 

determine x,+, as in Step 3 and return  to  Step 2. Other- 
wise set x,+ , = xk + P q z k  where m, is the  first  nonnega- 
tive integer m satisfying 

and return  to  Step 2. 
Unfortunately  the  statement of the  algorithm is quite 

complicated. For this reason  some  explanations may be 
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helpful. Step 2 determines  whether  a  gradient  projection 
step  leads to violation or relaxation of any  constraints. If 
not we switch to Newton's method  (Step 4). Step 3 is the 
basic  iteration of the  gradient  projection  method.  Step 4 is 
a  Newton  step on the  subspace of binding  constraints 
combined with the  Annijo step-size rule. However the 
step  is  foregone  (return  to Step 3) if either  it  leads  to 
constraint  violation  or  the tests involving the  scalars cI,cz 
fail. These tests are designed to  ensure  that  the  Newton 
direction z, is a  direction of descent  and also that  it is of 
the same order  or  magnitude  as  the  gradient of the  func- 
tion on the  constraint  manifold.  The  Newton  direction zk 
may be obtained  computationally  as follows. Consider  the 
n X n matrix G ( x k ) = [ G V ( x k ) ]  and the  vector g ( x k ) E  R" 
with its  coordinates  denoted by gi(xk)  where 

stabilized versions of Newton's method or with conjugate 
direction  methods  are  also possible along  the lines of the 
algorithm  provided. 

An  important  modification of the  combined  algorithm 
given above is obtained by modifying  Step 4 so that if 
(x;  + 2;) < 0 for some i EA (xk )  (i.e., the  Newton  step  leads 
to  constraint  violation), while the  other  tests of Step 4 are 
passed, we do  not return to Step 3 but  rather we set 

where m, is the  first  nonnegative  integer m such  that 

a 2 f ( X k )  , if I'EA ( X k ) , j E A  ( X k )  algorithm is modified as described  above. In order to 
a X i a x j  (24) increase  reliability and guarantee  that every limit point of 

One may prove  that  Proposition 4  still holds when the 

Gy (Xk) = 1: if i E A ( x , )  and i=j the  sequence  generated  by  the  algorithm is a  stationary 
otherwise point is may be necessary to  introduce some antizigzag- 

ging device. There  are several possibilities along these 
lines. A simple scheme is to  perform  a  gradient  projection 

(25) step (Step 3), rather  than possibly a  Newton  step, if x,  
otherwise. satisfies O <  x; < E for  some  index i, where E is some 

. I  

Then zk solves the system of equations (small) prespecified scalar.  Proposition 4 will still hold if 
this additional  modification is introduced. 

- XI < qlx, - E12, V k  > E. IV. SCALING-COMPUTATIONAL ASPECTS AND 
RESULTS 

It is to be  noted  that the combined  gradient  projection 
and Newton's method given above  should be viewed as The step-size rules proposed in this paper have been 
only  one out of several possibilities for  improving  the tried on a few moderate-size problems.  The  steepest  de- 
convergence  rate of the  method.  Combinations with other scent version of the  algorithm was tested and performed 
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efficiently for  reasonably well-conditioned problems.  Gen- 
erally spealung  the  method  identified  the  active  con- 
straints  in relatively few iterations and subsequently per- 
formed in a  manner typical of steepest  descent  in  uncon- 
strained  minimization.  The  combination with Newton's 
method  described  in  the next to  last  paragraph of the 
previous section involving iteration (27) and the step-size 
rule (28) was also tested in  one large-scale problem and 
yielded convergence  in very  few iterations. 

As in  the  method of steepest  descent  for  unconstrained 
minimization  it may be important  to scale the  variables of 
the  problem  prior  to  initiating  computation.  An a p  
propriate scaled version of the  gradient  projection  method 
with positive definite  symmetric scaling matrices T(x,)  
(which depend  on x,) is defined  by 

X k + l ' X k ( Q k )  

where x(a )  denotes  the  unique  solution of the  problem 

min [x, - a T ( x , ) V f ( x , )  - z ] '  
Z S Q  

. ~ ( x , ) - l [  xk - a T ( x k ) V f ( x K ) -  z ] ,  

i.e., X(.) is the unique  projection of [ x - a T ( x k ) V f ( x K ) ]  
on Q with respect  to  the  norm specified by T- ' .  The  step 
size a, is obtained from a,=/3"% where mk is the first 
nonnegative  integer m satisfying 

