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MONOTONE MAPPINGS WITH APPLICATION IN
DYNAMIC PROGRAMMING*

DIMITRI P. BERTSEKAST

Abstract. The structure of many sequential optimization problems over a finite or infinite horizon
can be summarized in the mapping that defines the related dynamic programming algorithm. In this
paper we take as a starting point this$ mapping and obtain results that are applicable to a broad class of
problems. This approach has also been taken earlier by Denardo under contraction assumptions. The
analysis here is carried out without contraction assumptions and thus the results obtained can be
applied, for example, to the positive and negative dynamic programming models of Blackwell and
Strauch. Most of the existing results for these models are generalized and several new results are
obtained relating mostly to the convergence of the dynamic programming algorithm and the existence
of optimal stationary policies.

1. Introduction. Itis well known that dynamic programming (D.P. for short)
is the principal method for analysis of sequential optimization problems. It is also
known that itis possible to describe each iteration of a D.P. algorithm by means of
a certain mapping which maps the set of extended real-valued functions defined
on the state space into itself. In problems with a finite, say N, number of stages,
after N successive applications of this mapping (i.e. after N steps of the D.P.
algorithm) one obtains the optimal value function of the problem. In problems
with an infinite number of stages one hopes that the sequence of functions
generated by successive application of the D.P. iteration converges in some sense
to the optimal value function of the problem. Furthermore it is possible to define
the optimization problem itself in terms of the underlying mapping.

To illustrate this viewpoint let us consider formally the deterministic optimal
control problem of finding a control law, i.e. a finite sequence of control functions,
m={to, 1, " * * , in—1} which minimizes

N-1
(1) T (x0)= k§0 80k, pic (x4)]
subject to the system equation constraint
(2) Xier1 = 2k, g (xic)], k=0,1,---,N-1.

The states x;. belong to a state space § and the controls pk (xx) are elements of a
control space C. The initial state x, is known and [, g are given functions. The D.P.
algorithm for this problem is given by

®3) Jo(x)=0,
(4) Jk+1(x) =i13-f {g(x, u)+]k[f(x1 ll)]}, k =O: Tty N- 1:

and the optimal value of the problém J*(x,) is obtained at the N'th step of the D.P.
algorithm

f*(xo) = il;f I (x0) =JIn(x0).
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One may also obtain the value J,(xo) corresponding to any ==
{weo, g1, * * * , un—1} by means of the algorithm
&) Jo,=(x)=0,
© Tierr,(%) = glx, sae )]+ il FCx, i (6))], k=0, -+, N1,
T (x0) = Iy (X0)-

Now it is possible to formulate the problem above as well as to describe the
D.P. algorithm (3), (4) by means of the mapping H given by |

(7 Hi(x, u, J)=g(x, u) +J[f(x, w)].
Let us define the mapping T by
® T(N(x)=inf H(x, u, J),

and for any function w: $ - C the mapping T, by
9) T,.()(x)=Hlx, u(x), J].

Both T and T, map the set of real-valued (or perhaps extended real-valued)
functions on S into itself. Then in view of (5), (6) we may write the cost functional
J.(x0) of (1) as

(10) ]-n(xO) = (Tuc Tu.l e TuN-l)(JO)(xOL

where J, is the zero function on S(Jo(x)=0,Yx€S), and (T, T, ** Tpun_,)
denotes the composition of the mappings T,.,, T,.., * * * ; Tpn_,. Similarly the D.P.
algorithm (3), (4) may be described by

(11) -Ik+l(x) = T(Jk)(x)a k =O; 1’ ttty N- 1:»
and we have

(12) T¥(xo) = int T, (x0) = TV x),

where T is the composition of T with itself N times.
One may consider also an infinite horizon version of the deterministic
problem above whereby we seek a sequence 7 ={wo, 41, * * } that minimizes

13 Toleo)= lim % ¢l )]

subject to the system equation constraint (2). In this case one needs, of course, to
make assumptions which ensure that the limitin (13) is well defined for each 7r and
" Xo. A primary question of interest is whether the optimal value function J*
satisfies Bellman’s functional equation

T*(x) =inf {g(x, u)+T*[f(x, )]}

or equivalently whether
J¥x)=TUT*(x) Vxes,
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and J* is a fixed point of the mapping T. This question has been answered in the
affirmative for broad classes of problems [1], [3], [6], [11]. Other questions relate
to the existence and characterization of optimal policies. It is also of both
computational and analytical interest to know whether

(14) J*(x) =I£'I-£xolo TNUo)(x) VxeS.

When (14) holds, the D.P. algorithm yields in the limit the optimal value function
of the problem. While (14) holds in discounted and positive dynamic program-
ming models [1], [11], it has been proved only under restrictive finiteness
assumptions for the negative model of Strauch (see [11, Thm. 9.1]). In fact for
such models (14) may easily fail to hold as the following example shows:

Example. Let S=[0, c), C= (0, c0) be the state and control spaces respec-
tively. Let the system equation be

X1 = 2Xp + Uy, k=0,1,":-,
and let the cost per stage be defined by
glx,u)=x.
Then it can be easily verified that
J*(x) =i2f J.(x)=4+00 VxeS$

while
TNU)0)=0 VYN=1,2,---.

The deterministic optimization problem described above is representative of
a plethora of sequential optimization problems of practical interest which may be
formulated in terms of mappings similar to the mapping H of (7). A class of such
problems has been formulated and analyzed by Denardo [4]. His framework
however is restricted by contraction and boundedness assumptions which pre-
clude the use of his results in many types of problems including the positive and
negative models of Blackwell [3] and Strauch [11]. The purpose of this paper is to
provide a broader framework than the one of Denardo which includes in
particular positive and negative models. Questions such as those described above
for the deterministic problem are analyzed in this broader setting. Most of the
existing results on positive and negative models are generalized. Some entirely
new results are also obtained, most notably a necessary and sufficient condition for
convergence of the D.P. algorithm (Proposition 11). This result yields in turn
powerful a priori verifiable sufficient conditions for convergence of the D.P.
algorithm as well as for existence of an optimal stationary policy (Proposition 12).
Since under our assumptions we cannot rely on contraction properties, the line of
analysis is entirely different from the one of Denardo and utilizes primarily the
monotonicity of the mappings involved.

2. Notation and assumptions. The following notational conventions will be
used throughout the paper:




MONOTONE MAPPINGS 441

1. S and C are two given nonempty sets referred to as the state space and

control space respectively.
2. For each x € S there is given a nonempty subset U(x) of C referred to as

the control constraint set at x.

3. We denote by M the set of all functions p: § > C such that u (x) € U(x) for
all x€S. We denote by II the set of all sequences 7 ={uo, i1, * * '} such that
we € M for all k. Elements of II are referred to as policies. Elements of IT of the
form 7 ={u, u, - + '} where u € M are referred to as stationary policies.

4. We denote -

F: The set of all extended real valued functions J: S -[—c0, c].
B: The Banach space of all bounded real-valued functions J: § - (—00, ©0) with
the sup norm | || defined by

Wil=sup/(x)| VT eB.

The unit function in F will be denoted e [e(x) =1, Vx € S].
5. For all J, J' € F we write

J=J ifJ(x)=J(x) VxeS,
J=J #J(x)SJ(x) VxeS.

