
Neuro-Dynamic Programming: An

Overview

Dimitri P. Bertsekas
bertsekas@lids.mit.edu

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Neuro-dynamic programming (NDP for short) is a relatively new class of dy-
namic programming methods for control and sequential decision making under
uncertainty. These methods have the potential of dealing with problems that
for a long time were thought to be intractable due to either a large state space
or the lack of an accurate model. They combine ideas from the fields of neural
networks, artificial intelligence, cognitive science, simulation, and approxima-
tion theory. We will delineate the major conceptual issues, survey a number
of recent developments, describe some computational experience, and address a
number of open questions.

We consider systems where decisions are made in stages. The outcome of
each decision is not fully predictable but can be anticipated to some extent before
the next decision is made. Each decision results in some immediate cost but
also affects the context in which future decisions are to be made and therefore
affects the cost incurred in future stages. Dynamic programming (DP for short)
provides a mathematical formalization of the tradeoff between immediate and
future costs.

Generally, in DP formulations there is a discrete-time dynamic system whose
state evolves according to given transition probabilities that depend on a deci-
sion/control u. In particular, if we are in state i and we choose decision u, we
move to state j with given probability pij(u). Simultaneously with this transi-
tion, we incur a cost g(i, u, j). In comparing, however, the available decisions u,
it is not enough to look at the magnitude of the cost g(i, u, j); we must also take
into account how desirable the next state j is. We thus need a way to rank or
rate states j. This is done by using the optimal cost (over all remaining stages)
starting from state j, which is denoted by J∗(j). These costs can be shown to

1



satisfy some form of Bellman’s equation

J∗(i) = min
u

E{g(i, u, j) + J∗(j) | i, u}, for all i,

where j is the state subsequent to i, and E{· | i, u} denoted expected value with
respect to j, given i and u. Generally, at each state i, it is optimal to use a
control u that attains the minimum above. Thus, decisions are ranked based on
the sum of the expected cost of the present period, and the optimal expected
cost of all subsequent periods.

The objective of DP is to calculate numerically the optimal cost function
J∗. This computation can be done off-line, i.e., before the real system starts
operating. An optimal policy, that is, an optimal choice of u for each i, is
computed either simultaneously with J∗, or in real time by minimizing in the
right-hand side of Bellman’s equation. It is well known, however, that for many
important problems the computational requirements of DP are overwhelming,
mainly because of a very large number of states and controls (Bellman’s “curse
of dimensionality”). In such situations a suboptimal solution is required.

Cost Approximations in Dynamic Programming

NDP methods are suboptimal methods that center around the approximate
evaluation of the optimal cost function J∗, possibly through the use of neural
networks and/or simulation. In particular, we replace the optimal cost J∗(j)
with a suitable approximation J̃(j, r), where r is a vector of parameters, and
we use at state i the (suboptimal) control µ̃(i) that attains the minimum in the
(approximate) right-hand side of Bellman’s equation

µ̃(i) = arg min
u

E{g(i, u, j) + J̃(j, r) | i, u}.

The function J̃ will be called the scoring function , and the value J̃(j, r) will be
called the score of state j. The general form of J̃ is known and is such that once
the parameter vector r is determined, the evaluation of J̃(j, r) of any state j is
fairly simple.

We note that in some problems the minimization over u of the expression

E{g(i, u, j) + J̃(j, r) | i, u}

may be too complicated or too time-consuming for making decisions in real-
time, even if the scores J̃(j, r) are simply calculated. In such problems we may
use a related technique, whereby we approximate the expression minimized in
Bellman’s equation,

Q(i, u) = E{g(i, u, j) + J∗(j) | i, u},

which is known as the Q-factor corresponding to (i, u). In particular, we re-
place Q(i, u) with a suitable approximation Q̃(i, u, r), where r is a vector of



parameters. We then use at state i the (suboptimal) control that minimizes the
approximate Q-factor corresponding to i:

µ̃(i) = arg min
u

Q̃(i, u, r).

