IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRURY 2021

249

Multiagent Reinforcement Learning:
Rollout and Policy Iteration

Dimitri Bertsekas

Abstract—We discuss the solution of complex multistage deci-
sion problems using methods that are based on the idea of poli
iteration (PI), i.e., start from some base policy and gener@ an
improved policy. Rollout is the simplest method of this type
where just one improved policy is generated. We can view Pl
as repeated application of rollout, where the rollout poliy at
each iteration serves as the base policy for the next iterain.
In contrast with PI, rollout has a robustness property: it can be
applied on-line and is suitable for on-line replanning. Moreover,

rollout can use as base policy one of the policies produced by

P1, thereby improving on that policy. This is the type of schene
underlying the prominently successful AlphaZero chess prgram.
In this paper we focus on rollout and Pl-like methods for
problems where the control consists of multiple componentsach
selected (conceptually) by a separate agent. This is the sk of
multiagent problems where the agents have a shared objectv
function, and a shared and perfect state information. Baseadn a
problem reformulation that trades off control space compleity
with state space complexity, we develop an approach, whergb
at every stage, the agents sequentially (one-at-a-time) eoute a
local rollout algorithm that uses a base policy, together wth some
coordinating information from the other agents. The amount of
total computation required at every stage grows linearly wth the
number of agents. By contrast, in the standard rollout algoithm,
the amount of total computation grows exponentially with the
number of agents. Despite the dramatic reduction in requirel
computation, we show that our multiagent rollout algorithm has
the fundamental cost improvement property of standard rollout:
it guarantees an improved performance relative to the basegicy.

form are strictly off-line methods, but they can be used to povide
a base policy for use in an on-line multiagent rollout scheme

Index Terms—Dynamic programming, multiagent problems,
neuro-dynamic programming, policy iteration, reinforcement
learning, rollout.

I. INTRODUCTION

N this paper we discuss the solution of large and challeng-

ing multistage decision and control problems, which in-
volve controls with multiple components, each associatild w
a different decision maker or agent. We focus on problents tha
can be solved in principle by dynamic programming (DP),
but are addressed in practice using methods of reinforcemen
learning (RL), also referred to by names such as approximate
dynamic programming and neuro-dynamic programming. We
will discuss methods that involve various forms of the dlzeds
method of policy iteration (PI), which starts from some pwli
and generates one or more improved policies.

If just one improved policy is generated, this is called
rollout, with the initial policy calledbase policyand the
improved policy calledrollout policy. Based on broad and
consistent computational experience, rollout appears éo b
one of the simplest and most reliable of all RL methods
(we refer to the author's textbooks [1]3] for an extensive

We also discuss autonomous multiagent rollout schemes thatlist of research contributions and case studies on the use of

allow the agents to make decisions autonomously through the
use of precomputed signaling information, which is suf ciet to
maintain the cost improvement property, without any on-line
coordination of control selection between the agents.

For discounted and other in nite horizon problems, we also
consider exact and approximate Pl algorithms involving a n&
type of one-agent-at-a-time policy improvement operation For
one of our Pl algorithms, we prove convergence to an agent-
by-agent optimal policy, thus establishing a connection wh the
theory of teams. For another PI algorithm, which is executed

over a more complex state space, we prove convergence to al

optimal policy. Approximate forms of these algorithms are dso
given, based on the use of policy and value neural networks.
These PI algorithms, in both their exact and their approximae

Manuscript received September 23, 2020; revised October@30; ac-
cepted October 30, 2020. Recommended by Associate Editagla@iwWei.

For a video lecture and slides based on this paper, see thepaghs
of the books [2], [3] at the author's web site: http://weliedu/dimitrib/
www/RLbook.html.

Citation: D. Bertsekas, “Multiagent reinforcement leaqi Rollout and
policy iteration,” IEEE/CAA J. Autom. Sini¢avol. 8, no. 2, pp. 249272,
Feb. 2021.

D. Bertsekas is with the Arizona State University (ASU), TamAZ 85281
USA, and also with Massachusetts Institute of TechnologyTjMCambridge,
MA 02139 USA (e-mail: dimitrib@mit.edu).

Color versions of one or more of the gures in this paper arailable
online at http://ieeexplore.ieee.org.

Digital Object Identi er 10.1109/JAS.2021.1003814

rollout). Rollout is also well-suited for on-line modekf
implementation and on-line replanning.

Approximate Pl is one of the most prominent types of
RL methods. It can be viewed as repeated application of
rollout, and can provide (off-line) the base policy for useai
rollout scheme. It can be implemented using data generated
by the system itself, and value and policy approximations.
Approximate forms of Pl, which are based on the use

of approximation architectures, such as value and policy

neural networks, have most prominently been used in the
spectacularly successful AlphaZero chess program; seerSil

et al. [4]. In particular, in the AlphaZero architecture a policy

is constructed via an approximate Pl scheme that is based
on the use of deep neural networks. This policy is used as
a base policy to generate chess moves on-line through an
approximate multistep lookahead scheme that applies Monte
Carlo tree search with an approximate evaluation of the
base policy used as a terminal cost function approximation.
Detailed descriptions of approximate Pl schemes can be
found in most of the RL textbooks, including the author's
[2], [3], which share the notation and point of view of the
present paper.
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1) Our Multiagent Structure that maps the current state to an m-component control
The purpose of this paper is to survey variants of rollout(x) = 1(X);::; m(x) , also referred to as thbease

that consists of multiple components;:::;un, i.e., involves at each state, a one-step lookahead minimization
of the general form
u=(uz;:i;Um); (1)

U}iﬂ HGu;d ); 2

where J is the cost function of policy (a function of
x), and H is a problem-dependent Bellman operator. This
minimization may be done off-line (before control has sdjt
U= U, Un: or on-line (after control has started), and de nes a newgqyoli
~ (also referred to as thellout policy), whereby the control
~(x) to be applied atx is the one attaining the minimum

agents. _ _ _ _ _ above. The key property for the success of the rollout and P!
The term “multiagent” is used widely in the I'teraturealgorithms is the policy improvement property
with several different meanings. Here, we use this term as

a conceptual metaphor in the context of problems with the J-(x) J (X); for all statesx; 3)
multi-component structure (1); it is often insightful tsasiate ) ,
control components with agent actions. A common examgt§-» the rollout policy yields reduced cost compared with t
of a multiagent problem is multi-robot (or multi-personP@se policy, for all states. Assuming that each sef- is
service systems, often involving a network, such as daljverite (@ we do in this paper), there are two dif culties with
maintenance and repair, search and rescue, re ghtingcéix the I(_)okahe_ad mlnlmlzat|qn (2), _vvh|ch manifest themselves
or utility vehicle assignment, and other related contepsre 20th in off-line and in on-line settings:
the decisions are implemented collectively by the robots (o (8) The cardinality of the Cartesian produdtgrows ex-
persons, respectively), with the aid of information exgymn Ponentially with the numbem of agents, thus resulting in
or collection from sensors or from a computational “cloud 8Xcessive computatlonal overhead in the minimization over
The information may or may not be common to all the robots2 U whenm is large.
or persons involved. Another example involves a network of (P) To implement the minimization (2), the agents need
facilities, where service is offered to clients that movehivi 0 coordinate their choices of controls, thus precludingrth
the network. Here the agents may correspond to the servR@allel computation. . .
facilities or to the clients or to both, with information shay In this paper, we develop rollout and PI algorithms, which,
that may involve errors and/or delays. as a rst objective, aim to alleviate the preceding two dif-
Note, however, that the methodology of this paper app”égjlties. A key idea is to introduce a form of sequential
generally to any problem where the controkconsists ofm agent-by-agent one-step I-o.okahead mini-mization, which we
componentsy = (ug;:::;um) [cf. EQ.(1)], independently of ca[l multiagent rollout It mitigates dramatlcglly the compu-
the details of the associated practical context. In paeticu t@tional bottleneck due to (a) above. In particutag amount
the practical situation addressed may not involve recagi@ ©f computation required at each stage grows linearly with
“agents” in the common sense of the word, such as multigfg® number of agents, rather than exponentiallyDespite
robots, automobiles, service facilities, or clients. Fearaple, the dramatic reduction in required computation, we show
it may simply involve control with several components, sucifiat our multiagent rollout algorithm has the fundamental
as a single robot with multiple moving arms, a chemic0St improvement property (3): it guarantees an improved
plant with multiple interacting but independently conteal performance of the rollout policy relative to the base pplic
processes, or a power system with multiple production eente Multiagent rollout in the form just described involves co-
As is generally true in DP problems, in addition to controprdination of the control selections of the different agent
there is an underlying state, denotedshywhich summarizes In particular, it requires that the agents select their st
all the information that is useful at a given time for théequentially in a prespeci ed order, with each agent comimun
purposes of future optimization. It is assumed thxatis cating its control selection to the other agents. To allovalbel
perfectly known by all the agents at each stage. a PI control selection by the agents [cf. (b) above], we suggest t

in nite horizon context, given the current policy [a function implement multiagent rollout with the use ofpgecomputed
signaling policythat embodies agent coordination. One possi-

1we will also allow later dependence of the séfs on a system state. bility is to approximately compute off-line the multiagewtl-

More complex constraint coupling of the control componearas be allowed ; ; R ; R

at the expense of additional algorithmic complications: [83, [5], [6]. out policy through apprQX|mat|on in policy space, i.e.rtag
2partial observation Markov decision problems (POMDP) carmdnverted an approximation arc;hnecture such as a neural network to

to problems involving perfect state information by usingediéf state; see e.g., learn the rollout policy. This scheme, calleaitonomous

the textbook [1]. Our assumption then amounts to perfeciMedge of the multiagent rollout allows the use of autonomous, and faster

belief state by all agents. For example, we may think of areéprocessing . , . . .
computational “cloud” that collects and processes staferrnmation, and distributed and asynChronous on-line control selection by

broadcasts a belief state to all agents at each stage. the agents, with a potential sacri ce of performance, which

the overall constraint set is 2 U, whereU is the Cartesian
product

We associate each control componentwith the “th of m
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depends on the quality of the policy space approximatiowho then perform local computations to apply their controls
Note thatautonomous multiagent rollout makes sense only as functions of the system state; see Fig.1l. Alternatively,
the context of distributed computatid all computations are the agent computations can be done at the cloud, and the
performed serially on a single processor, there is no retsorresults may be passed on to the agents in place of the exact
resort to signaling policies and autonomous rollout scheemestate. This scheme is also well suited as a starting point for

Let us also mention that distributed DP algorithms hawpproximations where the state information made available
been considered in a number of contexts that involve partire agents is replaced by precomputed “signaling” politias
tioning of the state space into subsets, with a DP algorithgness/estimate missing information. The estimates ane the
executed in parallel within each subset. For example diseated by the agents as if they were exact. Of course such
tributed value iteration has been investigated in the atghoan approach is not universally effective, but may work well
papers [7], [8], and the book [9]. Also asynchronous Hbr favorable problem structuréslts analysis is beyond the
algorithms have been discussed in a series of papers of sigepe of the present paper, and is left as a subject for furthe
author and Yu [10] [12], as well as the books [3], [13], [14] . research.