6. For any sequence {J;} with J; € F for all k we denote by limi_. Jic the
pointwise limit of {J/i} (assuming it is well defined as an extended real-valued
function), and by lim infy . Ji the pointwise limit inferior of {J;.}. Throughout the
paper the convergence analysis is carried out within the set of extended real
numbers, i.e. +00 or —oo are allowed as limits of sequences of extended real
numbers. For any collection {/,la e A} F parameterized by the elements of a set
A we denote inf, 4 J, the function taking value inf,caJ.(x) ateach x €S.

7. We are given a mapping H: S X CXF - [—o0, +00] and we define for each
W € M the mapping T,: F~>F by

(15) T,(J)(x)=Hlx, u(x),J]1 VxeS.
‘We define also the mapping T: F>F by

(16) TN (x)= ueigf(x) H(x,u,J) VxeS.

We denote by T, k=1,2,---, the composition of T with itself k times. For
convenience we also define T°(J) =J for all J € F. For any 7 = {wo, 1, + Jellwe
denote by (T, Ty, - T..) the composition of the mappings Tyo *** s Lo
k=0,1,---.
The following assumption will be in effect throughout the paper.
Monotonicity assumption. There holds for every x € SuecU(x),J,J eF,

H(x,u, NSH(x,u,J) ifJ=J.



442 DIMITRI P. BERTSEKAS

Notice that the monotonicity assumption implies the following relations:
JETTU)=TJ) VJ,J'eF,
JSIST,N=ET, () VI,J'eF, peM.
We shall make frequent use of these relations.
3. Problem formulation. We are given a function Je F satisfying
Jx)>—0 VxeS
and we consider for every = ={wo, u1, - * -}€II the function J, € F defined by
17 Jo(x)= lim (T,,,T,, - - T, )(D(x) VxeS.

We refer to J,. as the value function of . Under the assumptions that we will
introduce shortly J,. is well defined. Throughout the paper we will be concerned
with the optimization problem

(18) minimize J,.(x) subjectto s eIl.
The optimal value of this problem for a fixed x € S is denoted by J*(x),
(19) J*(x) = inf J,(x).

well

We refer to the function J* e F as the optimal value function. We say that a policy
a*ell is optimal at x € S if J,(x)=J*x) and we say that a policy 7*elIl is
optimal i J.»= J*, For any stationary policy 7 = (u, u, - - -}e Il we write J, =J,.
Thus a stationary policy 7*={u*, u*, - - -} is optimal if J* =J,

For every result to be shown one of the following three assumptions will be in
effect.

Assumption C (Contraction assumption). The functions J, T(J), and T, (J)
belongto B for all u € M and J € B, and for every m={wo, i1, - - -} II the limit

lim (T, T, -+ Ty )T)()

exists and is a real number for each x € S. Furthermore there exist a positive
integer m, and scalars p, a with 0<p<1, 0<a such that for all J, J'€ B there
holds

(20) IT.D- Tl -7 Vuen,

”(Tuos Tu.l e Ty-,.._.1)(J) _(Tp.oTu-l e Tu.m_1)(J,)"
éP"]_J'" V/'LO) Crty Mam—1EM.
Assumption 1 (Uniform increase assumption). There holds

(22) Jx)=H(x,u,J) VYxeS, ueU(x).

(21)

Assumption D (Uniform decrease assumption). There holds

(23) Jx)ZH(x,u,J) Vxes, ueU().
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It is easy to see that under each of these assumptions the limit in (17) is well
defined as a real number or 0. Indeed in the case of Assumption I we have

using (22)
(24) T=T, (DS (TuT)DS - S(TuoTuy - Tup JANS -

while in the case of Assumption D we have using (23)

(25) T2l Nz(T.T)DZ (T Tu - Tuy JNZ -

In both cases the limit in (17) clearly exists for each x € S.

A large number of sequential optimization problems which are of interest in
practice may be viewed as special cases of the abstract problem formulated above.
We provide below some examples. Several other examples can be found in the
author’s textbook [1], and in the paper by Denardo [4] who considered a
somewhat different problem under assumptions similar to Assumption C.

1. Deterministic optimal control problems with additive cost functional.

N-1
(26) minimize pl:im Y o glxe, pie(xi)]
»® k=0

subject to

X1 = flxe (X)), €M, k=0,1,---.
If we define
27 H(x, u, J) = g(x, u) + aJ[f(x, w)],

then problem (26) is equivalent to our abstract problem (18) for J(x)=0,VxeS.
Assumption Cis satisfied if 0 < a <1 and g is uniformly bounded, i.e., there exists
a scalar b >0 such that

(28) lg(x, u)|=b VxeS, ueUx).

This case corresponds to a discounted problem and is examined in [1, §§ 6. 1-6.3].
Assumption I is satisfied if 0 <« and

(29) glx,u)=0 VxeS§, uelU(x)
while Assumption D is satisfied if 0 <a and
(30) glx,u)=0 VxeS, uelU(x).

These cases are covered in[1, §§ 6.4, 7.1]. If g is extended real valued some care
must be exercised in the definition of the mapping H in (27) so that the forbidden
sum (400, —00) does not arise. This can be done by defining under Assumption I
[c.f. (29)] H(x, u, J)=—00 if J(x)=—c0 for some x € S, and by defining under
Assumption D [c.f. (30)] H(x, u, J) = +c0if J(x) = +00 for some x € S. We mention
that state constraints of the form x,€X, Vk=0,1,- -+, can be incorporated
under I in the cost functional by defining g(x, ) = +00 whenever x € X. Note that
the deterministic versions of Blackwell’s positive D.P. model [3] and Strauch’s
negative D.P. model [11] are covered under Assumption D and Assumption I
respectively. ’
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Deterministic optimal control problems with nonstationary cost per stage
and system equation (including finite horizon problems) may be reformulated into
the form of problem (26) (see [1, § 6.7]). A generalization of problem (26) is
obtained if the scalar « is replaced by a function a(x, «) in (27) and the discount
factor depends on the state x and the control u. Then Assumption Cis satisfied if
the assumption 0 <& <1 is replaced by

O=inf{a(x, u)lxeS, uc Ux)}=sup{a(x, u)xeS,uecUk)}<1

and (28) holds. If 0=a(x, u) for all x €S, u € U(x), then Assumption I or D is
satisfied if (29) or (30) holds respectively.

2. Stochastic optimal control with additive cost functional. This problem is
obtained from problem (18) when J=0 and

H(x, u, )= E{g(x, u, w)+aJ[ f(x, u, w)]|x, u},

where w is an uncertain parameter element of a countable set W with given
probability distribution depending on x and u. Such problems are examined in [1,
Chaps. 6 and 7] and include a large variety of Markovian decision problems with
countable state space. Assumption C holds if 0<a <1 and lg(x, u, w)|=b for
someb>0andallxeS, uecUx), we W, Assumptions I and D hold if ¢ > 0 and
g(x, u, w)Z0or g(x, u, w) =0 respectively for all x, u, w. A generalized version is
obtained when e is replaced by a function a(x, w) satisfying similar assump-
tions as the corresponding functions in the previous example. This case covers
certain discounted semi-Markov decision problems.

