
e-Relaxation and Auction Methods for 
Separable Convex Cost Network Flow 

Problems* 

Dimitri P. Bertsekas1 , Lakis C. Polymenakos2, Paul Tseng3 

1 Department of Electrical Engineering and Computer Science, Massachusetts 
Institute of Technology, Room 35-210, Cambridge, MA 02139 

2 IBM T. J. Watson Research Center, Room 23-116C, Yorktown Heights, NY 10598 
3 Department of Mathematics, University of Washington, Seattle, WA 98195 

Abstract. We consider a generic auction method for the solution of 
the single commodity, separable convex cost network flow problem. This 
method provides a unifying framework for the f-relaxation method and 
the auction/sequential shortest path algorithm and, as a consequence, 
we develop a unified complexity analysis for the two methods. We also 
present computational results showing that these methods are much 
faster than earlier relaxation methods, particularly for ill-conditioned 
problems. 

1 Introduction 

We consider a directed graph with node set N = {I, ... , N} and arc set A c 
N x N, where N denotes the number of nodes and A denotes the number 
of arcs. (The implicit assumption that there exists at most one arc in each 
direction between any pair of nodes is made for notational convenience and can 
be dispensed with.) We are given, for each node i E N, a scalar Si (the supply of i) 
and, for each arc (i, i) E A, a convex, closed, proper function lij ; - !R U {oo} 
(the cost function of (i, i», i.e., lij is extended real-valued, lower semicontinuous, 
not identically taking the value 00 [27]. The convex cost network flow problem 
with separable cost function is 

mlDUlliZe I{x) = I: lij(Xij) (P) 
(i,j)eA 

subject to I: Xij - I: Xji = Si, ViE N, (1) 
{jl(i,j)eA} {jIU,i)eA} 

where the real variable Xij is referred to as the flow of the arc (i, i) and the vector 
x = {Xij I (i, i) E A} is referred to as the flow vector. We refer to problem (P) as 
the primal problem. A flow vector x with lij (Xij) < 00 for all (i, i) E A, which 
satisfies the conservation-of-flow constraint (1) is called leasible. For a given flow 

* This work was supported by the National Science Foundation, Grant Nos. DMI-
9300494 and CCR-9311621. 



104 

vector X, the surplus of node i is defined as the difference between the supply Si 
and the net outflow from i: 

gi = Si + L Xji - L Xij. (2) 
H!(i,i)EA} {j!(i,j)EA} 

We will assume that there exists at least one feasible flow vector x such that 

'v' (i,j) E A, (3) 

where fij(Xij) and fS(Xij) denote the left and right directional derivative of fij 
at Xij [28, p. 329]. 

There is a well-known duality framework for this problem, primarily devel-
oped by Rockafellar [27], and discussed in several texts; see e.g. [13], [28]. This 
framework involves a Lagrange multiplier Pi for the ith conservation-of-flow con-
straint (1). We refer to Pi as the price of node i, and to the vector P = {Pi liE N} 
as the price vector. The dual problem is 

mlmmlze q(p) 
subject to no constraint on p, 

where the dual functional q is given by 

q(p) = L qij(Pi - Pj) - L SiPi, 
(i,j)EA iEN 

and qij is related to fij by the conjugacy relation 

qij(tij) = sup {Xijtij - fij(Xij)}. 
X;jE!R 

(D) 

We will assume throughout that fij is such that % is real-valued for all (i,j) E 
A. This is true, for example, if each function lij has finite value inside some 
compact interval and takes the value 00 outside of the interval. Of particular 
importance is the linear cost case in which fij is linear inside the interval [4], 
[15], [28]. 

It is known (see [28, p. 360]) that, under our assumptions, both the primal 
problem (P) and the dual problem (D) have optimal solutions and their opti-
mal costs are the negatives of each other. Moreover, a necessary and sufficient 
condition for a flow-price vector pair (x,p) to be primal and dual optimal is 
that x is feasible and (x,p) satisfies the complementary slackness (CS for short) 
conditions: 

'v'(i,j)EA. 

We will be interested in the following relaxed version of the CS conditions, first 
introduced in [11]: We say that a flow-price vector pair (x,p) satisfies the f-

complementary slackness (f-CS for short) conditions, where f is any positive 
scalar, if 

'v' (i,j) EA. (4) 



105 

There are three classes of methods for solving the problem (P) and its dual 
(D) for the linear cost case: primal, dual, and auction methods. The primal 
and dual methods iteratively improve the primal or the dual cost function. The 
auction approach, which may not improve the primal or the dual cost at any 
iteration, was introduced in the original proposal of the auction algorithm for the 
assignment problem [1], and the subsequent f- relaxation method [2], [3]. These 
methods iteratively adjust x and p, one component at a time, so as to drive the 
node surpluses to zero while maintaining f-CS at all iterations. They have an 
excellent worst-case (computational) complexity, when properly implemented, 
as shown in [16] (see also [8], [9], [13], [17]). Their practical performance is also 
very good and they are well suited for parallel implementation (see [7], [23], [25]). 
Recently, the f-relaxation method was extended to the general problem (P) and 
its dual (D) by the authors [12] (also see the Ph.D. thesis of the second author 
[26]) and, independently, by De Leone et al. [14]. These studies report favorable 
computational experiences with the method, and references [12] and [26] also 
show that the method has a good worst-case complexity. 

In this paper, we consider a generic auction method for solving (P) and (D), 
whereby x and p are alternately adjusted so as to drive the node surpluses to 
zero while maintaining f-CS at all iterations. The only additional requirements 
are that nodes with nonnegative surplus continue to have nonnegative surplus 
and that price changes are effected by increasing the price of a node with posi-
tive surplus by the maximum amount possible. We then consider two important 
special cases of this generic method. The first is the f-relaxation method; the 
second is an extension of the auction/sequential-shortest-path algorithm for the 
linear cost case [5] to the general convex cost case of (P) and (D). The second 
method was proposed in the Ph.D. thesis of the second author [26] but otherwise 
is unpublished. It differs from the first in that, instead of moving flow from nodes 
with positive surplus to any other nodes along push-list arcs, it moves flow from 
nodes with positive surplus to nodes with negative surplus along paths com-
prising push-list arcs. We analyze the (computational) complexity of these two 
methods and report some favorable computational experience with them. In par-
ticular, our test results show that, on problems where some (possibly all) arcs 
have strictly convex cost, the new methods outperform, often by an impressive 
margin, earlier relaxation methods. Furthermore, our methods seem to be min-
imally affected by ill-conditioning in the dual problem. We do not know of any 
other method for which this is true. We note that there are available other ap-
proaches for dealing with separable convex cost network flow problems. These 
include reducing the problem to an essentially linear cost problem by piecewise 
linearization of the arc cost functions [20], [24], [28]; primal cost improvement 
[21], [28], [31]; dual cost improvement based on f-subgradient [28] or f-CS [11]. 
However, these other approaches tend to be more complicated and their com-
plexities do not match those obtained from the auction approach. The approach 
of using differentiable unconstrained optimization methods on the dual problem 
[10], [11], [18], [19], [29], [30], though popular, applies primarily to problems with 
strictly convex arc cost functions. 