Moreover, distributed DP based on partitioning in conjiorct

with neural network training on each subset of the partition

has been considered in the context of a challenging partia l <\ l

state information problem by Bhattacharga al. [15]. The .

algorithmic ideas of these works do not directly apply to )
the multiagent context of this paper. Still one may envision
applications where parallelization with state space fianing ‘ State
is combined with the multiagent parallelization ideas of th

present paper. In particular, one may consider Pl schenags th

involve multiple agents/processors, each using a stateespa Agent 1
partitioning scheme with a cost function and an agent policy u,
de ned over each subset of the partition. The agents may then
communicate asynchronously their policies and cost fonsti Fig.1. lllustration of a conceptual structure for our magnt system. The

to other agents, as described in the paper [10] and bogkud” collects information from the environment and frdime agents on-

[3] (Section 5.6), and iterate according to the agent-bgrag line, and broadcasts the state (and possibly other infiomjato the agents
policy evaluation and policy improvement schemes disaliss& each stage, who then perform local computations to apjely tontrols as

in this paper. This, however, is beyond our scope and is |éftctions of the state information obtained from the clo@d.course some

as an interesting subject for further research. of these local computations may be done at the cloud, andethéts may be

2) Classical and Nonclassical Information Patterns passed on to the agents in place of the exact state. In thetaggoblem with

It is worth emphasizing that our multiagent problem forpartial state observation, the cloud computes the curretefbstate (rather
mulation requires that all the agents fully share inforgmti than the state).
including the values of the controls that they have applred i
the past' and have perfect memory of all past information_we note that our multiagent rollout schemes relate to a
This gives rise to a problem with a so called “classicavell-developed body of research with a long history: the
information pattern,” a terminology introduced in the peplay theory of teams and decentralized control, and the notion
Witsenhausen [16], [17]. A fact of fundamental importanse Pf person-by-person optimality; see Marschak [18], Radner
that problems possessing this structure can be addresgied WiSl, Witsenhausen [17], [20], Marschak and Radner [21],
the DP formalism and approximation in value space metho@@ndellet al. [22], Yoshikawa [23], Ho [24]. For more recent
of RL. Problems where this structure is absent, referred #9rks, see Bauso and Pesenti [25], [26], Nayyar, Mahajah, an
as problems with “nonclassical information pattern,” cainn Teneketzis [27], Nayyar and Teneketzis [28], éfi al. [29],
be addressed formally by DP (except through impractic®U and Li [30], Gupta [31], the books by Bullo, Cortes, and
reformulations), and are generally far more complicatex!, artinez [32], Mesbahi and Egerstedt [33], Mahmoud [34],
illustrated for linear systems and quadratic cost by theofzsn and Zoppoli, Sanguineti, Gnecco, and Parisini [35], and the
counterexample of [16]. references quoted there.

Once a classical information pattern is adopted, we mayThe connection of our work with team theory manifests
assume that all agents have access to a systeri atatenake itself in our in nite horizon DP methodology, which incluge
use of a simple conceptual model: there is a computatiov@lue iteration and PI methods that converge to a person-by-
“cloud” that collects information from the agents on-lineperson optimal policy. Note that in contrast with the présen
computes the system state, and passes it on to the ageP@Per, a large portion of the work on team theory and de-

State
Info

3The system state at a given time is either the common infoomaif 4For example consider a problem where the agent locatiorisinvitome
all the agents, or a sufcient statistic/summary of thisoimhation, which two-dimensional space become available to the other agétiisome delay.
is enough for the computation of a policy that performs aabiy close to It may then make sense for the agents to apply some algorithestimate
optimal. For example in the case of a system with partiakestdiservations, the location of the other agents based on the availablenrEtion, and use
we could use as system state a belief state; see e.g., [1]. the estimates in a multiagent rollout scheme as if they weaete
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centralized control allows a nonclassical informationtgratt, while the bottleneck due to exponential growth of compotati
whereby the agents do not share the same state informatigth the number of agents has been recognized [47], [48], it
and/or forget information previously received, althouglky has not been effectively addressed. It appears that theatent
do share the same cost function. In the case of a multiagéga of the present paper, agent-by-agent sequential izptim
system with partially observed state, this type of model toon while maintaining the cost improvement property, has
also known as a decentralized POMDP (or Dec-POMDP),b&een considered only recently. In particular, the apprdach
subject that has attracted a lot of attention in the last 205;e maintaining cost improvement through agent-by-agenoubl
see e.g., the monograph by Oliehoek and Amato [36], amés rst introduced in the author's papers [5], [6], [63],can
the references quoted there. We may also note the extensasearch monograph [3].
literature on game-theoretic types of problems, includitagh A major computational study where several of the algo-
games, where the agents have different cost functions;.gee a@ithmic ideas of this paper have been tested and validated is
the surveys by Hernandez-Leatl al. [37], and Zhang, Yang, the paper by Bhattacharyt al. [64]. This paper considers a
and Basar [38]. Such problems are completely outside darge-scale multi-robot routing and repair problem, imiod
scope and require a substantial departure from the metHodpartial state information, and explores some of the attenda
this paper. Zero-sum sequential games may be more amenébiglementation issues, including autonomous multiagelt r
to treatment with the methodology of this paper, because theut, through the use of policy neural networks and other
can be addressed within a DP framework (see e.g., Shaptegcomputed signaling policies.
[39], Littman [40]), but this remains a subject for further The author's paper [6] and monograph [3] discuss con-
research. strained forms of rollout for deterministic problems, iding

In addition to the aforementioned works on team theory amdultiagent forms, and an extensive range of applications
decentralized control, there has been considerable deladek in discrete/combinatorial optimization and model predet
on multiagent sequential decision making from a machir®@ntrol. The character of this deterministic constrainatbut
learning perspective, often with the use of variants of goli methodology differs markedly from the one of the methods
gradient, Q-learning, and random search methods. Worksadf this paper. Still the rollout ideas of the paper [6] are
this type also have a long history, and they have been sudveweipplementary to the ones of the present paper, and point the
over time by Sycara [41], Stone and Veloso [42], Panaitay to potential extensions of constrained rollout to sastic
and Luke [43], Busoniu, Babuska, and De Schutter [44problems. We note also that the monograph [3] describes
[45], Matignon, Laurent, and Le Fort-Piat [46], Hernandeznultiagent rollout methods for minimax/robust control,dan
Leal, Kartal, and Taylor [47], OroojlooyJadid and Hajinadh other problems with an abstract DP structure.
[48], Zzhang, Yang, and Basar [38], and Nguyen, Nguyen, 4) Organization of the Paper
and Nahavandi [49], who list many other references. For The present paper is organized as follows. We rst introduce
some representative recent research papers, see Tes@jro [Bite horizon stochastic optimal control problems in Secti
Oliehoek, Kooij, and Vlassis [51], Pennesi and Paschalidis we explain the main idea behind the multiagent rollout
[52], Paschalidis and Lin [53], Kar, Moura, and Poor [54Jalgorithm, and we show the cost improvement property. We
Foersteret al. [55], Omidsha ei et al. [56], Gupta, Egorov, also discuss variants of the algorithm that are aimed at

and Kochenderfer [57], Lowet al. [58], Zhou et al. [59], improving its computational ef ciency. In Section Ill, we
Zhanget al. [60], Zhang and Zavlanos [61], and de Wit consider the implementation of autonomous multiagenoub)l
al. [62]. including schemes that allow the distributed and asynabuien

These works collectively describe several formidable -dif computation of the agents' control components.
culties in the implementation of reliable multiagent vers We then turn to in nite horizon discounted problems. In
of policy gradient and Q-learning methods, although thexehaparticular, in Section IV, we extend the multiagent rollout
not emphasized the critical distinction between classical algorithm, we discuss the cost improvement property, and we
nonclassical information patterns. It is also worth notthgt provide error bounds for versions of the algorithm invotyin
policy gradient methods, Q-learning, and random search ao#lout truncation and simulation. We also discuss two type
primarily off-line algorithms, as they are typically tooosl of multiagent Pl algorithms, in Sections IV-A and IV-E,
and noise-af icted to be applied with on-line data collecti respectively. The rst of these, in its exact form, conveyge
As a result, they produce policies that are tied to the model an agent-by-agent optimal policy, thus establishing & co
used for their training. Thus, contrary to rollout, they a nection with the theory of teams. The second PI algorithm,
robust with respect to changes in the problem data, and thayits exact form, converges to an optimal policy, but must
are not well suited for on-line replanning. On the other hante executed over a more complex state space. Approximate
it is possible to train a policy with a policy gradient or raml forms of these algorithms, as well as forms of Q-learning,
search method by using a nominal model, and use it as a base also discussed, based on the use of policy and value
policy for on-line rollout in a scheme that employs on-lin@eural networks. These algorithms, in both their exact heit t
replanning. approximate form are strictly off-line methods, but they &e&

3) Related Works used to provide a base policy for use in an on-line multiagent

The multiagent systems eld has a long history, and thmllout scheme. Finally, in Section V we discuss autonomous
range of related works noted above is very broad. Howevenultiagent rollout schemes for in nite horizon discounted
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Fig. 2.
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lllustration of theN -stage stochastic optimal control problem. Starting fraatesx,, the next state under contral is generated according to a

Xk+1 = Fr(Xk; Uk Wi);

wherewy is the random disturbance, and a random stage gdsty ; Uk ; Wi ) is incurred.

problems, which allow for distributed on-line implemeinat

Il. MULTIAGENT PROBLEM FORMULATION - FINITE
HORIZON PROBLEMS

A. The Standard Rollout Algorithm and Policy Improvement

In the standard form of rollout, given a policy =

We consider a standard form of &nstage DP problem (seeimproved policy, i.e., one that achieves cost that is lessjagl

[1], [2]), which involves the discrete-time dynamic system

Xk+1 = Fr(Xk; Uk;Wk);

wherexy is an element of some (possibly in nite) state spac
the controluy is an element of some nite control space, an

wg is a random disturbance, with given probability distributi
Px( ] Xx;uk) that may depend explicitly orx anduy, but
not on values of prior disturbancesg 1;:::;wg. The control
Uk is constrained to take values in a given subdgfxy),
which depends on the current statg. The cost of thekth
stage is denoted bgk (Xk; Uk; Wk); see Fig. 2.

We consider policies of the form

where  maps stategy into controlsux = ((Xk), and sat-
is es a control constraint of the formy (xx) 2 Uk (xy) for all

Xk . Given an initial statexg and a policy = f o;:::; N 10,
the expected cost of starting fromxg is
J (Xo)= E on(Xn)+ O Xk; k(Xk);Wk

k=0

where the expected value operatibrfig is with respect to
the joint distribution of all the random variableg and xy.
The optimal cost starting fromy, is de ned by

J (xo) = m%n J (Xo);

where is the set of all policies. An optimal policy is one
that attains the minimal cost for eveky; i.e.,
J (Xo) = mgn J (Xo); for all xo:

Since the optimal cost functioh and optimal policy are

%1’ policy gradient method of the actor/critic type (see dhg,

to Ji. (xk) starting from eack . The base policy is arbitrary.
It may be a simple heuristic policy or a sophisticated policy
obtained by off-line training through the use of an appraaten
Pl method that uses a neural network for policy evaluation or

reinforcement learning book [2]).

The standard rollout algorithm has a long history (see the
textbooks [1] [3], [65], which collectively list a large number
of research contributions). The name “rollout” was coingd b
Tesauro, who among others, has used a “truncated” version
of the rollout algorithm for a highly successful applicatim
computer backgammon [66]. The algorithm is widely viewed
among the simplest and most reliable RL methods. It provides
on-line control of the system as follows:

Standard One-Step Lookahead Rollout Algorithm

Given a base policy = f o;:::; ~ 10, start with the initial
statexo, and proceed forward generating a trajectory

1, 8N 15XN G

according to the system equation (4), by applying at eade sta
Xk a controlty, selected by the one-step lookahead minimizatjon
n
E gk(Xk; Uk;Wk)
0

min

t 2 ar
k gUkZUk(Xk)

+~]k+1 ) (5)

i (Xi; Uk ; Wk)

Throughout this paper we will focus on rollout algorithms
that involve one-step lookahead minimization as in Eq{6g
basic ideas extend to multistep lookahead, in which cagerbet
performance can be expected at the expense of substantially
increased on-line computation. The one-step minimizg&n
which usesJy+1: in place of the optimal cost functiod |,
denes a policy ~ = f~y;:::;~y 10, referred to as the

typically hard to obtain by exact DP, we consider approxamatollout policy, where for allxy andk, ~(Xx) is equal to the
DP/RL algorithms for suboptimal solution, and focus orontrolwy obtained from Eq.(5). The rollout policy possesses

rollout, which we describe next.

a fundamentatost improvement propertit improves over the
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base policy in the sense that constraint set is the Cartesian product

Je-(x) e ()i Bxick (6) U (o) = U () Ui (x): ")