f ( x k ) - f C X k ( P " S ) l  

~ C x , - ~ k ( P m ~ ) l ' ~ ( ~ k ) - 1 [ x k - ~ k ( ~ m ~ ) 3  > P "s 
or 

f ( x k ) - f [ x k ( f i m S ) ]  > O v f ( x k ) ' [ x k - x k ( ~ m s ) ] ~  

By taking T(xk)=[VZf (xk) ] - '  above we obtain  a  Newton- 
type  method. However in general the  computation of x(a)  
requires  the  solution of a  quadratic  programming  problem 
and this would be unacceptable  for many problems. By 
contrast  for simple constraint  sets  such as (4) and (5 )  it is 
possible  to employ diagonal  scaling ( T ( x k ) :  diagonal) 
without  affecting  the  convergence  properties or the sim- 
plicity of the  algorithm.  Thus  for  constraint  sets  such as 
(4) or (5) the  gradient  projection  iteration  can  take  the 
form 

x ( a ) = p e [ x - a ~ ( x ) v f ( x ) ]  (29) 

where T ( x )  is diagonal with diagonal  elements T,(x) ;  , 
T,(x) which can be any positive scalars. The correspond- 
ing  inequality  for  the Armijo rule takes  one of two forms: 

est  descent  version of the  algorithm we took T.(xk)  equal 
to  the  inverted  second  derivative [a 2f (x , ) /  ax I - '  
evaluated at the  current  point x,. For this case the  initial 
step size s= 1 is a good choice, a  fact which substantially 
contributed  to  the efficiency of the  computation.  The 
choice of scaling  factors  adopted  represents  a  diagonal 
approximation of the Hessian matrix and is common in 
unconstrained  minimization. 

Example 1: Consider the two-dimensional linear dy- 
namic system 

where the  initial  state ((;,ti) is  given. The problem is to 
find  a  scalar  control  sequence (uo, . . ,uN- ') satisfying 
- 1 Q u, Q 1, k=O, 1; ,N- 1 which minimizes 

Despite  its  apparent simplicity this problem is quite ill- 
conditioned for a large  number of stages N .  The scaled 
version (29), (30) of the  gradient  projection with s = 1, 
u = 0.1, p = 0.1,  was employed to solve this problem  for  a 
variety of initial  states and number of stages.  The  initial 
point was uo= (0,. ,O). For (<dl[:)= (103, I d )  and  N 
= 10, N =  Id, N =   I d ,  the  optimal  control  sequence lies 
entirely on the  boundary of the  constraint region and was 
obtained  in  a single iteration.  The  same  occurred  for 
([d,E;)=(1O2, lo2)  and N =  10, N =  100. For ([:,[,') 
= (40,40) and  N = 100, the  optimal  control  sequence  does 
not lie entirely on the  boundary.  The  number of active 
constraints is 78 and the  gradient  projection  method 
identified these constraints in 11 iterations.  Subsequently 
the  method was performing (scaled) steepest  descent on 
the  space of the  remaining 22 variables and after an 
additional 1 I iterations  it  attained  the  optimal value to 
within a  sufficient degree of accuracy  that roundoff error 
(in single precision) became significant and termination 
occurred.  Notice  here  that,  due  to the special  nature of the 
problem,  the  optimal  solution is  easy to obtain by essen- 
tially analytical  means  once  the set of active  constraints is 
identified. 

ExalnpZe 2: The  second  example  relates  to  a  problem 
of scheduling water release from  a reservoir subject  to 
upper and lower bounds  on  the  total water volume in the 
reservoir.  The volume x i  at period i is governed by the 
equation 

x i + ' = x i + d , - u i ,  i=o, 1; , N -  I 

where ui is water released,  and di is a known inflow 

d, =4+ lOsin [ ';y1"], i = O , l ;  * , N -  1. 

The  constraints are 

In all  our  computational  experiments involving the  steep- x o = x N = 8 ,  2 < x i < 8 ,  i= l ; . . ,N-I  
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and the two cost functionals  that were minimized are 
given  by 

J ( U ~ , - . - , U ~ - J =  x exp[ - 0 . 5 ~ ~ 1  
N -  1 

i = O  

N- 1 

= x exp[O.5(~'+~-x' -d , ) ]  (32) 
i = O  

N- 1 

J(U~,-**,U~-,)= 2 (-42ui+$) 
i = O  

N -  1 

= x [ 4 2 ( x ' + ' - x ' - d i ) + ( x i + 1 - x i - d J  . (33) 
i = O  'I 

The scaled version (29), (30) of the  gradient  projection 
method with s = 1 ,  u = 0.1, /? = 0.1 was used to solve the 
problem  for  the  initial  point x' = 5,  i = 1 , -  * , N - 1, the 
two cost functionals (32), (33), and N = 12, N = 52, N 
= 104. The  results  are  summarized  in  Table I. A star in 
the  k-column  indicates  the  iteration where all active  con- 
straints at the  solution were identified.  After  that  iteration 
the  method was equivalent to steepest descent on the 
subspace of the  variables  corresponding to inactive  con- 
straints. For the case where N =365, the  method was 
making slow progress and the  computation was not 
carried to completion. 