106 

This paper is organized as follows. In Section 2 we present the generic auction 
method and analyze its termination property. In Section 3, we consider the first 
special case of the generic method, the {-relaxation method, and we analyze its 
complexity using the results of Section 2. In Section 4 we consider the second 
special case of the generic method, the auction/sequential-shortest-path algo-
rithm, and we analyze its complexity also using the results of Section 2. Finally, 
in Section 5, we report some of our computational experience with the methods 
of Sections 3 and 4 on some convex quadratic cost problems. A brief word about 
notation: By a path in (N, A), we mean a sequence of nodes (nl' n2, ... , nk) in 
N and a corresponding sequence of k -1 arcs in A (k E {1, 2, ... }) such that the 
ith arc in the sequence is either (ni, nHd (in which case it is called a forward 
arc) or (nHl' ni) (in which case it is called a reverse arc). A path with nl = nk 
is called a cycle. A path having no repeated nodes is called simple. 

2 A Generic Auction Method 

Intuitively, a feasible flow vector x and a price vector P that together satisfy 
the {-CS conditions are approximately optimal for the primal problem (P) and 
the dual problem (D), respectively. This intuition was verified in a result of [11] 
which is restated in Prop. 4 to follow. Thus, we may consider finding, for a given 
{ > 0, a feasible flow-price vector pair that satisfies the {-CS conditions and, 
by making { small enough, we can get as close to optimality as desired. In this 
section we present a generic method, based on the auction approach, that finds 
such a pair. We also give a partial complexity analysis for this generic method. In 
Sections 3 and 4, we will refine our analysis for two special cases of this method, 
the {-relaxation method of [12] and a certain auction/sequential-shortest-path 
algorithm. 

For a fixed ( > ° and f3 E (0,1), and a given flow-price vector pair (x,p) 
satisfying {-CS, an iteration of the generic auction method updates (x, p) as 
follows: 

An Iteration of the Generic Auction Method 

If there is no node with positive surplus, terminate the method. Otherwise, 
perform one of the following two operations: 

(a) {Flow adjustment] Adjust the flow vector x in such a way that {-CS is main-
tained and all nodes with nonnegative surplus continue to have nonnegative 
surplus. (Here p is unchanged.) 

(b) {Price rise on a node] Increase the price Pi of some node i with positive 
surplus by the maximum amount that maintains {-CS. (Here x and all other 
components of p are unchanged.) 

(Notice that the method either adjusts x with p fixed or adjusts p with x 
fixed. We can more generally consider adjusting x and p simultaneously and/or 



107 

adjusting more than one prices at a time, as is done for example in [11]. The 
analysis below extends accordingly.) Upon termination of the generic auction 
method, the flow-price vector pair (z,p) satisfies f-CS and all nodes have non-
positive surplus. Since we assumed there exists at least one feasible flow vector 
so that EiEN Si = 0, it is well known and not difficult to show (by summing 
Eq. (2) over all nodes i) that all nodes must have zero surplus, i.e., z is feasible. 
Thus, the validity of the method rests on whether it terminates finitely. In the 
following proposition, we show that the total number of price rises is finite under 
a suitable assumption. The proof of this result is identical to that given in [12, 
Prop. 3] for the f-relaxation method, except 1/2 is replaced throughout by {J. 
The proof is included for completeness. 

Proposition 1 Let K be any nonnegative scalar such that the initial price vector 
po for the generic auction method (with parameters f > 0 and (J E (0,1») satisfies 
Kf-CS together with some feasible flow vector zoo Also, assume that each price 
rise on a node increases the price of that node by at least {Jf, for some fixed 
(J E (0,1). Then, the method performs at most (K + l)(N - 1)/{J price rises on 
each node. 

Proof: Consider the pair (z,p) at the beginning of an iteration of the generic 
method. Since the surplus vector 9 = (g1, ... , gN) is not zero, and the flow vector 
zO is feasible, we conclude that for each node s with g, > 0 there exists a node 
t with gt < 0 and a simple path H from t to s such that: 

Zij > zfj , 

Zij < zfj , 

V (i,j) E H+, 

V (i,j) E H-, 
(5) 
(6) 

where H + is the set of forward arcs of H and H - is the set of backward arcs 
of H. [This can be seen from the Conformal Realization theorem ([28] or [4]) as 
follows. For the flow vector z - zO, the net outflow from node t is -gt > 0 and 
the net outflow from node s is -g, < 0 (here we ignore the flow supplies), so, 
by the Conformal Realization Theorem, there is a simple path H from t to s 
that conforms to the flow z - zO, that is, Zij - zfj > 0 for all (i,j) E H+ and 
Zij - zfj < 0 for all (i,j) E H-. Eqs. (5) and (6) then follow.] 

l,From Eqs. (5) and (6), and the convexity of the functions fij for all (i, j) E 
A, we have 

fij(Zij) fij(zfj ), 

fij (Zij) $ fij (zfj ), 

V (i,j) E H+, 

V(i,j)EH-. 

Since the pair (z,p) satisfies f-CS, we also have that 

Pi - pj E [fij(Zij) - f, fij(Zij) + f], V (i,j) EA. 

Similarly, since the pair (zO,pO) satisfies Kf-CS, we have 

V (i,j) EA. 

(7) 

(8) 

(9) 

(10) 



108 

Combining Eqs. (7)-(10), we obtain 

Pi - Pi 2: p? - pJ - (K + l)E, 

Pi - Pi $ p? - pJ + (K + l)E, 

'r/ (i,j) E H+, 

'r/ (i,j) E H-. 

Applying the above inequalities for all arcs of the path H, we get 

Pt - p, 2: - - (K + l)IHIE, (11) 

where IHI denotes the number of arcs of the path H. Since only nodes with 
positive surplus can change their prices and nodes with nonnegative surplus 
continue to have nonnegative surplus, it follows that if a node has negative 
surplus at some time, then its price is unchanged from the beginning of the 
method until that time. Thus Pt = Since the path is simple, we also have 
that IHI $ N - 1. Therefore, Eq. (11) yields 

P, - $ (K + l)IHIE $ (K + l)(N - l)E. (12) 

Since only nodes with positive surplus can increase their prices and, by assump-
tion, each price rise increment is at least {3E, we conclude from Eq. (12) that 
the total number of price rises that can be performed for node s is at most 
(K + l)(N -1)/{3. 0 

The preceding proposition shows that the bound on the number of price rises 
is independent of the cost functions, but depends only on 

KO = min{K E [0,00) I (zO,pO) satisfies KE-CS for some feasible flow vector zO }, 

which is the minimum multiplicity of E by which CS is violated by the initial 
price vector together with some feasible flow vector. Note that KO is well defined 
for any pO because, for all K sufficiently large, K E-CS is satisfied by pO and the 
feasible flow vector Z satisfying Eq. (3). 

To ensure that the number of flow adjustments between successive price rises 
is finite and that each price rise is at least {3E, we need to further specify how 
the price rises and flow adjustments should be effected. In the remainder of this 
section, we introduce the key mechanisms for achieving this. For any E > 0, any 
(3 E (0,1), and any flow-price vector pair (z,p) satisfying E-CS, we define for 
each node i E .N its push list as the union of the following two sets of arcs 

L+(i) = {(i,j) I (1- (3)E < Pi - Pi - fS(Zii) $ E}, (13) 

L-(i) = {(j, i) 1-(1- (3)E > Pi - Pi - fii(Zii) 2: -E} . (14) 

Our definition of the push list is a direct extension of that used in [12] for the 
case {3 = 1/2. 

For each arc (i,j) (respectively, (j, i» in the push list of i, the supremum of 
6 for which 

Pi - Pi 2: fS(Zi; + 6) 

(respectively, Pi - Pi $ f;i(z;i - 6» is called the flow margin of the arc. An 
important fact, observed in [12, Prop. 1] for the case {3 = 1/2, is that the flow 
margin of these arcs are always positive. 



