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Min Common/Max Crossing Duality:

A Geometric View of Conjugacy in Convex Optimization1

Dimitri P. Bertsekas2

Abstract

We provide a unifying framework for the visualization and analysis of duality, and other issues in convex

optimization. It is based on two simple optimization problems that are dual to each other: the min common

point problem and the max crossing point problem. Within the insightful geometry of these problems, several

of the core issues in convex analysis become apparent and can be analyzed in a unified way. These issues are

related to conditions for strong duality in constrained optimization and zero sum games, existence of dual

optimal solutions and saddle points, existence of subgradients, and theorems of the alternative.

The generality and power of our framework is due to its close connection with the Legendre/Fenchel

conjugacy framework. However, the two frameworks offer complementary starting points for analysis and

provide alternative views of the geometric foundation of duality: conjugacy emphasizes functional/algebraic

descriptions, while min common/max crossing emphasizes set/epigraph descriptions. The min common/max

crossing framework is simpler, and seems better suited for visualizing and investigating questions of strong

duality and existence of dual optimal solutions. The conjugacy framework, with its emphasis on functional

descriptions, is more suitable when mathematical operations on convex functions are involved, and the

calculus of conjugate functions can be brought to bear for analysis or computation.

1 Supported by NSF Grant ECCS-0801549. The MC/MC framework was initially developed in joint research

with A. Nedic, and A. Ozdaglar. This research is described in the book by Bertsekas, Nedic, and Ozdaglar [BNO03].

The present account is an improved and more comprehensive development. In particular, it contains some more

streamlined proofs and some new results, particularly in connection with minimax problems and separable problems.

While this paper is self-contained, a fuller presentation may be found in the author’s convex optimization theory

book [Ber09].
2 Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp. Science, M.I.T., Cambridge, Mass., 02139.
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1. Introduction

1. INTRODUCTION

Duality in optimization is often viewed as a manifestation of a fundamental dual/conjugate description of

a closed convex set as the intersection of all closed halfspaces containing the set. When specialized to the

epigraph of a function f : <n 7→ [−∞,∞], this description leads to the formalism of the conjugate convex

function of f , which is defined by

h(y) = sup
x∈<n

{
x′y − f(x)

}
, (1.1)

and permeates much of convex optimization theory.

In this paper, we focus on a framework referred to as min common/max crossing (MC/MC for short).

It is related to the conjugacy framework, but does not involve an algebraic definition such as Eq. (1.1), and it

is structured to emphasize optimization duality aspects. For this reason it is simpler, and seems better suited

for geometric visualization and analysis in many important convex optimization contexts. Our framework

aims to capture the most essential optimization-related features of the preceding conjugate description of

closed convex sets in two simple geometrical problems, defined by a nonempty subset M of <n+1.

(a) Min Common Point Problem: Consider all vectors that are common to M and the (n+ 1)st axis. We

want to find one whose (n+ 1)st component is minimum.

(b) Max Crossing Point Problem: Consider nonvertical hyperplanes that contain M in their corresponding

“upper” closed halfspace, i.e., the closed halfspace whose recession cone contains the vertical halfline
{

(0, w) | w ≥ 0
}

(see Fig. 1.1). We want to find the maximum crossing point of the (n+ 1)st axis with

such a hyperplane.

Figure 1.1 suggests that the optimal value of the max crossing problem is no larger than the optimal value

of the min common problem, and that under favorable circumstances the two optimal values are equal. Our

purpose in this paper is to formalize the analysis of the two problems, to provide conditions that guarantee

equality of their optimal values and the existence of their optimal solutions, and to show that they can be

used to develop much of the core theory of convex analysis and optimization in a unified way.

Mathematically, the min common problem is

minimize w

subject to (0, w) ∈M.

Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.
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Ĉ = C + S⊥

Nonvertical Vertical

Hyperplane

Level Sets of f Constancy Space Lf ∩∞
k=0

Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a′x ≥ b}
Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(

αx∗ + (1 − α)x
)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′

u + w

σX(y)/‖y‖

x Wk Nk Wk y C2 C C2
k+1

yk AC
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Figure 1.1. Illustration of the optimal values of the min common and max crossing problems.

In (a), the two optimal values are not equal. In (b), when M is “extended upwards” along the

(n+ 1)st axis, it yields the set

M = M +
{

(0, w) | w ≥ 0
}

=
{

(u,w) | there exists w with w ≤ w and (u,w) ∈M
}
,

which is convex and admits a nonvertical supporting hyperplane passing through (0, w∗). As a

result, the two optimal values are equal. In (c), the set M is convex but not closed, and there are

points (0, w) on the vertical axis with w < w∗ that lie in the closure of M . Here q∗ is equal to

the minimum such value of w, and we have q∗ < w∗.

To describe mathematically the max crossing problem, we recall that a nonvertical hyperplane in <n+1

is specified by its normal vector (µ, 1) ∈ <n+1, and a scalar ξ as

Hµ,ξ =
{

(u,w) | w + µ′u = ξ
}
.

Such a hyperplane crosses the (n + 1)st axis at (0, ξ). For M to be contained in the closed halfspace that

corresponds to Hµ,ξ and contains the vertical halfline
{

(0, w) | w ≥ 0
}

in its recession cone, we must have

ξ ≤ w + µ′u, ∀ (u,w) ∈M,

or equivalently

ξ ≤ inf
(u,w)∈M

{w + µ′u}.
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Figure 1.2. Mathematical specification of the max crossing problem. When considering crossing

points by nonvertical hyperplanes, it is sufficient to restrict attention to hyperplanes with normals

of the form (µ, 1), µ ∈ <n. For each µ ∈ <n, we consider q(µ), the highest crossing level over

hyperplanes, which have normal (µ, 1) and are such that M is contained in their positive halfspace

[the one that contains the vertical halfline
{

(0, w) | w ≥ 0
}

in its recession cone]. The max crossing

point q∗ is the supremum over µ ∈ <n of the crossing levels q(µ).

The maximum crossing level ξ over all hyperplanes Hµ,ξ with the same normal (µ, 1) is given by

q(µ) = inf
(u,w)∈M

{w + µ′u}; (1.2)

(see Fig. 1.2). Thus the max crossing problem is to maximize over all µ ∈ <n the maximum crossing level

corresponding to µ, i.e.,
maximize q(µ)

subject to µ ∈ <n.
(1.3)

We denote by q∗ the corresponding optimal value,

q∗ = sup
µ∈<n

q(µ),

and we refer to q(µ) as the crossing or dual function.

Note that both w∗ and q∗ remain unaffected if M is replaced by its “upwards extension”

M = M +
{

(0, w) | w ≥ 0
}

=
{

(u,w) | there exists w with w ≤ w and (u,w) ∈M
}

(1.4)

(cf. Fig. 1.1). It is often more convenient to work with M because in many cases of interest M is convex

while M is not. However, on occasion M has some interesting properties (such as compactness) that are

masked when passing to M , in which case it may be preferable to work with M . We will show in the next

section that generically we have q∗ ≤ w∗; this is referred to as weak duality . When q∗ = w∗, we say that

strong duality holds or that there is no duality gap.
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1. Introduction

Note also that we do not exclude the possibility that either w∗ or q∗ (or both) are infinite. In particular,

we have w∗ =∞ if the min common problem has no feasible solution [M ∩
{

(0, w) | w ∈ <
}

= ∅]. Similarly,

we have q∗ = −∞ if the max crossing problem has no feasible solution, which occurs in particular if M

contains a vertical line, i.e., a set of the form
{

(x,w) | w ∈ <
}

for some x ∈ <n.

The paper is organized as follows. In Section 2, we develop some general results, and we discuss

the connection with the conjugacy framework. We also consider some special cases, including constrained

optimization and minimax, and derive the corresponding forms of the crossing function. In Section 3, we

establish conditions for strong duality, and also conditions under which the max crossing problem has a

nonempty and/or compact optimal solution set. In Section 4, we apply the results of Section 3, and we

develop as special cases the core theory of minimax theory and constrained optimization duality. We also

establish connections with subdifferential theory, and with theorems of the alternative, such as the Gordan

and Motzkin theorems. Finally, in Section 5 we focus on nonconvex cases where there is a nonzero duality

gap w∗ − q∗ and discuss techniques that may be used to estimate its size, with a focus on separable-type

problems. A considerable part of the analysis is new and has not been presented in [BNO03] or elsewhere.

This includes most of Section 2 (including Prop. 2.4), parts of Section 3 and 4 (including Props. 3.4 and 3.5,

and the connections to the Gordan and Motzkin theorems), and the duality gap material of Section 5.

Generally, we assume that the reader is familiar with the standard notions of convex analysis, as

established in the book by Rockafellar [Roc70], and also described in other books such as Auslender and

Teboulle [AuT03], Barvinok [Bar02], Bertsekas, Nedic, and Ozdaglar [BNO03], Ben-Tal and Nemirovski

[BeN01], Bonnans and Shapiro [BoS00], Borwein and Lewis [BoL00], Ekeland and Temam [EkT76], Hiriart-

Urrutu and Lemarechal [HiL93], Stoer and Witzgall [StW70], Webster [Web94]. For easy reference, we collect

in an appendix some of the convex analysis results that we will be using.

Regarding notation, all vectors are column vectors and a prime denotes transposition. We write x ≥ 0

or x > 0 when a vector x has nonnegative or positive components, respectively. Similarly, we write x ≤ 0

or x < 0 when a vector x has nonpositive or negative components, respectively. We use throughout the

paper the standard Euclidean norm in <n, ‖x‖ = (x′x)1/2, where x′y denotes the inner product of any

x, y ∈ <n. We denote by cl(C), int(C), and conv(C) the closure, the interior, and the convex hull of a set

C, respectively. We denote by aff(C) the affine hull of a set C, i.e., the smallest affine set containing C, and

by ri(C) the relative interior of C, i.e., its interior relative to aff(C). We denote by epi(f) and dom(f) the

epigraph and the effective domain, respectively, of an extended real-valued function f : X 7→ [−∞,∞]:

epi(f) =
{

(x,w) | f(x) ≤ w, x ∈ X, w ∈ <
}
, dom(f) =

{
x | f(x) <∞, x ∈ X

}
.

We say that f is convex if epi(f) is convex. We say that f is proper, if its epigraph is nonempty and does not

contain a vertical line, i.e., if f(x) > −∞ for all x ∈ X and f(x) < ∞ for al least one x ∈ X. We say that

f is lower semicontinuous at a vector x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every sequence {xk} ⊂ X with

6



2. General Results and Some Special Cases

xk → x. If f is lower semicontinuous at every x in a subset Y of X, we say that f is lower semicontinuous

over Y . We say that f is lower semicontinuous if it is lower semicontinuous over its entire domain X. We

use a similar terminology for upper semicontinuous functions. We say that f is closed if epi(f) is closed.†
We remind the reader that if dom(f) is closed and f is lower semicontinuous over dom(f), then f is closed

(the converse need not be true). Furthermore, a function f : X 7→ [−∞,∞] is lower semicontinuous if and

only if it is closed. The function whose epigraph is cl
(
epi(f)

)
is called the closure of f and is denoted by

cl f . These definitions are elaborated on in the appendix at the end of the paper, together with additional

convex analysis definitions and background, relating to recession cones, hyperplanes, polyhedral convexity,

conjugate functions, and Fenchel duality.