Subsequently we tried  a  combination of steepest  de- 
scent  and Newton's method  for solving the  problem  for 
the case of the  quadratic  cost  functional (33). In this 
combination at the  current  point xk the  set of indices 
corresponding to active constraints A ( x k )  was first  de- 
termined.  Subsequently  the  point xk(l) was determined 
via (29) with each scaling factor q ( x k )  equal  to  the 
corresponding inverse second  derivative [ a  Y ( x , ) / a x T - ' .  
If A ( x k ) # A [ x k ( l ) ]  the next point x k + l  was determined 
via (29), (30) with s = 1 ,  u = 0.1, b = 0.1. If A ( x k )  
= A  [xk( I)], the  Newton  direction zk on the  space of 
binding  constraints was computed and xk+' was de- 
termined via (27), (28) with u = 0. l ,  b = 0. l .  The  results of 
the  computation  for  the  starting  point x' = 5 ,  i = 1, - - - , 
N -  1 are shown in Table 11. An ( S )  in  the  iteration 
number  column  indicates  a  steepest  descent  step while an 
( N )  indicates  a  Newton step. As can  be seen from  the 
table,  the  method converged (to  the  exact minimum) in 
very few iterations even for  large  dimensions. 

V. CONCLUSIONS 

This  paper  has  provided  proper  extensions of the 
Armijo step-size rule  for use with the  gradient  projection 
method for minimization over a closed convex set. The 
rules are easy to implement and,  at least  for simple 
constraints,  they  lead  to  convergence  under  weaker 
assumptions  than those of Goldstein,  Levitin, and Polyak. 
Furthermore,  under sufficiency assumptions,  they allow 
the  combination of the gradient  projection  method with 
higher order  methods. It is to  be  noted  that  other step-size 
rules with similar properties may be constructed.  For 
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TABLE I 
COMPUTAITONAL RESULTS-F~XFLE 2 (STEEPEST DESCE~T 

- 
C.F. (32: 
~ 

19.3472 

15.L261 

12.9163 

12.6992 

12.65% 

l2.6448 

12.6420 

12.6414 

1 2 . 6 4 u  

12.6411 

12.6411 

~ 

r 

- 
C.F. (331 - 
-1868.23  

-1941.98 

-1974.43 

-1975.37 

-1975.57 

-1975.63 

-1975.6L 

-1975.6* 

- 

F -  (32)  

72.1201 

69.9509 

62.4588 

57.8171 

56.7295 

56.5678 

56.5606 

56.5602 

56.5602 

- 
k 
- 

0 

1 

9 

1 3  

I a* 
20 

22 

24 

- 

124.758 

124.758 

TABLE I1 
COMPUTATIONAL RESULTS--EXAMPLE 2 (COMBJNED 

STEEPEST DESCENT AND NEWTON'S METHOD) 

Y = 12 - 
v e 1 u  of 

-1868.24  

-19L2.00 

-1963.80  

-1969.81  

-1975.65  

I 52 - 
v a l u e  O f  

-8514  n1 

-8582.00 

-8597.06  

-8610.23  

-8690.08 

-8724.81  

-8729.12  

-8730.27  

-8731.03  

7 ( S ) !   - 1 7 3 8 9 . 6  

8(S) -17391.1  

9(1) -17393.4  

LO(S) -17393.5  

L1W) -17393.6  

L2(S) -17393.6  

L3W) -17393.6  ! 

I h' = 365 
- 

-17188.8 

-17210.3  

-17332.3  

-17385.0 

-17391.7 

-17393.2 

-17393.4 

-17393.5 

-17393.5 

= 365(conr  

value of 
C . F . ( 3 3 )  
-60?99.9 

-60749.9  

-60750.4  

-60750.4  

-60750.4  

-60150.5 

-60750.5  

-60750.5 

-60750.5  

-60750.5  

example, it is possible  to  prove similar convergence  results 
for  an analog of a step-size rule  due to Goldstein (see 
[16]), as  well as  other  rules  along  the  same lines (see, e.g., 

Both the  analysis and  the  computational  results suggest 
that  the  gradient  projection  method,  particularly when 
combined with Newton's method,  can  be extremely effec- 
tive in solving multidimensional  problems with many sim- 
ple constraints  such as lower and/or upper  bounds on the 
variables. The computational  results suggest also  that 
quadratic  programming  problems with many simple con- 
straints  can  be  handled very efficiently by the  methods of 
this  paper. 