When the set W is not countable then matters are complicated by the need to
impose a measurable space structure on S, C, and W and to require that the
functions . € M be measurable (in the works of Blackwell, Strauch, and Hinderer
[3],[11],[6], S, C, and W are Borel subsets of complete separable metric spaces
and p is required to be Borel measurable). Because of these restrictions the
reformulation of the stochastic control problem into the form of the abstract
problem (18) is not straightforward. Recent work of S. Shreve and the author [10]
has demonstrated however that the framework of this paper is applicable in its
entirety as well as convenient once the stochastic control problemis converted toa
deterministic control problem (such as the one of the previous example) for which
the state space is the set of all probability measures on S. For a detailed treatment
we refer to the thesis of Shreve [12].

3. Minimax control problem with additive cost functional. This problem is
obtained from problem (18) when J=0 and

H(x, u,J)= sup | {g(x, u, w)+aJ[ fx, u, w)]}.
Here again w is an uncertain parameter belonging to a set W, and W(x, i) is a
given subset of W for each x € S, u € U(x). Under assumptions analogous to those
of the previous two examples, Assumptions C, I, or D can be shown to hold. The
problem of reachability over an infinite horizon examined by the authorin[2] can
be shown to be a special case of this problem.
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4. Stochastic optimal control problems with exponential cost functional. Under
similar assumptions for w as in Example 2 consider

H(x, u, J) = E{J[f(x, u, )] e“***|x, u}.
This problem corresponds to minimization of the exponential cost functional
N—-1
1) = Jim E {exp ('S glxu walan), wil
N->00 wy k=0

subject to the system equation X1 = f[x, ux(Xx), wik]. An example of a finite
horizon version of this problem has been considered in [7]. Here we take J(x)=1,
VxeS. If g(x, u, w)=0 for all (x, 4, w) then Assumption I is satisfied, while if
g(x, u, w)=0 for all (x, u, w) then Assumption D is satisfied.

4. Results under Assumption C. As mentioned earlier, a variation of our
problem under Assumption C has been analyzed by Denardo. We shall restrict
ourselves to providing some results which yield the connection between
Denardo’s framework and the one considered here.

ProposITION 1. Let Assumption C hold. Then:

(a) For every Je B, mell and x € S there holds

Ja(x)= hlrm:o (TuoTisy* ** TN = lim (g Ty« Tane )))-

(b) The functionJ* belongs to B and is the unique fixed point of T within B, i.e.,
J*=T(* and if '€ B, J'=T(J'), then J' = J*. Furthermore if J' € B is such that
TUNSJT then T*<J while if ' S T(J') then J' = J*.

(c) Forevery u € M the function J, belongs to B and is the unique fixed point of
T, within B. :

(d) There holds

Bim IT()-T*|=0 VvIeB,
lim [TI(N-J|=0 VJeB, peM.

(e) A stationary policy w*={u*, u*, - }yeIl is optimal if and only if
T (J%) = TU™). .
Equivalently m* is optimal if and only if
Tox(Ju) =T ().

() If there exists an optimal policy, there exists an optimal stationary policy.
(g) For any & >0 there exists a stationary policy m. = {ite, e, * * *} Such that

||f*—fu,”§ £.

Proof. Since the proof uses similar arguments as those in [4] (see also [1,
Chap. 6, Prob. 4]) it will be abbreviated.
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(a) For any integer k=0 write k=nm+q where ¢, n are nonnegative
integers and 0 =g <m. Then for any J, J'e B using (20), (21) we obtain

T+ Tk DD~ (T - T YD =p T~
from which

I}im (Tpo"** T ) = lim (T, -+ Ty, )) VJEB.
->00 . =00

(b), (c), (d) Relation (20) can be used to show (compare with the proof of
Proposition 3) that

TN = inf (T, - T, )N&) VxeS, N=1,2,---,

and it follows from (21) that T and T, u € M are m-stage contraction mappings,
ie, [T™W) =TS ~T| and | T - TR 5.~ T for some se
0,1), p.€(0,1) and all J, J'e B. Hence T and T, have unique fixed points in B.

The fixed point of T,, is clearly J.. and hence part (c) is proved. Let J* be the
unique fixed point of T. We have J* = T(J*). For any £ > 0 take & € M such that

To(J*)=J* + ge.

Using (20) it follows that T;fl(f = Tﬁ(f*) +age=J*+(1 +a)ée. Continuing in
the same manner we obtain :

TR = +(1+a+- - +a™ Yze
Using (21) we obtain
TS TR +p(l+a+- - -+a™ Hge
=P*+(1+p)(1+a+- - +a™ Ve
Proceeding similarly we obtain for all k=1,
TN s+ (U+p+- - +p* Y1 +a+- - +a™ Yze.
Taking the limit as k -0 and using the fact J; =lim;.,., T5™(J*) we obtain
1

J“‘éf*+i——p(1+“+' cta™ Yze,
Taking £ =(1-p)(1+a+---+a™ "¢ we obtain
(31) . T =T*+ee.

Since J*=J, and & >0 is arbitrary we obtain J* = J* We also have

J*=inf lim (T, T, )™ 2 lim TP =7,
Hence J* = J* and J* is the unique fixed point of 7. Thus part (b) is proved. Part
(d) follows immediately from the contraction property of T and T,,.

(e) If 7™ is optimal then J,«=J* and the result follows from part (b) and (c).
If T,«(J*)= T(J*) then T,+(J*)=J* and hence Ju+=J* by part (c). If T,+(J,+) =
T(J,.#) then J,«= T(J,«) and J,»=J* by part (b).
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() Letn*={u¥ u¥, - -}beanoptimal policy. Then using parts (a) and (b)
J*=Jw=1m (T2 T.)J)

k-—>co

= lim (T3 T)*) 2 Jim (T5T0) = T30 2 TI*) =J*,

Hence T,x(J*)=T(J*) and by part (e) the stationary policy (8, ud, -~} is
optimal.

(g) This part was proved earlier in the proof of part (b),[cf. (31)]. Q.E.D.

For additional results and computational methods the reader is referred to
Denardo’s paper [4] and the author’s textbook [1, Chap. 6]. Notice that part (a)
shows that J may be replaced by any function J € B. Thus it is often possible to
select J in a way that Assumption I or D issatisfied and obtain alternative proofs of
parts of Proposition 1 by using the results of the next section.

5. Results under Assumptions I or D. In our analysis under Assumptions I
or D we will occasionally need to assume one or more of the following continuity
properties for the mapping H. Assumptions I.1 and I.2 will be used in conjunction
with Assumption I, while Assumptions D.1 and D.2 will be used in conjunction
with Assumption D. I

Assumption 1.1. If {J,}<F is a sequence satisfying J=Jx =Jis1 for all k,
then

(32) Ilir{‘loH(x, u, J)=H(x, u, gngfk) VxeS$, ueU(x).

Assumption 1.2. There exists a scalar a > 0 such that for all scalars 7 >0 and
functions J € F with J =J there holds ‘

(33)  H(xu,D=H(x,uJ+re)<H(x u J)+ar VxeS, weU(x),

where e denotes the unit function [e(x) =‘1, VxeS] _ L
Assumption D.1. If {J} < F is a sequence satisfying Je+1 =J =J for all &,
then :

-

(34) éirgH(x, u, J)=H(x, u, Illrgfk) VxeS, ueU(x).

Assumption D.2. Tllére exists a scalar @ > 0 such that for all scalars r >0 and
functions J € F with J =J there holds

(35) H@G,uJ)—ar=H(x,u,J-re)=H(x,u,J) VxeS, ueU(x),

where e denotes the unit function [e(x)=1,Vx €S].