2. GENERAL RESULTS AND SOME SPECIAL CASES

In this section we establish some generic properties of the MC/MC framework, and its connection with

conjugacy. We also derive the form of the dual function on some important special cases. The following

proposition gives a basic semicontinuity property of the crossing function q.

Proposition 2.1: The crossing function q is concave and upper semicontinuous over <n.

Proof: By definition [cf. Eq. (1.2)], q is the infimum of a collection of affine functions, from which the

result follows. Q.E.D.

We next establish the weak duality property, which is intuitively apparent from Fig. 1.1.

Proposition 2.2: (Weak Duality Theorem) We have q∗ ≤ w∗.

Proof: For every (u,w) ∈M and µ ∈ <n, we have

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

† In Rockafellar [Roc70], the definition of a closed function is somewhat different. For proper and convex functions,

our definition of a closed function and the one of [Roc70] (p. 52) coincide.
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so by taking the supremum of the left-hand side over µ ∈ <n, we obtain q∗ ≤ w∗. Q.E.D.

As Fig. 1.2 indicates, the feasible solutions of the max crossing problem are restricted by the horizontal

directions of recession of M . This is the essence of the following proposition.

Proposition 2.3: Assume that the set

M = M +
{

(0, w) | w ≥ 0
}

is convex. Then the set of feasible solutions of the max crossing problem,
{
µ | q(µ) > −∞

}
, is

contained in the cone
{
µ | µ′d ≥ 0 for all d with (d, 0) ∈ RM

}
,

where RM is the recession cone of M .

Proof: Let (u,w) ∈M . If (d, 0) ∈ RM , then (u+ αd,w) ∈M for all α ≥ 0, so that for all µ ∈ <n,

q(µ) = inf
(u,w)∈M

{w + µ′u} = inf
(u,w)∈M

{w + µ′u} ≤ w + µ′u+ αµ′d, ∀ α ≥ 0.

Thus, if µ′d < 0, we must have q(µ) = −∞, implying that µ′d ≥ 0 for all µ with q(µ) > −∞. Q.E.D.

As an example, consider the case where M is the vector sum of a convex set and the nonnegative

orthant of <n+1. Then it can be seen that the set
{
d | (d, 0) ∈ RM

}
contains the nonnegative orthant of

<n, so the preceding proposition implies that µ ≥ 0 for all µ such that q(µ) > −∞. This case arises in

optimization problems with inequality constraints (see Sections 3 and 4).

Connection to Conjugate Convex Functions

Consider the case where the set M is the epigraph of a function p : <n 7→ [−∞,∞]. Then M coincides with

the set M of Eq. (1.4) (cf. Fig. 1.1), and the optimal min common value is

w∗ = p(0).

The crossing function q of Eq. (1.2) is given by

q(µ) = inf
(u,w)∈epi(p)

{w + µ′u} = inf
{(u,w)|p(u)≤w}

{w + µ′u},
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and finally

q(µ) = inf
u∈<m

{
p(u) + µ′u

}
. (2.1)

Thus, we have q(µ) = −h(−µ), where

h(µ) = sup
u∈<n

{
µ′u− p(u)

}

is the conjugate convex function of p [cf. Eq. (1.1)]. Since the conjugate of the conjugate of a closed proper

convex function p is p itself (cf. Prop. 7.15), this means that if we consider the min common problem defined

by the epigraph of −q, the corresponding max crossing function is −p, provided p is closed proper and

convex.

General Optimization Duality

Consider the problem of minimizing a function f : <n 7→ [−∞,∞]. We introduce a function F : <n+r 7→
[−∞,∞] of the pair (x, u), which satisfies

f(x) = F (x, 0), ∀ x ∈ <n.

Let the function p : <n 7→ [−∞,∞] be defined by

p(u) = inf
x∈<n

F (x, u). (2.2)

If we view u ∈ <r as a perturbation, then p(u) has the classical interpretation of a perturbation function.

It represents the optimal value of an optimization problem whose cost function is perturbed by u. The

perturbed problem coincides with the original problem of minimizing f when u = 0.

Consider the MC/MC framework with

M = epi(p).

The min common value w∗ is the minimal value of f , since

w∗ = p(0) = inf
x∈<n

F (x, 0) = inf
x∈<n

f(x).

By Eq. (2.1), the crossing function is

q(µ) = inf
u∈<r

{
p(u) + µ′u

}
= inf

(x,u)∈<n+r

{
F (x, u) + µ′u

}
, (2.3)

and the max crossing problem is
maximize q(µ)

subject to µ ∈ <r.

9
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Optimization with Inequality Constraints

Different choices of perturbation structure and function F yield corresponding MC/MC frameworks, and

corresponding dual problems. An example of this type that we will also consider later is minimization with

inequality constraints. Here the problem is

minimize f(x)

subject to x ∈ C

where f : <n 7→ < is a given function, and C is a constraint set of the form

C =
{
x ∈ X | g(x) ≤ 0

}
,

where X is a nonempty subset of <n, and g(x) =
(
g1(x), . . . , gr(x)

)
with gj : <n 7→ < being given functions.

We introduce a “perturbed constraint set” of the form

Cu =
{
x ∈ X | g(x) ≤ u

}
, u ∈ <r,

and the function

F (x, u) =

{
f(x) if x ∈ Cu,

∞ otherwise,

which satisfies the condition F (x, 0) = f(x) for all x ∈ C.

Note that the function p of Eq. (2.2) is given by

p(u) = inf
x∈X, g(x)≤u

f(x),

so p(u) is the well-known primal function or perturbation function, which captures the essential structure of

the constrained minimization problem, relating to duality and other properties, such as sensitivity. Further-

more, from Eq. (2.3),

q(µ) = inf
u∈<r

{
p(u) + µ′u

}
=

{
infx∈X

{
f(x) + µ′g(x)

}
, if µ ≥ 0,

−∞, otherwise,

so q is the standard dual function, obtained by minimizing over x ∈ X the Lagrangian function f(x)+µ′g(x).

Fenchel Duality Framework

Let us also consider the Fenchel duality framework, involving the problem

minimize f1(x)− f2(Qx)

subject to x ∈ <n,
(2.4)

10



2. General Results and Some Special Cases

where Q is an m × n matrix, and f1 : <n 7→ (−∞,∞] and f2 : <m 7→ [−∞,∞) are extended real-valued

functions. The dual problem within this framework is

maximize h2(µ)− h1(Q′µ)

subject to µ ∈ <m,
(2.5)

where

h1(Q′µ) = sup
y∈<n

{
y′Q′µ− f1(y)

}
, h2(µ) = inf

z∈<m

{
z′µ− f2(z)

}
,

(see e.g., [Roc70], [BNO03]). Note that h1 is the conjugate convex function of f1, and h2 is the conjugate

concave function of f2, i.e., h2 is given by h2(µ) = −f∗2 (−µ), where f∗2 is the conjugate function of −f2.

Consider the function

F (x, u) = f1(x)− f2(Qx+ u),

where u ∈ <m represents the perturbation, the corresponding function p of Eq. (2.2), and the MC/MC

framework with M = epi(p). Then, by using Eqs. (2.2) and (2.3), it can be verified that the crossing

function q is

q(µ) = h2(µ)− h1(Q′µ),

so the corresponding max crossing problem coincides with the Fenchel dual problem.

Minimax Problems

Consider a function φ : X × Z 7→ <, where X and Z are nonempty subsets of <n and <m, respectively. We

wish to either
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X
or

maximize inf
x∈X

φ(x, z)

subject to z ∈ Z.
An important question is whether the minimax equality

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z), (2.6)

holds, and whether the infimum and the supremum above are attained. This is significant in a zero sum

game context, as well as in optimization duality theory (we will return to this issue later).

We introduce the function p : <m 7→ [−∞,∞] given by

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z)− u′z

}
, u ∈ <m, (2.7)
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Figure 2.1. MC/MC framework for minimax theory. The set M is taken to be the epigraph of

the function

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z)− u′z

}
.

The “infsup” value of φ is equal to the min common value w∗. Under suitable assumptions, the

“supinf” values of φ will turn out to be equal to the max crossing value q∗. The figures illustrate

cases where p is convex. On the left, the minimax equality holds, while on the right it does not

because p is not lower semicontinuous at 0.

which can be viewed as a perturbation function. It characterizes how the “infsup” of the function φ changes

when the linear perturbation term u′z is subtracted from φ. We consider the MC/MC framework with

M = epi(p),

so that the min common value is

w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z). (2.8)

We will show that the max crossing value q∗ is equal to the “supinf” value of a function derived from

φ via a convexification operation. Given a set X ⊂ <n and a function f : X 7→ [−∞,∞], the convex closure

of f , denoted by čl f , is the function whose epigraph is the closure of the epigraph of f (see the Appendix

for analysis and properties of čl f). The concave closure of f , denoted by ĉl f , is the opposite of the convex

closure of −f , i.e.,

ĉl f = −čl (−f).

It is the smallest concave and upper semicontinuous function that majorizes f , i.e., ĉl f ≤ g for any g : X 7→
[−∞,∞] that is concave and upper semicontinuous with g ≥ f . Note that we have

sup
x∈X

f(x) = sup
x∈<n

(ĉl f)(x) (2.9)

(cf. Prop. 7.10).
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Proposition 2.4: Let X and Z be nonempty subsets of <n and <m, respectively, and let φ :

X × Z 7→ < be a function. For each x ∈ X, let (ĉlφ)(x, ·) be the concave closure of the function

φ(x, ·), and assume that (ĉlφ)(x, µ) <∞ for all x ∈ X and µ ∈ Z. Then, we have

q(µ) = inf
x∈X

(ĉlφ)(x, µ), ∀ µ ∈ <m. (2.10)

Proof: Let us write

p(u) = inf
x∈X

px(u),

where

px(u) = sup
z∈Z

{
φ(x, z)− u′z

}
, x ∈ X,

and note that

inf
u∈<m

{
px(u) + u′µ

}
= − sup

u∈<m

{
u′(−µ)− px(u)

}
= −hx(−µ), (2.11)

where hx is the conjugate of px. Since px(u) = ζx(−u), where ζx is the conjugate of (−φ)(x, ·), from the

Conjugacy Theorem [Prop. 7.15(d)], using also the assumption (ĉlφ)(x, µ) <∞ for all x ∈ X and µ ∈ Z, we

obtain

hx(−µ) = −(ĉlφ)(x, µ). (2.12)

Now for every µ ∈ <m, using Eq. (2.1) for q, and Eqs. (2.11), (2.12), we obtain

q(µ) = inf
u∈<m

{
p(u) + u′µ

}

= inf
u∈<m

inf
x∈X

{
px(u) + u′µ

}

= inf
x∈X

inf
u∈<m

{
px(u) + u′µ

}

= inf
x∈X

{
− hx(−µ)

}

= inf
x∈X

(ĉlφ)(x, µ)
}
.