Much of what will be said about approximation of the optimal cost function
also applies to approximation of Q-factors. In fact, we will see later that the
Q-factors can also be viewed as optimal costs of a related problem. We thus
focus primarily on approximation of the optimal cost function J∗.

We are interested in problems with a large number of states and in scoring
functions J̃ that can be described with relatively few numbers (a vector r of
small dimension). Scoring functions involving few parameters are called compact
representations , while the tabular description of J∗ are called the lookup table
representation . Thus, in a lookup table representation, the values J∗(j) are
stored in a table for all states j. In a typical compact representation, only the
vector r and the general structure of the scoring function J̃(·, r) are stored;
the scores J̃(j, r) are generated only when needed. For example, J̃(j, r) may
be the output of some neural network in response to the input j, and r is the
associated vector of weights or parameters of the neural network; or J̃(j, r) may
involve a lower dimensional description of the state j in terms of its “significant
features”, and r is the associated vector of relative weights of the features. Thus
determining the scoring function J̃(j, r) involves two complementary issues: (1)
deciding on the general structure of the function J̃(j, r), and (2) calculating
the parameter vector r so as to minimize in some sense the error between the
functions J∗(·) and J̃(·, r).

Approximations of the optimal cost function have been used in the past in a
variety of DP contexts. Chess playing programs represent a successful example.
A key idea in these programs is to use a position evaluator to rank different
chess positions and to select at each turn a move that results in the position
with the best rank. The position evaluator assigns a numerical value to each
position, according to a heuristic formula that includes weights for the various
features of the position (material balance, piece mobility, king safety, and other
factors). Thus, the position evaluator corresponds to the scoring function J̃(j, r)
above, while the weights of the features correspond to the parameter vector r.
Usually, some general structure of position evaluator is selected (this is largely
an art that has evolved over many years, based on experimentation and human
knowledge about chess), and the numerical weights are chosen by trial and error
or (as in the case of the champion program Deep Thought) by “training” using
a large number of sample grandmaster games.

As the chess program paradigm suggests, intuition about the problem, heuris-
tics, and trial and error are all important ingredients for constructing cost ap-
proximations in DP. However, it is important to supplement heuristics and in-
tuition with more systematic techniques that are broadly applicable and retain
as much as possible the nonheuristic aspects of DP.



NDP aims to develop a methodological foundation for combining dynamic
programming, compact representations, and simulation to provide the basis for
a rational approach to complex stochastic decision problems.

Approximation Architectures

An important issue in function approximation is the selection of architecture,
that is, the choice of a parametric class of functions J̃(·, r) or Q̃(·, ·, r) that suits
the problem at hand. One possibility is to use a neural network architecture
of some type. We should emphasize here that in this article we use the term
“neural network” in a very broad sense, essentially as a synonym to “approxi-
mating architecture.” In particular, we do not restrict ourselves to the classical
multilayer perceptron structure with sigmoidal nonlinearities. Any type of uni-
versal approximator of nonlinear mappings could be used in our context. The
nature of the approximating structure is left open in our discussion, and it could
involve, for example, radial basis functions, wavelets, polynomials, splines, etc.

Cost approximation can often be significantly enhanced through the use of
feature extraction, a process that maps the state i into some vector f(i), called
the feature vector associated with the state i. Feature vectors summarize, in
a heuristic sense, what are considered to be important characteristics of the
state, and they are very useful in incorporating the designer’s prior knowledge
or intuition about the problem and about the structure of the optimal controller.
For example in a queueing system involving several queues, a feature vector may
involve for each queue a three-value indicator, that specifies whether the queue
is “nearly empty”, “moderately busy”, or “nearly full”. In many cases, analysis
can complement intuition to suggest the right features for the problem at hand.

Feature vectors are particularly useful when they can capture the “dominant
nonlinearities” in the optimal cost function J∗. By this we mean that J∗(i) can
be approximated well by a “relatively smooth” function Ĵ(f(i)); this happens
for example, if through a change of variables from states to features, the function
J∗ becomes a (nearly) linear or low-order polynomial function of the features.
When a feature vector can be chosen to have this property, one may consider
approximation architectures where both features and (relatively simple) neural
networks are used together. In particular, the state is mapped to a feature
vector, which is then used as input to a neural network that produces the score
of the state. More generally, it is possible that both the state and the feature
vector are provided as inputs to the neural network.