109 

Proposition 2 All arcs in the push list of a node have positive flow margins. 

Proof: Assume that for an arc (i, j) E A we have 

Pi-Pi <fS(Xii+8), \/8>0. 

Since the function f i} is right continuous, this yields 

and thus, based on the definition of Eq. (13), (i,j) cannot be in the push list of 
node i. A similar argument shows that an arc (j, i) E A such that 

cannot be in the push list of node i. 0 
The way we will make flow adjustments is to decrease the surplus of a node 

with positive surplus by increasing/decreasing flow on push-list arcs. (This can 
be done either one arc at a time, as in the case of the (-relaxation method of 
Section 3, or one path of arcs at a time, as in the case of the auction/sequential-
shortest-path algorithm of Section 4.) When the push list of the node is empty, 
we perform a price rise on the node. An important fact, observed in [12, Prop. 
2] for the case f3 = 1/2, is that the price rise increment for a node with empty 
push list is at least f3{. 

Proposition 3 If we perform a price rise on a node whose push list is empty, 
then the price of that node increases by at least f3{. 

Proof: If the push list of a node i is empty, then for every arc (i, j) E A 
we have Pi - Pi - fi} (Xii) :S (1 - f3){, and for every arc (j, i) E A we have 
Pi - Pi - fTi (Xii) ;::: -(1 - f3)t. This implies that the following numbers: 

\/(i,j)EA, 

\/ (j, i) E A, 

are all greater than or equal to f3{. Since a price rise on i increases Pi by the 
increment that is the minimum of all these numbers, the result follows. 0 

Props. 2 and 3 may be interpreted graphically in terms of the characteristic 
curve: 

rii = {(X;i,tii) E I fij(Xij):S tij :S fi}(Xij)}. 

Then, (i, j) being in the push list of i (respectively, j) corresponds to (xii, Pi -Pi) 
belonging to the "strip" at height between (1 - f3){ and { above (respectively, 
below) rij. Figure 1 illustrates when an arc (i,j) is in the push list of i and 
when it is in the push list of j. 



, t.,4rii 

, f :.:/ 
.. ) . 

.. ' 

. ' , , , , 

110 

, For the flow-price pairs 
...... .". in shaded region, arc 

(ij) is in the push list of i. 

Figure 1: A visualization of the conditions satisfied by a push-list arc. The 
shaded area represents flow-price differential pairs corresponding to a push-list 
arc (i,i). 

Since lij is convex so that rij is a monotone curve, it is readily seen that, if (i, j) 
is in the push list of i (respectively, j), then Xij may be increased (respectively, 
decreased) by a positive amount before (Xij, Pi - pj) reaches rij. The flow margin 
of an arc (i, j) for the case {3 = 1/2 is illustrated in Fig. 2. Similarly, if (i, j) is not 
in the push list of i (respectively, j), then Pi - Pj may be increased (respectively, 
decreased) by at least {3f. before (Xij, Pi - pj) exits from the strip of height up 
to f. above and below rij. 

': I: n. Pi -Pj 
,. IJ , .. , : : , . .' 

,: ·1 
': :, 

,': : 1 
, • . I 

""." 0" : I --- :, .' , 
I .. " , ... , 

I .0° :,' 

... .... " ",': 
I....... I • 

- : The flow margm of an arc: 
: : (iJ) in the push list of i. , 

1 
1 : 

,'.: rij , .. , : : 
,':' :'i 
': • 1 

,'0" : I , . , 
'" 0" I --- :, .' , .. ' .' , 

.' , 
.-................. , 

, " 
.. ".:" , ,': 

_ - -I - : The flow margin of an arc: 
: : (ij) in the push list of j. , , 

Xij - I) 

Figure 2: The flow margin S of a push-list arc (i,i). 

Lastly, for any f. > 0, any (3 E (0,1), and any flow-price vector pair (x,p) 
satisfying �-CS, we consider the arc set A* that contains all push list arcs oriented 
in the direction of flow change. In particular, for each arc (i,j) in the forward 
portion L+(i) of the push list of a node i, we introduce an arc (i,j) in A* and 



111 

for each arc (j, i) in the backward portion L - (i) of the push list of node i we 
introduce an arc (i,j) in A* (thus the direction of the latter arc is reversed). 
The set of nodes !V and the set A* define the admissible graph G* = (!V,A*) 
[12]. Note that an arc can be in the push list of at most one node, so G* is 
well defined. We will consider methods that keep G* acyclic at all iterations. 
Intuitively, because we move flow in the direction of the arcs in G*, keeping G* 
acyclic helps to limit the number of flow adjustments between price rises. To 
ensure that initially the admissible graph is acyclic, one possibility is to choose, 
for any initial price vector pO, the initial flow vector zO such that (zO, pO) satisfies 
O-CS, that is, 

'v' (i,j) E A. (15) 

It can be seen that this choice is always possible [12], that £-CS is satisfied by 
(ZO,pO) for any £ > 0, and that the initial admissible graph is empty and thus 
acyclic. 

In the next two sections, we will study two specializations of the generic 
auction method. These methods perform flow adjustment by moving flow out 
of nodes with positive surplus along push-list arcs and they perform price rises 
only on nodes with empty push lists. In addition, they keep the admissible graph 
acyclic at all iterations and have favorable complexity bounds. As a final note, 
we saw earlier that, upon termination of the generic auction method, the flow 
vector and price vector satisfy £-CS and the flow vector is feasible, so they are 
approximately optimal for (P) and (D). The following proposition, due to [11], 
makes this notion of approximate optimality more precise. 

Proposition 4 For each £ > 0, let z(£) and p(£) denote any flow and price 
vector pair satisfying £-CS with z(£) feasible and let e(£) denote any flow vector 
satisfying CS together with p(£) (note that e(£) need not be feasible). Then 

o f(z(£) + q(p(£) £ E IZi;(£) - ei;(£)I· 
(i,;)eA 

Furthermore, f(z(£)) + q(p(£) --+ 0 as £ --+ O. 

Proposition 4 does not give an a priori estimate of how small £ has to be 
in order to achieve a certain degree of approximate optimality as measured by 
the duality gap. However, in the common case where finiteness of the arc cost 
functions fi; imply lower and upper bounds on the arc flows, Prop. 4 does yield 
such an estimate for £. 

3 The e-Relaxation Method 

In this section we consider the £-relaxation method presented in [12] for solving 
(P) and (D). We will see that it is a special case of the generic auction method 
and, as such, its complexity may be analyzed using the results of Section 2. First, 
we describe the method. 



112 

For a fixed f > 0 and {3 E (0,1), and a given flow-price vector pair (x,p) 
satisfying f-CS, an iteration of the f-relaxation method updates (x,p) as follows: 

An Iteration of the f-Relaxation Method 

Step 1: Select a node i with positive surplus gi (see Eq. (2)); if no such node 
exists, terminate the method. 

Step 2: If the push list of i is empty, go to Step 3. Otherwise, choose an arc 
from the push list of i and perform a 6-flow push towards the opposite node 
j (Le., increase fij by 6 if (i, j) is the arc; decrease fji by 6 if (j, i) is the 
arc), where 

6 = min{gi, flow margin of the chosen arc}. 

If the surplus of i becomes zero, go to the next iteration; otherwise, go to 
Step 2. 