(2.13)

Q.E.D.

Proposition 2.4 leads to several conclusions regarding the “infsup” and “supinf” values of φ(x, z), and

the associated MC/MC values w∗ and q∗.

(a) In general, we have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ q∗ ≤ w∗ = inf
x∈X

sup
z∈Z

φ(x, z), (2.14)

13
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where the first inequality follows by writing for all µ ∈ Z,

q(µ) = inf
u∈<m

{
p(u) + u′µ

}

= inf
u∈<m

inf
x∈X

sup
z∈Z

{
φ(x, z) + u′(µ− z)

}

≥ inf
x∈X

φ(x, µ),

and taking supremum over µ, the second inequality is the weak duality relation, and the last equality

follows by the definition of w∗. Therefore the minimax equality (2.6) always implies the strong duality

relation q∗ = w∗.

(b) If

φ(x, z) = (ĉlφ)(x, z), ∀ x ∈ X, z ∈ Z,

as in the case where −φ(x, ·) is closed and convex for all x ∈ X, then using Prop. 2.4,

q∗ = sup
z∈<m

inf
x∈X

φ(x, z) = sup
z∈Z

inf
x∈X

φ(x, z),

where the second equality follows from the fact (ĉlφ)(x, z) = −∞ for x ∈ X and z /∈ Z. In view of Eq.

(2.14), it follows that the strong duality relation q∗ = w∗ is equivalent to the minimax equality (2.6).

(c) From Eq. (2.9), we have supz∈Z φ(x, z) = supz∈<m(ĉlφ)(x, z), so the min common value w∗ is equal to

infx∈X supz∈<m(ĉlφ)(x, z). The max crossing value q∗ is equal to supz∈<m infx∈X(ĉlφ)(x, z), assuming

that (ĉlφ)(x, µ) < ∞ for all x ∈ X and µ ∈ Z, so that Prop. 2.4 applies. Thus, w∗ and q∗ are the

“infsup” and “supinf” values of ĉlφ, respectively. If (ĉlφ)(·, z) is closed and convex for each z, then

the “infsup” and “supinf” values of the convex/concave function ĉlφ will ordinarily be expected to be

equal (see Section 4). In this case we will have strong duality (q∗ = w∗), but this will not necessarily

imply that the minimax equality (2.6) holds, because strict inequality may hold in the first relation of

Eq. (2.14). If (ĉlφ)(·, z) is not closed and convex for some z, then the strong duality relation q∗ = w∗

should not ordinarily be expected. The size of the duality gap w∗ − q∗ will depend on the difference

between (ĉlφ)(·, z) and its convex closure, and may be investigated in some cases by using methods to

be presented in Section 5.

Example 2.1: (Finite Set Z)

Let

φ(x, z) = z′f(x),

where f : X 7→ <m, X is a subset of <n, and f(x) is viewed as a column vector whose components are functions

fj : X 7→ <, j = 1, . . . ,m. Suppose that Z is the finite set Z = {e1, . . . , em}, where ej is the jth column of the

m×m identity matrix. Then, we have

sup
z∈Z

inf
x∈X

φ(x, z) = max
{

inf
x∈X

f1(x), . . . , inf
x∈X

fm(x)
}
,
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and

w∗ = inf
x∈X

sup
z∈Z

φ(x, z) = inf
x∈X

max
{
f1(x), . . . , fm(x)

}
. (2.15)

Let Z denote the unit simplex in <m (the convex hull of Z). We have

(ĉlφ)(x, z) =

{
z′f(x), if z ∈ Z,

−∞, if z /∈ Z,

and by Prop. 2.4,

q∗ = sup
z∈Z

inf
x∈X

(ĉlφ)(x, z) = sup
z∈Z

inf
x∈X

z′f(x).

If f1, . . . , fm are convex functions, by considering the convex program

minimize ξ

subject to x ∈ X, fj(x) ≤ ξ, j = 1, . . . ,m,

associated with the optimization in Eq. (2.15), we may show that q∗ = w∗. On the other hand, if f1, . . . , fm

are not convex, we may have q∗ < w∗.

Under certain conditions, q∗ can be associated with a special minimax problem derived from the original

by introducing mixed (randomized) strategies. This is so in the following classical game context.

Example 2.2: (Finite Zero Sum Games)

Consider a minimax problem where the sets X and Z are finite:

X = {d1 . . . , dn}, Z = {e1, . . . , em},

where di is the ith column of the n×n identity matrix, and ej is the jth column of the m×m identity matrix.

Let

φ(x, z) = x′Az,

where A is an n × m matrix. This corresponds to the classical game context, where upon upon selection of

x = di and z = ej , the payoff is the ijth component of A. Let X and Z be the unit simplexes in <n and <m,

respectively. Then it can be seen, similar to the preceding example that

q∗ = max
z∈Z

min
x∈X

x′Az = min
x∈X

max
z∈Z

x′Az.

Note that X and Z can be interpreted as sets of mixed strategies, so q∗ is the value of the corresponding mixed

strategy game.
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3. STRONG DUALITY THEOREMS

We will now establish conditions implying that strong duality holds in the MC/MC framework, i.e., q∗ = w∗,

and then obtain conditions that guarantee existence of max crossing hyperplanes. To avoid degenerate cases,

we will often exclude the case w∗ =∞, which corresponds to an infeasible min common problem.

Conditions for Strong Duality

An important point, around which much of our analysis revolves, is that when w∗ is finite, the vector (0, w∗) is

a closure point of the set M of Eq. (1.4), so if we assume that M is convex and admits a nonvertical supporting

hyperplane at (0, w∗), then we have q∗ = w∗ while the optimal values q∗ and w∗ are attained . Between the

“unfavorable” case where q∗ < w∗, and the “most favorable” case where q∗ = w∗ while the optimal values

q∗ and w∗ are attained, there are several intermediate cases. The following proposition provides a necessary

and sufficient condition for q∗ = w∗, but does not address the attainment of the optimal values.

Proposition 3.1: (MC/MC Theorem I) Consider the min common and max crossing problems,

and assume the following:

(1) Either w∗ <∞, or else w∗ =∞ and M contains no vertical lines.

(2) The set

M = M +
{

(0, w) | w ≥ 0
}

is convex.

Then, we have q∗ = w∗ if and only if for every sequence
{

(uk, wk)
}
⊂ M with uk → 0, there holds

w∗ ≤ lim infk→∞ wk.

Proof: Consider first the case w∗ = −∞. Then, by the Weak Duality Theorem (Prop. 2.2), we also have

q∗ = −∞, so the conclusion trivially follows. Consider next the case where w∗ = ∞ and M contains no

vertical lines. For every sequence
{

(uk, wk)
}
⊂M with uk → 0, we have

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ wk + µ′uk, ∀ k, ∀ µ ∈ <n. (3.1)

This implies that q(µ) ≤ lim infk→∞ wk and

q∗ = sup
µ∈<n

q(µ) ≤ lim inf
k→∞

wk.
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Hence if q∗ = w∗ =∞, it follows that lim infk→∞ wk = w∗. Conversely, if we have lim infk→∞ wk = w∗ =∞
for all sequences

{
(uk, wk)

}
⊂ M with uk → 0, it follows that the vertical axis of <n+1 contains no closure

points of M . Hence by the Nonvertical Hyperplane Theorem (Prop. 7.12), for any vector (0, w) ∈ <n+1,

there exists a nonvertical hyperplane strictly separating (0, w) and M . The crossing point of this hyperplane

with the vertical axis lies between w and q∗, so w < q∗ for all w ∈ <, which implies that q∗ = w∗ =∞.

Consider finally the case where w∗ is a real number. Assume that for every sequence
{

(uk, wk)
}
⊂M

with uk → 0, there holds w∗ ≤ lim infk→∞ wk. We first note that (0, w∗) is a closure point of M , since by

the definition of w∗, there exists a sequence
{

(0, wk)
}

that belongs to M , and hence also to M , and is such

that wk → w∗.

We next show by contradiction that M does not contain any vertical lines. If this were not so, by

convexity of M , the direction (0,−1) would be a direction of recession of cl(M) (although not necessarily a

direction of recession of M), and hence also a direction of recession of ri(M). Because (0, w∗) is a closure point

of M , it is also a closure point of ri(M), and therefore, there exists a sequence
{

(uk, wk)
}
⊂ ri(M) converging

to (0, w∗). Since (0,−1) is a direction of recession of ri(M), the sequence
{

(uk, wk−1)
}

belongs to ri(M) and

consequently,
{

(uk, wk − 1)
}
⊂M . In view of the definition of M , there is a sequence

{
(uk, wk)

}
⊂M with

wk ≤ wk−1 for all k, so that lim infk→∞ wk ≤ w∗−1. This contradicts the assumption w∗ ≤ lim infk→∞ wk,

since uk → 0.

We now prove that the vector (0, w∗ − ε) does not belong to cl(M) for any ε > 0. To arrive at a

contradiction, suppose that (0, w∗− ε) is a closure point of M for some ε > 0, so that there exists a sequence
{

(uk, wk)
}
⊂M converging to (0, w∗−ε). In view of the definition of M , this implies the existence of another

sequence
{

(uk, wk)
}
⊂ M with uk → 0 and wk ≤ wk for all k, and we have that lim infk→∞ wk ≤ w∗ − ε,

which contradicts the assumption w∗ ≤ lim infk→∞ wk.

Since, as shown above, M does not contain any vertical lines and the vector (0, w∗− ε) does not belong

to cl(M) for any ε > 0, by the Nonvertical Separating Hyperplane Theorem (Prop. 7.12), it follows that

there exists a nonvertical hyperplane strictly separating (0, w∗ − ε) and M . This hyperplane crosses the

(n+ 1)st axis at a unique vector (0, ξ), which must lie between (0, w∗− ε) and (0, w∗), i.e., w∗− ε ≤ ξ ≤ w∗.
Furthermore, ξ cannot exceed the optimal value q∗ of the max crossing problem, which, together with weak

duality (q∗ ≤ w∗), implies that w∗ − ε ≤ q∗ ≤ w∗. Since ε can be arbitrarily small, it follows that q∗ = w∗.

Conversely, assume that q∗ = w∗. Consider any sequence
{

(uk, wk)
}
⊂M such that uk → 0. Then, by

taking the limit as k →∞ in Eq. (3.1), we obtain q(µ) ≤ lim infk→∞ wk, and

w∗ = q∗ = sup
µ∈<n

q(µ) ≤ lim inf
k→∞

wk.

Q.E.D.

For an example where assumption (1) of the preceding proposition is violated, let M consist of a
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vertical line that does not pass through the origin. Then we have w∗ =∞, q∗ = −∞, and yet the condition

w∗ ≤ lim infk→∞ wk, for every sequence
{

(uk, wk)
}
⊂M with uk → 0, trivially holds.