Then the minimization (5) involves as many g% Q-factors,

policy starting from statec (see, e.g., [1], Section 6.4, ory, (x«) [so thatq™ is an upper bound to the number of
[2], Section 2.4.2). Extensive experimentation has shdva t controls inUx(xk), in view of its Cartesian product structure
in practice the rollout policy typically performs signi edly (7)]. Thus the computation required by the standard rollout
better than the base policy, even when the latter policy qualgorithm is of ordetO(q™) per stage.
poor. We propose an alternative rollout algorithm that achieves
In addition to the cost improvement property, the rollouhe cost improvement property (6) at much smaller compu-
algorithm (5) has a second nice property: it is an on-lin@algtational cost, namely of ordegd(gm) per stage. A key idea
rithm, and hence inherently possesse®laustness property is that the computational requirements of the rollout oteg-s
it can adapt to variations of the problem data through oe-litminimization (5) are proportional to the number of controls
replanning. Thus if there are changes in the problem datd(sun the setUy(xx) and are independent of the size of the state
as for example the probability distribution v, or the stage space. This motivates a problem reformulation, rst pragbs
cost functiongy ), the performance of the base policy can b the neuro-dynamic programming book [65], Section 6.1.4,
seriously affected, but the performance of the rollout @oli whereby control space complexity is traded off with state
is much less affected because the computation in Eq.(5) vdjpace complexity by “unfolding” the contraly into its m
take into account the changed problem data. components, which are applied one-agent-at-a-time rétlaer
Despite the advantageous properties just noted, the toll@l-agents-at-once. We will next apply this idea within our
algorithm suffers from a serious disadvantage when the conultiagent rollout context. We note, however, that the idaa
straint selJy (k) has a large number of elements, namely thée useful in other multiagent algorithmic contexts, inched
the minimization in Eq.(5) involves a large number of algern approximate Pl, as we will discuss in Section IV-E.
tives. In particular, let us consider the expected valuegnd,

which is the Q-factor of the pa(ixi; ux) corresponding to the C. Trading off Control Space Complexity with State Space

base policy: Complexity
Qu (X U) = E ge(Xe; Ui Wi) We noted that a major issue in rollout is the minimization
o over ux 2 Uk(xk) in Eqg.(5), which may be very time-
+ Jeer: F(Xig U wy) consuming when the size of the control constraint set iselarg
In particular, in the multiagent case wheng= (ui;:::;ufl");

In the “standard” implementation of rollout, at each encouf® time to perform this minimization is typically exponiht
tered statex, the Q-factoQi. (X« Ux) is computed by some in m. In this case, we can reformulate the problem by breaking

algorithm separately for each contral 2 Uy (x«) (often by dovx{n.the collective decisipuk intom individ-ual component
Monte Carlo simulation). Despite the inherent paraligia d€cisions, thereby reducing the complexity of the control
possibility of this computation, in the multiagent conteat SPace while increasing the complexity of the state space. Th
be discussed shortly, the number of controlsUin(xx), and potential advantage is that tr_le extra s'Fate space complexit
the attendant computation and comparison of Q-factorsy gr§l0€s not affect the computational requirements of some RL
rapidly with the number of agents, and can become vefjgorithms, including roliout. _ _

large. We next introduce a modi ed rollout algorithm for the 0 this end, we introduce a modi ed but equivalent problem,
multiagent case, which requires much less on-line Commmmvolvmg one-agent-at-a-time control selectiofit the generic

but still maintains the cost improvement property (6). statexy, we break down the contral, into the sequence of
the m controlsu}; uZ;:::;ufl, and betweer and the next
statexg+1 = fk(Xk;Uk;Wk), we introduce arti cial interme-
_ diate “states”(Xk; Ug); (Xi; Uk u2);:ii; (X ugs i ul b,
B. The Multiagent Case and corresponding transitions. The choice of the last obntr
m “ ” G m 1 _
Let us assume a special structure of the control Spagglmponenuk at “state” (x; Uj; =1 13U’ 7) marks the tran

jtion to the next statayg+1 = fi(Xk;Uk;wWg) according to
the system equation, while incurring cagt(xy; Ux; Wg); see
Fig. 3.

corresponding to a multiagent version of the problem.
particular, we assume that the contng} consists ofm

1 5The Cartesian product structure of the constraint set igptedohere
U = (Ujs s ud'); for simplicity of exposition, particularly when arguing @it computational
complexity. The idea of trading off control space complgxnd state space
complexity (cf. Section II-C), on which this paper rests.esianot depend
! on a Cartesian product constraint structure. Of course whienstructure is
stagek, from within a given setU, (xx). Thus the control present, it simpli es the computations of our methods.
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Fig.3. Equivalent formulation of thi -stage stochastic optimal control problem for the case &t control consists ofn componentau& ; uﬁ conuph
ug = (ug;nul) 2 Uk (xk) UM (xk):
The gure depicts thekth stage transitions. Starting from statg, we generate the intermediate sta(ag;uﬁ); (Xk; u&;uﬁ); R (xk'uﬁ;:::;uk ),

using the respective controlﬁ;:::;u'kn 1. The nal control uy' leads from(xk;u%;:::;ukm Hto Xye1 = fk(xk;u%;:::;uk ;Wg), and a random
stage costy (Xk; uﬁ;:::;u[(“ ;W) is incurred.

It is evident that this reformulated problem is equivalentt — ~}(xk) 2
the original, since any control choice that is possible i on a min  E X Uls 2(xi):n M (x1): W
problem is also possible in the other problem, while the cost u 201 (xi ) G X Ui kX == i () We

structure of the two problems is the same. In particularnyeve Fon feoxoul 206000 Pow)iwe
policy
2
o _ ) o arg min  E g Xk ~p(Xk); Ui B (Xk); Wk
of the original problem, including a base policy in the comte ug2U2(xk) o
of rollout, is admissible fpr the reformglgted problem, and Jor: f X ~Ex)iud T)iwe
has the same cost function for the original as well as the
reformulated problem.
The motivation for the reformulated problem s
that the control space is simplied at the expense
of introducing m 1 additional layers of states, and "k (x) 2 n
correspondingm 1 cost-to-go functions J}(x; Ui), arg min  E gk X ~e (%K)~ Hx)s ul s wic
Jz(Xk uk’ k) ..... ‘]Iin l(Xk;UE(';"" m 1) in addition ug 2U" (x«) o
to Jk(xx). On the other hand, the mcrease in size of the + Jiuq. i xi; ~E (k)i ~0 to)iufswe @ (8)

state space does not adversely affect the operation ofutpllo

since the Q-factor minimization (5) is performed for just Thus, when applied on-line, aty, the algorithm gen-
one state at each stage. Moreover, in a different conteat, ¥rates the control—(xx) = ~L(xk);:::;~0'(xk) via a
increase in size of the state space can be dealt with funct@quence ofm minimizations, once over each of the agent
approximation, i.e., with the introduction of cost-to-gaontrols uj;:::;ul, with the past controls determined by
approximations the rollout policy, and the future controls determined by
the base policy cf. EQ.(8). Assuming a maximum of|
elements in the constraint selth (xx), the computation re-
(Xk Ukiii"Uk L ), quired at each stagk is of order O(q) for each of the

_____ 1 _ “states” Xi; (Xi; Ug)s i (X U g 1); for a total of
in addition toJy (Xk;rk), wherery; rk,.. rk are param orderO(gm) computation.

eters of corresponding approximation architectures (sagh . . .
P g app ( In the “standard” implementation of the algorithm, at each

feature-based architectures and neural networks); se@®Sec 1 TN
IV-E. Xii U 221Uy ) with m, and for each of the controls

u,, we generate by simulation a number of system trajectories
up to stageN , with all future controls determined by the base
D. Multiagent Rollout and Cost Improvement policy. We average the costs of these trajectories thembby
Consider now the standard rollout algorithm applied to tHaining the Q-factor corresponding fa; ug;:::;u, 4 uy).
reformulated problem shown in Fig. 3, with a given base olidVe then select the contral that corresponds to the minimal
=f o115 N 10; which is also a policy of the original Q-factor, with the controlsui;:::;u, * held xed at the
problem [so that = ( %;:::; ), with each ,, * = values computed earlier.
1;::::m, being a function ofjugtk] The algorithm generates  Prerequisite assumptions for the preceding algorithm to
a roIIout policy ~ = f~p;:::;~v 10; where for each stage Work in an on-line multiagent setting are:
k, ~x consists ofm components~k, e~ = (=&~ (a) All agents have access to the current skate
and is obtained for alkkx according to the sequential one-step (b) There is an order in which agents compute and apply
lookahead minimizations their local controls.
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(c) There is “intercommunication” between agents, so agemhere in the preceding relation:
1 computed by the (a) The rst equality is the DP/Bellman equation for the
predecessor agents:::;" 1in the given order. rollout policy ~.

In Sections Il and V, we will aim to relax Assumptions (b) The rst inequality holds by the induction hypothesis.
(b) and (c), through the use of autonomous multiagent rallou (c) The second equality holds by the de nition of the
Assumption (a) is satis ed if there is a central computatiomultiagent rollout algorithm as it pertains to agent 2.
center (a “cloud”) that collects all the information avéila (d) The third equality holds by the de nition of the multi-
from the agents and from other sources, obtains the state ggent rollout algorithm as it pertains to agent 1.

a belief state in the case of partial state information prot)| (e) The last equality is the DP/Bellman equation for the
and broadcasts it to the agents as needed; cf. Fig. 1. To rdi@se policy .

this assumption, one may assume that the agents use ahhe induction proof of the cost improvement property (9) is
estimate of the state in place of the unavailable true stdteis complete for the casa = 2. The proof for an arbitrary

in all computations. However, this possibility has not beemumber of agents is entirely similar.

investigated and is beyond our scope. Note that there are cases where the all-agents-at-once stan

Note that the rollout policy (8), obtained from the refordard rollout algorithm can improve strictly the base policy
mulated problem is different from the rollout policy obtath but the one-agent-at-a-time algorithm will not. This pbay
from the original problem [cf. Eq.(5)]. Generally, it is Usar arises when the base policy is “agent-by-agent-optimad,’ i
how the two rollout policies perform relative to each other ieach agent's control component is optimal, assuming ttet th
terms of attained cost. On the other hand, both rollout fesic control components of all other agents are kept xed at some
perform no worse than the base policy, since the performartg®wn value$. Such a policy may not be optimal, except
of the base policy is identical for both the reformulatednder special conditions (we give an example in the next
problem and for the original problem. This is shown formallgection). Thus if the base policy is agent-by-agent-ogtima
in the following proposition. multiagent rollout will be unable to improve strictly the
cost function, even if this base policy is strictly subomim
Proposition 1:Let be a base policy and letbe a corresponding However, we speculate that a situation where a base policy is
rollout policy generated by the multiagent rollout algbrit (8). |  agent-by-agent-optimal is unlikely to occur in rollout ptiae,

We have since ordinarily a base policy must be reasonably simple,
J~(Xk) Ik (Xk); for all xx andk. 9) readily available, and easily simulated.

Let us provide an example that illustrates how the size of

Proof: We will show Eq.(9) by induction, and for simplicity, the control space may become intractable for even moderate

we will give the proof for the case of just two agents, ire.=  values of the number of agents.
2. Clearly Eq.(9) holds fok = N, sincedy. - = Jn: = On -
Assuming that it holds for indek+1, i.e., Jks1;- Jk+1; , Example 1 (Spiders and Fly)
we have for allxy, Here there arem spiders and one y moving on a
n 2-dimensional grid. During each time period the y moves
Ji~(xk) = E gk Xk ~E(Xk); ~2(Xk); Wi to some other position according to a given state-dependent
0 probability distribution. The spiders, working as a teanm a
+ Jis1 - fk Xk -{(xk); ~E(xk);wk to catch the y at minimum cost (thus the one-stage cost is
n equal to 1, until reaching the state where the vy is caught,
E ok Xk; 5 (Xk); ~2(Xk); Wk at which time the one-stage cost becomes 0). Each spider
0 learns the current state (the vector of spiders and y |ore)
+ Jger: e Xk "&(Xk); "ﬁ(Xk);Wk at the beginning of each time period, and either moves to a
n neighboring location or stays where it is. Thus each spider
=  min E gu(Xk; ~ﬁ(Xk); uﬁ;wk) has as many as ve_choices at each time period (with each
u22U2(xk) move possibly incurring a different location-dependensto
o o 0 The control vector is1 = (ut;:::;u™), whereu is the choice
+ Jier; Fio Xig e (Xk); Ui Wi of the “th spider, so there are abo&t possible values ofi.
n 1 s However, if we view this as a multiagent problem, as per the
E Ok Xk ~k(Xk); ik (Xk)swk reformulation of Fig. 4, the size of the control space is oedl
1 5 0 to 5 moves per spider.
+ Jie P X (%) i (k) Wic To apply multiagent rollout, we need a base policy. A
. n 1.2 simple possibility is to use the policy that directs eactdspi
= o E gk X Ui i (Xk); Wi to move on the path of minimum distance to the current y
Ui 2 Ui (xi) 0 position. According to the multiagent rollout formalisnhet
+ Jyer: Fr XioUEs 2(xk); Wi spiders choose their moves in a given order, taking intowuico
n ' the current state, and assuming that future moves will bearho
1 .2 .
B G xis ks i) wi o 6This is a concept that has received much attention in thergheb
+ Jear. f 1 .2 . team optimization, where it is known g@rson-by-person optimalityt has
k+1; k Xiks k(Xk)s i (Xi); Wic been studied in the context of somewhat different problentsich involve

J (X ) imperfect state information that may not be shared by allatpents; see the
ki \RkJ references on team theory cited in Section I.



according to the base policy. This is a tractable computatio
particularly if the rollout with the base policy is truncdtefter
some stage, and the cost of the remaining stages is appiexima
using a certainty equivalence approximation in order taiced
the cost of the Monte Carlo simulation.