Step 3: Increase the price Pi by the maximum amount that maintains f-CS. Go 
to the next iteration. 

To see that the f-relaxation method is a specialization of the generic auction 
method of Section 2, simply notice that Step 3 is a price rise on node i and 
that Step 2 adjusts the flows in such a way that f-CS is maintained and nodes 
with nonnegative surplus continue to have nonnegative surplus for all subsequent 
iterations. The reason for the latter is that a flow push at a node i cannot make 
the surplus of i negative (by choice of 6 in Step 2), and cannot decrease the 
surplus of neighboring nodes. Furthermore, the f-relaxation method performs a 
price rise only on nodes with empty push list. Then, by Prop. 3, each price rise 
increment is at least {3f and, by Prop. 1, the number of price rises (i.e., Step 3) 
on each node is at most (K + 1)(N - 1)/{3, where K is any nonnegative scalar 
such that the initial price vector satisfies K f-CS together with some feasible flow 
vector. Thus, to prove finite termination of the f-relaxation method, it suffices to 
show that the number of flow pushes (i.e., Step 2) performed between successive 
price rises is finite. Following [12], we show this by first showing that the method 
keeps the admissible graph acyclic. 

Proposition 5 If initially the admissible graph is acyclic, then the admissible 
graph remains acyclic at all iterations of the f-relaxation method. 

Proof: We use induction. Initially, the admissible graph G* is acyclic by as-
sumption. Assume that G* remains acyclic for all subsequent iterations up to 
the mth iteration for some m. We will prove that after the mth iteration G* 
remains acyclic. Clearly, after a flow push the admissible graph remains acyclic, 
since it either remains unchanged, or some arcs are deleted from it. Thus we only 
have to prove that after a price rise.on a node i, no cycle involving i is created. 
We note that, after a price rise on node i, all incident arcs to i in the admissible 
graph at the start of the mth iteration are deleted and new arcs incident to i 
are added. We claim that i cannot have any incoming arcs which belong to the 



113 

admissible graph. To see this, note that, just before a price rise on node i, we 
have from (4) that 

'v' (j, i) E A, 

and since each price rise is at least {3(, we must have 

'v' (j, i) E A, 

after the price rise. Then, by Eq. (13), (j, i) cannot be in the push list of node 
j. By a similar argument, we have that (i,j) cannot be in the push list of j for 
all (i,j) E A. Thus, after a price rise on i, node i cannot have any incoming arcs 
belonging to the admissible graph, so no cycle involving i can be created. 0 

We say that a node i is a predecessor of a node j in the admissible graph 
G* if a directed path (i.e., a path having no backward arc) from i to j exists 
in G*. Node j is then called a successor of i. Observe that, in the (-relaxation 
method, flow is pushed towards the successors of a node and if G* is acyclic, flow 
cannot be pushed from a node to any of its predecessors. A 6-flow push along 
an arc in A is said to be saturating if 6 is equal to the flow margin of the arc. 
By our choice of 6 in the (-relaxation method, a nonsaturating flow push always 
exhausts (i.e., sets to zero) the surplus of the starting node of the arc. Then, by 
using Prop. 5, we obtain the following result as in [12, Prop. 5]. 

Proposition 6 If initially the admissible graph is acyclic, then the number of 
flow pushes between two successive price rises (not necessarily at the same node) 
performed by the (-relaxation method is finite. 

Proof: We observe that a saturating flow push along an arc removes the arc from 
the admissible graph, while a nonsaturating flow push does not add a new arc 
to the admissible graph. Thus the number of saturating flow pushes that can be 
performed between successive price rises is at most A. It will thus suffice to show 
that the number of nonsaturating flow pushes that can be performed between 
saturating flow pushes is finite. Assume the contrary, that is, there is an infinite 
sequence of successive nonsaturating flow pushes, with no intervening saturating 
flow push. Then the admissible graph remains fixed throughout this sequence. 
Furthermore, the surplus of some node iO must be exhausted infinitely often 
during this sequence. This can happen only if the surplus of some predecessor 
i1 of i O is exhausted infinitely often during the sequence. Continuing in this 
manner we construct an infinite succession of predecessor nodes {ik h=0,1, .... 
Thus some node in this sequence must be repeated, which is a contradiction 
since the admissible graph is acyclic. 0 

By refining the proof of Prop. 6, we can further show that the number of 
flow pushes between successive price rises is at most (N + 1)A, from which a 
complexity bound for the (-relaxation method may be readily derived. Below, 
we consider an implementation of the method, also presented in [12, Section 4], 
that has a very good complexity. 



114 

3.1 Efficient Implementations 

Here we consider a particularly efficient implementation, called the sweep im-
plementation, of the f-relaxation method. This implementation was introduced 
in [2] and was analyzed in more detail in [9], [13], and [6] for the linear cost 
case. We will analyze the running time of this implementation for the general 
convex cost case. The analysis was orginally presented in the Ph.D. thesis of 
the second author [26] and in the subsequent paper [12]. Here we only review 
the basic ideas and the main results, some of which will also be used to analyze 
the auctionfsequential-shortest-path algorithm of the next section. The reader 
is referred to the above thesis and paper for more details of the analysis and the 
proofs. 

In the sweep implementation of the f-relaxation method, the admissible graph 
is acyclic initially (and, by Prop. 5, it remains acyclic at all iterations), and the 
nodes are chosen in Step 1 of the iteration in an order which we now describe: 
All the nodes are kept in a linked list T, which is traversed from the first to the 
last element. The order of the nodes in the list is consistent with the successor 
order implied by the admissible graph; that is, if a node j is a successor of a 
node i, then j must appear after i in the list. If the initial admissible graph 
is empty, as is the case with the initialization of Eq. (15), the initial list is 
arbitrary. Otherwise, the initial list must be consistent with the successor order 
of the initial admissible graph. The list is updated in a way that maintains the 
consistency with the successor order. In particular, let i be the node chosen in 
Step 1 of the iteration, and let Ni be the subset of nodes of T that are after 
i in T. If the price of i changes in this iteration, then node i is removed from 
its position in T and placed in the first position of T. The node chosen in the 
next iteration, if Ni is nonempty, is the node if E Ni with positive surplus which 
ranks highest in T. Otherwise, the positive surplus node ranking highest in T is 
chosen. It can be shown (see the references cited earlier) that, with this rule of 
repositioning the nodes following a price change, the list order is consistent with 
the successor order implied by the admissible graph at all iterations. The idea of 
the sweep implementation is that an f-relaxation iteration at a node i that has 
predecessors with positive surplus may be wasteful, since the surplus of i will 
be set to zero and become positive again through a flow push at a predecessor 
node. 

The next proposition gives a bound on the number of flow pushes made by 
the sweep implementation of the f-relaxation method. This result is based on 
the observations that (i) between successive saturating flow pushes on an arc, 
there is at least one price rise performed on one of the end nodes of the arc; (ii) 
between successive price rises (not necessarily at the same node), the number of 
nonsaturating flow pushes is at most N. We refer the reader to [12, Props. 7 and 
8], for a detailed proof of this result. 

Proposition 7 Let K be any nonnegative scalar such that the initial price vector 
for the sweep implementation of the f-relaxaiion method satisfies Kf-CS together 
with some feasible flow vector. Then, the number of price rises on each node, 



115 

the number of saturating flow pushes, and the number of nonsaturating flow 
pushes up to termination of the method are O(KN), O(KNA), and O(KN3), 
respectively. 