An important corollary of Prop. 3.1 is that if M = epi(p) where p : <n 7→ [−∞,∞] is a closed convex

function with p(0) = w∗ <∞, then we have q∗ = w∗ if and only if p is lower semicontinuous at 0.

Existence of Dual Optimal Solutions

We now discuss the nonemptiness and the structure of the optimal solution set of the max crossing problem.

The following proposition, in addition to the equality q∗ = w∗, guarantees the attainment of the maximum

crossing point by a nonvertical hyperplane under an additional assumption.

Proposition 3.2: (MC/MC Theorem II) Consider the min common and max crossing problems,

and assume the following:

(1) −∞ < w∗.

(2) The set

M = M +
{

(0, w) | w ≥ 0
}

is convex.

(3) The origin is in the relative interior of the set

D =
{
u | there exists w ∈ < with (u,w) ∈M}.

Then q∗ = w∗, and there exists at least one optimal solution of the max crossing problem.

Proof: We first note that condition (3) implies that the vertical axis contains a point of M , so that w∗ <∞.

Hence in view of condition (1), w∗ is finite.

We note that (0, w∗) is not a relative interior point of M , since the line
{

(0, w) | w ∈ <
}

is contained

in the affine hull of M , and w∗ is the minimum value corresponding to vectors in the intersection of this line

and M . Therefore, by the Proper Separation Theorem (Prop. 7.13), there exists a hyperplane that passes

through (0, w∗), contains M in one of its closed halfspaces, but does not fully contain M , i.e., there exists

(µ, β) such that

βw∗ ≤ µ′u+ βw, ∀ (u,w) ∈M, (3.2)
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βw∗ < sup
(u,w)∈M

{µ′u+ βw}. (3.3)

Since for any (u,w) ∈ M , the set M contains the halfline
{

(u,w) | w ≤ w
}

, it follows from Eq. (3.2) that

β ≥ 0. If β = 0, then from Eq. (3.2), we have

0 ≤ µ′u, ∀ u ∈ D.

Thus, the linear function µ′u attains its minimum over the set D at 0, which is a relative interior point of

D by condition (3). Since D is convex, being the projection on the space of u of the set M , which is convex

by condition (2), it follows (see Prop. 7.2) that µ′u is constant over D, i.e.,

µ′u = 0, ∀ u ∈ D.

This, however, contradicts Eq. (3.3). Therefore, we must have β > 0, and by appropriate normalization if

necessary, we can assume that β = 1. From Eq. (3.2), we then obtain

w∗ ≤ inf
(u,w)∈M

{µ′u+ w} ≤ inf
(u,w)∈M

{µ′u+ w} = q(µ) ≤ q∗.

Since we also have q∗ ≤ w∗ by the Weak Duality Theorem (Prop. 2.2), equality holds throughout in the

above relation, and we must have q(µ) = q∗ = w∗. Thus µ is an optimal solution of the max crossing

problem. Q.E.D.

Note that if w∗ = −∞, by weak duality, we have q∗ ≤ w∗, so that q∗ = w∗ = −∞. This means that

q(µ) = −∞ for all µ ∈ <n, and that the dual problem is infeasible. The following proposition supplements

the preceding one, and characterizes the optimal solution set of the max crossing problem.

Proposition 3.3: Let the assumptions of Prop. 3.2 hold. Then the set of optimal solutions Q∗ of

the max crossing problem has the form

Q∗ =
(
aff(D)

)⊥
+ Q̃,

where Q̃ is a nonempty, convex, and compact set. In particular, Q∗ is compact if and only if the origin

is in the interior of D.

Proof: By Prop. 3.2, Q∗ is nonempty. Since Q∗ =
{
µ | q(µ) ≥ q∗

}
and q is concave and upper semicontin-

uous (cf. Prop. 2.1), it follows that Q∗ is also convex and closed. We now prove that the recession cone RQ∗
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and the lineality space LQ∗ of Q∗ are both equal to
(
aff(D)

)⊥
[note here that aff(D) is a subspace since it

contains the origin]. The proof of this is based on the generic relation LQ∗ ⊂ RQ∗ and the following two

relations
(
aff(D)

)⊥ ⊂ LQ∗ , RQ∗ ⊂
(
aff(D)

)⊥
,

which we show next.

Let d be a vector in
(
aff(D)

)⊥
, so that d′u = 0 for all u ∈ D. For any vector µ ∈ Q∗ and any scalar α,

we then have

q(µ+ αd) = inf
(u,w)∈M

{
(µ+ αd)′u+ w

}
= inf

(u,w)∈M
{µ′u+ w} = q(µ),

implying that µ+ αd is in Q∗. Hence d ∈ LQ∗ , and it follows that
(
aff(D)

)⊥ ⊂ LQ∗ .

Let d be a vector in RQ∗ , so that for any µ ∈ Q∗ and α ≥ 0,

q(µ+ αd) = inf
(u,w)∈M

{
(µ+ αd)′u+ w

}
= q∗.

Since 0 ∈ ri(D), for any u ∈ aff(D), there exists a positive scalar γ such that the vectors γu and −γu are in

D. By the definition of D, there exist scalars w+ and w− such that the pairs (γu,w+) and (−γu,w−) are

in M . Using the preceding equation, it follows that for any µ ∈ Q∗, we have

(µ+ αd)′(γu) + w+ ≥ q∗, ∀ α ≥ 0,

(µ+ αd)′(−γu) + w− ≥ q∗, ∀ α ≥ 0.

If d′u 6= 0, then for sufficiently large α ≥ 0, one of the preceding two relations will be violated. Thus we

must have d′u = 0, showing that d ∈
(
aff(D)

)⊥
and implying that

RQ∗ ⊂
(
aff(D)

)⊥
.

This relation, together with the generic relation LQ∗ ⊂ RQ∗ and the relation
(
aff(D)

)⊥ ⊂ LQ∗ proved earlier,

shows that
(
aff(D)

)⊥ ⊂ LQ∗ ⊂ RQ∗ ⊂
(
aff(D)

)⊥
.

Therefore

LQ∗ = RQ∗ =
(
aff(D)

)⊥
.

Based on the decomposition result of Prop. 7.4, we have

Q∗ = LQ∗ + (Q∗ ∩ L⊥Q∗).

Since LQ∗ =
(
aff(D)

)⊥
, we obtain

Q∗ =
(
aff(D)

)⊥
+ Q̃,
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where Q̃ = Q∗ ∩ aff(D). Furthermore, by Prop. 7.3, we have

RQ̃ = RQ∗ ∩Raff(D).

Since RQ∗ =
(
aff(D)

)⊥
, as shown earlier, and Raff(D) = aff(D), the recession cone RQ̃ consists of the zero

vector only, implying that the set Q̃ is compact.

From the formula Q∗ =
(
aff(D)

)⊥
+ Q̃, it follows that Q∗ is compact if and only if

(
aff(D)

)⊥
= {0},

or equivalently aff(D) = <n. Since 0 is a relative interior point of D by assumption, this is equivalent to 0

being an interior point of D. Q.E.D.

Special Cases Involving Convexity and/or Compactness

We now consider the cases where M is closed and convex, and also the case where M has some compactness

structure but is not necessarily convex.

Proposition 3.4: Consider the MC/MC framework, assuming that w∗ <∞.

(a) Let M be closed and convex. Then q∗ = w∗. Furthermore, M is the epigraph of the convex

function

p(u) = inf
{
w | (u,w) ∈M

}
, u ∈ <n.

If in addition −∞ < w∗, then p is closed and proper.

(b) q∗ is equal to the optimal value of the min common problem corresponding to cl
(
conv(M)

)
.

(c) If M is of the form

M = M̃ +
{

(u, 0) | u ∈ C
}
,

where M̃ is a compact set and C is a closed convex set, then q∗ is equal to the optimal value of

the min common problem corresponding to conv(M).

Proof: (a) Since M is closed, for each u ∈ dom(p), the infimum defining p(u) is either −∞ or else it is

attained. In view of the definition of M , this implies that M is the epigraph of p. Furthermore, M is convex,

being the vector sum of two convex sets, so p is convex.

If w∗ = −∞, then q∗ = w∗ by weak duality. Thus for the remainder of the proof, we may assume

that −∞ < w∗. This implies that (0,−1) is not a direction of recession of M . On the other hand, the only
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nonzero direction of recession of the halfline {(0, α) | α ≥ 0} is (0, 1). Since M is the vector sum of M and

{(0, α) | α ≥ 0}, it follows from Prop. 7.5 that M is closed as well as convex. This in turn implies that p

is closed and convex, and by Prop. 3.1, we have q∗ = w∗. Since w∗ is finite, it follows that p is proper (an

improper closed and convex function cannot take finite values, see [BNO03], p. 29).

(b) The max crossing value q∗ is the same for M and cl
(
conv(M)

)
, since the closed halfspaces containing

M are the ones that contain cl
(
conv(M)

)
. Since cl

(
conv(M)

)
is closed and convex, the result follows from

part (a).

(c) The max crossing value is the same for M and conv(M), since the closed halfspaces containing M are

the ones that contain conv(M). It can be seen that

conv(M) = conv(M̃) +
{

(u, 0) | u ∈ C
}
,

from which it follows that the upwards extension of conv(M) is given by

conv(M) = conv(M̃) +
{

(u,w) | u ∈ C, w ≥ 0
}
.

Since M̃ is compact, conv(M̃) is also compact, so conv(M) is the vector sum of a compact set and a closed

convex set. Hence, by Prop. 7.5, conv(M) is closed, and the result follows from part (a). Q.E.D.

Note that if M is convex and closed, and w∗ = −∞, then p is convex, but need not be closed [cf. Prop.

3.4(a)]. For an example in <2, consider the closed and convex set

M =
{

(u,w)} | w ≤ −1/(1− |u|), |x| < 1
}
.

Then, M =
{

(u,w) | |u| < 1
}

, so M is convex but not closed, implying that p (which is −∞ for |u| < 1 and

∞ otherwise) is not closed. Note also if M is closed but is neither convex nor compact (e.g., when M is the

epigraph of some nonconvex function) the property of part (c) above may not hold. For an example in <2,

consider the set

M =
{

(0, 0)} ∪
{

(u,w) | u > 0, w ≤ −1/u
}
.

Then

conv(M) =
{

(0, 0)} ∪
{

(u,w) | u > 0, w < 0
}
.

We have q∗ = −∞ but the min common value corresponding to conv(M) is w∗ = 0 [the min common value

corresponding to cl
(
conv(M)

)
is equal to −∞, consistent with part (b)].
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MC/MC and Polyhedral Convexity

We now provide an extension of MC/MC Theorem II (Prop. 3.2) for the case where the “upwards extension”

M = M +
{

(0, w) | w ≥ 0
}

of the set M has a partially polyhedral structure. In particular, we will consider the special case where M

is the vector difference of two sets of the form

M = M̃ −
{

(u, 0) | u ∈ P
}
, (3.4)

where M̃ is convex and P is polyhedral. Then the corresponding set

D =
{
u | there exists w ∈ < with (u,w) ∈M},

can be written as

D = D̃ − P,

where

D̃ =
{
u | there exists w ∈ < with (u,w) ∈ M̃}. (3.5)

To understand the nature of the following proposition, we note that from Props. 3.1-3.3, assuming that

−∞ < w∗, we have:

(a) q∗ = w∗, and Q∗ is nonempty, if 0 ∈ ri(D), which is equivalent to

ri(D̃) ∩ ri(P ) 6= ∅, (3.6)

since ri(D) = ri(D̃)− ri(P ).