Notice that both the deterministic and the stochastic optimal control prob-
lems of § 3 satisfy 1.1, 1.2, D.1, D.2. The minimax control problem of § 3 satisfies
1.1, 1.2, D.2 while additional assumptions are needed in order that D.1 is satisfied
as well. The mapping of Example 4 in § 3 satisfies I.1, D.1, and D.2 while if it is
assumed that |g(x, u, w)| = b for some scalar 4 and all (x, u, w), then 1.2 holds as
well.
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Dynamic programming and the finite horizon version of the problem. It is
both interesting and helpful in the analysis that follows to consider the finite
horizon version of our problem which involves finding for any positive integer N

(36) In()= inf (T Ty YD)

as well as a policy attaining the infimum above (if one exists). We refer to this
problem as the N-stage problem. We have the following results:
PROPOSITION 2. Let L and 1.2 hold. Then Jn=TN(J) forallN=1,2,- - -.
Proof. For any e >0let g eM, k=0,1,.-+, N—1, be such that

T [TV * ' NI=TV *(N+ee, k=0,1,---,N—1.

Such functions exist since J(x) > oo for all x € S and TV *(J)=J by I. We have
using 1.2,

JN:;EIfI (Tp.o Tt TMN—l)(f)é(Tﬁo et TEN..1)(f)

=(Tay+ Tay T + 6]
=(Tay* Tap)(Tay_, D) +ase]

=(Tgo* Tapn,TND+a e

ST+ Tap TN+ @V 2 +a™ Vee

=T+ (N):_I ak) ge.

k=0

Since ¢ is arbitrary we obtain Jy=7T"(J). On the other hand we have, by the
definition of T and Jy, TV(J) =Jx. Hence Jy=T"(J). Q.E.D.

Proposition 2 may fail to hold in the absence of 1.2 even if I.1 holds as the
following counterexample shows.

Counterexample 1. Take S={0}, C=U(0)=(0, 11, J(0)=0, H(0, u, J)=1if
J(0)>0, H(O, u, J)=u if J(0) =0. Then (T, - - - T,LN_I)(J—)(O) =1 for every m €1l
and N =2 and hence Jy(0) = 1 for N = 2. On the other hand we have T (J)(0) =0
for all N. Here I and 1.1 are satisfied but 1.2 is violated.

ProrosITIiON 3. Let D hold. Assume that either D.1 holds or else D.2 holds
and TN (J)(x)>—o0 for all x € S. Then Jy= TV ().

Proof. Let D.1 hold. For each k=0,1,---,N—1 consider a sequence
{wi} = M such that

lim T[TV (D]=T""J),  k=0,---,N-L

T[T T D12 T [TV 1)),
k=0,-++,N=1, i=0,1,--.
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We have by using D.1,

Iy = lim (Tp - - Tul=n(J)

ig—>00
iN——.;.”"O
= fim (T Tl im, Tt )

in —z—>00

i

lim (Tyg-+ TuR=HITWU)]

ig—>0c0

lN—-z"°°
=TN).
On the other hand we have clearly TV (J) =Jy and hence Jy = T" (J).

Let D.2 hold and assume T™(J)(x)>—o0 Vx € S. For any £ >0 let g, €M,
k=0,1,:--,N—1, be such that

Ty, (N =T +ee,
(Tﬁ~~2 FLN-—l)(]) = T[TﬁN—1(j)] + ge,

(Tao e TnN_l)(j)é T[(Tal e T:LN-l)(f)J’*'E&

The assumption T (J)(x)> — 0, Vx € S guarantees that such functions, /i
exist, We have using D.2,

TNz TV [ Thy,(D—ee]Z(TV ' Ty )N —a™ e
= TN_z[(Tﬁ-N—z ﬁN—1)(j)_Ee]_aN lge
=(TVN 2T, Tan YD — (@ +aN Hee

z ;T‘}LD ce T,;N_l)(f)—<NZ_1 ak)se

k=0
N-1
=/v—| T k
=JIN a ee
k=0

Since ¢ is arbitrary it follows that TV (J)= Jx. On the other hand we have clearly
TN(J)=Jy and hence Jy=T"(J). Q.E.D.

Proposition 3 may fail to hold if its assumptions are slightly relaxed.

Counterexample 2. Take S ={0}, C=U(0)=(-1, 0], J (0) 0,HO,u, J)=u
if =1 <J(0), H(0, u, J)=J(0)+u if JO)=—1. Then (T, * * * Tpp_, YN(0) = wo(0)
and Jn(0) =~1, while TN(J)(0)=—N for every N. Here D and the assumption
TN(J)(0) >—00 are satisfied, but D.1 and D.2 are both violated.

Counterexample 3. Take $={0,1}, C=U(0)=U(1)=(-,0], J J(0)=
J(1)=0, H(0, u, J) = u if J(1) = —c0, H(0, u, J) =0if J(1)>—00, and H(1, u, J) =




450 DIMITRI P. BERTSEKAS

u. Then (T, -+ T )WU(0)=0, (T, - Tane )N = po(1) for all N=z1.
Hence Jn(0) = 0, Jy(1) = —~00. On the other hand we have T (J)(0) = TV (/)(1) =
—co0 for all N=2. Here D and D.2 are satisfied, but D.1 and the assumption
TN(J)(x)>—c0, Vx €S are both violated.

Characterization of the optimal value function. We now consider the ques-
tion whether Bellman’s equation, [i.e. J* = T(J*)] holds within our generalized
setting. We first prove a preliminary result which is of independent interest.

ProrosiTiON 4. Let 1, 1.1, and 1.2 hold. Then given any & >0 there exists a
policy . €Il such that

(37) TJ*=J, =J*+ee.
Furthermore if the scalar :in 1.2 satisfies & <1 the policy m, can be taken stationary.
Proof. Let {e} be a sequence such that ¢, >0 for all &, and
38 ‘ Y ake=e.
k=0
For each x € § consider a sequence of policies {m[x]} < II of the form

Wk[x:]:{#’g[x]: /J‘Ilc[x]: ot '}
such that for k =0,1, - -,

39) JoiadX)ST*(x)+e. Vxes.

Such a sequence exists since we have J*(x)>—o0 under our assumptions.
The (admittedly confusing) notation used above and later in the proof should
. beinterpreted as follows. The policy 7 [x]={u&x], u{x], - - -}is associated with
x. Thus w¥{x] denotes, for each xS and k, a function in M, while u{x](z)
denotes the value of 4 {[x] at an element z € S. In particular u Tx](x) denotes the
value of xix] at x.
Consider the functions fi, € M defined by

(40) Ai(x)=pudlx](x) Vxes,
and the functions .J, defined by
(41) ];(x)=H[x, /Ik(x)’ h% (T}L’f[x] e Tu'f[x])(j)] Vx ES: k =O: 1’ Tt

By using (39), (40), I, and I.1 we obtain
(42) T(x)= lim (T gy - - - T (D)) = T () ST*(x) + £

Vxes§, k=0,1,---

We have using (41), (42), and 1.2 for allk =1,2,--- and x € S,
‘ T, (T (x) = HIx, fie—1(x), Ji]
= HIx, fe-1(x), (T*+ ere)]< H[x, fire—1(x), T*] + aer
S HI[x, f-1(x), }Lfg (T + * T (D] + e

= Jeoa(x) +asy,
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and finally :
(43) T (J)STertase Vk=1,2,---.
- Using this inequality and 1.2 we obtain
T T s U] = T, (Jim1 + at8ie)
= Tak_z(.l_}cml) +a2ee < Top+(aer—1 +a’ep)e.