By using Prop. 7, we now bound the running time for the sweep implemen-
tation of the £-relaxation method. The dominant computational requirements 
are: 

(1) The computation required for price rises. 
(2) The computation required for saturating How pushes. 
(3) The computation required for nonsaturating How pushes. 

In contrast to the linear cost case, we cannot express the running time in 
terms of the size of the problem data since the latter is not well defined for 
convex cost functions. Instead, we introduce a set of simple operations performed 
by the £-relaxation method, and we estimate the number of these operations. In 
particular, in addition to the usual arithmetic operations with real numbers, we 
consider the following operations: 

(a) Given the How Xij of an arc (i, i), calculate the cost fij(xij), the left deriva-
tive fij(zij), and the right derivative fi1(xij). 

(b) Given the price differential tij = Pi - pj of an arc (i, i), calculate sup{e I 
fS(e) tij} and inf{e I fij(e) tij}. 

Operation (a) is needed to compute the push list of a node and a price increase 
increment; operation (b) is needed to compute the How margin of an arc and 
the How initialization of Eq. (15). Complexity will thus be measured in terms 
of the total number of operations performed by the method, as is stated in the 
following proposition as a consequence of Prop. 7. 

Proposition 8 Let K be any nonnegative scalar such that the initial price vector 
for the sweep implementation of the £-relaxation method satisfies K £-CS together 
with some feasible flow vector. Then, the method requires O(K N3) operations up 
to termination. 

The theoretical and the practical performance ofthe £-relaxation method can 
be further improved by a technique known as £-scaling, originally conceived in 
[1] as a means of improving the performance of the auction algorithm for the 
assignment problem and later used in [16] and [17] for improving the complexity 
of related algorithms for linear cost network How. The idea of £-scaling is to apply 
the £-relaxation method several times, starting with a large value of £, say £0, and 
to successively reduce £ (typically at a geometric rate) up to a final value, say'l, 
that will give the desirable degree of accuracy to our solution. Furthermore, the 
price and How information from one application of the method is passed to the 
next. The £-scaling implementation of the £-relaxation method is described and 
analyzed in detail in [12, Section 4]. In particular, it is shown there that if £0 is 
chosen sufficiently large so that the initial price vector satisfies £o-CS together 



116 

with some feasible flow vector, then the running time of the f-relaxation method 
using the sweep implementation and f-scaling is 0 (N3 In( fO Ie) operations. 

We note that a complexity bound of 0 (N A In( N) In( fO If)) operations was 
derived in [21] for the tighten and cancel method. For relatively dense network 
flow problems where A = 8(N2 lIn N), our complexity bound for the f-relaxation 
method is more favorable, while for sparse problems, where A = 8(N), the 
reverse is true. Also, it may be possible to obtain sharper complexity bounds 
for special (but still interesting) classes of problems, such as those involving 
quadratic arc cost functions, and this is a subject for further research. 

4 The Auction/Sequential-Shortest-Path (ASSP) 
Algorithm 

The auction/sequential-shortest-path (ASSP) algorithm was proposed in [5] for 
linear cost network flow problems. In this section, we consider an extension of 
this algorithm to the general convex cost case of (P) and (D). The resulting 
ASSP algorithm is a special case of the generic auction method and, as such, 
we will analyze its complexity by using the results of Section 2 and by adapting 
the analysis of Section 3. This algorithm differs from the f-relaxation method of 
Section 3 in that, instead of pushing flow along a push-list arc to any node, it 
pushes flow along a path of push-list arcs to a node with negative surplus. In 
fact, whereas a flow push in the f-relaxation method may increase the surplus 
of a node in magnitude (e.g., when flow is pushed to a neighboring node with 
nonnegative surplus), the ASSP algorithm maintains the surplus of each node 
to be nonincreasing in magnitude. 

First, we introduce some definitions that are needed to describe the ASSP 
algorithm. For a path P in (N,A), we denote by s(P) and t(P) the starting 
node and the terminal node, respectively, of P. We define two operations on a 
given path P = (ni' n2, ... , nk) : A contraction of P deletes the terminal node 
of P and the arc incident to this node. An extension of P by an arc (nk' nk+d 
or an arc (nk+1,nk), replaces P by the path (ni,n2, ... ,nk,nk+d and adds 
to P the corresponding arc. For any f > 0 and f3 E (0,1), and any flow-price 
vector pair (r,p) satisfying f-CS, we say that a path Pin (N,A) is augmenting 
if each forward (respectively, backward) arc (i,j) of P is in the push list of i 
(respectively, j) and s(P) is a source (i.e., has positive surplus) and t(P) is a sink 
(i.e., has negative surplus). Below we describe the ASSP algorithm for solving 
(P) and (D). 

For a fixed f > 0 and f3 E (0,1), and a given flow-price vector pair (r,p) 
satisfying f-CS, an iteration of the ASSP algorithm updates (r,p) as follows: 

An Iteration of the ASSP Algorithm 

Step 1: Select a node i with positive surplus 9i (see Eq. (2)) and let the path 
P consist of only this node; if no such node exists, terminate the algorithm. 



117 

Step 2: Let i be the terminal node of the path P. If the push list of i is empty, 
then go to Step 3; otherwise, go to Step 4. 

Step 3 (Contract Path): Increase the price Pi by the maximum amount that 
maintains f-CS. If i =f:. s(P), contract P. Go to Step 2. 

Step 4 (Extend Path): Select an arc (i, j) (or (j, i)) from the push list of 
i and extend P by this arc. If the surplus of j is negative, go to Step 5; 
otherwise, go to Step 2. 

Step 5 (Augmentation): Perform an augmentation along the path P by the 
amount 6 (i.e., increase the flow of all forward arcs in P and decrease the 
flow of all backward arcs in P by 6), where 

6 = min {g6(P), -gt(P), minimum of flow margins of the arcs of p} . 

Go to the next iteration. 

Roughly speaking, at each iteration of the ASSP algorithm, the path P starts 
as a single source and is successively extended or contracted until the terminal 
node of P is a sink. Then an augmentation along P is performed so to decrease 
(respectively, increase) the surplus of the starting node (respectively, terminal 
node) towards zero, while leaving the surplus of the remaining nodes unchanged. 
In case of a contraction, the price of the terminal node of P is strictly increased. 
To see that the ASSP algorithm is a specialization of the generic auction method 
of Section 2, notice that Step 2 is a price rise on node i and that Step 5 adjusts 
the flows in such a way that f-CS is maintained and nodes with nonnegative 
surplus continue to have nonnegative surplus for all subsequent iterations. The 
reason for the latter is that an augmentation along P changes the surplus of only 
two nodes s(P) and t(P), and, by our choice of 6, the surplus of the node s(P) 
remains nonnegative after the augmentation. Furthermore, the ASSP algorithm 
performs price rise only on nodes with empty push list. Then, by Prop. 3, each 
price rise increment is at least {3f and, by Prop. 1, the number of price rises 
(i.e., path contractions) on each node is at most (K + 1) (N - 1)/ {3, where K is 
any nonnegative scalar such that the initial price vector satisfies K f-CS together 
with some feasible flow vector. Thus, to prove finite termination of the ASSP 
algorithm, it suffices to show that the number of path extensions (i.e., Step 4) 
and the number of augmentations (i.e., Step 5) performed between successive 
path contractions is finite. Similar to Section 3, we show this by first showing 
that the algorithm keeps the admissible graph acyclic and that the path P, when 
its backward arcs are reversed in direction, belongs to the admissible graph. 