[121). 

APPENDIX 

Proof of Proposition 2 

Let us first  define  for every x E Q, i=  1, - - . ,n, 

a>01x'-a7 ax G O  } (Al) 
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where a i ( x ) =  m if the set above is empty.  Then we have 
for every x E Q the equations 

Consider first the case of sequences { x k }  generated by 
(19),  (20) with the step-size rule of Section 111. Now, if xk 
is a  stationary  point for some k we are done. So assume 
that each  point x k , k =  0,l; - - , is nonstationary.  Let 
{ x k }  be  a  subsequence of { x k }  converging  to  a point 
x. It follows from (21) that 

v f (xk ) ’ [xk -xk(ak) I+o .  (A41 

Assume now that X is a  nonstationary point. Then there 
exists an index j such  that 

or 

In either case above we have  that there exists a positive 
integer and positive scalars ii and 0 such  that 

for all k E K ,  k > E. (A6) 

Using (A3) and (A6) we have 

~ f ( x ~ ) ‘ [ x ~ - x ~ ( a ~ ) ]  > m h [  gnak,z 1 G > o ,  

V k E K , k > E  

and taking limits and using (A4)  we obtain 

k E K  
inf ak=O. 

It follows that there exists a  subsequence { x k , a k } k E K 8 ,  K’ 
c K such that 

{ ~ k Y a k ) & K ‘ + ( W ’  (AS) 

From the above relation and the form of the generalized 
Armijo rule, it follows that for some  index we have 

f(Xk)-fIxk(P-’~k)]<ovf(xk)’[xk-xk(P-l~k)], 

V k  E K’,  k > p ,  (A9) 

i.e., the test (22) fails at least once for k E K’,k > p .  
Define the index set 

Since 3 is nonstationary, the set 7 is nonempty.  Further- 
more since { ak}kEK,+O we haye  for  some positive integer 
k“ and  some positive scalars a‘,B 

V k E K ‘ , k > & i E J  (All)  

where ai(xk) is defined by (Al). Now by the mean  value 
theorem we have 

f(xk)-flxk(P-lak)]=Vf(xk)’[xk-xk(P-l~k)] 

+ [ v f ( 6 ) - v f ( x k ) l ’ [ x k - x k ( P - 1 ~ k ) ]  (A121 

where  is  some vector on the line segment  joining x k  and 
xk(  ,f3 - ‘ak). Hence, by  (A9), for all k E K’ ,  k > p ,  

Since the right-hand side above tends to 
zero and as a result 

Equivalently we have, using (A3), 

as k+m, k E K‘ (A15) 

from which we obtain 

as k+m, k E K’ (A16) 

and, using  (A1 l), 

Since 
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and 2 i e i [ a f ( x k ) / a x i ] 2  is bounded,  it follows from (A17) 
that 

or equivalently 
2 

E-[ 33 =o  
i E I  

which contradicts  the  assumption  that X is a  non- 
stationary  point.  Hence E must be  stationary and Proposi- 
tion  2 is proved  for  the case of the step-size rule of Section 
111. The proof of Proposition 2 for  the  case of the step-size 
rule of Section I1  is similar. If {x~}~,~+X and X is not 
stationary,  then (A5),  (A6) hold and in addition 

- I xk - xk ( ak) I2+O. 1 
‘k 

Since 

we obtain  again (A7) as well as  the  analog of (A9)  which 
now takes  the  form 

By Lemma 1 we have 

Combining  the  above two inequalities we obtain (A9) and 
from this point  the proof proceeds exactly as  for  the  case 
of the step-size rule of Section 11. Q.E.D. 

Proof of Proposition 3 

First we observe that by (Al) and  the  continuity of 
V f ( x )  there exists a  sphere S ( X ;  8,) such  that 

af ( x >  

ax i 
>0, V i E A ( X ) = { i l X i = O } , x E Q n S ( X ; 8 1 ) .  