Continuing in the same manner we obtain for k =1,2,-- -,
(Tay+* * Tao )U)STo+ (e ++ - Fakeye é]*-!—(i als,-)e.
Since J = J, it follows thhat
(Tap - Ta )W) ST* +(rf0 a"g,.)e.

Denote r, ={fio, &1, * - }. Then by taking limit above and using (38) we obtain
J, =T*+ge. If a <1 take g = e(1—a) and m[x]={polx], pi[x], - - -} for all k.
Then the policy 7, = {fio, i1, * - } is stationary. Q.E.D.

By using Proposition 4 we can prove the following.

ProposITION 5. Let 1,1.1, and 1.2 hold. Then

J*¥=TJ*).

Furthermore if J'€ Fis such that J' 2 J and J' =2 T(J'), then J' = J*.
Proof. For every m={uo, i1, * * '}€Il and x € S we have using I.1

J.(x) =,31_1>£10 (Tuon e T#'k)(j)(x)
= T [}im (T, - Tu)DI)

2 T,,()(x) 2 TI*)(x).
By taking the infimum of the left hand side over 7 €11
J*=TJ*).

To prove the reverse inequality let £, &> be any positive scalars and let
7 = {fio, i1, * * *} be such that

T (=TT + €46,
Jﬁl éj* +82€,
where #; ={fi1, iz, - * }. Such a policy exists by Proposition 4. We have

Jz= ,11_{1_}0 (TaoTa, " Tl-‘-k)(f)

= Ty lim (T, To )V = T

= Tﬂo(.f*)%-asze = T(]*) +(81+a£2)e.



452 DIMITRI P. BERTSEKAS
Since J* =J; and &1, €, can be taken arbitrarily small it follows that
JE*=TJ*).

Hence J* = T(J*). _
Assume that J'e F satisfies J'=J and J'= T(J"). Let {&:} be any sequence
with g, >0 and consider a policy 7 = {Lo, fi, - - '} €Il such that

T (TS TU) + e, k=0,1,--
We have using 1.2,

J¥=inf lim (T, - T, )

well k>0

= inf lim inf (T, - - T, )(7)

§1ig})icl}f (Tao "+ Ta )

=liminf (T, -+ Ta, [TV +ee]
=liminf (Ty, + Ta, ) Ty, (' +00)]
=liminf (T, -+ T ) Ty, () +ae]

=liminf [(Ty, - - Ty, )U) +a“eee]

ko ©
égim [T(J’)+( ¥ a’e,-)e] §J’+( y a’ei)e.
>0 i=0 i=0

Since we may choose Yi.,a’s; as small as desired it follows that
J*=J'. QE.D.

The following counterexamples show that I.1 and I.2 are essential in order for
Proposition 5 to hold. o

Counterexample 4. Take S ={0, 1}, C=U(0)=U(1) = (-1, 0], J(0)=J(1) =
-1, HQO,u,J)=u it J(1)=~-1, HO, u, J)=0 if J(1)>-1, and H(1, u, J)=u.
Then (T, - -+ T )UN(0)=0 and (T}, - * T )(1) = o(1) for N=1. Thus
J¥0)=0, J*(1) = —1 while T(*)(0)=—-1, T(J*)(1)=—1 and hence J* # T(J*).
Notice also that J is a fixed point of T while J=J* and J #J*. Here I and L1 are
satisfied but I.2 is violated. _ _

Counterexample 5. Take S ={0, 1}, C=U(0)= U(1)={0}, J(0)=J(1)=0,
H(0,0,J)=0 if J(1)<oo, H(0, 0, J) =0 if J(1)=00, H(1,0,J)=J(1)+1. Then
(T T )NO)=0and (T, - - T, ))(1)=N. Thus J*(0) = 0, J*(1) = co.
On the other hand we have T(J*)(0) = T(J*)(1) = o and J* # T(J*). Here I and
1.2 are satisfied but 1.1 is violated.

As a corollary to Proposition 5 we obtain the following:
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CororLary 5.1. Let 1, 1.1 and 1.2 hold. Then for every stationary policy
m={w, u, -} there holds

J.=T,(J,.).

Furthermore if J'€ F is such that J' 2J, J' 2 T,(J)), then J' =T,

Proof. Consider the variation of our problem where the control constraint set
is U, (x) ={w(x)} Vx € X rather than U(x). Application of Proposition 5 yields the
result. Q.E.D.

We now provide the counterpart of Proposition 5 under Assumption D.

ProrosITION 6. Let D and D.1 hold. Then

J*=TJ*).

Furthermore if J' € F is such that ' <J, I'= T(J"), then J' = J*.
Proof. We first show the following lemma:
Lemma 1. Let D hold. Then

(44) J*= lim Jy,

N->co
3

where Jy is the optimal value function of the N-stage problem defined by (36).
Proof. Clearly we have J* =Jy for all N and hence J* =limy..co Jx. Also for
all 7 ={ug, uy, -+ *) €Il we have
(Tll-o e TILN_l)(f) gJN,

and by taking limit of both sides we obtain J, =limy,Jx, and hence J*=
limN_,oo ]N' Q.ED

We return to the proof of Proposition 6. An entirely similar argument as the
one of the proof of Lemma 1 shows that under D we have for all x € S,

(45) lim inf )H(x, u,Jy)= inf lim H(x, u, Jn).

N-»co ueU(x ueU(x) N->co
Using D.1 the above equation yields
(46) lim T(Jy) = T(lim Jy).
By Proposition 3 we have Jy = T~ (J) and hence T(Jy) = T"*'(J). Combining this

relation with (44) and (46) we obtain J*=T(J*).  _
To complete the proof, letJ' € Fbe such that J'=J, J'= T'(J"). Then we have

J*=inf lim (T., - Tuy )

rell M-»oo

Z lim inf (T« Tun )W)

N-oco rell

= lim inf (T, -+ Ty )0

N->oo 7ell

Zgrim ™) =J.

Hence 7*=J'. Q.E.D.
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In Counterexamples 2 and 3, Assumption D.1 does not hold. In both cases we
have J* # T(J*) as the reader can easily verify.

A cursory examination of the proof of Proposition 6 reveals that the only
point where we used D.1 was in establishing the relation limy_e T(Jx)=
T(limy. Jn) [cf. (46)]. Hence if this relation can be established independently
then the result of Proposition 6 follows. In this manner we obtain the following

corollary.
CorOLLARY 6.1. Let D hold and assume that D.2 holds, S is a finite set, and

J*(x)>—c0 for all x € S. Then J* = T(J*). Furthermore if J' € F is such that J' <J,
J' =T, then J'SJ*.
Proof. We will show that

Alrmzo H(x, u, Jn)=H(x, u, I}Imgo Jn) VxeS, ueU(x).
Then using (45) we obtain (46) and the result follows as in the proof of Proposition
6. Assume the contrary, i.e., that for some £ € S, i € U(%), and £ > 0 there holds
H(x, 4, J,)—e > H(, 4, ,lri"}oj"’) Vk=1,2,:--.