A simple method to obtain more sophisticated approximations, is to parti-
tion the state space into several subsets and construct a separate cost function
approximation in each subset. For example, by using a linear or quadratic poly-
nomial approximation in each subset of the partition, one can construct piece-
wise linear or piecewise quadratic approximations over the entire state space.
An important issue here is the choice of the method for partitioning the state
space. Regular partitions (e.g., grid partitions) may be used, but they often lead
to a large number of subsets and very time-consuming computations. Generally



speaking, each subset of the partition should contain “similar” states so that the
variation of the optimal cost over the states of the subset is relatively smooth
and can be approximated with smooth functions. An interesting possibility is
to use features as the basis for partition. In particular, one may use a more
or less regular discretization of the space of features, which induces a possibly
irregular partition of the original state space. In this way, each subset of the
irregular partition contains states with “similar features.”

Simulation and Training

Some of the most successful applications of neural networks are in the areas
of pattern recognition, nonlinear regression, and nonlinear system identification.
In these applications the neural network is used as a universal approximator:
the input-output mapping of the neural network is matched to an unknown
nonlinear mapping F of interest using a least-squares optimization. This opti-
mization is known as training the network . To perform training, one must have
some training data, that is, a set of pairs (i, F (i)), which is representative of
the mapping F that is approximated.

It is important to note that in contrast with these neural network applica-
tions, in the DP context there is no readily available training set of input-output
pairs (i, J∗(i)), which can be used to approximate J∗ with a least squares fit.
The only possibility is to evaluate (exactly or approximately) by simulation the
cost functions of given (suboptimal) policies, and to try to iteratively improve
these policies based on the simulation outcomes. This creates analytical and
computational difficulties that do not arise in classical neural network training
contexts. Indeed the use of simulation to evaluate approximately the optimal
cost function is a key new idea, that distinguishes the methodology of this article
from earlier approximation methods in DP.

Using simulation offers another major advantage: it allows the methods of
this article to be used for systems that are hard to model but easy to simulate;
that is, in problems where an explicit model is not available, and the system can
only be observed, either as it operates in real time or through a software sim-
ulator. For such problems, the traditional DP techniques are inapplicable, and
estimation of the transition probabilities to construct a detailed mathematical
model is often cumbersome or impossible.

There is a third potential advantage of simulation: it can implicitly identify
the “most important” or “most representative” states of the system. It appears
plausible that if these states are the ones most often visited during the simula-
tion, the scoring function will tend to approximate better the optimal cost for
these states, and the suboptimal policy obtained will perform better.

Neuro-Dynamic Programming

The name neuro-dynamic programming expresses the reliance of the meth-
ods of this article on both DP and neural network concepts. In the artificial
intelligence community, where the methods originated, the name reinforcement



learning is also used. In common artificial intelligence terms, the methods allow
systems to “learn how to make good decisions by observing their own behavior,
and use built-in mechanisms for improving their actions through a reinforce-
ment mechanism.” In more mathematical terms, “observing their own behav-
ior” relates to simulation, and “improving their actions through a reinforcement
mechanism” relates to iterative schemes for improving the quality of approxi-
mation of the optimal cost function, or the Q-factors, or the optimal policy.
There has been a gradual realization that reinforcement learning techniques
can be fruitfully motivated and interpreted in terms of classical DP concepts
such as value and policy iteration; see the nice survey by Barto, Bradtke, and
Singh [BBS93], and the book by Sutton and Barto [SuB98], which point out the
connections between the artificial intelligence/reinforcement learning viewpoint
and the control theory/DP viewpoint, and give many references.