(b) q∗ = w∗, and Q∗ is nonempty and compact, if 0 ∈ int(D), which is true in particular if either

int(D̃) ∩ P 6= ∅,

or

D̃ ∩ int(P ) 6= ∅.

(c) Every µ ∈ Q∗ satisfies

µ′y ≥ 0, ∀ y such that (y, 0) ∈ RM ,

where RM is the recession cone of M , from which it follows that

Q∗ ⊂ R∗P ,
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where R∗P is the polar of the recession cone of P .

The following proposition shows that when P is polyhedral, these results can be strengthened, and in

particular, the condition ri(D̃) ∩ ri(P ) 6= ∅ [Eq. (3.6)] can be replaced by the condition

ri(D̃) ∩ P 6= ∅.

The proof is very similar to the proofs of Props. 3.2 and 3.3, with essentially the only difference being the

use of the Polyhedral Proper Separation Theorem (Prop. 7.14) in place of the Proper Separation Theorem

(Prop. 7.13).

Proposition 3.5: (MC/MC Theorem III) Consider the min common and max crossing prob-

lems, and assume the following:

(1) −∞ < w∗.

(2) The set M has the form

M = M̃ −
{

(u, 0) | u ∈ P
}
,

where P is a polyhedral set and M̃ is a convex set.

(3) We have

ri(D̃) ∩ P 6= ∅,

where D̃ is the set given by Eq. (3.5).

Then q∗ = w∗, and Q∗, the set of optimal solutions of the max crossing problem, is a nonempty subset

of R∗P , the polar cone of the recession cone of P . Furthermore, Q∗ is compact if int(D̃) ∩ P 6= ∅.

Proof: We consider the sets

C1 =
{

(u, v) | v > w for some (u,w) ∈ M̃
}
,

C2 =
{

(u,w∗) | u ∈ P
}
,

(cf. Fig. 3.1). It can be seen that C1 and C2 are nonempty and convex, and C2 is polyhedral. Furthermore,

C1 and C2 are disjoint. To see this, note that if u is such that u ∈ P and there exists (u,w) with w∗ > w,

then (0, w) ∈ M , which is impossible since w∗ is the min common value. Therefore, by Polyhedral Proper

Separation Theorem (Prop. 7.14), there exists a hyperplane that separates C1 and C2, and does not contain

C1, i.e., a vector (µ, β) such that

βw∗ + µ′z ≤ βv + µ′u, ∀ (u, v) ∈ C1, ∀ z ∈ P, (3.7)
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Figure 3.1. Illustration of the sets

C1 =
{

(u, v) | v > w for some (u,w) ∈ M̃
}
, C2 =

{
(u,w∗) | u ∈ P

}
,

and the hyperplane separating them in the proof of Prop. 3.5.

inf
(x,v)∈C1

{
βv + µ′x

}
< sup

(x,v)∈C1

{
βv + µ′x

}
. (3.8)

From Eq. (3.7), since (0, 1) is a direction of recession of C1, we see that β ≥ 0. If β = 0, then for a

vector u ∈ ri(D̃) ∩ P , we have µ′u ≤ infu∈D̃ µ
′u, so u attains the minimum of the linear function µ′u over

D̃, and from Prop. 7.2, it follows that µ′u is constant over D̃. On the other hand, by Eq. (3.8) we have

infu∈D̃ µ
′u < supu∈D̃ µ

′u, a contradiction. Hence β > 0, and by normalizing (µ, β) if necessary, we may

assume that β = 1.

Thus, from Eq. (3.7), we have

w∗ + µ′z ≤ inf
(u,v)∈C1

{v + µ′u}, ∀ z ∈ P, (3.9)

which in particular implies that µ′d ≤ 0 for all d ∈ RP . Hence µ ∈ R∗P . From Eq. (3.9), we also obtain

w∗ ≤ inf
(u,v)∈C1, z∈P

{
v + µ′(u− z)

}

= inf
(u,v)∈M̃−P

{v + µ′u}

= inf
(u,v)∈M

{v + µ′u}

= q(µ).

Using the weak duality relation q∗ ≤ w∗, we have q(µ) = q∗ = w∗. The proofs that Q∗ ⊂ R∗P and that Q∗

is compact if int(D̃) ∩ P 6= ∅ are similar to the ones of Props. 3.2 and 3.3 (see the discussion preceding the

proposition). Q.E.D.

We now discuss an interesting special case of the preceding theorem. It corresponds to M̃ being a

linearly transformed epigraph of a convex function f , and P being a polyhedral cone, such as the nonpositive
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orthant. This special case applies to constrained optimization duality, and will be used in the proof of the

subsequent Nonlinear Farkas’ Lemma.

Proposition 3.6: Consider the min common and max crossing problems, and assume that:

(1) −∞ < w∗.

(2) The set M is defined in terms of a convex function f : <m 7→ (−∞,∞], an r ×m matrix A, a

vector b ∈ <r, and a polyhedral cone P as follows:

M =
{

(u,w) | Ax− b− u ∈ P for some (x,w) ∈ epi(f)
}
.

(3) There is a vector x ∈ ri
(
dom(f)

)
such that Ax− b ∈ P .

Then q∗ = w∗ and Q∗, the set of optimal solutions of the max crossing problem, is a nonempty subset

of

R∗P = {µ | µ′y ≤ 0, ∀ y ∈ RP },

the polar cone of the recession cone of P . Furthermore, Q∗ is compact if the matrix A has rank r and

there is a vector x ∈ int
(
dom(f)

)
such that Ax− b ∈ P .

Proof: Let

M̃ =
{

(Ax− b, w) | (x,w) ∈ epi(f)
}
.

The following calculation relates M̃ and M :

M̃ −
{

(z, 0) | z ∈ P
}

=
{

(u,w) | u = Ax− b− z for some (x,w) ∈ epi(f) and z ∈ P
}

=
{

(u,w) | Ax− b− u ∈ P for some (x,w) ∈ epi(f)
}

= M.

Thus the framework of MC/MC Theorem III (Prop. 3.5) applies. Furthermore, the set D̃ of Eq. (3.5) is

given by

D̃ =
{
u | there exists w ∈ < with (u,w) ∈ M̃

}
=
{
Ax− b | x ∈ dom(f)

}
.

Hence, the relative interior assumption (3) implies that the corresponding relative interior assumption of

Prop. 3.5 is satisfied. Furthermore, if A has rank r, we have Ax− b ∈ int(D̃) for all x ∈ int
(
dom(f)

)
. The

result follows from the conclusion of Prop. 3.5. Q.E.D.
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0} x

epi(f)

w

0} u

M̃

w∗

w

u0}

w∗

(µ, 1)

q(µ)

Ax ≤ b

(x∗, w∗) (x,w) "→ (Ax − b, w)

p(u) = inf
Ax−b≤u

f(x)

{
(u,w) | p(u) < w

}
⊂ M ⊂ epi(p)

M

Figure 3.2. The MC/MC framework for minimizing f(x) subject to Ax ≤ b. The set M is

M =
{

(u,w) | Ax− b ≤ u for some (x,w) ∈ epi(f)
}

(cf. Prop. 3.6) and is the vector sum

M = M̃ +
{

(u, 0) | u ≥ 0
}
,

where M̃ is obtained by transformation of epi(f),

M̃ =
{

(Ax− b, w) | (x,w) ∈ epi(f)
}
,

and P is the negative orthant. Also M relates to the perturbation function p(u) = infAx−b≤u f(x)

as follows: {
(u,w) | p(u) < w

}
⊂M ⊂ epi(p).

In particular, we have w∗ = p(0) = infAx≤b f(x).

The special case where P is the negative orthant

P = {u | u ≤ 0},

is noteworthy as it corresponds to a major convex optimization model. In this case, the set M in Prop. 3.6

is equal to M and relates to the epigraph of the function

p(u) = inf
Ax−b≤u

f(x),

as shown in Fig. 3.2. The min common value is equal to p(0), the optimal value of the problem of minimizing

f(x) subject to Ax ≤ b,
w∗ = p(0) = inf

Ax≤b
f(x).

The max crossing problem is to maximize over µ ∈ <r the function q given by

q(µ) = inf
(u,w)∈M

{w + µ′u} = inf
u∈<r

{
p(u) + µ′u

}
= inf
u∈<r

inf
Ax−b≤u

{
f(x) + µ′u

}
,
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and finally

q(µ) =

{
infx∈<n

{
f(x) + µ′(Ax− b)

}
if µ ≥ 0,

−∞ otherwise.

Thus, the max crossing problem is to maximize q over µ ≥ 0. As shown by Prop. 3.6, assuming that there

exists x ∈ ri
(
dom(f)

)
such that Ax ≤ b, strong duality holds and there exists a maximizing µ.

4. APPLICATIONS

In this section we show how the MC/MC duality results of the preceding section apply to a broad set of

contexts, including minimax theory and optimization duality. However, because of its geometric structure,

the MC/MC framework also applies to some settings where conjugacy ordinarily does not play a role, such

as for example theorems of the alternative and subdifferential theory.

Minimax Theorems

We will prove two theorems regarding the validity of the minimax equality (2.6), which correspond to the

MC/MC theorems of Section 3. We will assume the following.

Assumption 4.1: (Convexity/Concavity and Closedness) X and Z are nonempty convex

subsets of <n and <m, respectively, and φ : X × Z 7→ < is a function such that φ(·, z) : X 7→ < is

convex and closed for each z ∈ Z, and −φ(x, ·) : Z 7→ < is convex and closed for each x ∈ X.

We will use the MC/MC Theorem I (Prop. 3.1) to prove the following proposition.

Proposition 4.1: (Minimax Theorem I) Let Assumption 4.1 hold. Assume further that the

function p of Eq. (2.7) satisfies either p(0) < ∞, or else p(0) = ∞ and p(u) > −∞ for all u ∈ <m.

Then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z),

if and only if p is lower semicontinuous at u = 0, i.e., for all sequences {uk} with uk → 0, we have

p(0) ≤ lim infk→∞ p(uk).
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Proof: The proof consists of showing that with an appropriate selection of the set M , the assumptions of

the proposition are essentially equivalent to the corresponding assumptions of the MC/MC Theorem I.

We choose the set M in the MC/MC Theorem I to be the epigraph of p,

M = M =
{

(u,w) | u ∈ <m, p(u) ≤ w
}
,

which is convex in view of the assumed convexity of φ(·, z) and Prop. 7.6. Thus, condition (2) of the MC/MC

Theorem I is satisfied.

From the definition of p, we have

w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z).