Sample computations with this example indicate that the
multiagent rollout algorithm of this section performs abais
well as the standard rollout algorithm. Both algorithmsfoen
much better than the base policy, and exhibit some “intelli-
gence” that the base policy does not possess. In partidalar,
the rollout algorithms the spiders attempt to “encircleé tly
for faster capture, rather that moving straight towards the
along a shortest path.
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Here the optimal policy is to move the two spiders towards
different ies, the ones that are initially closest to thewith ties
broken arbitrarily). The minimal time to capture is the nmaxim
of the two initial distances of the two optimal spider- y jpiaigs.

Let us apply multiagent rollout with the base policy that
directs each spider to move one unit towards the closest y
position (and in case of a tie, move towards the y that lies to
the right). The base policy is poor because it may unnedgssar
move both spiders in the same direction, when in fact only
one is needed to capture the y. This limitation is due to the
lack of coordination between the spiders: each acts sslf shi
ignoring the presence of the other. We will see that rollout
restores a signi cant degree of coordination between tldesp

through an optimization that takes into account the lomgite
consequences of the spider moves.

According to the multiagent rollout mechanism, the spiders
choose their moves one-at-a-time, optimizing over the two
Q-factors corresponding to the right and left moves, while
assuming that future moves will be chosen according to the
base policy. Let us consider a stage, where the two ies are
alive while the spiders are at different locations as in 5ig.
Then the rollout algorithm will start with spider 1 and cdkte
two Q-factors corresponding to the right and left moves,lavhi
using the base policy to obtain the next move of spider 2, as
well as the remaining moves of the two spiders. Depending on
the values of the two Q-factors, spider 1 will move to the righ
or to the left, and it can be seen that it will choosentove
away from spider 2ven if doing so increases its distance to its
closest y contrary to what the base policy will dsee Fig. 5.
Then spider 2 will act similarly and the process will congnu
Intuitively, spider 1 moves away from spider 2 and y 2, besau
it recognizes that spider 2 will capture earlier y 2, so itght
as well move towards the other .

Thus the multiagent rollout algorithm induces implicit
move coordinationi.e., each spider moves in a way that takes
into account future moves of the other spider. In fact it can b
veri ed that the algorithm will produce an optimal sequerafe
moves starting from any initial state. It can also be seen tha
ordinary rollout (both ies move at once) will also produce a
optimal move sequence. Moreover, the example admits a two-
dimensional generalization, whereby the two spiders tistar
from the same position, will separate under the rollout qyoli
with each moving towards a different spider, while they will
move in unison in the base policy whereby they move along
the shortest path to the closest surviving y. Again this Iwil

Fig. 4.
is the set of locations of the spiders and the y. At each tineeiqul, each

lllustration of the 2-dimensional spiders-and- yoplem. The state

spider moves to a neighboring location or stays where itl& 3piders make
moves with perfect knowledge of the locations of each otmet af the y.
The y moves randomly, regardless of the position of the epsd

The following example is similar to the preceding one,
but involves two ies and two spiders moving along a line,  typically happen for both standard and multiagent rollout.

and admits an exact analytical solution. It illustrates hbew ~ The preceding example illustrates how a poor base policy
multiagent rollout policy may exhibit intelligence and age can produce a much better rollout policy, something that

coordination that is totally lacking from the base policy. | can be observed in many other problems. Intuitively, the key
this example, the base policy is a poor greedy heuristiclewhfact is that rollout is “farsighted” in the sense that it can
both the standard rollout and the multiagent rollout polcg bene t from control calculations that reach far into future
optimal. stages. The qualitative behavior described in the exanmgde h
been con rmed by computational experiments with larger-two

Example 2 (Spiders and Flies) dimensional problems of the type described in Example 1.

This is a spiders-and- ies problem that admits an andt has also been supported by the computational study [64],

lytical solution. There are two spiders and two ies movingyhich deals with a multi-robot repair problem.
along integer locations on a straight line. For simplicitg w

will assume that the ies' positions are xed at some intege L .
locations, although the problem is qualitatively simildrem the :E Optimizing the Agent Order in Agent-by-Agent Rollout

ies move randomly. The spiders have the option of moving In the multiagent rollout algorithm described so far, the
either left or right by one unit; see Fig.5. The objective igents optimize the control components sequentially inedl x
to minimize the time to capture both ies (thus the one-stag§rqer. It is possible to improve performance by trying to

cost is equal to 1, until reaching the state where both ies ar . "
captured, at which time the one-stage cost becomes 0). Thetimize at each stade the order of the agents.

problem has essentially a nite horizon since the spiders ca An ef cient way to do this is to rst optimize over all single
force the capture of the ies within a known number of stepsagent Q-factors, by solving thra minimization problems that
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Fig.5. lllustration of the two-spiders and two- ies prohie The spiders move along integer points of a line. The twa $tay still at some integer
locations. The optimal policy is to move the two spiders tasadifferent ies, the ones that are initially closest t@mh. The base policy directs each
spider to move one unit towards the nearest y position.

Multiagent rollout with the given base policy starts withidgr 1 at locationn, and calculates the two Q-factors that correspond to motong
locationsn 1 andn + 1, assuming that the remaining moves of the two spiders wilinagle using the go-towards-the-nearest- y base policy. The
Q-factor of going ton 1 is smallest because it saves in unnecessary moves of spittevaids y 2, so spider 1 will move towards y 1. The
trajectory generated by multiagent rollout is to move amniusly spiders 1 and 2 towards ies 1 and 2, respectivelysTimultiagent rollout generates
the optimal policy.

correspond to each of the agents 1;:::;m being rst in One possibility that works well for many problems is to sim-
the multiagent rollout order. If; is the agent that producesply set the terminal cost approximation to zero. Alternalily
the minimal Q-factor, we x; to be the rst agent in the the terminal cost function approximation may be obtained by
multiagent rollout order and record the corresponding rdnt using some sophisticated off-line training process thay ma
component. Then we optimize over all single agent Q-factoiavolve an approximation architecture such as a neuralortw
by solving them 1 minimization problems that correspondor by using some heuristic calculation based on a simpli ed
to each of the agentsé *; being second in the multiagentversion of the problem. We will discuss multiagent trundate
rollout order. Let ; be the agent that produces the minimal Qrollout later in Section IV-F, in the context of in nite haon
factor, x ", to be the second agent in the multiagent rolloyiroblems, where we will give a related error bound.

order, record the corresponding control, and continue & th

same manner. In the end, after l1l. A SYNCHRONOUS ANDAUTONOMOUSROLLOUT

M In this section we consider multiagent rollout algorithms
2 that are distributed and asynchronous in the sense that the
minimizations, we obtain an agent ordar:::; m that pro- agents may compute their rollout controls in parallel rathe
duces a potentially much reduced Q-factor value, as well &n in sequence, aiming at computational speedup. An exam-
the corresponding rollout control component selections.  ple of such an algorithm is obtained when at a given stage,
The method just described likely produces better perfasgent’ computes the rollout contrat, before knowing the
mance, and eliminates the need for guessing a good agentroltout controls of some of the agents:::;" 1, and uses

m+(m 1)+ +1=

per stage roughly by a factgm + 1) =2. Still this is much place.

better than the all-agents-at-once approach, which regjan This algorithm may work well for some problems, but it
exponential number of Q-factor calculations. Moreoves,@ does not possess the cost improvement property, and may
factor minimizations of the above process can be paradieliz not work well for other problems. In fact we can construct
so withm parallel processors, we can perform the number af simple example involving a single state, two agents, and
m(m + 1) =2 minimizations derived above in jush batches two controls per agent, where the second agent does not take
of parallel minimizations, which require about the sameetiminto account the control applied by the rst agent, and as a
as in the case where the agents are selected for Q-fagtsult the rollout policy performs worse than the base golic
minimization in a xed order. We nally note that our earlier for some initial states.

cost improvement proof goes through again by induction,

when the order of agent selection is variable at each stageample 3 (Cost Deterioration in the Absence of Adequate
k. Agent Coordination)

Consider a problem with two agents (= 2) and a single

. . . . state. Thus the state does not change and the costs of differe
F. Truncated Rollout with Terminal Cost Function Approxi- stages are decoupled (the problem is essentially stateh Bf

mation the two agents has two controls; 2 f 0; 1g andu 2 f 0; 1g.

\ T0:1g and|
An important variation of both the standard and the multia- "€, COSt per stagg is equal to 0 ifui & uy, is equal to 1

. . ) ) if uf = uZ =0, and is equal to 2 i1t = uZ = 1. Suppose
gent rollout algorithms isruncated rolloutwith terminal cost that the base policy applieg = uZ = 0. Then it can be seen

approximation. Here the rollout trajectories are obtaitgd that when executing rollout, the rst agent applies = 1, and
running the base policy from the leaf nodes of the lookahead in the absence of knowledge of this choice, the second agent
tree, but they are truncated after a given number of steps, also appliesui =1 [thinking that the rst agent will use the
while a terminal cost approximation is added to the hewristi ~ Pase policy controli = 0). Thus the cost of the rollout policy

. .. is 2 per stage, while the cost of the base policy is 1 per stage.
cost to compensate for the resulting error. This is impaifan By contrast the rollout algorithm that takes into accourg th

problems with a large number of stages, and it is also esdenti st agent's control when selecting the second agent's xint

for in nite horizon problems where the rollout trajectosie appliesut =1 andu? = 0, thus resulting in a rollout policy
have in nite length. with the optimal cost of O per stage.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT A POLICY ITERATION 259

The dif culty here is inadequate coordination between the More precisely, the autonomous multiagent rollout algo-
two agents. In particular, each agent uses rollout to coenpuiithm uses the base and signaling policies to generateautoll
the. local control,. each thinking that the other will use tha@é) policy ~= f~p;:::: ~n 19 as follows. At stagek and state
policy control. If instead the two agents were to coordirthtsr

control choices, they would have applied an optimal policy. i(c')" ~(xk) = ~(x);:::; ~F (x) ; is obtained according

The simplicity of the preceding example raises serious n

questions as to whether the cost improvement property (9) ca ~(x)2arg  min  E g Xk;U [ (Xk);

be easily maintained by a distributed rollout algorithm véhe ukzuk():nk)

the agents do not know the controls applied by the preceding B (XK i

agents in the given order of local control selection, and use + Jie1: Fio X UEs 20xk);

instead the controls of the base policy. One may speculate th 0

if the agents are naturally “weakly coupled” in the sensé tha DR (k) Wi ;

their choice of control has little impact on the desirapilit ) _ n PN

of various controls of other agents, then a more exible ~(xk) Zarguzzr[}'zrzxk)E Ge Xics Dic(Xic)s Ui

inter-agent communication pattern may be suf cient fortcos k_ ) _k m )

improvement. An important question is whether and to what Hk (i w

extent agent coordination is essential. In what followshis t + Jke1: T Xk bE(X); U

section, we will discuss a distributed asynchronous nysiie o m _ 0 _

rollout scheme, which is based on the use of a signalingyolic e (X wi '

that provides estimates of coordinating information ortoe t

current state is known. m ) n a1 _
1) Autonomous Multiagent Rollout i (i) 2 argurn szk!nn(xk) B G X by (xi);
An interesting possibility for autonomous control selenti b () Ul wi

by the agents is to use a distributed rollout algorithm, \whic
is augmented by a precomputed signaling policy that em- o
bodies agent coordinatichThe idea is to assume that the ceeepym 1 Sym. .