Using the finiteness of S and the fact J*(x) =limy..Jy(x)> —co for all x we
obtain that for some positive integer k we have

Jo—te=1lim Jy Vk=E
o N-o00

By using D.2 we obtain for all k =k,
HE 3, 7)—¢ gy(f, a7, —fe) <H(, 4, lim J\)

which contradicts the earlier inequality. Q.E.D.

Similarly as under I we have the following corollary:

CoroLLARY 6.2. Let D and D.1 hold. Then for every Stationary policy
m={u, w, "} there holds

J.=T,(J,).

Furthermore if ' € F is such that J'<J, ' < T, (J') then J=J,.

It is worth noting that Propositions 5 and 6 may form the basis for computa-
tion of J* when the state space S is a finite set with n elements denoted
X1, X3, "+, X It follows from Proposition 5 that, under I, 1.1, and 1.2,
J*(xy), + -+, J*(x,) solve the problem

n
minimize Y A,
i=1

subject to

/\i~>_: inf H(X,‘,u,.’,\), i=1,"',n,
ueU(x;)

Aigf(xi); i=13“';na

where J, is the function taking values J, (x;) = A, i = 1,-+-,n. Under Dand D.1,
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or D, D.2 and J*(x) >—0c0 Yx € § the corresponding problem is

n
maximize Y, A;
i=1

subject to
Ai§ inf )H(x,-,u,f,\), i=1’...’n’

ueU(x;
/\,'éf(x,‘), i=1,~--,n.

When Ulx;) is also a finite set for all /, then the problems above become
finite-dimensional nonlinear programming problems.

Characterization of optimal stationary policies. We have the following
necessary and sufficient conditions for optimality of a stationary policy.
ProrosiTiON 7. Let 1, 1.1, and 1.2 hold. Then a stationary policy w* =

{u®*, u*, - - -} is optimal if and only if
(47) T, (J*) = T(J*).

Furthermore if there exists an optimal policy there exists an optimal stationary policy.

Proof. If m*is optimal then J, » = J* and the result follows from Proposition 5
and Corollary 5.1. Conversely if T,,«(J*) = T(J*) then J* = T(J*) (by Proposition
5) and it follows that T,,«(J*) = J*. Hence by Corollary 5.1, J,»=J* and it follows
that 7* is optimal. If # ={fo, i1, * * *} is optimal then we have by using I.1

T*=Tp = lim (Tao T - Tw)O)

= To[lim (Tp, -+ - Tp I 2 T (M) 2 TU¥) =T,

It follows that T, (J*) = T(J*) and, by the result just proved, the stationary policy
{0, fo, * * -} is optimal. Q.E.D.

ProrosiTioN 8. Let D and D.1 hold. Then a stationary policy mw* =
{uw*, u*, - - ) is optimal if and only if

(48) T T yw) = T(Ju»).

Proof. If w* is optimal then J,,» = J* and, using Proposition 6, and Corollary
6.2, we have T «(J,») = J, o« =J* = T(J*) = T(J,,»). Conversely if Ty, «(J,») = T(J,,»)
then we obtain from Corollary 6.2, J,»= T(J,«), and Proposition 6 yields J, » = J*.
Hence 7* is optimal. Q.E.D.

Examples where 7™ satisfies (47) or (48) but is not optimal under D or I
respectively are givenin[1, § 6.4]. Itis also easy to modify the proof of Proposition
7 and show the stronger result that if there exists an optimal policy at each x€
then there exists an optimal stationary policy.

Convergence of the dynamic algorithm—existence of optimal stationary
policies. The D.P. algorithm consists of successive generation of the function
T, T*(D), - - - . Under either Assumption I or D the function J, € F defined by

(49) Joolx) = lim T™VD(x) VxeS
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is well defined. We would like to investigate the question whether J, = J*. When
Assumption D holds, the following proposition shows that we have J,, = J* under
mild assumptions.

PrRoposITION 9. Let D hold and assume that either D.1 holds or else
Jn=TN(J) for all N where Jy is the optimal value function of the N-stage problem
defined by (36). Then

Jo=J*%,

Proof. By Lemma 1 we have that D implies J* = limp., o, Jn. Proposition 3
~ shows also that under our assumptions Jy = T (/). Hence J* = im0 TN =
Jo. Q.E.D. ,

Under AssumptionsI, I.1, and 1.2 the equality J, = J* may easily fail to hold
even in very simple deterministic optimal control problems as shown in the
example of § 1. This fact has been known since Strauch’s work (see[11, p. 880]).
Reference [2, p. 608] provides an example where J., # J* even though there exists
an optimal stationary policy. The following preliminary result shows that in order
to have J, = J* it is necessary and sufficient to have Joo= T ().

ProrosiTION 10. Let 1, 1.1, and 1.2 hold. Then

(50) Jo=T() =TT =J*
Furthermore the relation

(51) Jo=T() = T(I*) =J*
holds if and only if

(52) Jo=T({w).

Proof. Clearly we have Jo=J, for all 7€l and it follows that J,,=J*.
Furthermore by Proposition 5 we have T(J*) = J*, Also we have for all k = 1,

TUx)= inf H(xu,Jo)Z Inf Hixu, T*(N]=T*"(J).

Taking limit of the right side we obtain T'(J.o) = J., which combined with Jo=J*
and T(J*)=J* proves (50). If (51) holds then (52) also holds. Conversely let (52)
hold. Then, since we have J,=J, we obtain by Proposition 5, J,=J* which
combined with (50) proves (51). Q.E.D.

In what follows we provide a necessary and sufficient condition for Jo=
T(J») (and hence also (51)) to hold under Assumptions I, 1.1, and 1.2. We
subsequently obtain a useful sufficient condition for Jo=T(J) to hold which at
the same time guarantees the existence of an optimal stationary policy.

For any JeF we denote by E(J) the epigraph of J, i.e. the subset of
S X (—00, c0) given by

(53) ' E@)={(x, T (x)=A}.

Under I we have T*(J) = T**'(J) for all k, Joo = limy ..o T*(J), and it follows easily
that

(54) E(. =ﬁo E[T*(D].
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Consider for each k =1 the subset G, of § X CX (-0, c0) given by

(55) Ce={(x, u, \)|H[x, u, T*"'(N]=A, xS, uec U}
Denote P(C,) the projection of C, on § X (—00, 00),
(56) P(C)={(x, Fue Ux)s.t. (x, u,A) € Cc}.

In the above relation and later the symbol 3 denotes “there exists’ and the initials
“s.t.” stand for “such that”. Consider also the following set:

(57) P(C)={(x, A)|FAn} s.t. >4, (x,4,) € P(C), n=0,1, - -},

The set P(Cp) is obtained from P(C;) by adding for each x the point [, A (x)]
where A (x) is the perhaps missing end point of the half line {A|(x, A) € P(Ci)}. We
have the following lemma:

Lemma 2. Let 1 hold. Then for allk =1,

(58) P(Ci) = P(G) =E[T*(J)]
Furthermore we have

(59) P(C)=P(C)=E[T*(J)]

if and only if the infimum is attained for each x € S in the relation

(60) T ()(x) = inf Hlx,u, T D]
Proof. If (x,A)e E[T*(J)] we have
T*(N(x)= inf H[x, u, T '(N]= A
Let{e,}be asequence such thate, >0, &, > 0and let{u,} be a sequence such that
Hlx, u,, T ' (DIS T*(N(x) + £, SA + &

Then (x, u,, A +¢,) € G and (x, A +¢,,) € P(C,) for all n. Since {A +¢&,}> A by (57)
we obtain (x, A} € P(Cy). Hence

(61) E[T*(N]1<=P(Cy).