It follows that the assumption p(0) <∞, or else p(0) =∞ and p(u) > −∞ for all u, is equivalent to condition

(1) of the MC/MC Theorem I.

Finally, we have

p(0) ≤ lim inf
k→∞

p(uk)

for all {uk} with uk → 0 if and only if for every sequence
{

(uk, wk)
}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. Thus, by the conclusion of the MC/MC Theorem I, the condition p(0) ≤ lim infk→∞ p(uk)

holds if and only if q∗ = w∗, which in turn holds if and only if the minimax equality holds [cf. Prop. 2.4,

which applies because of the assumed closedness and convexity of −φ(x, ·)]. Q.E.D.

As an example illustrating the need for the finiteness assumptions on p in the preceding proposition,

consider the case where x and z are scalars and

Φ(x, z) = x+ z, X = {x | x ≤ 0}, Z = {z | z ≥ 0}.

We have

p(u) = inf
x≤0

sup
z≥0
{x+ z − uz} =

{
∞ if u < 1,

−∞ if u ≥ 1,

so the assumptions of the proposition are violated, and we also have

sup
z∈Z

inf
x∈X

φ(x, z) = −∞ <∞ = inf
x∈X

sup
z∈Z

φ(x, z).

The proof of the preceding proposition can be easily modified to use the second MC/MC Theorem of

the preceding section [cf. Props. 3.2 and 3.3, and Eq. (2.10)]. What is needed is an assumption that 0 lies

in the relative interior or the interior of the effective domain of p and that p(0) > −∞. We then obtain the

following result, which also asserts that the supremum in the minimax equality is attained [this follows from

the corresponding attainment assertion of Prop. 3.2 and Eq. (2.10)].
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Proposition 4.2: (Minimax Theorem II) Let Assumption 4.1 hold, and assume that 0 lies in

the relative interior of the effective domain of the function p of Eq. (2.7) and that p(0) > −∞. Then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z),

and the supremum over Z in the left-hand side is finite and is attained. Furthermore, the set of z ∈ Z
attaining this supremum is compact if and only if 0 lies in the interior of the effective domain of p.

The preceding two minimax theorems indicate that, aside from convexity and semicontinuity assump-

tions, the properties of the function p around u = 0 are critical to guarantee the minimax equality. Here is

an illustrative example:

Example 4.1:

Let

X =
{
x ∈ <2 | x ≥ 0

}
, Z = {z ∈ < | z ≥ 0},

and let

φ(x, z) = e−
√
x1x2 + zx1,

which can be shown to satisfy the convexity/concavity and closedness assumptions of Prop. 4.1. [For every

z ∈ Z, the Hessian matrix of the function φ(·, z) is positive definite within int(X), so it can be seen that φ(·, z)

is convex over int(X). Since φ(·, z) is continuous, it is also convex over X.] For all z ≥ 0, we have

inf
x≥0

φ(x, z) = inf
x≥0

{
e−
√

x1x2 + zx1
}

= 0,

since the expression in braces is nonnegative for x ≥ 0 and can approach zero by taking x1 → 0 and x1x2 →∞.

Hence,

sup
z≥0

inf
x≥0

φ(x, z) = 0.

We also have for all x ≥ 0,

sup
z≥0

φ(x, z) = sup
z≥0

{
e−
√
x1x2 + zx1

}
=

{
1 if x1 = 0,

∞ if x1 > 0.

Hence,

inf
x≥0

sup
z≥0

φ(x, z) = 1,

so

inf
x≥0

sup
z≥0

φ(x, z) > sup
z≥0

inf
x≥0

φ(x, z).
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Figure 4.1. The function p for Example 4.1:

p(u) =





∞ if u < 0,

1 if u = 0,

0 if u > 0.

Here p is not lower semicontinuous at 0, and the minimax equality does not hold.

Here, the function p is given by

p(u) = inf
x≥0

sup
z≥0

{
e−
√
x1x2 + z(x1 − u)

}
=





∞ if u < 0,

1 if u = 0,

0 if u > 0,

(cf. Fig. 4.1). Thus, it can be seen that even though p(0) is finite, p is not lower semicontinuous at 0. As a

result the assumptions of Props. 4.1 are violated, and the minimax equality does not hold.

The following example illustrates how the minimax equality may hold, while the supremum over z ∈ Z
is not attained because the relative interior assumption of Prop. 4.2 is not satisfied.

Example 4.2:

Let

X = <, Z = {z ∈ < | z ≥ 0},

and let

φ(x, z) = x+ zx2,

which satisfy the convexity/concavity and closedness assumptions of Prop. 4.2. For all z ≥ 0, we have

inf
x∈<

φ(x, z) = inf
x∈<

{
x+ zx2

}
=

{
−1/(4z) if z > 0,

−∞ if z = 0.
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Figure 4.2. The function p for Example 4.2:

p(u) =

{
−
√
u if u ≥ 0,

∞ if u < 0.

Here p is lower semicontinuous at 0 and the minimax equality holds. However, 0 is not a relative

interior point of dom(p) and the supremum of infx∈< φ(x, z), which is

inf
x∈<

φ(x, z) =

{
−1/(4z) if z > 0,

−∞ if z = 0,

is not attained.

Hence,

sup
z≥0

inf
x∈<

φ(x, z) = 0.

We also have for all x ∈ <,

sup
z≥0

φ(x, z) = sup
z≥0

{
x+ zx2

}
=

{
0 if x = 0,

∞ if x 6= 0.

Hence,

inf
x∈<

sup
z≥0

φ(x, z) = 0,

and the minimax equality holds. However, the problem

maximize inf
x∈<

φ(x, z)

subject to z ∈ Z
does not have an optimal solution. Here we have

F (x, u) = sup
z≥0

{x+ zx2 − uz} =

{
x if x2 ≤ u,

∞ if x2 > u,

and

p(u) = inf
x∈<

sup
z≥0

F (x, u) =

{
−
√
u if u ≥ 0,

∞ if u < 0,

(cf. Fig. 4.2). It can be seen that 0 is not a relative interior point of the effective domain of p, thus violating

the relative interior assumption of Prop. 4.2.

32



4. Applications

Saddle Point Theorems

We will now use the two minimax theorems (Props. 4.1 and 4.2) to obtain more specific conditions for the

validity of the minimax equality and the existence of saddle points. The preceding analysis has underscored

the importance of the function

p(u) = inf
x∈<n

F (x, u), (4.1)

where

F (x, u) =

{
supz∈Z

{
φ(x, z)− u′z

}
if x ∈ X,

∞ if x /∈ X.
(4.2)

It suggests a two-step process to ascertain the validity of the minimax equality and the existence of a saddle

point:

(1) Show that p is closed and convex, thereby showing that the minimax equality holds by using the first

minimax theorem (Prop. 4.1).

(2) Verify that the infimum of supz∈Z φ(x, z) over x ∈ X, and the supremum of infx∈X φ(x, z) over z ∈ Z
are attained, thereby showing that the set of saddle points is nonempty (cf. Prop. 7.16).

Step (1) requires two types of assumptions:

(a) The convexity/concavity and closedness Assumption 4.1. Then, the MC/MC framework applies (cf.

Prop. 3.1). In addition, F is convex and closed (being the pointwise supremum over z ∈ Z of closed

convex functions), which is important in ascertaining that p is closed.

(b) Conditions that guarantee that the partial minimization in the definition of p preserves closedness.

Step (2) requires that either Weierstrass’ Theorem can be applied, or else that some other suitable condition

for existence of an optimal solution is satisfied. Fortunately, conditions that guarantee that the partial min-

imization in the definition of F preserves closedness as in (b), also guarantee the existence of corresponding

of optimal solutions.

As an example of this line of analysis, we obtain the following classical result.

Proposition 4.3: (Classical Saddle Point Theorem) Let Assumption 4.1 hold, and assume

further that X and Z and compact. Then the set of saddle points of φ is nonempty and compact.

Proof: From Prop. 7.6, we see that the MC/MC framework applies and the function p of Eq. (4.1) is

convex, and the function F of Eq. (4.2) is closed by Prop. 7.8. Using the compactness of X and Z, it follows
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that F is real-valued over X×<m, and that p is also real-valued and hence continuous. Hence, the minimax

equality holds by Prop. 4.1.

Finally, the function supz∈Z φ(x, z) is equal to F (x, 0), so it is closed, and the set of its minima over

x ∈ X is nonempty and compact by Weierstrass’ Theorem. Similarly the set of maxima of the function

infx∈X φ(x, z) over z ∈ Z is nonempty and compact. It follows that the set of saddle points is nonempty and

compact. Q.E.D.

We will now derive alternative and more general saddle point theorems, using a similar line of analysis.

To formulate the corresponding results, we consider the functions t : <n 7→ (−∞,∞] and r : <m 7→ (−∞,∞]

given by

t(x) =

{
supz∈Z φ(x, z) if x ∈ X,

∞ if x /∈ X,

and

r(z) =

{− infx∈X φ(x, z) if z ∈ Z,

∞ if z /∈ Z.

Note that by Assumption 4.1, t is closed and convex, being the supremum of closed and convex functions.

Furthermore, since t(x) > −∞ for all x, we have

t is proper if and only if inf
x∈X

sup
z∈Z

φ(x, z) <∞.

Similarly, the function r is closed and convex, and

r is proper if and only if −∞ < sup
z∈Z

inf
x∈X

φ(x, z).

The next two propositions provide alternative conditions for the minimax equality to hold. These

propositions are subsequently used to prove results about nonemptiness and compactness of the set of saddle

points.

Proposition 4.4: Let Assumption 4.1 hold, and assume further that t is proper and that the level

sets
{
x | t(x) ≤ γ

}
, γ ∈ <, are compact. Then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z)

and the infimum over X in the right-hand side above is attained at a set of points that is nonempty

and compact.
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Proof: The function p is defined by partial minimization of the function F of Eq. (4.2), i.e.,

p(u) = inf
x∈<n

F (x, u)

[cf. Eq. (4.1)]. We note that

t(x) = F (x, 0),

so F is proper, since t is proper and F is closed [by the Recession Cone Theorem (Prop. 7.3), epi(F ) contains

a vertical line if and only if epi(t) contains a vertical line]. Furthermore, the compactness assumption on

the level sets of t can be translated to the compactness assumption of Prop. 7.7 (with 0 playing the role

of the vector x). It follows from the result of that proposition that p is closed and proper, and that p(0)

is finite. By the Minimax Theorem I (Prop. 4.1), it follows that the minimax equality holds. Finally, the

infimum over X in the right-hand side of the minimax equality is attained at the set of minima of t, which

is nonempty and compact since t is proper and has compact level sets. Q.E.D.

Example 4.3:

Let us show that

min
‖x‖≤1

max
z∈S+C

x′z = max
z∈S+C

min
‖x‖≤1

x′z,

where S is a subspace, and C is a nonempty, convex, and compact subset of <n. By defining

X =
{
x | ‖x‖ ≤ 1

}
, Z = S + C,

φ(x, z) = x′z, ∀ (x, z) ∈ X × Z,

we see that Assumption 4.1 is satisfied, so we can apply Prop. 4.4. We have

t(x) =

{
supz∈S+C x

′z if ‖x‖ ≤ 1,

∞ otherwise,

=

{
supz∈C x

′z if x ∈ S⊥, ‖x‖ ≤ 1,

∞ otherwise.