: _ srnyb T(xk)su s wi : (10)
agents do not communicate their computed rollout control
components to the subsequent agents in the given ordemete that the preceding computation of the controls

+ Jke: Fr Xk bE(XK);

control components in parallel and asynchronously. We c&thown to all the agents.
this algorithmautonomous multiagent rolloutVhile this type  The simplest choice is taise as signaling policyp the
of algorithm involves a form of redundant computation, ibase policy . However, this choice does not guarantee

allows for additional speedup through parallelization. policy improvement as evidenced by Example 3 (see also

Similar to Section Il, the algorithm at tHeth stage uses a Example 7 in Section V). In fact performance deterioration
base policy « = f §;::1; 1g, but it also uses second with this choice is not uncommon, and can be observed in
policy by = fbi;:::;by *g, called thesignaling policy more complicated examples, including the following.

which is computed off-line, is known to all the agents for on-

line use, and is designed to play an agent coordination roEexample 4 (Spiders and Flies - Use of the Base Policy for
Intuitively, b, (xx) provides an intelligent “guess” about what Signaling)

agent” will do at statexy. This is used in turn by all other Consider the problem of Example 2, which involves two

agentsi 8 ° to compute asynchronously their own rollout  spiders and two ies on aline, and the base policthat moves
control components on-line. a spider towards the closest surviving y (and in case where a
spider starts at the midpoint between the two ies, moves the

spider to the right). Assume that we use as signaling pdbicy

7In particular, one may divide the agents in “coupled” grquasd require the base policy . It can then be veri ed that if the spiders start
coordination of control selection only within each grouphile the compu- from different positions, the rollout policy will be optirhéwill
tation of different groups may proceed in parallel. Notet ttree “coupled” move the spiders in opposite directions). If, however, flidess
group formations may change over time, depending on thecustate. For start from the same position, a completely symmetric sibnat
example, in applications where the agents' locations astriblited within is created, whereby the rollout controls move both ies ie th
some geographical area, it may make sense to form agent gumihe direction of the y furthest awayfrom the spiders' position (or

basis of geographic proximity, i.e., one may require thatnég that are
geographically near each other (and hence are more coumedlinate their - . o
control selections, while agents that are geographicaltyapart (and hence betwe.en the two !es). Thus, the ies enq up oscillating andu

are less coupled) forego any coordination. the middle of the interval between the ies and never cateh th

8The general idea of coordination by sharing informationualibe agents' Ies.
policies arises also in other multiagent algorithmic cetteincluding some The preceding example is representative of a broad class of

that involve forms of policy gradient methods and Q-leagnisee the surveys . . . .
of the relevant research cited earlier. The survey by MatigrLaurent, and counterexamples that involve multiple identical agerftshé

Le Fort-Piat [46] focuses on coordination problems from anpRint of view. ~agents start at the same initial state, with a base polidyhtis

to the left in the case where the spiders start at the midpoint
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identical components, and use the base policy for signalireg involving a termination state (e.g., stochastic shortesth p
agents will select identical controls under the correspund problems, see [65], Chapter 2, [13], Chapter 3, and [14],
multiagent rollout policy, ending up with a potentially grrs Chapters 3 and 4).

cost deterioration. This example also highlights the rdie o In particular, we consider a standard Markovian decision
the sequential choice of the control componans:::;ul®, problem (MDP for short) in nite horizon discounted version
based on the reformulated problem of Fig. 3: it tends to break the nite horizon m-agent problem of Section I-B, where

symmetries and “group think” that guides the agents towards> 1. We assume statesx = 1;:::;n and a controbl that
choosing the same controls under identical conditions. consists ofm componentsl, ~ = 1;:::;m,

An alternative idea is to choose the signaling polimy
to approximate the multiagent rollout policy of Section II- u=(ugiiiium);

D [cf. Eq.(8)], which is known to embody coordinationor the MDP notation adopted for this section, we switch
between the agents. In particular, we may obtain the poligy; convenience to subscript indexing for agents and contro
bk = (bi;:::;bY') by off-line training a neural network (or components, and reserve superscript indexing for poliy it
m networks, one per agent) with training samples generatgghs) At statex and stagek, a controlu is applied, and the
through the rollout policy of Eq.(8); i.eyse as signaling gystem moves to a next statavith given transition probability
policy by a neural network representation of the rollout poIicypxy (y) and cosiy(x; u;y). When at stagé, the transition cost
~« of Eq.(8) Note that if the neural network representatioty yiscounted by k, where 2 (0;1) is the discount factor.
were perfect, the policy de ned by Eq.(10) would be the sameach control component is separately constrained to lie in
as the rollout policy of Eq.(8). Thus we intuitively expebtt 4 given nite setU-(x) when the system is at state Thus

if the neural network provides a good approximation of thge control constraint isi 2 U(x), whereU(x) is the nite
rollout policy (8), the policy de ned by Eq.(10) would havecgrtesian product set

better performance than the base policy. This expectatas w
conrmed in the context of a large-scale multi-robot repair U(x) = Ui(x) Um (X):
appl!catlon in the Paper [64]. The advantage. of 9Uton0moﬁlﬁe cost function of a stationary policythat applies control
multiagent rollout with neural network approximations list (x) 2 U(x) at statex is denoted by (x), and the optimal
it allows approximate policy improvement (to the extentttha - ; ’ P

. : . i . cost [the minimum over of J (x)] is denoted) (x).
the functionsb, are good approximations tg,), while at the

) . ) . An equivalent version of the problem, involving a reformu-
same time allowing asynchronous distributed agent operati ) . B
: . N . ... lated/expanded state space is depicted in Fig.6 for the case
without on-line agent coordination through communicatdn

their rollout control values (but still assuming knowledgie m = 3. The state space of the reformulated problem consists

the exact state by all agents). We will return to this aldwnit of
and provide more details in Section V, in the context of ineni X; (UL (OGuUL i Um 1); (11)
horizon problems.

IV. MULTIAGENT PROBLEM FORMULATION - INFINITE f1;:::;ng), and eachu-, © = 1;:::;m; ranges over the
HORIZON DISCOUNTED PROBLEMS corresponding constraint sekt (x). At each stage, the agents

The multiagent rollout ideas that we have discussed so fdt00Se their controls sequentially in a xed order: from
can be modi ed and generalized to apply to in nite horizorstatéx agent 1 appliesi; 2 Ui(x) to go to state(x; u1),
problems. In this context, we may also consider multiageten agent 2 appliesz 2 Ux(x) to go to state(x; us; uy),
versions of Pl algorithms, which generate a sequence ¥1d SO on, until nally at state(x;ui;:::;um 1), agent
policiesf ¥g. They can be viewed as repeated applicatiof® @PPliesum 2 Um(x), completing the choice of control
of multiagent rollout, with each policy ¥ in the sequence Y = (U1;:::;Um), and effecting the transition to stayeat a
being the multiagent rollout policy that is obtained wheROStd(X;u;y), appropriately discounted.
the preceding policy ¥ ! is viewed as the base policy. This reformulation involves the type of tradeoff between
For challenging problems, Pl must be implemented off-lingontrol space complexity and state space complexity that wa
and with approximations, possibly involving neural netksor proposed in the book [65], Section 6.1.4, and was discussed i
However, the nal policy obtained off-line by PI (or its neair Sectipn [I-C. The reformulated problem involvescost-to-go
network representation) can be used as the base policy forfdfctions
on-line r_nultiagent roII_out scheme. _ _ 30x): 3 0 ug): s d™ Lxug:

We will focus on discounted problems with nite number
of states and controls, so that the problem has a contractiveh corresponding sets of Bellman equations, but a much
structure (i.e., the Bellman operator is a contraction nragp smaller control space. Note that the existing analysis bdub
and the strongest version of the available theory appliaiorithms, including implementations, variations, arrdoe
(the solution of Bellman's equation is unique, and strongounds, applies to the reformulated problem; see Sectibn 5.
convergence results hold for Pl); see [13], Chapters 1 anfithe author's RL textbook [2]. Moreover, the reformulated
2, [14], Chapter 2, or [2], Chapter 4. However, a qualitdyive problem may prove useful in other contexts where the size of
similar methodology can be applied to undiscounted problertine control space is a concern, such as for example Q-legarnin
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Fig.6. lllustration of how to transform am-agent in nite horizon problem into a stationary in nite tipon problem with fewer control choices available
at each state (in this guren = 3). At the typical stage only one agent selects a control. kamgple, at statex, the rst agent chooses; at no cost
leading to statéx; u1). Then the second agent applies at no cost leading to stafe; u1;u2). Finally, the third agent appliess leading to some statg

at costg(x; u;y ), whereu is the combined control of the three ageniss (u1;uz;uz). The gure shows the rst three transitions of the trajedsrthat
start from the stateg, (x;u1), and(x;u1;u2), respectively. Note that the state space of the transforpnedlem is well suited for the use of state space
partitioned PI algorithms; cf. the book [3], and the papd@][ [12], [15].

Similar to the nite horizon case, our implementation of theises a modi ed form of policy improvement, whereby the

rollout algorithm, which is described next, involves orgeat- controlu = (ug;:::;uym) is optimized one-component-at-a-

at-a-time policy improvement, while maintaining the bagst time, with the preceding components computed according to

improvement and error bound properties of rollout, sin@séh the improved policy, and the subsequent components comhpute

apply to the reformulated problem. according to the current policy. In particular, given thereat
policy K, the next policy is obtained as

A. Multiagent Rollout Policy Iteration KL 2 (3 «); (13)

The policies generated by the standard Pl algorithm fQf,ere for given = ( 1:i:::
the reformulated problem of Fig. 6 are de ned over the larggg (J) the set of policies,

space and have the form

1(X); 20 ug);iin m(X Ui U, 1): az . mem

We may consider a standard Pl algorithm that generates a 30

sequence of policies of the preceding form (see Section I\=;(x) 2 arg min Py Ut; 2(X);::0; m(X)
E), and which based on standard discounted MDP results, uizUix)

converges to an optimal policy for the reformulated prohlem
which in turn yields an optimal policy for the original preoh.
However, policies of the form (12) can also be represented in

X
the simpler form ~2(x) 2 arguzzmdp(x)yzl Py ~1(X);uz; 3(X);iit; m(X)

i.e., as policies for the original in nite horizon problerhhis
motivates us to consider an alternative multiagent PI @lyor

that uses one-agent-at-a-time policy improvement andaoger _ X
over the latter class of policies. We will see that this ailion ~m(X) 2 arg, min Py ~1(X); ~2(x);
converges to an agent-by-agent optimal policy (which nexd n meTm T y=1

be an optimal policy for the original problem). By contrakg i ~m 1(X); um
alternative multiagent Pl algorithm of Section IV-E alscesis
one-agent-at-a-time policy improvement, but operates thee

class of policies (12), and converges to an optimal policy + J(y) : (14)
for the original problem (rather than just an agent-by-agen
optimal policy). Note thatM (J) may not consist of a single policy, since

Consistent with the multiagent rollout algorithm of Sentiothere may be multiple controls attaining the minima in the
IV-D, we introduce a one-agent-at-a-time Pl algorithm thatreceding equations.
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Each of them minimizations (14) can be performed for Mathematically, this amounts to using the control compo-
each statex independently, i.e., the computations for stateents atx of a policy within the set
x do not depend on the computations for other states, thus

_ : . M2 ); (15)

allowing the use of parallel computation over the different '
states. On the other hand, the computations corresponaing, t
individual agent components must be performed in seque
(in the absence of special structure related to couplindgnef t

control components through the transition probabilitiesl a SO_ ) ¢ ) -
the cost per stage). It will also be clear from the subsequ ich are obtained with a single round of coordinate descent

analysis that for convergence purposes, the ordering of fWén'm'ZE,‘t'ons (14)]. The_ S,Et, (15_) corresponds to two rounds
components is not important, and it may change from or‘?é coordinate descent minimizations rather than one [rudé t
policy improvement operation to the next. In fact there af@" the calculations of values af is Eq'(_l_S_)_'_Wf use the
versions of the algorithm, which aim to optimize over muiip Known base policy , so the values of (x);:::; n(x) are

component orders, and are amenable to parallelization r}fse_de_d only at the glven_stax¢. )
discussed in Section II-E. Similarly, we may considek > 2 rounds of coordinate de-

Similar to the nite horizon case of Section I, the salient®eM iterations. This amounts to using the control comptane

feature of the one-agent-at-a-time policy improvementape atx of a policy within the set

tion (14) is that it is far more economical than the standard W1 k(J):

policy improvement: it requires a sequencenefminimiza-

tions, once over each of the control components::;um. In  de ned for all k as the set of all policies in the sét o(J ),
particular, for the minimization over the typical compohen  \here 9is any policy in the setll 1(3 ) [here we de ne
the preceding components;:::;u- ; have been computedm 1(J ) to be the setfl (J ) given by Eq.(14)]. After a
earlier by the minimization that yielded the policy compotse nite number of rounds of coordinate descent iterations the

values of

ned as the set of all policies in the skt o(J ), where
is any policy in the setll (J ) dened by Eq. (14)

determined by the current policy componentsy ;:::; n.
Thus, if the number of controls within each component con . N
‘ , min Py U1; ~2(X);::1; ~m(X)
straint setJ: (x) is bounded by a numbey the one-agent-at-a- 1,20, (x) -
time operation (14) requires at magh Q-factor calculations.