Proposition 9 If initially the admissible graph is acyclic, then the admissible 
graph remains acyclic at all iterations of the ASSP algorithm. Moreover, the path 
P maintained by the algorithm, when its backward arcs are reversed in direction, 
belongs to the admissible graph at all times. 

Proof: The admissible graph can change either by a price rise (Step 3) or by 
an augmentation (Step 5). An augmentation keeps the admissible graph acyclic 
because, after an augmentation, the admissible graph either remains unchanged 



118 

or some arcs are deleted from it. A price rise keeps the admissible graph acyclic, 
as was shown in the proof of Prop. 5. 

To show that P, when its backward arcs are reversed in direction, belongs 
to the admissible graph at all times, we simply observe that a path extension 
maintains this property (since the arc added to P is in the push list of the 
terminal node of P) and that a path contraction also maintains this property 
(since a price rise on the terminal node of P changes the admissible graph only 
by adding/deleting arcs incident to this node and, after the contraction, this 
node and its incident arc in P are both deleted from P). 0 

By using Prop. 9, we have the following result that gives a bound on the 
number of augmentations and path extensions performed by the ASSP algorithm 
between successive path contractions. By using this bound and the bound on the 
number of path contractions found earlier, we can readily derive a complexity 
bound for the ASSP algorithm. 

Proposition 10 If initially the admissible graph is acyclic, then the number 
of augmentations and path extensions between two successive path contractions 
(not necessarily at the same node) performed by the ASSP algorithm are at most 
A + Nand N(A + N), respectively. 

Proof: We observe that an augmentation does not increase the number of nodes 
with nonzero surplus and does not add any arc to the admissible graph. More-
over, after an augmentation, either an arc is removed from the admissible graph 
or a node has its surplus set to zero. Thus, the number of arcs in the admissible 
graph plus the number of nodes with nonzero surplus is decreased by at least one 
after each augmentation. It follows that the number of augmentations between 
successive path contractions is at most A + N. 

By Prop. 9, the path P always belongs to the admissible graph which is 
acyclic, so P cannot have repeated nodes and hence the number of successive 
extensions of P (before a contraction or an augmentation is performed) is at most 
N. Thus, the number of path extensions between successive path contractions is 
at most N· (number of augmentations between successive path contractions) 
N(A+N). 0 

There is an interesting connection between the ASSP algorithm and the 
auction algorithm of [4] for finding a shortest path between two nodes, which 
explains our use of the name ASSP. In particular, we note that each iteration 
comprises a sequence of path extensions and contractions, followed by an aug-
mentation at the end. Let us fix an iteration and let (x,p) be the flow-price 
vector at the start of this iteration. Let us now define an arc set An. by in-
troducing, for each arc (i, j) E A, two arcs in An. : an arc (i, j) with length 
pj - Pi + fit (Xij) + f and an arc (i,i) with length Pi - pj - fij(Xij) + f. The 
resulting graph Gn. = (N,An.) will be referred to as the reduced graph. Note 
that, because the pair (x,p) satisfies f-CS, the arc lengths in the reduced graph 
are nonnegative. Furthermore, the reduced graph contains no zero-length cycles 
whenever the admissible graph is acyclic (since such a cycle would belong to the 
admissible graph). It can then be verified that the sequence of path extensions 



119 

and contractions performed during the iteration is just the algorithm of [4] ap-
plied to find a shortest path in the reduced graph G'R. from a given source to 
any sink. 

5 Computational Experimentation 

We have developed and tested two experimental Fortran codes implementing 
the methods of Sections 3 and 4, with {3 = 1/2, for convex quadratic cost prob-
lems. The first code, named NE-RELAX-F, implements the (-relaxation method 
with the sweep implementation and (-scaling as described in Section 3 (also see 
[12] for alternative implementations). The second code, named ASSP-N, imple-
ments the auction/sequential-shortest-path algorithm with some enhancements 
described in [26]. These codes are based on corresponding codes for linear cost 
problems described in Appendix 7 of [4], which have been shown to be quite 
efficient. Several changes and enhancements were introduced in our codes to 
handle quadratic costs. In particular, all computations are done in real rather 
than integer arithmetic, and (-scaling, rather than arc cost scaling, is used. 

The codes NE-RELAX-F and ASSP-N were compared to two existing Fortran 
codes NRELAX and MNRELAX from [11]. The latter implement the relaxation 
method for, respectively, strictly convex quadratic cost and convex quadratic 
cost problems, and are believed to be quite efficient. All codes were compiled and 
run on a Sun Sparc-5 workstation with 24 megabytes of RAM under the Solaris 
operating system. We used the -0 compiler option in order to take advantage of 
the floating point unit and the design characteristics of the Sparc-5 processor. 
Unless otherwise indicated, all codes upon termination meet the criterion that 
the node surpluses are below 10-5 in magnitude and the cost of the flow vector 
and the cost of the price vector agree in their first 12 digits. 

For our test problems, the cost functions are of the form 

for some aij E !R and bij E [0,00) and Cij E [0,00). We call aij, bij, and 
Cij the linear cost coefficient, the quadratic cost coefficient, and the capac-
ity, respectively, of arc (i,j). We created the test problems using two Fortran 
problem generators. The first is the public-domain generator NETGEN, writ-
ten by Klingman, Napier and Stutz [22], which generates linear-cost assign-
ment/transportation/transshipment problems having a certain random struc-
ture. The second is the generator CHAINGEN, written by the second author, 
which generates transshipment problems having a chain structure as follows: 
starting with a chain through all the nodes (i.e., a directed graph with nodes 
1, ... , N and arcs (1,2), (2, 3), ... , (N - 1, N), (N, 1», a user-specified number of 
forward arcs are added to each node (for example, if the user specifies 3 addi-
tional arcs per node then the arcs (i, i + 2), (i, i + 3), (i, i + 4) are added for each 
node i) and, for a user-specified percentage of nodes i, a reverse arc (i, i-I) is 



120 

also added. The graphs thus created have long diameters and earlier tests on lin-
ear cost problems showed that the created problems are particularly difficult for 
all methods tested. As the above two generators create only linear-cost problems, 
we modified the created problems as in [11] so that, for a user-specified percent 
of the arcs, a nonzero quadratic cost coefficient is generated in a user-specified 
range. 

Our tests were designed to study two key issues: 

(a) The performance of the f-relaxation method and the ASSP algorithm rel-
ative to the earlier relaxation methods, and the dependence of this perfor-
mance on network topology and problem ill-conditioning. 

(b) The sensitivity of the f-relaxation method and the ASSP algorithm to prob-
lem ill-conditioning. 

Ill-conditioned problems were created by assigning to some of the arcs much 
smaller (but nonzero) quadratic cost coefficients compared to other arcs. When 
the arc cost functions have this structure, ill-conditioning in the traditional sense 
of unconstrained nonlinear programming tends to occur. 

We experimented with three sets oftest problems: the first set comprises well-
conditioned strictly convex quadratic cost problems generated using NETGEN 
(Table 1); the second set comprises ill-conditioned strictly convex quadratic cost 
problems and mixed linear/quadratic cost problems generated using NETGEN 
(Table 3); the third set comprises well-conditioned strictly convex quadratic 
cost problems generated using CHAINGEN (Table 5). The running time of the 
codes on these problems are shown in the last three to four columns of Tables 
2, 4, and 6. On the ill-conditioned NETGEN problems and the CHAINGEN 
problems, NRELAX often had difficulty meeting the termination criterion and 
was terminated early. l.From the running times we can see that the codes NE-
RELAX-F and ASSP-N consistently outperform, by a factor of at least 3 and 
often much more, the relaxation codes NRELAX and MNRELAX on all test 
problems, independent of network topology and problem ill-conditioning. In fact, 
on the CHAINGEN problems, the f-relaxation and auction codes outperform the 
relaxation codes by an order of magnitude or more. 