Since supz∈C x
′z, viewed as a function of x over <n, is continuous, the level sets of t are compact. It follows

from Prop. 4.4 that the minimax equality holds. It also turns out that a saddle point exists. We will show this

shortly, after we develop some additional machinery.

Proposition 4.5: Let Assumption 4.1 hold, and assume further that t is proper, and that the

recession cone and the constancy space of t are equal. Then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z)

and the infimum over X in the right-hand side above is attained.
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Proof: The proof is similar to the one of Prop. 4.4. We use Prop. 7.9 in place of Prop. 7.7. Q.E.D.

By combining the preceding two propositions, we obtain conditions for existence of a saddle point.

Proposition 4.6: Let Assumption 4.1 hold, and assume that either t is proper or r is proper.

(a) If the level sets
{
x | t(x) ≤ γ

}
and

{
z | r(z) ≤ γ

}
, γ ∈ <, of t and r are compact, the set of

saddle points of φ is nonempty and compact.

(b) If the recession cones of t and r are equal to the constancy spaces of t and r, respectively, the

set of saddle points of φ is nonempty.

Proof: We assume that t is proper. If instead r is proper, we reverse the roles of x and z.

(a) From Prop. 4.4, it follows that the minimax equality holds, and that the infimum over X of supz∈Z φ(x, z)

is finite and is attained at a nonempty and compact set. Therefore,

−∞ < sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z) <∞,

and we can reverse the roles of x and z, and apply Prop. 4.4 again to show that the supremum over Z of

inf
x∈X φ(x, z) is attained at a nonempty and compact set.

(b) The proof is similar to the one of part (a), except that we use Prop. 4.5 instead of Prop. 4.4. Q.E.D.

The following example illustrates Props. 4.4 and 4.6(a).

Example 4.4: (continued)

Consider the case where

φ(x, z) = 1
2x
′Qx+ x′z − 1

2z
′Rz, X = Z = <n,

and Q and R are symmetric positive semidefinite matrices. Then it can be seen that

sup
z∈<n

φ(x, z) =

{
0 if x = 0,

∞ if x 6= 0,
inf

x∈<n
φ(x, z) =

{
0 if z = 0,

−∞ if z 6= 0,

and

X∗ = Z∗ = {0}.

Since infx supz φ(x, z) = supz infx φ(x, z) = 0, it follows that (0, 0) is the unique saddle point.
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Assume now that Q is not positive semidefinite, but R is. Then it can be seen that

sup
z∈<n

φ(x, z) =

{
0 if x = 0,

∞ if x 6= 0,
inf

x∈<n
φ(x, z) = −∞, ∀ z ∈ <n.

Hence 0 = infx supz φ(x, z) > supz infx φ(x, z) = −∞, so there are no saddle points, even though the sets X∗

and Z∗ are nonempty (X∗ = {0} and Z∗ = <). Then,

t(x) =

{
0 if x = 0,

∞ if x 6= 0,

so t has compact level sets. Also r = t, so r has compact level sets, and Prop. 4.6(a) applies. Here (0, 0) is the

unique saddle point, consistently with the conclusions of the proposition.

Example 4.2: (continued)

To illustrate the difference between Props. 4.4 and 4.6(a), let

X = <, Z = {z ∈ < | z ≥ 0}, φ(x, z) = x+ zx2.

A straightforward calculation yields

t(x) =

{
0 if x = 0,

∞ if x 6= 0,
r(z) =

{
1
4z

if z > 0,

∞ if z ≤ 0.

Here the assumptions of Prop. 4.4 are satisfied, and the minimax equality holds, but the assumptions of Prop.

4.6(a) are violated, and there is no saddle point.

Example 4.3: (continued)

Let

X =
{
x | ‖x‖ ≤ 1

}
, Z = S + C, φ(x, z) = x′z,

where S is a subspace, and C is a nonempty, convex, and compact subset of <n. We have

t(x) =

{
supz∈S+C x

′z if ‖x‖ ≤ 1,

∞ otherwise,

=

{
supz∈C x

′z if x ∈ S⊥, ‖x‖ ≤ 1,

∞ otherwise,

r(z) =

{
sup‖x‖≤1−x′z if z ∈ S + C,

∞ otherwise,

=

{
‖z‖ if z ∈ S + C,

∞ otherwise.

Since the level sets of both t and r are compact, it follows from Prop. 4.6(a) that the minimax equality holds,

and that the set of saddle points is nonempty and compact.
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The compactness of the level sets of t can be guaranteed by simpler sufficient conditions. In particular,

under Assumption 4.1, the level sets
{
x | t(x) ≤ γ

}
are compact if any one of the following two conditions

holds:

(1) The set X is compact [since
{
x | t(x) ≤ γ

}
is closed, by the closedness of t, and is contained in X].

(2) For some z ∈ Z, γ ∈ <, the set

{
x ∈ X | φ(x, z) ≤ γ

}

is nonempty and compact [since then all sets
{
x ∈ X | φ(x, z) ≤ γ

}
are compact, and a nonempty level

set
{
x | t(x) ≤ γ

}
is contained in

{
x ∈ X | φ(x, z) ≤ γ

}
].

Furthermore, any one of above two conditions also guarantees that r is proper; for example under condition

(2), the infimum over x ∈ X in the relation

r(z) = − inf
x∈X

φ(x, z)

is attained by Weierstrass’ Theorem, so that r(z) <∞.

By a symmetric argument, we also see that, under Assumption 4.1, the level sets of r are compact

under any one of the following two conditions:

(1) The set Z is compact.

(2) For some x ∈ X, γ ∈ <, the set

{
z ∈ Z | φ(x, z) ≥ γ

}

is nonempty and compact.

Furthermore, any one of above two conditions also guarantees that t is proper.

Thus, by combining the preceding discussion and Prop. 4.6(a), we obtain the following result, which

generalizes the classical saddle point theorem (Prop. 4.3), and provides sufficient conditions for the existence

of a saddle point.

Proposition 4.7: (Saddle Point Theorem) Let Assumption 4.1 hold. The set of saddle points

of φ is nonempty and compact under any one of the following conditions:

(1) X and Z are compact.
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(2) Z is compact, and for some z ∈ Z, γ ∈ <, the level set

{
x ∈ X | φ(x, z) ≤ γ

}

is nonempty and compact.

(3) X is compact, and for some x ∈ X, γ ∈ <, the level set

{
z ∈ Z | φ(x, z) ≥ γ

}

is nonempty and compact.

(4) For some x ∈ X, z ∈ Z, γ ∈ <, the level sets

{
x ∈ X | φ(x, z) ≤ γ

}
,

{
z ∈ Z | φ(x, z) ≥ γ

}
,

are nonempty and compact.

Proof: From the discussion preceding the proposition, it is seen that, under Assumption 4.1, t and r are

proper, and the level sets of t and r are compact. The result follows from Prop. 4.6(a). Q.E.D.

A Nonlinear Version of Farkas’ Lemma

We will now use the MC/MC duality results of the preceding subsection to prove a nonlinear version of

Farkas’ Lemma, which among others, captures the essence of convex programming duality. The lemma

involves a nonempty convex set X ⊂ <n, and functions f : X 7→ < and gj : X 7→ <, j = 1, . . . , r. We denote

g(x) =
(
g1(x), . . . , gr(x)

)′
, and assume the following.

Assumption 4.2: The functions f and gj , j = 1, . . . , r, are convex, and

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0.
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Proposition 4.8: (Nonlinear Farkas’ Lemma) Let Assumption 4.2 hold and let Q∗ be the

subset of <r given by

Q∗ =
{
µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ X

}
.

Then:

(a) Q∗ is nonempty and compact if and only if there exists a vector x ∈ X such that gj(x) < 0 for

all j = 1, . . . , r.

(b) Q∗ is nonempty if the functions gj , j = 1, . . . , r, are affine and there exists a vector x ∈ ri(X)

such that g(x) ≤ 0.

Proof: (a) Assume that there exists a vector x ∈ X such that g(x) < 0. We will apply the MC/MC

Theorem II (Props. 3.2 and 3.3) to the subset of <r+1 given by

M =
{

(u,w) | there exists x ∈ X such that g(x) ≤ u, f(x) ≤ w
}

(cf. Fig. 4.3). To this end, we verify that the assumptions of the theorem are satisfied for the above choice

of M .

In particular, we will show that:

(i) The optimal value w∗ of the corresponding min common problem,

w∗ = inf
{
w | (0, w) ∈M

}
,

satisfies −∞ < w∗.

(ii) The set

M =
{

(u,w) | there exists w with w ≤ w and (u,w) ∈M
}
,

is convex. (Note here that M = M +
{

(0, w) | w ≥ 0
}

= M .)

(iii) The condition that there exists a vector x ∈ X such that gj(x) < 0 for all j is equivalent to the set

D =
{
u | there exists w ∈ < such that (u,w) ∈M

}

containing the origin in its interior.

To show (i), note that since f(x) ≥ 0 for all x ∈ X with g(x) ≥ 0, we have w ≥ 0 for all (0, w) ∈ M ,

so that w∗ ≥ 0.
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Figure 4.3. Illustration of the sets used in the MC/MC framework of the proof of Prop. 4.8(a).

We have

M = M =
{

(u,w) | there exists x ∈ X such that g(x) ≤ u, f(x) ≤ w
}

and
D =

{
u | there exists w ∈ < such that (u,w) ∈M

}

=
{
u | there exists x ∈ X such that g(x) ≤ u

}
.

The existence of x ∈ X such that g(x) < 0 is equivalent to 0 ∈ int(D).

To show (iii), note that the set D can also be written as

D =
{
u | there exists x ∈ X such that g(x) ≤ u

}
.

If g(x) < 0 for some x ∈ X, then since D contains the set g(x)+{u | u ≥ 0}, we have 0 ∈ int(D). Conversely,

if 0 ∈ int(D), there exists ε > 0 such that the vector (−ε, . . . ,−ε) belongs to D, so that gj(x) ≤ −ε for some

x ∈ X and all j.

There remains to show (ii), i.e., that the set M is convex. Since M = M , we will prove that M

is convex. To this end, we consider vectors (u,w) ∈ M and (ũ, w̃) ∈ M , and we show that their convex

combinations lie in M . By the definition of M , for some x ∈ X and x̃ ∈ X, we have

f(x) ≤ w, gj(x) ≤ uj , ∀ j = 1, . . . , r,

f(x̃) ≤ w̃, gj(x̃) ≤ ũj , ∀ j = 1, . . . , r.

For any α ∈ [0, 1], we multiply these relations with α and 1 − α, respectively, and add them. By using the

convexity of f and gj for all j, we obtain

f
(
αx+ (1− α)x̃

)
≤ αf(x) + (1− α)f(x̃) ≤ αw + (1− α)w̃,
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gj
(
αx+ (1− α)x̃

)
≤ αgj(x) + (1− α)gj(x̃) ≤ αuj + (1− α)ũj , ∀ j = 1, . . . , r.