It follows from  known  results  on  the  method of steepest 
descent and Assumption  2  that  there exists a  scalar 6, > 0 
such  that if a  point x,  generated by the  algorithm satisfies 

x,EQns(X;6,)n{zlz’=O,iEA(X)} 

then xk+X and x; = O  for all i E A  (X), k > m. Thus  the 
proposition will be proved if we can  demonstrate  the 
existence of a  scalar 6 > O  such that if a  point x,  generated 
by the  algorithm satisfies [ x ,  - XI Q 8, then 

xI+1EQnS(X;8,)n{z~z’=0,iEA(X)}. (A21) 

Indeed by the Lipschitz condition (23), Lemma 2, and 
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a, Q s, we have  that  the  step size a, is bounded  above and 
below by positive numbers  provided Ixr- XI < e’ where E’ 

is a sufficiently small positive number to guarantee that 
- XI < E. It follows, in view of Assumption 1, that if 

the  coordinates x;, i E A ( X )  are sufficiently small  nonnega- 
tive numbers  then .;‘(a,) = x;+ = 0 for  all i E A (E), and if 
the  coordinates x;, ifZ A (E) are  sufficiently close to Xi,  ifZ 
A (X) then we will have Ix,+ - XI Q 6, and x,+ will satisfy 
(A21). Hence  the existence of a  scalar 6 > 0 such  that 
(A2 1) is satisfied  for every xl E Q n S ( X ;  6) is clear and 
the  proposition is proved. Q.E.D. 
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An Algorithm  for Optimization Problems with 
Functional  Inequality  Constraints 

Abstrrrct--This paper  presents an algorithm for minimizing an objective 
function subject to conventional  inequality mnstraints as well as to in- 
equality constraints of the  functional type: maxOEQ +(z,o)  < 0, where 0 is 
aclosedintervalinR,andz€R"istheparameterv~rtobeoptimized 
The algorithm is motivated by a standard earthquake  engineering  problem 
and the problem of designing hear multivariable  systems.  The stabiity 
condition (Nyquist  criterion) and distnrbance  suppression condition for 
such systems are  easily  expressed as a functional  inequality constraint. 

1. INTRODUCTION 

T HIS PAPER presents an algorithm for solving prob- 
lems of the form 

min { fO(z)I fJ(z)  < O , j =  1,- ,m; g'(z) Q O , j =  1; * , p }  

where z E R" is the parameter vector to  be optimized, 
f o :  R"+R is the criterion, gj: R"+R,- j =  l;.. ,p ,  are 
conventional  inequality  constraints,  and fJ : R "+ R ,  j 
= 1,. . . , m, are inequality constraints of the funclional 
type, i.e., 

where !d is a  compact interval in R. The algorithm is 
motivated by problems arising in the design of earthquake 
resistant buildings [lo],  and in designing controllers for 
linear multivariable systems  using  frequency  response 
techniques. For the former  problem, the cost p is, for 
example, the weight of the building, and  a typical con- 
straint is the maximum deviation between floors during  an 
earthquake. 
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For the latter  problem we shall only  discuss the for- 
mulation of constraints of the form (1). The cost would 
normally  be an  error function in the time or the frequency 
domain,  or  a  combination of both, with  possibly an en- 
ergy term  added  on.  Conventional inequality constraints 
arise on gains, torques, rudder angles, etc. Thus, to return 
to  (l), it is  well known [3]-[5] that stability and perfor- 
mance can be  expressed in terms of the matrix  return 
difference T(s ,z )=I+  G(s,r) ,  where G(s ,z )  is the matrix 
loop gain and z is the vector of controller parameters. 
Both T and G are m X m matrices of rational functions, m 
being the number of outputs. If the open-loop  system is 
stable, then the closed-loop system is stable if the locus 
det(T(i!d',z))  {det(T(io,r)): oEQ' 2 [0, x)} does  not 
pass through  or encircle the origin in the complex  plane 
C .  To achieve a  degree of "relative" stability, a subset B 
of the complex  plane  can  be specified so that  det 
( T ( i w , z ) )  E B,  for all o EQ', implies that the locus det 
(T(iw' ,z))  does  not encircle the origin and, in addition, 
does  not  approach  "too closely" the origin (Fig. 1). If, 
instead, the locus det(T(a+ iQ',z)) 2 {det(T(a+ io,z)); 
WEL?'}, a <0, is considered, and B is chosen, as in Fig. 2, 
simply to prevent  encirclement of the origin, then det 
( T ( a  + io,z)) E B ,  for all w E Q', implies that all the 
closed-loop poles have real parts less than or equal  to a ,  
thus, automatically ensuring  a  degree of relative stability. 
B can  be specified in terms of several functions: 8 ' :  C 
+R, i E Z as follows: 

B &  { s E C I B ' ( s ) > O , i E I } :  

then the closed-loop system  is stable, if its parameters z 
satisfy, for all i E Z: 

f i  (z) < 0 (2a) 

where 