References 

1. Bertsekas, D. P. (1979), "A Distributed Algorithm for the Assignment Problems," 
Laboratory for Information and Decision Systems Working Paper, M.I.T., Cam-
bridge. 

2. Bertsekas, D. P. (1986), "Distributed Relaxation Methods for Linear Network Flow 
Problems," Proceedings of 25th IEEE Conference on Decision and Control, Athens, 
Greece, pp. 2101-2106. 

3. Bertsekas, D. P. (1986), "Distributed Asynchronous Relaxation Methods for Lin-
ear Network Flow Problems," Laboratory for Information and Decision Systems 
Report P-1606, M.I.T., Cambridge. 



121 

4. Bertsekas, D. P. (1991), Linear Network Optimization: Algorithms and Codes, 
M.LT. Press, Cambridge. 

5. Bertsekas, D. P. (1992), "An Auction/Sequential Shortest Path Algorithm for the 
Min Cost Flow Problem," Laboratory for Information and Decision Systems Report 
P-2146, M.LT., Cambridge. 

6. Bertsekas, D. P., Castanon, D. A. (1993), "A Generic Auction Algorithm for the 
Minimum Cost Network Flow Problem," Computational Optimization and Appli-
cations, 2, pp. 229-260. 

7. Bertsekas, D. P., Castanon, D. A., Eckstein, J., and Zenios, S. A. (1995), in "Paral-
lel Computing in Network Optimization," Handbooks in Operations Research and 
Management Science: Vol. 7, Edited by M. o. Ball, et. al, pp. 331-399. 

8. Bertsekas, D. P., and Eckstein, J. (1987), "Distributed Asynchronous Relaxation 
Methods for Linear Network Flow Problems," Proceedings of IFAC '87, Munich, 
Germany. 

9. Bertsekas, D. P., and Eckstein, J. (1988), "Dual Coordinate Step Methods for 
Linear Network Flow Problems," Mathematical Programming, 42, pp. 203-243. 

10. Bertsekas, D. P., and EI Bu, D. (1987), "Distributed Asynchronous Relaxation 
Methods for Convex Network Flow Problems," SIAM Journal on Control and 
Optimization, 25, pp. 74-85. 

11. Bertsekas, D. P., Hosein, P. A., and Tseng, P. (1987), "Relaxation Methods for 
Network Flow Problems with Convex Arc Costs," SIAM Journal on Control and 
Optimization, 25, pp. 1219-1243. 

12. Bertsekas, D. P., Polymenakos, L. C., and Tseng, P. (1995), "An t:-Relaxation 
Method for Separable Convex Cost Network Flow Problems," Laboratory for Infor-
mation and Decision Systems Report LIDS-P-2299, M.LT., Cambridge; to appear 
in SIAM Journal on Optimization. 

13. Bertsekas, D. P., and Tsitsiklis, J. N. (1989), Parallel and Distributed Computation: 
Numerical Methods, Prentice-Hall, Englewood Cliffs. 

14. De Leone, R., Meyer, R. R., and Zakarian, A. (1995), "An t:-Relaxation Algorithm 
for Convex Network Flow Problems," Computer Sciences Department Technical 
Report, University of Wisconsin, Madison. 

15. Ford, 1. R., Jr., and Fulkerson, D. R. (1962), Flows in Networks, Princeton Uni-
versity Press, Princeton. 

16. Goldberg, A. V. (1987), "Efficient Graph Algorithms for Sequential and Parallel 
Computers," Laboratory for Computer Science Technical Report TR-374, M.LT., 
Cambridge. 

17. Goldberg, A. V., and Tarjan, R. E. (1990), "Solving Minimum Cost Flow Problems 
by Successive Approximation," Mathematics of Operations Research, 15, pp. 430-
466. 

18. Hager, W. W. (1992), "The Dual Active Set Algorithm," in Advances in Optimiza-
tion and Parallel Computing, Edited by P. M. Pardalos, North-Holland, Amster-
dam, Netherland, pp. 137-142. 

19. Hager, W. W., and Hearn, D. W. (1993), "Application of the Dual Active Set 
Algorithm to Quadratic Network Optimization," Computational Optimization and 
Applications, 1, pp. 349-373. 

20. Kamesam, P. V., and Meyer, R. R. (1984), "Multipoint Methods for Separable 
Nonlinear Networks," Mathematical Programming Study, 22, pp. 185-205. 

21. Karzanov, A. V., and McCormick, S. T. (1993), "Polynomial Methods for Separable 
Convex Optimization in Unimodular Linear Spaces with Applications to Circula-



122 

tions and Co-circulations in Network," Faculty of Commerce Report, University of 
British Columbia, Vancouver; to appear in SIAM Journal on Computing. 

22. Klingman, D., Napier, A., and Stutz, J. (1974), "NETGEN - A Program for Gen-
erating Large Scale (Un) Capacitated Assignment, Transportation, and Minimum 
Cost Flow Network Problems," Management Science, 20, pp. 814-822. 

23. Li, X., and Zenios, S. A. (1994), "Data Parallel Solutions of Min-Cost Network 
Flow Problems Using (-Relaxations," European Journal of Operational Research, 
79, pp. 474-488. 

24. Meyer, R. R. (1979), "Two-Segment Separable Programming," Management Sci-
ence, 25, pp. 285-295. 

25. Nielsen, S. S., and Zenios, S. A. (1993), "On the Massively Parallel Solution of Lin-
ear Network Flow Problems," in Network Flow and Matching: First DIMACS Im-
plementation Challenge, Edited by D. Johnson and C. McGeoch, American Math-
ematical Society, Providence, pp. 349-369. 

26. Polymenakos, 1. C. (1995), "(-Relaxation and Auction Algorithms for the Con-
vex Cost Network Flow Problem," Electrical Engineering and Computer Science 
Department Ph.D. Thesis, M.LT., Cambridge. 

27. Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton. 
28. Rockafellar, R. T. (1984), Network Flows and Monotropic Programming, Wiley-

Interscience, New York. 
29. Tseng, P., Bertsekas, D. P., and Tsitsiklis, J. N. (1990), "Partially Asynchronous, 

Parallel Algorithms for Network Flow and Other Problems," SIAM Journal on 
Control and Optimization, 28, pp. 678-710. 

30. Ventura, J. A. (1991), "Computational Development of a Lagrangian Dual Ap-
proach for Quadratic Networks," Networks, 21, pp. 469-485. 

31. Weintraub, A. (1974), "A Primal Algorithm to Solve Network Flow Problems with 
Convex Costs," Management Science, 21, pp. 87-97. 