Conversely let (x, A) € P(C,). Then by (55)—(57) there exists a sequence {A,,} with
A, = A and a corresponding sequence {u,} such that

T*(N(x) S H[x, s, T (D] S A
Taking limit as # - 0o we obtain 7%(J)(x) =A and (x, A) € E[T*(J)]. Hence

P(C.)<E[T*(N)]

and using (61), we obtain (58).
To prove that (59) is equivalent to the attainment of the infimum in (60)
assume first that the infimum is attained by u¥_;(x) for each x € S. Then for each
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(x,A) € E[T*(N)]

Hlx, pf_1(x), T*7'(D]=A

implying by (56) that (x, 1) € P(C,). Hence E[T*(J)]< P(C) and in view of (58)
we obtain (59). Conversely if (59) holds we have [x, T*(J)(x)] € P(C) for every x
for which T*(J)(x) <co. Then by (55), (56) there exists a i1 (x) € U(x) such that

Hlx, pka(x), T D= T D00) = inf Hlx,u, T*"(J)].

Hence the infimum in (56) is attained for all x such that T(J)(x) <oo. It is also
trivially attained by all u e U(x) whenever T*(J)(x)=00 and the proof is
complete. Q.E.D.

Consider now the set N;~; C; and define similarly as in (56), (57) the sets

62) p(kfjl ck) = { (e, M)[Fu e U sit. (x, 1, A)ei 1 ck},
(63) p(kfi C’k) = {(x, DIFAT .t A > A, (5, A,) ép(fjl Ck)}.

Using (54) and Lemma 2 it is easy to see that we have

(64) P( A Ck)c N P(C)= N P(CY= 1 E[T*()]=E(.),
k=1 k=1 k=1 k=1

©)  p(A G)= N PGI= A BT (=B

We have the following proposition:
ProrosiTion 11, Let 1, 1.1, and 1.2 hold. Then:
(a) There holds J = T(J) (equivalently J .= J*) if and only if

(66) N ck) =N PG, i
k=1 k=1
(b) There holds Jow= T(J ) (equivalently J oo = J *) and in addition the infimum Lﬁ
in
(67) Joo(x) = uelg'j(:x) H(x, u, J)

is attained for each x € S (equivalently there exists an optimal Stationary policy) if
and only if 4

68) P( n ck) = 51 P(C).

k=1

Proof. (a) Assume Joo= T(Jo) and let (x, A) € E(J,), i.e.
' inf H(x, u,Jo) =Jo(x) = A.

uelU(x)
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Let {e,} be any sequence with ¢, >0, &, >0. Then there exists a sequence {u,}
such that

Hx, uy, Jo)SA+e, Yr=1,2,--,
and hence
Hx, tp, T* ' (D]SA +e, Vk,n= 1,2,

Hence (x, un, A +¢,)e Cy for allk, n and (x, u,,, A +¢,) € Nx—; C; for all n. Hence
(x,A+e,)eP(Ng-1 C) for all n and since A+e,>A we obtain (x,A)e
P(N%-1 Ct). Therefore

E(.)c P(kfi ck)

and by (65) we obtain (66).

Conversely let (66) hold. Then we have by (65) P(Nr-; Ci)= E(Jx). Let
x €S be such that J(x)<co. Then [x, Jo(x)]e P(NT-, C,) and there exists a
sequence {A,} with A, > J(x) and a sequence {u,} such that

Hlx, u,, T*'(U)]=A, Yhk,n=1,2,---.
Taking limit with respect to k and using I.1 we obtain
Hx, up, Jo)=A, Vn=1,2,---,
and since T(Joo)(x) = H(x, u,, J») it follows that

TU)(x)=A,,.
Taking limit as n -» o we obtain

T(Uoo)(x) =Jw(x)

for all x € § such that J(x) < c0. Since the inequality above holds also for all x € S
with Jo(x) =00 we have

T() =J .

On the other hand by Proposition 10 we have Jo = T(J.). Combining the two
inequalities we have Jo= T(Jw).

(b) AssumeJ,,= T(J)and that the infimum in (67) is attained for each x € S.
‘Then there exists a function u* € M such that for all (x, A) e E(J,,)

H[x’ M*(X), Joo]g/\-

Hence H[x, p*(x), T* " (J)]= A for all k and [x, p*(x), A]e NZ.; C.. As a result
(x,A)e P(Ng-1 C). Hence

B Cp(fi G)

and, by (64), equation (68) follows.
Conversely let (68) hold. We have for all x € S with Jo(x) <00,

[x, Jo(x)]€ EU) =P(§1 ck).
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Hence there exists a u*(x) € U(x) such that

[x, 1*(x), Ju(x)]e N G,
from which .
Hlx, p*(x), T* '(N]=Jo(x) Vk=0,1,--.
Taking limit and using 1.1, we have
TUw)(x)=H[x, n*(x), Jo] =Jolx).

It follows that T(Jo)=J. and since by Proposition 10, J.o=T(J.) we finally
obtain Jo = T'(Jw). Furthermore the inequality above shows that u *(x) attains the
infimum in (67) when Jo(x)<00. When Joo(x) =00 every u e U(x) attains the
infimum and the proof is complete. Q.E.D.

The proposition above states that the equality Jo, = T(J.), which in view of
Proposition 10 is equivalent to the validity of interchanging infimum and limit as
shown below:

Jo=lim inf (Tuo e Tuk)(J) =‘ni're)£l ,51_9;10 (T/J.o e Tuk)(J):J*:

k—>00 rell

is in fact equivalent to the validity of interchanging projection and intersection in
the manner of (66) or (68).

The following proposition provides a compactness assumption which guaran-
tees that (68) holds. If C'is a topological space (see e.g. [5]) we say that a subset U
of C is compact if every collection of open sets that covers U has a finite
subcollection that covers U. The empty set in particular is considered to be
compact. Any sequence {u,} belonging to a compact set I/ < C has at least one
accumulation point # € U, i.e., a point & € U every (open) neighborhood of which
contains an infinite number of elements of {u,}. Furthermore all accumulation
points of {u,} belong to U. If {U,} is a sequence of nonempty compact sets of C
and U, = U, for all n, then the intersection NY-; U, is nonempty and compact.
This yields the following lemma which will be useful in what follows.

Lemma 3. Let Cbe a topological space, f: C - [—00, +00] be a function, and U
be a subset of C. Assume that the set U(A) defined by

UM ={ueUlf(u)=2}

is compact for each A € (—00, ). Then f attains a minimum over U,

Proof. If f(u)=+c0 for all u € U then every u € U attains the minimum. If
f*=inf {f(u)|u € U}<+oolet{A,} be a scalar sequence such that A, > A, for all
n and A, - f*. Then the sets U(\,,) are nonempty, compact, and satisfy U(A,,) 2
U(A,.+1) for all n. Hence the intersection N;~; U(A,) is nonempty and compact.
Let ™ be any pointin the intersection. Then u* € U and f (u*) < A, for all n, and it
follows that f(u™) =f*. Hence u* attains the minimum of f over U. Q.E.D.