Two fundamental DP algorithms, policy iteration and value iteration, are
the starting points for the NDP methodology. The most straightforward adap-
tation of the policy iteration method operates as follows: we start with a given
policy (some rule for choosing a decision u at each possible state i), and we
approximately evaluate the cost of that policy (as a function of the current
state) by least-squares-fitting a scoring function J̃(·, r) to the results of many
simulated system trajectories using that policy. A new policy is then defined by
minimization in Bellman’s equation, where the optimal cost is replaced by the
calculated scoring function, and the process is repeated. This type of algorithm
typically generates a sequence of policies that eventually oscillates in a neigh-
borhood of an optimal policy. The resulting deviation from optimality depends
on a variety of factors, principal among which is the ability of the architecture
J̃(·, r) to accurately approximate the cost functions of various policies (the book
by Bertsekas and Tsitsiklis [BeT96] makes this point more precise).

The approximate policy iteration method described above calculates many
simulated sample trajectories before changing the parameter vector r of the scor-
ing function J̃(j, r). Another popular NDP methodology adjusts the parameter
vector r more frequently, as it produces sample state trajectories

(i0, i1, . . . , ik, ik+1, . . . , ).

These trajectories correspond to either a fixed policy, or to a “greedy” policy
that applies, at state i, the control u that minimizes the expression

E{g(i, u, j) + J̃(j, r) | i, u},

where r is the current parameter vector. A central notion here is the notion of
a temporal difference, defined by

dk = g(ik, uk, ik+1) + J̃(ik+1, r)− J̃(ik, r),

and expressing the difference between our expected cost estimate J̃(ik, r) at
state ik and the predicted cost estimate g(ik, uk, ik+1)+ J̃(ik+1, r) based on the



outcome of the simulation. If the cost approximations were exact, the average
temporal difference would be zero by Bellman’s equation. Thus, roughly speak-
ing, the values of the temporal differences can be used to make incremental
adjustments to r so as to bring about an approximate equality (on the average)
between expected and predicted cost estimates along the simulated trajectories.
This viewpoint, formalized by Sutton in [Sut88], can be implemented through
the use of gradient descent/stochastic approximation methodology. Sutton pro-
posed a family of methods of this type, called TD(λ), and parameterized by a
scalar λ ∈ [0,1]. One extreme, TD(1), is related to policy iteration and least-
squares parameter estimation, while the other extreme, TD(0), is related to
value iteration and stochastic approximation. A related method is Q-learning,
introduced by Watkins [Wat89], which is a stochastic approximation-like method
that iterates on the Q-factors. While there is convergence analysis of TD(λ) and
Q-learning for the case of lookup table representations (see Tsitsiklis [Tsi94]),
the situation is much less clear in the case of compact representations.

A simpler type of NDP method, called rollout , is to approximate the opti-
mal cost-to-go by the cost of some reasonably good suboptimal policy, called
the base policy . Depending on the context, the cost of the base policy may be
calculated either analytically, or more commonly by simulation. In a variant
of the method, the cost of the base policy is approximated by using some ap-
proximation architecture. It is possible to view this method as a single step
of a (possibly approximate) policy iteration method. The rollout approach is
particularly simple to implement, and is also well-suited for on-line replanning,
in situations where the problem parameters change over time. The rollout ap-
proach may also be combined with rolling horizon approaximations, and in some
variations is related to model predictive control , and receding horizon control ;
see Keerthi and Gilbert [KeG88], the surveys by Morari and Lee [MoL99], and
Mayne et. al. [MRR00], and the references quoted there. Despite being less
ambitious than the approximate policy iteration and TD methods mentioned
earlier, rollout algorithms have performed surprisingly well in a variety of stud-
ies and applications, often achieving a spectacular improvement over the base
policy.

While the theoretical support for some of the NDP methodology has only
recently emerged, there have been quite a few reports of successes with prob-
lems too large and complex to be treated in any other way. A particularly
impressive success is the development of a backgammon playing program by
Tesauro [Tes92]. Here a neural network provided a compact representation of
the optimal cost function of the game of backgammon by using simulation and
TD(λ). The training was performed by letting the program play against itself.
After training for several months, the program nearly defeated the human world
champion. Variations of the method used by Tesauro have been used in a variety
of applications.