By contrast, since the number of elements in the constraint g x;ur; ~2(x); i mm (XY + 3 (Y)
setU(x) is bounded byg™, the corresponding number of Q-
factor calculations in the standard policy improvementrape X0
tion is bounded by™ . Thusin the one-agent-at-a-time policy ~ min Py ~1(X); ~2(X); 1115 ~m 1(X); Um

improvement the number of Q-factors grows linearly with ~ Um 2Ym 09,
as compared to the standard policy improvement, where the

. . ) X; ~1(X); —2(X); 1105~ X);Um;
number of Q-factor calculations grows exponentially with g 1(); =2(0) m 1(X);Um;y
+J(y)
B. Multipass Multiagent Policy Improvement will converge (since the control space is nite). Howevéret

) _ limit of these values need not be the result of the joint auintr
In trying to understand why multiagent rollout of the form:omponent minimizatich

(13) succeeds in improving the performance of the baseypolic

it is useful to think of the multiagent policy improvementarp . xo
ation as an approximation of the standard policy improvemen (U1U m )zmdﬂx) Unm (X) Py (Uz; 225 Um)
operation. We basically approximate the joint minimizatio =

over all the control componentss;:::;uy, with a single g X;ug;iinUmsy + 3 (y) -

“coordinate descent-type” iteration, i.e., a round of &&ng

control component minimizations, each taking into accoufftWill be instead a value with an agent-by-agent optimality
the results of the earlier minimizations. property, to be de ned in the next section. This is consisten

Iw the convergence results that we will subsequently imbta
cf. Prop.2). Still, however, the policy- obtained through
the preceding multipass multiagent rollout policy has the
fundamental policy improvement properdy(x) J (x) for
all x. This can be seen by a slight extension of the proof of
the subsequent Prop. 2.

This coordinate descent view suggests that one may obt
further policy improvements wittmultiple rounds of coor-
dinate descent minimization8y this we mean that for a
given and xed state, after computing the multiagent rollout

more the multiagent policy improvement operation [while _
9Generally, the convergence of the coordinate descent mietbothe

keeplng the function) in Eq'(14) equal to the base pOI'Cyminimum of a multivariable optimization cannot be guaradtexcept under
cost functionJ ] special conditions, which are not necessarily satis echimitour context.
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C. Convergence to an Agent-by-Agent Optimal Policy optimal policy is guaranteed to be (overall) optimal amadmg t

An important fact is that multiagent Pl need not converd¥P€ of multivariable optimization problems where cooatin
to an optimal policy. Instead we will show convergence to 6SCent is guaranteed to converge to an optimal solution.
different type of optimal policy, which we will now de ne. FOr €xample positive de nite quadratic problems or probsem
involving differentiable strictly convex functions (seé7],
optimalif 2 N (3 ), or equivalently [cf. Eq.(14)], if for Sectlon 3.7). Generally, agent-by—aggnt ppumallty may be
viewed as an acceptable form of optimality for many types

all statesx = 1;:::;n, and agents = 1;:::;m, we have )
of problems, but there are exceptions.
xo Our main result is that the one-agent-at-a-time PI algorith
Py 2(x)i2:55 m(X) generates a sequence of policies that converges in a nite
y=1 . . . . .
number of iterations to a policy that is agent-by-agentropti
gx 1(x):n m(xhy + 3 (Y) However, we will show that even if the nal policy produced
X0 by one-agent-at-a-time Pl is not optimal, each generatédypo
= min Py 1(X);:in (X)) U is no worse than its predecessor. In the presence of appaexim
w2y tions, which are necessary for large problems, it appeats th
1 (X);in m(X) the policies produced by multiagent PI are often of suf ¢dien
N o _ quality for practical purposes, and not substantially wdtsn
g x a(x)izin a0 e (x); the ones produced by (far more computationally intensive)
OOy + T (Y) approximate _P! methods that are based on all-agents-a&t-onc
lookahead minimization.
To interpret this de nition, let a policy = f 1;:::; mg For the proof of our convergence result, we will use a special

agent DP problem where for dll6 ° theith policy compo- in favor of the current policy component. This rule is easy
nents are xed at ;, while theth policy component is subject to enforce, and guarantees that the algorithm cannot cycle
to optimization. Then by viewing the preceding de nition aetween policies. Without this tie-breaking rule, the daling

the optimality condition for all the single agent problemsproof shows that while the generated policies may cycle, the
we can conclude that is agent-by-agent optimal if eachcorresponding cost function values converge to a cost ilamct
component - is optimal for the'th single agent problem; value of some agent-by-agent optimal policy.

in other words by using -, each agent acts optimally, In the following proof and later all vector inequalities are
assuming all other agenit® * do not deviate from the policy meant to be componentwise, i.e., for any two vectbrand
components ;. Note that agent-by-agent optimality is related % we write
to the notion of a Nash equilibrium where we view the agents

as the players of a multi-person game with the same objective

function for all the players. For notational convenience, we also introduce the Bellman

While an (overall) optimal policy is agent-by-agent optimapperatorT that maps a function of the staleto the function
the reverse is not true as the following example shows.  of the stateT J given by

JO if I JYx) for all x:

Example 5 (Counterexample for Agent-by-Agent Optimality) (T I)(x) = X

Consider an in nite horizon problem, which involves two
agents iIn = 2) and a single stat&. Thus the state does not
change and the costs of different stages are decoupled (the
problem is essentially static). Each of the two agents ab®mo
between the two controls 0 andu; 2 f 0; 1g andu, 2 f 0; 1g.
The cost per stagg is equal to 2 ifu; 6 uy, is equal to 1 if
u; = uz =0, and is equal to 0 iu; = uz = 1. The unique
optimal policy is to apply 1(x) =1 and »(x) =1. However,
it can be seen that the suboptimal policy that appligs) = 0
and ,(x) =0 is agent-by-agent optimal.

The preceding example is representative of an entire class ()= (X

of DP problems where an agent-by-agent optimal policy Seven if there are other control components within(x) that
not overall optimal. Any static (single step) multivariabl| attain the minimum in addition to- (x)]. Then for allx andk,
optimization problem where there are nonoptimal solutiongve have
that cannot be improved upon by a round of coordinate J k(X)) J W (x);
descent operations (sequential component minimizatimmes, ) N &+ -
component-at-a-time) can be turned into an in nite hori@d | and after a nite number of iterations, we have™ = 7, in

. . which case the policies and “ are agent-by-agent optimal.
example where these nonoptimal solutions de ne agent-by-
agent optimal policies that are not overall optimal. Cosedy, Proof: We recall that for given andJ, we denote by
one may search for problem classes where an agent-by-agﬁnt(\]) the set of policies~ satisfying Eq.(14). The critical

Py (X)) gx Xy + 3 (¥);
y=1

Proposition 2:Let f g be a sequence generated by the ohe-
agent-at-a-time Pl algorithm (13) assuming that ties inpblkcy
improvement operation of Eq.(14) are broken as follows:oif f
any’ =1;:::;m andx, the control component: (x) attains the
minimum in Eq.(14), we choose
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step of the proof is the following monotone decrease inequ# follows that eitherd «.» = J «, or else we have strict
ity: policy improvement, i.e.J «+« (X) <J «(x) for at least one
. statex. As long as strict improvement occurs, no generated
TJ TJ J forall J with T -3 J policy can be repeated by the algorithm. Since there are only
and~2 M (J); (16) nitely many policies, it follows that within a nite number
of iterations, we will havel v+ = J «. Once this happens,

which yields as a special ca3ed  J , sinceT J =J . gquality will hold throughout in Eq.(17). This implies, osi
This parallels a key inequality for standard PI, namely thajsg the preceding proof, that

T.J J , for all ~such thatT-J = TJ , which lies at
the heart of its convergence proof. Once Eq.(16) is shoven, th

- ) i ’ Px k+1 (X) k+1 (X)
monotonicity of the operatdF- implies the cost improvement o1 12

propertyJ- J , and by using the niteness of the set of v - -
policies, the nite convergence of the algorithm will follo gx 1 (X); 27 (X)sy + I «(y)
We will give the proof of the monotone decrease inequality
(16) for the casean = 2. The proof for an arbitrary number = TtlJn Pxy '{"1 (x); uz
of componentsn > 2 is entirely similar. Indeed, it J J U220209
and~2 M (J), we have for all states, gx “Tiuzy + 3 k()
X X
(T = Py ~1(x); =2(x) = Py 170 5(X)
y=1 y=1
g % ~1(x); 2(x);y + I (¥) gx FTO 300y + k() 5 (18)
X d
= min Py ~1(X); Uz an
UzZUz(X) _
y=1 P k+1 (X) k(X)
9% ~1();uz;y + 3 (y) e R
X Py ~1(X); 2(X) g X Ifrl (X); E(X);y +J ()
y=1 . X K
= min ug; 5(x
g% ~1(x); 2x);y + I (¥) u2Ua00 ) Py 15 2(x)
= min X Py U1; 2(X) g xuy; 5005y + 3 «(y)
U12U1(X)y:1 d '
- K(yy- K
= p (x); 2(x)
g x;ug; 20x)y + J () y=1 v ’
by  100); 2(X) g X li(x); E(X);y +J «(y)
y=t In view of our tie breaking rule, this equation implies that
gx 1(X); 2(x);y + J(y k+1 = Kk and then Eq.(18) implies that™ = %. Thus
1 1 > 2
(T 3)(x) we have ¥*1 = X and from the preceding two equations,
_J( ) it follows that **' and * are agent-by-agent optimal.
X),
where: D. Variants - Value and Policy Approximations

(1) tTh? rst equality uses the de nition of the Bellman An important variant of multiagent Pl is an optimistic
operator for~.