ProrosiTION 12. Let 1, 1.1 and 1.2 hold and let the control space C be a
topological space. Assume that there exists a nonnegative integer k such that for each
x€S, A €(~00,00) and k =k the set

(69) Ui(x,A)={u € U(x)|H[x, u, T*(N]=A}
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is compact. Then

and (by Propositions 10 and 11) there holds
Jo=T{w)=TJT*)=J*

Furthermore there exists an optimal stationary policy.
Proof. By (64) it will be sufficient to show that

(71) p( A ck): 8 PC). N PC)=N PG
k=1 k=1 k=1

k=1
Let (x, A) e NP1 P(Cy). Then there exists a sequence {1} such that
Hlx, u,, T*(D]=H[x, u,, T"NI=A VYnzk,

or equivalently

u,eUe(x,A) Vnz=k.
Since U(x, A) is compact for k =Fk.it follows that the sequence {u,} has an
accumulation point & and

deUcx, ) VYkzk
Hence

~ Hix, i@, T*(D]=A

and (x, 7, A) € NF=; C. It follows that (x, A) € P(Nig=1 C) and

AR N P(G).

k=1 k=1

Also by the compactness of Uy (x, A) and the result of Lemma 3 it follo§vs that the
infimum in (60) is attained for every x€S§ and k>k. Hence, by Lemma 2,
P(C,)=P(C,) for k >k and

N P(G)= N P(C).
k=1 k=1
Thus (71) is proved. Q.E.D.

The following proposition shows also that a stationary optimal policy may be
obtained in the limit by means of the D.P. algorithm.

PROPOSITION 13. Let the assumptions of Proposition 12 hold. Then:

(a) There exists a policy w* ={u, u¥, - - ‘Y€1l attaining the minimum in the
D.P. algorithm for all k =k, i.e.

(72) (T2THN)=T"J) Vkzk.

(b) For every policy m* satisfying (72) the sequence {u ¥(x)} has at least one
accumulation point for each x € S with J*(x) <co. :
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(c) If u™*: S Cis such that u*(x) is an accumulation point of {u}(x)} for all
x €8 with J*(x)<oo, and u*(x)e U(x) for all x€S with J*(x) =00, then the
stationary policy {u*, u*, - - -} is optimal.

Proof. (a) For an x €S such that T%**(J)(x) <co consider a sequence {A,}
with A, >A,+1, for all # and A,-> T**'(J)(x). Then the sets Ui(x, A,) are
nonempty and compact and hence their intersection is also nonempty and
compact. Any point u £(x) in the intersection satisfies (T, T%)(J)(x) = T (N(x).
For an x € S such that Z’k“(f)(x) =00 any element of U(x), call it w¥(x), satisfies
(T THDE) = T (D).

(b) Forany m*={uf, u¥, - - -} satisfying (72) and x € § such that J*(x) <co
we have

H[x, u(x), T*(DISHlx, uix), T"NI=T*(x) Yk=k, nzk
Hence we have
pix)e Ulx, J*(x)] Vk=k, n=k.

Since U[x, J*(x)] is compact, {u*(x)} has at least one accumulation point.
Furthermore each accumulation point u*(x) of {uX(x)} belongs to U(x) and
satisfies

(73) Hlx, u*(x), T*(N]sT*(x) Vkzk
(c) By taking the limit in (73) and using I.1 we obtain

Hlx, p*(x), Jo] = H[x, p*(x), J*¥]=<J*(x)

for all x € § with J*(x) <00. The relation above holds also trivially for all x € § with
J*(x) =00. Hence T,~(J*)=J* = T(J*) which implies T,.+(J*) = T(J*). It follows,
by Proposition 7, that {u*, u*, - - -} is optimal. Q.E.D.

The compactness of the sets Uy(x, 1) of (69) may be verified in a number of
important special cases. One such case is when Uy (x, A ) is a finite set for all &, x, A.
Simply consider the discrete topology on C, i.e. the topology consisting of all
subsets of U. In this topology a set is compact if and only if it is finite. For this case
the relation J, = J* for the negative model of Strauch has been shown earlier [11].
There are many other important cases where the compactness of Uy (x, A) can be
verified. Several examples have been given in [1, (Chap. 6 and 7)]. It is not our
intention to provide an extensive list. Instead we state as an illustration two sets of
assumptions which guarantee compactness of Uy (x, A) in the case of the mapping

H(x, u, J)=g(x, u)+a(x, u)J[f(x, u)]

corresponding to a deterministic optimal control problem. _

Assume that g(x, u) =0, a(x, u)=0for all x € S, u € U(x) and take J(x)=0,
Vx € S. Then compactness of Uy (x, A) is guaranteed if:

(a) §=R" (n-dimensional Euclidean space), C=R™ Ux)=C,f, g, a are
continuous in (x, u) and g satisfies lim,. g(x,, u,) =00 for every bounded
sequence {x,} and every sequence {u,} for which |u,| >0 (| - |isa normon R™).

(b) S=R", C=R™, f g and a are continuous, U (x) is compact and
nonempty for each x e R", and U( ) is a continuous point-to-set mapping from
R™ to the set of all compact subsets of R™.
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Aside from the result of Strauch mentioned earlier, other general sufficient
conditions which guarantee that an optimal stationary policy exists for special
cases of our problem are those of Maitra for discounted problems (see [9] and [6,
Thm. 5.11]), and Kushner for free end time problems [8]. In these cases Assump-
tion Cis satisfied. In both cases the sufficient conditions or existence of an optimal
stationary policy can be shown to follow from Proposition 12.

We finally show that the compactness of the sets Uy (x, A) of (69) guarantees
existence of an optimal stationary policy under Assumption C which can be
obtained in the limit by means of the D.P. algorithm.

ProrosiTiON 14. The conclusions of Proposition 13 hold if Assumptions 1.
1.1, and 1.2 are replaced by the Contraction Assumption C.

Proof. (a) The proof of this part is identical to the corresponding proof in
Proposition 13.

(b) Let w*={uf, u¥, - - -} satisfy (72) and define

e =sup{|T' () -J* i =k}, k=0,1,---

We have from (20), (72) and the fact T(J*) =J*,

(T =T =T D =TT
SalT"(D-T" (P =T (D7 VnzF,
(T T~ (T TN = | T () - T ()|
ST ()~ T+l T* (=]
Vnzk, k=0,1,---.
From the above two relations we obtain

Hlx, p¥(x), T*(N]=H[x, p¥(x), T"(N]+2ae
=J*x)+3ae,. Vnz=k, kz=k.
It follows that u *(x) € Ui[x, J*(x)+3asg; ] forall n =k and k = k, and {u ¥(x)} has
an accumulation point by the compactness of Up[x, J*(x)+3as.].
() If w*(x) is an accumulation point of {ui(x)} then u*(x)e
Ur[x, J*(x) +3aeg,] for all k =k or equivalently
(T TN () =J*(x) +3as.  VxeS, kzk.
By using (20) we have for all k
(T T)D) = TT*| = | T () - T*| = e
Combining the two inequalities above we obtain
T (J¥)(x) SJ*(x) +4as, VxeS, kzk.
Since &, -0 [cf. Prop. 1, part (d)] we obtain T,«(J*)=J*. Using the fact J*=

T (J*) = T,«(J*), we obtain T,+(J*) =J* which implies, by Proposition 1, that the
stationary policy {u*, u*, - - -} is optimal. Q.E.D.
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