The recent experience of researchers, involving several engineering applica-
tions, has confirmed that NDP methods can be impressively effective in problems



where traditional DP methods would be hardly applicable and other heuris-
tic methods would have a limited chance of success. We note, however, that
the practical application of NDP is computationally very intensive, and often
requires a considerable amount of trial and error. Fortunately, all the com-
putation and experimentation with different approaches can be done off-line.
Once the approximation is obtained off-line, it can be used to generate deci-
sions fast enough for use in real time. In this context, we mention that in
the machine learning literature, reinforcement learning is often viewed as an
“on-line” method, whereby the cost approximation is improved as the system
operates in real time. This is reminiscent of the methods of traditional adaptive
control. We will not discuss this viewpoint, as we prefer to focus on applications
involving a large and complex system. A lot of training data is required for such
a system. These data typically cannot be obtained in sufficient volume as the
system is operating; even if they can, the corresponding processing requirements
are typically too large for effective use in real time.

Extensive references for the material of this article are the research mono-
graphs by Bertsekas and Tsitsiklis [BeT96], and by Sutton and Barto [SuB98].
A more limited textbook discussion is given in the DP textbook by Bertsekas
[Ber95]. The 2nd edition of the first volume of this DP text [Ber00] contains
a detailed discussion of rollout algorithms. The extensive survey by Barto,
Bradtke, and Singh [BBS95], and the overviews by Werbös [Wer92a], [Wer92b],
and other papers in the edited volume by White and Sofge [WhS92] point out the
connections between the artificial intelligence/reinforcement learning viewpoint
and the control theory/DP viewpoint, and give many references.

REFERENCES

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. “Real-Time
Learning and Control Using Asynchronous Dynamic Programming,” Artificial
Intelligence, Vol. 72, 1995, pp. 81-138.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Pro-
gramming, Athena Scientific, Belmont, MA.

[Ber95] Bertsekas, D. P., 1995. Dynamic Programming and Optimal Control,
Vol. II, Athena Scientific, Belmont, MA.

[Ber00] Bertsekas, D. P., 2000. Dynamic Programming and Optimal Control,
Vol. I, 2nd Edition, Athena Scientific, Belmont, MA.

[KeG88] Keerthi, S. S., and Gilbert, E. G., 1988. “Optimal, Infinite Hori-
zon Feedback Laws for a General Class of Constrained Discete Time Systems:
Stability and Moving-Horizon Approximations,” J. Optimization Theory Appl.,
Vo. 57, pp. 265-293.

[MRR00] Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O.
M., 2000. “Constrained Model Predictive Control: Stability and Optimality,”
Automatica, Vol. 36, pp. 789-814.



[MoL99] Morari, M., and Lee, J. H., 1999. “Model Predictive Control: Past,
Present, and Future,” Computers and Chemical Engineering, Vol. 23, pp. 667-
682.

[SuB98] Sutton, R. S., and Barto, A. G., 1988. Reinforcement Learning, MIT
Press, Cambridge, MA.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the Methods of Tem-
poral Differences,” Machine Learning, Vol. 3, pp. 9-44.

[Tes92] Tesauro, G., 1992. “Practical Issues in Temporal Difference Learn-
ing,” Machine Learning, Vol. 8, pp. 257-277.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and
Q-Learning,” Machine Learning, Vol. 16, pp. 185-202.

[Wat89] Watkins, C. J. C. H., “Learning from Delayed Rewards,” Ph.D.
Thesis, Cambridge Univ., England.

[Wer92a] Werbös, P. J, 1992. “Approximate Dynamic Programming for Real-
Time Control and Neural Modeling,” in D. A. White and D. A. Sofge, (eds.),
Handbook of Intelligent Control, Van Nostrand, N. Y.

[Wer92b] Werbös, P. J, 1992. “Neurocontrol and Supervised Learning: an
Overview and Valuation,” in D. A. White and D. A. Sofge, (eds.), Handbook of
Intelligent Control, Van Nostrand, N. Y.

[WhS92] White, D. A., and Sofge, D. A., (eds.), 1992. Handbook of Intelli-
gent Control, Van Nostrand, N. Y.