(2) The rst two inequalities hold by the de nition of
policies ~ 2 1 (J).
(3) The last equality is the de nition of the Bellman openato

version, whereby policy evaluation is performed by using a
nite number of one-agent-at-a-time value iterations.sltyipe
of method together with a theoretical convergence anabyfsis
multiagent value iteration is given in the paper [5] and ie th
for _ o _ monograph [3] (Sections 5.4.6). It is outside the scope of
(4) The last inequality is the assumptidnd  J. this paper.
By letting J = J « in the monotone decrease inequality ag Example 5 shows, there may be multiple agent-by-agent
(16), we haveT s J « ‘3 <. In view of the monotonicity qptimal policies, with different cost functions. This ditrates
Of Tk, we also havel (5 J « Ty J « forall 1 that the policy obtained by the multiagent Pl algorithm may
so that depend on the starting policy. It turns out that the same
Jin =1lim Thwd e Teade Je 17) example_can be used to show that the _policy obtained by
1 the algorithm depends also on the order in which the agents
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select their controls. projection ofJ onto a subspace spanned by basis functions
or features, such as temporal difference methods, inajudin
Example 6 (Dependence of the Final Policy on the AgemD( ) and LSPE(), or methods based on matrix inversion
Iteration Order) such as LSTD(). We refer to RL textbooks, such as [65],
Consider the problem of Example 5. In this problem therfr9], and the approximate DP book [13] for detailed accounts
are two agent-by-agent optimal policies: the optimal polic  of these methods. We next discuss an alternative that isibase
where ;(x)=1 and ,(x) =1, and the suboptimal policy on aggregation.

where 1(x) =0 and »(x)=0. Let the starting policy be® . . . . .
where 9(x)=1 and 3(x)=0. Then if agent 1 iterates rst, 2) Value and Policy Approximations with Aggregation

the algorithm will terminate with the suboptimal policy: = One of the possibilities for value and policy approximasion
while if agent 2 iter?tes rst, the algorithm will terminateith  in multiagent rollout arises in the context of aggregatisee
the optimal policy, == . the books [13] and [2], and the references quoted there. In

As noted in Section II-E, it is possible to try to optimizeparticular, let us consider the aggregation with represtiet
the agent order at each iteration. In particular, rst optien features framework of [2], Section 6.2 (see also [13], Decti
over all single agent Q-factors, by solving tlieminimization 6.5). The construction of the features may be done with saphi
problems that correspond to each of the agertsl;:::;m ticated methods, including the use of a deep neural network
being rst in the multiagent rollout order. If; is the agent as discussed in the paper [80]. Briey, in this framework
that produces the minimal Q-factor, we X to be the rst we introduce an expanded DP problem involving a nite
agent in the multiagent rollout order. Then we optimize ovglumber of additional states = 1;:::;s, called aggregate
all single agent Q-factors, by solving the 1 minimization states. Each aggregate states assomated with a subsxt
problems that correspond to each of the agéris 1 being of the system's state space. We assume that the seXs,
second in the multiagent rollout order, etc. i = 1;:::;s, are nonempty and disjoint, and collectively

1) Value and Policy Neural Network Approximations include every state oX. We also introduce aggregation

There are also several possible versions for approximgi@babilities mapping an aggregate stat® the subseiX;,
one-agent-at-a-time PI, including the use of value andcpoliand disaggregation probabilitieg; mapping system states
neural networks. In particular, the multiagent policy impe- to subsets of aggregate staiés.
ment operation (14) may be performed at a sample set of stateg base policy de nes a set of aggregate state cast§j ),

,$=1;:::;0q, thus y|eld|ng a training set of state-rolloutj =1;::::s, which can be computed by simulation involving
control pairs x%; ~(x°) , s=1;::1; 1, @, Which can be used to an “aggregate" Markov chain (see [2], [13]). The aggregate
train a (policy) neural network to generate an approxinmetio costsr (j) de ne an approximationf' of the cost function
to the policy~.1° The policy * becomes the new base policy] of the base policy, through the equation
and can be used in turn to train a (value) neural network o
that approximates its cost function vallle. The approximate 3 y) = it () y2 X:
multiagent Pl cycle can thus be continued (cf. Fig.7). Note =

that the training of the agent policiés; :::; *m may be done Then an (approximate) multiagent rollout policy can be
separately for each agent, with separate neural networks. LA .
‘de ned by one-step lookahead usidy in place ofJ | i.e.,

With this scheme, the dif culty with a large control space is
2 W (), where the setll (J) is de ned for any
overcome by one-agent-at-a-time policy improvement, evhil_ bnd J by Eq.(14). In other words, the multiagent rollout

the dif culty with a potentially large state space is ovemn® algonthm with aggregation is de ned by 2 ¥ (&) instead

by training value and policy networks.
The RL books [2] and [3] provide a lot of details reIatmgOfZ'tsm co(tjnt)erpart without aggregation, which is de ned by

to the structure and the training of value and policy network Note that usi imati hitect based
in various contexts, some of which apply to the algorithms ote thal UsIng an approximation architeciure based on

of the present paper. These include the use of dlstnbut%%gliegat;]otn Tas 3 signi cant advatntage dover a Sﬁu;‘?l ntet-
asynchronous algorithms that are based on partltlomng@ft \Work arcnitecture because aggregation induces a euctu

state space and training different networks on differems$ se(g at fgcrhtatesZPl cgn\izrgelnce atnd rmprovesltessoc;a;t:)ﬂ ler
of the state space partition; see also the paper [15], whi unds (see [2] and [13]). In particular, a multiagen ag

applies partitioning to the solution of a challenging class t;: m basfe;l on ;ggrega?:)hn {at(;l]mlts a Igonver?ence result like
partial state information problems. N one(t)b fop. ,texctep | a i |sfrestt;] asserts (iogveegen
Note also that the policy evaluatiahn of the base policy an agent-by-agent optimal policy for the associated aggeeg

in the context of approximate Pl may be done in several d|ffe?r0blem By contrast, approximate multiagent Pl with value

; : . d policy networks (cf. Fig.7) generically oscillates, as
t . Th lude methods that ttteitn
ent ways. These include methods that compute iterativaly own in sources such as [2], [13], [65], [81].

10There are quite a few methods for training an approximatichitecture
to represent a given policy by using training data that issgatied by using this . . .
policy. In principle, these methods can be based on clagson methodology, E. POI'Cy Iteration and Q-Learning for the Reformulated
whereby a policy is represented as a classier that assiatates to Problem

controls; see [68][70]. There are also several related methods, known by Let t to th ivalent ref lated bl int
names such as imitation learning, apprenticeship learrondearning from €1 uS return 1o the equivalent retormulated problem intro-

demonstrations; see [71]78]. duced at the beginning of Section IV and illustrated in Fig. 6
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Fig.7. Approximate multiagent Pl with value and policy netis. The value network provides a trained approximatioth current base policy. The
policy network provides a trained approximatiénto the corresponding multiagent rollout poliey The policy network may consist @ separately trained
policy networks, one for each of the agent policies :::; *m.

Instead of applying approximate multiagent Pl to generate aAccording to the standard theory of discounted MDP, the

sequence of multiagent policies preceding exact form of Pl will terminate in a nite number
‘ ‘ ‘ ‘ of iterations with an optimal policy
(= 5001 500 K00 (29) o X
o . 1(X); "2(Xua); i A (X UL i Um 1)
as_described n Section IV-A [cf. Egs.(13) and (14)], W?%r the reformulated problem, which in turn can yield an
can use an ordinary type of Pl method for the reformulated .. . P -
optimal policy = ( ;:::; ) for the original problem

problem. The policies generated by this type of Pl will exthib

not only a dependence on the state[like the policies through the successive substitutions

(19)], but also a dependence on the agents' controls, he., t 1(X) = M 1(x);
generated policies will have the form L) =" X 4(X) ;
Kx); KOqua);iis; KoGuaiisium 1) ; (20)
m(X)="m X 1(X);00 m 1(X) 5

cf. the state space of Eq.(11) of the reformulated problem.
Thus the policies are de ned over a space that grows exponen-
tially with the number of agents. This is a different PI mathoFor example, the reader can verify that the algorithm will
than the one of Section IV-A, and will generate a differenhd the optimal policy of the one-state/two controls prob-
sequence of policies, even when the initial policy is thesanlem of Example 5 in two iterations, when started with the
The exact form of this Pl algorithm starts iteratibrwith a  strictly suboptimal agent-by-agent optimal policy(x) = 0,

policy of the form (20), computes its corresponding evatiat >(x;u1) O of that problem.

(i.e., the cost function of the policy, de ned over the stspace ~ Note thatthe policy improvement operation (22) requires

forall x=1;:::;n:

of the reformulated problem) optimization over single control components rather over th
o L - entire vectoru = (uy;:::;um), butitis executed over a larger
Jk(X); Je(xug);iin; dy TG UL i Um 1), (21)  and more complex state spagehose size grows exponentially

with the number of agents. The dif culty with the large state
space can be mitigated through approximate implementation

kL) K4 cug)iin K (Gugtium 1) W|th policy networks, but for th|_s itis necessary to constm
policy networks at each iteration, with théh agent network
through the following policy improvement operation: having as input(x;uy;:::;u 1); cf. EQ.(20). Similarly, in
the case of approximate implementation with value networks

k+1 A P L i
1 (x)2 arg min Jic(X;u1); it is necessary to construst value networks at each iteration,
1

1

k+1 (. P 2(y- . .
2 (xu)2 arguerTJ'Zn(X) Ji(xug;u2); cf. Eq.(21). Thus generating policies of the form (20) regsii
more complex value and policy network approximations. For

a moderate number of agents, however, such approximations

k+1 (X' Uqtio:e u ) 2 ) h . . .
m 1V ML e tm 2 may be implementable without overwhelming dif culty, wail
argu 2mUiﬂ (X)J&" X uL i Um 25Um 1); maintaining the advantage of computationally tractable-on
K1 moreEm ot agent-at-a-time policy improvement operations of the form
m (XU1;: 5 Um 1) 2 (22).
xS We may also note that the policy improvement operations
arg mn Py (U32223 Um) (22) can be executed in parallel for all states of the refermu

7 _ 0 _ lated problem. Moreover, the corresponding Pl method has a
gl ug;ium;y) + 3 c(y) (22)  potentially signi cant advantage: it aims to approximate a
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optimal policy rather than one that is merely agent-by-agemuncated rollout, which operates similar to the nite hmm
optimal. case described in Section II-E. Here, we use multiagent one-
1) Q-Learning for the Reformulated Problem step lookahead, we then apply rollout with base polidpr a
The preceding discussion assumes that the base policy Ifatited number of steps, and nally we approximate the cdst o
the multiagent rollout algorithm is a policy generated tigh the remaining steps using some terminal cost function agpro
an off-line exact or approximate Pl algorithm. We may alse usnationJ. In truncated rollout scheme},may be heuristically
the reformulated problem to generate a base policy throngh@hosen, may be based on problem approximation, or may
off-line exact or approximate value iteration (VI) or Q4#eeng be based on a more systematic simulation methodology. For
algorithm. In particular, the exact form of the VI algorittoan example, the valued (x) can be computed by simulation

be written in terms of multiple Q-factors as follows: for all x in a subset of representative states, dndan be
Il = min QK(x uy); x=1'::n: selected from a parametric clgss of functions throughitrgin _
u12U1(x) e.g., a least squares regression of the computed values. Thi
K1 (x;u) = min QK(X;u1;Uy); appr(_)ximation_ may be perform_ed o1_‘f-|ine, outsio_le the time-
u22Uz(x) sensitive restrictions of a real-time implementation, dhe
X =1;::050; ug 2 Ug(x); (23) result may be used on-line in place &f as a terminal cost

function approximation.
We have the following performance bounds the proofs of

QYL (X Ug; i Um 1) which are given in [3] (Prop. 5.2.7).
- ; K (ygeyg enee- . .
= uml”zﬂbr; ) Qm(X;u1;iii;jUm 1;Um); Proposition 2: (Performance Bounds for Multiagent Truresht
Rollout
x=Lounuw2U();  =1num L Let t)ae a base policy, and let be a function of the state.
Kl oo o B oo Consider the multiagent rollout scheme that consists ofstep
Qm (Xug;iii;um) = Pxy (U1;::25Um) lookahead, followed by rollout with a policy for a given number
y=1 of steps, and followed by a terminal cost function approxiora
g UL Umy) + J k(y) ; \(]é)k/(\e/te~h23ethe generated rollout policy.
x=1;:::5;n; (Ui um) 2 UX):
. . J-(x) J(X)+ ; X=1;:::;m;
It gives both the value iterate sequeride‘g and the Q-factor 1
iterate sequencebQXg, * = 1;:::;m, at the states of the | where
reformulated problem [cf. Eq.(11)]. The convergence of the c= max (T I)(x) JI(X) :
preceding algorithm, as well as its asynchronous stoahasti X=1 30
approximation/Q-learning variants, is covered by thegitad | (b) We have
theory of in nite horizon DP and the theory of the Q-learning
method applied to the reformulated problem (see the arsalysi J-() I )+ g max Jly) J(¥);
of Tsitsiklis [82], and subsequent mathematical works gn x=1::::n
the convergence of Q-learning and variations). In particu-

lar, the sequencéJ¥g converges toJ (the optimal cost These error bounds provide some guidance for the imple-

are chosen optimally. rollout policy over the base policy for one-agent-at-agim
Note that all of the iterations (23) involve minimizationesv and all-agents-at-once rollout. In fact there is no knoworer

a single agent control component, but are executed ovetea stgound that is better for standard rollout than for multiagen

space that grows exponentially with the number of agenillout. This provides substantial analytical support tbe

On the other hand one may use approximate versions of #h@ltiagent rollout approach, and is consistent with theiltes

VI and Q-learning iterations (23) (such as SARSA [78], angf computational experimentation available so far.