123 

Problem Name Nodes Arcs Linear Cost Quad Cost Total Supply Capacity Range 
prohl 200 1300 [1-100] [5,10] 10000 [100-500] 
prob2 200 1500 [1-100] [5,10] 10000 [100-500] 
prob3 200 2000 [1-100] [5,10] 10000 [100-500] 
proM 200 2200 [1-100] [5,10] 10000 [100-500] 
probS 200 2900 [1-100] [5,10] 10000 [100-500] 
prob6 300 3150 [1-100] [5,10] 10000 [100-500] 
prob7 300 4500 [1-100] [5,10] 10000 [100-500] 
prob8 300 5155 [1-100] [5,10] 10000 [100-500] 
prob9 300 6075 [1-100] [5,10] 10000 [100-500] 
prohlO 300 6300 [1-100] [5,10] 10000 [100-500] 
prohl1 400 1500 [1-100] [5,10] 10000 [100-500] 
prob12 400 2250 [1-100] [5,10] 10000 [100-500] 
prob13 400 3000 [1-100] [5,10] 10000 [100-500] 
prob14 400 3750 [1-100] [5,10] 10000 [100-500] 
prohl5 400 4500 [1-100] [5,10] 10000 [100-500] 
prohl6 400 1306 [1-100] [5,10] 10000 [100-500] 
prohl7 400 2443 [1-100] [5,10] 10000 [100-500] 
prob18 400 1416 [1-100] [5,10] 10000 [100-500] 
prob19 400 2836 [1-100] [5,10] 10000 [100-500] 
prob20 400 1382 [1-100] [5,10] 10000 [100-500] 
prob21 400 2676 [1-100] [5,10] 10000 [100-500] 
prob22 1000 3000 [1-100] [5,10] 10000 [1000-2000] 
prob23 1000 5000 [1-100] [5,10] 10000 [1000-2000] 
prob24 1000 10000 [1-100] [5,10] 10000 [1000-2000] 

Table 1. The NETGEN problems with all arcs having quadratic cost coefficients in 
the range shown. The problems prob1-prob17 are identical to the problems 1-17 of 
Table 1 of [11]. The problems named prohl8, prob19, prob20, prob21 correspond to 
the problems 20, 23, 24, 25, respectively, of Table 1 of [11]. 



124 

Problem NRELAX MNRELAX NE-RELAX-F ASSP-N 
prohl 7.95 6.0 1.95 1.09 
prob2 7.55 6.35 2.13 1.27 
proM 2.88 5.65 2.13 0.707 
proM 20.45 10.62 2.4 1.42 
prob5 2.32 24.8 1.45 1.13 
prob6 7.31 22.11 2.71 1.43 
prob7 7.52 21.12 3.94 1.69 
prob8 48.3 26.72 3.88 2.7 
prob9 7.25 22.71 3.22 2.54 

prohlO 4.41 31.53 2.7 3.02 
prohl1 69.25 15.07 8.79 4.88 
prob12 17.68 17.24 4.98 2.91 
prob13 22.00 20.43 7.3 4.14 
prob14 13.2 24.3 3.03 2.33 
prob15 10.oI 35.99 7.42 4.11 
prohl6 85.10 25.46 8.64 4.87 
prohl7 31.63 21.52 7.38 4.14 
prob18 7.51 9.03 0.96 0.91 
prob19 45.43 26.76 8.63 5.07 
prob20 79.96 17.71 9.95 7.5 
prob21 33.48 23.97 6.8 4.11 
prob22 64.42 50.94 8.46 2.44 
prob23 26.7 49.06 4.08 4.3 
prob24 26 323.296 5.53 5.23 

Table 2. Computational Results on a Sun Sparc 5 with 24MB memory. Running times 
are in seconds. 

Problem N arne Nodes Arcs Linear Cost Small Quad Cost Total Supply Capacity Range 
prohl 200 1300 [1-100] 1 1000 [100-300) 
prob2 200 1300 [1-100) 0.1 1000 [100-300] 
prob3 200 1300 [1-100 O.oI 1000 [100-300) 
proM 200 1300 [1-100) 0.001 1000 [100-300] 
prob5 200 1300 [1-100) 0.0001 1000 [100-300) 
prob6 200 1300 [1-100 0 1000 [100-300] 
prob7 400 4500 [1-100 1 1000 [100-300) 
probS 400 4500 [1-100 0.1 1000 [100-300] 
prob9 400 4500 [1-100) 0.01 1000 [100-300) 
prob10 400 4500 [1-100) 0.001 1000 [100-300] 
prohl1 400 4500 [1-100) 0.0001 1000 [100-300) 
prob12 400 4500 [1-100 0 1000 [100-300) 

Table 3. The NETGEN problems with half of the arcs having quadratic cost coefficient 
in the range [5,10] and the remaining arcs having the small quadratic coefficient indi-
cated. The problems prob6 and prob12 are mixed linear/quadratic cost problems where 
half of the arcs have quadratic cost coefficient in the range [5,10] and the remaining 
arcs have zero quadratic cost coefficient. 



125 

Problem NRELAX MNRELAX NE-RELAX-F ASSP-N 
prohl 3.6 3.6 0.5 0.50 
prob2 20.95 4.3 0.61 0.53 
prob3 56.1 3.6 0.67 0.62 
proM (5)791.24 3.28 0.73 0.67 
probS (5)1866.67 2.7 0.77 0.94 
prob6 - 2.23 0.69 0.67 
prob7 52.22 14.1 1.73 1.53 
prob8 53.42 11.26 1.88 1.42 
prob9 (5)80.5 13.76 2.3 1.56 
prohlO (5)710.73 15.0 2.67 2.0 
prohl1 (4)5753.45 13.56 3.67 3.4 
prob12 - 8.33 2.79 2.51 

Table 4. Computational Results on a Sun Sparc 5 with 24MB memory. On the very 
ill-conditioned problems, NRELAX had extremely long running times and was termi-
nated early. The numbers in parentheses indicate the number of significant digits of 
accuracy of the answer given by NRELAX upon termination. The running times of 
NE-RELAX-F and ASSP-N on the mixed linear/quadratic cost problems prob6 and 
prob12 are included to demonstrate the fact that these methods are not affected sig-
nificantly by ill-conditioning. 

Problem Name Nodes Linear Cost Total Supply Capacity Range Add. Forw. Arcs Total # Arcs 
probl 50 [1-100] 1000 100-1000] 4 269 
prob2 100 [1-100] 1000 [100-1000 4 544 
prob3 150 [1-100] 1000 [100-1000] 4 819 
proM 200 [1-100j 1000 100-1000 4 1094 
probS 250 [1-1001 1000 100-1000 4 1369 
prob6 300 [1-100] 1000 100-1000 6 2235 
prob7 350 [1-100] 1000 [100-1000] 6 2610 
prob8 400 [1-100J 1000 [100-1000 8 3772 
prob9 450 [1-100] 1000 [100-1000 8 4247 

problO 500 [1-100] 1000 100-1000 10 5705 

Table 5. The CHAINGEN problems with all arcs having quadratic cost coefficients in 
the range [5,10]. Half of the nodes have an additional reverse arc. 



126 

Problem MNRELAX NE-RELAX-F ASSP-N 
prohl 1.19 0.18 0.26 
prob2 14.97 0.68 0.9 
prob3 15.65 1.22 1.72 
proM 33.03 2.17 2.85 
prob5 41.08 2.48 3.52 
prob6 93.9 4.6 7.0 
prob7 266.9 5.9 7.17 
prob8 1102.64 10.4 13.95 
prob9 2152.51 10.81 14.6 

prohlO >2300 17.72 24.15 

Table 6. Computational Results on a Sun Sparc 5 with 24MB memory. On these 
problems, NRELAX was taking extremely long running times even for 5 digits of 
accuracy. For this reason, we are not reporting any running times for NRELAX on 
these problems. MNRELAX also was taking a very long time on the last problem and 
was terminated early. This is indicated by the > sign. 