DON [83]) to mitigate the complexity of the large state space

through the use of neural networks or other approximatiol. AUTONOMOUSMULTIAGENT ROLLOUT FOR INFINITE

architectures. Once an approximate policy is obtainedutino HORIZON PROBLEMS - SIGNALING POLICIES

a neural network-based variant of the preceding algorithm, The autonomous multiagent rollout scheme of Section IlI

can be used as a base policy for on-line multiagent rollcatt thcan be extended to in nite horizon problems. The idea ismgai

involves single agent component minimizations. to use in addition to the base policy = ( 1;:::; m), a
. signaling policyb = (by;:::;bm), which is computed off-

Another approximation possibility, which may also be In particular, given a base policy and a signaling pol-
combined with value and policy network approximations iy b, the autonomous multiagent rollout algorithm gener-



268 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRURY 2021

ates a policy~ as follows. At statex, it obtains ~(x) = policy. Again, the nal rollout policy thus obtained can be

~1(X);:::; ~m(X) ; according to implemented on-line with the possibility of on-line repiamng
) n and the attendant robustness property.
—1(x) 2 ag, s E gxus 2(x)::0 m(x)iw Note that if the neural network were to provide a perfect
0 approximation of the rollout policy, the policy de ned by
+Jf X;url]; 2()i 5 m(Xpiw Eq.(24) would be the same as the rollout policy, as noted
~(X)2arg min E gxbi(X):Us:i; m(X):w earlier. Thus, intuitively, if the neural network providegood
u22Uz(x) o approximation of the rollout policy (14), the policy de ned
+ 3 f o bi(X)iUn i mO)wW by Eq.(24) will have better performance than both the base
policy and the signaling policy. This was con rmed by the
n computational results of the paper [64], within the conteEhxd
~m(X)2arg min E g x: bi(X):::1bm 1(X):Um:W multi-robot repair application. The advantage of autonomo
Um 2Um (X) o multiagent rollout with neural network approximations is
+ 3 f xbi(X):bm 1()iUmiW that it allows approximate policy improvement (to the exten

(24) that the functionsb; are good approximations te;), while
allowing the speedup afforded by autonomous agent operatio
Note that the preceding computation of the controlgs well as on-line replanning when the problem data varies

Let us return to the two-spiders-and-two- ies problem of
Examples 2 and 4, and use it as a test of the sensitivity of au-
tonomous multiagent rollout algorithm with respect to atidns
in the signaling policy. Formally, we view the problem as an
in nite horizon MDP of the stochastic shortest path typec&e
that the base policy moves each spider sel shly towards the
closest surviving y with no coordination with the other dpr,
while both the standard and the multiagent rollout algaongh
are optimal.

We will now apply autonomous multiagent rollout with
a signaling policy that isarbitrary. This also includes the
case where the signaling policy is an error-corrupted wversi
of the standard (nonautonomous) multiagent rollout polaty

agents.

There is no restriction on the signaling policy, but of
course its choice affects the performance of the correspgnd
autonomous multiagent rollout algorithm. The simplestgpos
bility is to use as signaling policy the base policy; ile s
However, this choice does not guarantee policy improvement
and can lead to poor performance, as evidenced by Example
3. Still, using the base policy as signaling policy can be an
attractive possibility, which one may wish to try (perhaps i
some modied form) on specic problems, in view of its
simplicity and its parallelization potential. On the ottemnd,

if the signaling policy is taken to be the (honautonomous)
multiagent rollout policy~ 2 1 (3 ) [cf. Eq.(14)], i.e.,
b = ~, the autonomous and nonautonomous multiagent rollout
policies coincide, so nothing is gained from the use of this
signaling policy.

A related interesting possibility is to choose the signal-
ing policy b to approximate the multiagent rollout policy
~ 2 (J ). In particular, we may obtain the policy

in policy space using a neural network, with the training set
generated by the multiagent rollout poliey2 7] (3 ); cf.
Section IV-C and Fig. 7. Here are two possibilities alongsthe
lines:

(&) We may use the approximate multiagent Pl algorithm
with policy network approximation (cf. Section IV-D), star
with some initial policy °, and producek new policies

L..::: K Then the rollout scheme would usk as signaling
policy, and ¥ ! as base policy. The nal rollout policy thus

the preceding discussion. The errors can be viewed as the
result of the approximation introduced by a policy network
that aims to represent the multiagent rollout policy (whish
optimal as discussed in Example 2). Then it can be veried
that the autonomous multiagent rollout policy with arligra
signaling policy acts optimally as long as the spiders atally
separated on the line by at least one unit. What is happening
here is that the Q-factors that are minimized in Eq.(24) veo

a rst stage cost (which is xed at 1 and is independent of
the signaling policy), and the cost of the base policy(y)
starting from the next statg, which is not suf ciently affected

by the signaling policyb to change the outcome of the Q-factor
minimizations (24).

On the other hand, we saw in Example 4 that if we use as
signaling policy the base policy, and the two spiders stattie
same position, the spiders cannot coordinate their movieesio
and they never separate. Thus the algorithm gets locked onto
an oscillation where the spiders keep moving together badk a
forth, and (in contrast with the base policy) never captine t
ies!

The preceding example shows how a misguided choice of

obtained can be implemented on-line with the possibility afignaling policy (namely the base policy), may lead to very
on-line replanning and the attendant robustness property. poor performance starting from some initial states, bub als
(b) We may generate a base policyby a policy gradient a very good performance starting from other initial states.
or random search method, and approximate the correspondsigce detecting the “bad” initial states may be tricky for a
multiagent rollout policy~ 2 (J ) by off-line neural complicated problem, it seems that one should be careful
network training. Then the rollout scheme would use theaeuto support with analysis (to the extent possible), as well as
network policy thus obtained as signaling policy, ands base substantial experimentation the choice of a signalingcyoli
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The example also illustrates a situation where approximaesults, error bounds, and approximation techniques for-st
tion errors in the calculation of the signaling policy mattedard rollout apply in suitably reformulated form. Moreomiie
little. This is the case where at the current state the agaets reformulated problem may form the basis for an approximate
suf ciently decoupled so that there is a dominant Q-factor iPl algorithm with agent-by-agent policy improvement, as we
the minimization (24) whose dominance is not affected mudtave discussed in Section IV-E.
by the choice of the signaling policy. As noted in Section In this paper, we have assumed that the control constraint
lll, one may exploit this type of structure by dividing thesetis nite in order to argue about the computational efrodg
agents in “coupled” groups, and require coordination of thef the agent-by-agent rollout algorithm. The rollout aigfum
rollout control selections only within each group, whileethitself and its cost improvement property are valid even & th
computation within different groups may proceed in patallease where the control constraint set is in nite, includthg
with a signaling policy such as the base policy. Then thmodel predictive control context (cf. Section II-E of the RL
computation time/overhead for selecting rollout contrmt®- book [2]), and linear-quadratic problems. However, it is as
agent-at-a-time using on-line simulation will be proponial yet unclear whether agent-by-agent rollout offers an athgmn
to the size of the largest group rather than proportional to the in nite control space case, especially if the ongsste
the number of agenfs. Note, however, that the “coupled”lookahead minimization in the policy improvement openatio
groups may depend on the current state, and that decidiagiot done by discretization of the control constraint aet]
which agents to include within each group may not be easgxhaustive enumeration and comparison of the associated Q-

Analysis that quanti es the sensitivity of the performancéactors.
of the autonomous multiagent rollout policy with respect The two multiagent PI algorithms that we have proposed in
to problem structure is an interesting direction for furtheSections IV-A and IV-E differ in their convergence guaraste
research. The importance of such an analysis is magni @hen implemented exactly. In particular the PI algorithm of
by the signi cant implementation advantages of autonomo@ection IV-A, in its exact form, is only guaranteed to terati
versus nonautonomous rollout schemes: the agents can canith an agent-by-agent optimal policy. Still in many cases
pute on-line their respective controls asynchronously egind (including the problems that we have tested computatighill
parallel without explicit inter-agent coordination, whifaking may produce comparable performance to the standard PI algo-

advantage of local information for on-line replanning. rithm, which however involves prohibitively large comptita
even for a moderate number of agents. The PI algorithm of
VI. CONCLUDING REMARKS Section IV-E, in its exact form, is guaranteed to terminaité w

We have shown that in the context of multiagent probleman optimal policy, but its implementation must be carried ou
an agent-by-agent version of the rollout algorithm has tiyeaover a more complex space. Its approximate form with policy
reduced computational requirements, while still mairitin networks has not been tested on challenging problems, and
the fundamental cost improvement property of the standdtds unclear whether and under what circumstances it offers
rollout algorithm. There are several variations of rollakt @ tangible performance advantage over approximate forms of
gorithms for multiagent problems, which deserve attentiothe Pl algorithm of Section IV-A.

Moreover, additional computational tests in some praktica Our multiagent Pl convergence result of Prop.2 can be
multiagent settings will be helpful in comparatively evatimg €xtended beyond the nite-state discounted problem to more
some of these variations. general in nite horizon DP contexts, where the Pl algoritism

We have primarily focused on the cost improvement propell-suited for algorithmic solution. Other extensionslirde
erty, and the important fact that it can be achieved atagent-by-agent variants of value iteration, optimistic
much reduced computational cost. The fact that multiagdggrning and other related methods. The analysis of such
rollout cannot improve strictly over a (possibly suboptinaextensions is reported separately; see [3] and [5].
policy that is agent-by-agent optimal is a theoreticaltation, ~ We have also proposed new autonomous multiagent rollout
which, however, for many problems does not seem to prevéghemes for both nite and in nite horizon problems. The
the method from performing comparably to the far moriglea is to use a precomputed signaling policy, which emizodie
computationally expensive standard rollout algorithm iglih suf cient agent coordination to obviate the need for intgat
is in fact intractable for only a modest number of agents). communication during the on-line implementation of theoalg

It is useful to keep in mind that the multiagent rollout pglic rithm. In this way the agents may apply their control compo-
is essentially the standard (all-agents-at-once) rolfmlicy Nnents asynchronously and in parallel. We have still assumed
applied to the (equivalent) reformulated problem of Figo8 ( however, that the agents share perfect state information (o

Fig. 6 in the in nite horizon case). As a result, known insigh perfect belief state information in the context of partitdts
observation problems). Intuitively, for many problemshiosld

*The concept of weakly coupled subsystems gures promigeimithe pa possible to implement effective autonomous multiagent

literature of decentralized control of systems with comtins state and control I h h . . | f
spaces, where it is usually associated with a (nearly) bibagonal structure rollout schemes that use state estimates In place of exact

of the Hessian matrix of a policy's Q-factors (viewed as fiows of the states. Analysis and computational experimentation witths
agent control components;;:::;um for a given state). In this context, the gchemes should be very useful and may lead to improved
blocks of the Hessian matrix correspond to the coupled graefpagents. . . .

This analogy, while valid at some conceptual level, doesfulby apply to underStandmg of their properties.
our problem, since we have assumed a discrete control space.
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Several unresolved questions remain regarding algorithmij12]
variations and conditions that guarantee that our PI alyori
of Section IV-A obtains an optimal policy rather than one
that is agent-by-agent optimal (the paper [5] providesvesie
discussions). Moreover, approximate versions of our Pb-alg
rithms that use value and policy network approximations arg
of great practical interest, and are a subject for furtheesii-
gation (the papers by Bhattachamaal. [15] and [64] discuss
in detail various neural network-based implementations, i
the context of some challenging POMDP multi-robot repair
applications). Finally, the basic idea of our approach, elgm
simplifying the one-step lookahead minimization de niret
Bellman operator while maintaining some form of cost im-[16]
provement or convergence guarantee, can be extended in othe
directions to address special problem types that involviimu [17]
component control structures.

We nally mention that the idea of agent-by-agent rollout[1g]
also applies within the context of challenging determinist
discrete/combinatorial optimization problems, whichalwe
constraints that couple the controls of different stagehil&V
we have not touched upon this subject in the present paper,
we have discussed the corresponding constrained multiagéf’P]
rollout algorithms separately in the book [3] and the papér [

[21]

(13]

[15]

[19]
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