By convexity of X, we have αx+ (1−α)x̃ ∈ X for all α ∈ [0, 1], so the preceding inequalities imply that the

convex combination α(u,w) + (1− α)(ũ, w̃) belongs to M , showing that M is convex.

Thus all the assumptions of the MC/MC Theorem II hold, and by the conclusions of the theorem, we

have w∗ = supµ q(µ), where

q(µ) = inf
(u,w)∈M

{w + µ′u}.

Furthermore, the optimal solution set Q̃ =
{
µ | q(µ) ≥ w∗

}
is nonempty and compact. Using the definition

of M , it can be seen that

q(µ) =

{
infx∈X

{
f(x) + µ′g(x)

}
if µ ≥ 0,

−∞ otherwise.

From the definition of Q∗, we have

Q∗ =
{
µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ X

}
=
{
µ | q(µ) ≥ 0

}
,

so Q∗ and Q̃ are level sets of the proper convex function −q, which is closed by Prop. 2.1. Therefore, if one

of them is compact, so is the other. Since Q∗ ⊃ Q̃, and Q̃ is nonempty and compact, so is Q∗.

(b) Let the constraints gj(x) ≤ 0 be written as

Ax− b ≤ 0,

where A is an r×n matrix and b is a vector in <n. We apply Prop. 3.6, with P being the nonpositive orthant

and the set M defined by

M =
{

(u,w) | for some (x,w) ∈ epi(f̃), Ax− b− u ≤ 0
}
,

where

f̃(x) =

{
f(x) if x ∈ X,

∞ if x /∈ X.

Since by assumption, f(x) ≥ 0 for all x ∈ X with Ax− b ≤ 0, the optimal min common value satisfies

w∗ = inf
Ax−b≤0

f̃(x) ≥ 0.

By Prop. 3.6 and the discussion following its proof, there exists µ ≥ 0 such that

q∗ = q(µ) = inf
x∈<n

{
f̃(x) + µ′(Ax− b)

}
.

Since q∗ = w∗ ≥ 0, it follows that f̃(x) + µ′(Ax − b) ≥ 0 for all x ∈ <n, or f(x) + µ′(Ax − b) ≥ 0 for all

x ∈ X. Q.E.D.
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By selecting f and gj to be linear, and X to be the entire space in the Nonlinear Farkas’ Lemma, we

obtain the following classical result.

Proposition 4.9: (Linear Farkas’ Lemma) Let A be an m×n matrix and c be a vector in <m.

(a) The system Ay = c, y ≥ 0 has a solution if and only if

A′x ≤ 0 ⇒ c′x ≤ 0. (4.3)

(b) The system Ay ≥ c has a solution if and only if

A′x = 0, x ≥ 0 ⇒ c′x ≤ 0. (4.4)

Proof: (a) Using part (b) of the Nonlinear Farkas’ Lemma with f(x) = −c′x, g(x) = A′x, and X = <m,

we see that the relation (4.3) implies the existence of µ ≥ 0 such that

−c′x+ µ′A′x ≥ 0, ∀ x ∈ <m,

or equivalently (Aµ− c)′x ≥ 0 for all x ∈ <m, or Aµ = c.

(b) This part follows by writing the system Ay ≥ c in the equivalent form

Ay+ −Ay− − z = c, y+ ≥ 0, y− ≥ 0, z ≥ 0,

and by applying part (a). Q.E.D.

Convex Programming Duality

Consider the problem
minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(4.5)

where X is a convex set, g(x) =
(
g1(x), . . . , gr(x)

)′
, and f : X 7→ < and gj : X 7→ <, j = 1, . . . , r, are convex

functions. We refer to this as the primal problem, and we will use the minimax theory of Section 3.3, and

the Nonlinear Farkas’ Lemma to derive the connection of this problem with an associated dual problem. We

assume that the problem is feasible, i.e., that the optimal value

f∗ = inf
x∈X, g(x)≤0

f(x)
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satisfies f∗ <∞.

Let us consider the Lagrangian function defined by

L(x, µ) = f(x) + µ′g(x), x ∈ X, µ ≥ 0,

and the minimax problem involving L(x, µ), and minimization over x ∈ X and maximization over µ ≥ 0.

Consider also the function t : X 7→ (−∞,∞] given by

t(x) = sup
µ≥0

L(x, µ) =

{
f(x) if g(x) ≤ 0, x ∈ X,

∞ otherwise,
(4.6)

and the function q given by

q(µ) = inf
x∈X

L(x, µ), µ ≥ 0. (4.7)

We refer to q as the dual function and to the problem

maximize q(µ)

subject to µ ∈ <r, µ ≥ 0,
(4.8)

as the dual problem. The dual optimal value is

q∗ = sup
µ≥0

q(µ),

and the generic relation

sup
µ≥0

inf
x∈X

L(x, µ) ≤ inf
x∈X

sup
µ≥0

L(x, µ)

is equivalent to the weak duality relation q∗ ≤ f∗ [cf. Eqs. (4.6), (4.7)].

Proposition 4.10: (Convex Programming Duality I) Assume that the convex functions f

and gj are closed, and the function t of Eq. (4.6) has compact level sets. Then f∗ = q∗ and the set of

optimal solutions of the primal problem is nonempty and compact.

Proof: We have

f∗ = inf
x∈X

t(x) = inf
x∈X

sup
µ≥0

L(x, µ) = sup
µ≥0

inf
x∈X

L(x, µ) = sup
µ≥0

q(µ) = q∗,

where inf and sup can be interchanged since Prop. 4.4 applies because f and gj are closed, and t is proper

(since the problem is feasible) and has compact level sets. Also, the set of optimal solutions of the primal

problem is the set of minima of t, and is nonempty and compact since t has compact level sets. Q.E.D.
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Note that the compactness assumption of Prop. 4.10 is satisfied if either X is compact or if X is closed

and f has compact level sets. We now turn to the question whether the dual problem has an optimal solution.

Assume that the optimal value f∗ is finite. Then, we have

0 ≤ f(x)− f∗, ∀ x ∈ X with g(x) ≤ 0,

so by replacing f(x) by f(x)−f∗ and by applying the Nonlinear Farkas’ Lemma [assuming that the assump-

tion of part (a) or part (b) of the lemma holds], we see that there exists a vector µ∗ ≥ 0 such that

f∗ ≤ f(x) + µ∗′g(x), ∀ x ∈ X.

It follows that

f∗ ≤ inf
x∈X

{
f(x) + µ∗′g(x)

}
≤ inf
x∈X, g(x)≤0

f(x) = f∗.

Thus equality holds throughout in the above relation, and from the definition (4.7) of the dual function, we

have

f∗ = inf
x∈X

{
f(x) + µ∗′g(x)

}
= q(µ∗),

or using also the weak duality relation q∗ ≤ f∗,

f∗ = q(µ∗) = q∗. (4.9)

Thus µ∗ is an optimal solution of the dual problem, and its existence is guaranteed if one of the conditions

of the Nonlinear Farkas’ Lemma is satisfied. We state this conclusion as a proposition:

Proposition 4.11: (Convex Programming Duality II) Assume that f∗ is finite, and that one

of the following two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj are affine, and there exists x ∈ ri(X) such that g(x) ≤ 0.

Then q∗ = f∗ and the set of optimal solutions of the dual problem is nonempty. Under condition (1)

this set is also compact.

Note that we have used two distinct approaches for establishing q∗ = f∗. The first is based on minimax

theory, and also guarantees that there exists an optimal primal solution (even if there may be no dual optimal

solution; cf. Prop. 4.10). The second is based on the Nonlinear Farkas’ Lemma, and guarantees that the

dual problem has an optimal solution (even if there may be no primal optimal solution; cf. Prop. 4.11).
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Theorems of the Alternative

Theorems of the alternative are important tools in optimization, which address the feasibility (possibly strict)

of affine inequalities. Interestingly, theorems of the alternative can be viewed as special cases of the MC/MC

Theorem II, and the supplementary proposition that asserts the equivalence of compactness of the set of

max crossing solutions with the origin being an interior point of the “domain” of the set M in the MC/MC

framework (cf. Props. 3.2, 3.3). This connection is demonstrated in the proofs of the following two classical

theorems.

Proposition 4.12: (Gordan’s Theorem) Let A be an m × n matrix and b be a vector in <m.

The following are equivalent:

(i) There exists a vector x ∈ <n such that

Ax < b.

(ii) For every vector µ ∈ <m,

µ ≥ 0, A′µ = 0, µ′b ≤ 0 ⇒ µ = 0.

(iii) Any polyhedral set of the form

{µ | A′µ = c, µ′b ≤ d, µ ≥ 0} , (4.10)

where c ∈ <n and d ∈ <, is compact.

Proof: We will show that (i) and (ii) are equivalent, and then that (ii) and (iii) are equivalent. The

equivalence of (i) and (ii) is geometrically evident, once the proper MC/MC framework is considered (see

Fig. 4.4). For completeness we provide the details. Consider the set

M =
{

(u,w) | w ≥ 0, Ax− b ≤ u for some x ∈ <n
}
,

its projection on the x axis

D = {u | Ax− b ≤ u for some x ∈ <n},

and the corresponding MC/MC framework. Let w∗ and q∗ be the min common and max crossing values,

respectively. Clearly, the system Ax ≤ b has a solution if and only if w∗ = 0. Also, if (ii) holds, we have

A′µ = 0, µ ≥ 0 ⇒ b′µ ≥ 0,

46



4. Applications

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b 0

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b 0

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u, for some x}

(µ, 1)

1

4

Polyhedral Convexity

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u, for some x}

(µ, 1)

1

4

Polyhedral Convexity Template

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u, for some x}

(µ, 1)

1

4

Polyhedral Convexity Template

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u, for some x}

(µ, 1)

1

4

Polyhedral Convexity Template

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

(µ, 1)

1

4

Polyhedral Convexity Template

Hyperplane {x | y0x = 0}
cone({a1, . . . , ar})

{x | a0
jx ≤ 0, j = 1, . . . , r}

{x | a0
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

(µ, 1)

1

Figure 4.4. MC/MC framework for showing the equivalence of conditions (i) and (ii) of Gordan’s

Theorem. We consider the set

M =
{

(u,w) | w ≥ 0, Ax− b ≤ u for some x ∈ <n
}
,

its projection on the x axis

D = {u | Ax− b ≤ u for some x ∈ <n},

and the corresponding MC/MC framework. Condition (i) of Gordan’s Theorem is equivalent to

0 ∈ int(D), and is also equivalent to 0 being the unique solution of the max crossing problem (see

the figure on the left). It can be seen that the latter condition can be written as

µ ≥ 0, 0 ≤ µ′(Ax− b) + w, ∀ x ∈ <n, w ≥ 0 ⇒ µ = 0,

which is equivalent to condition (ii). In the figure on the right both conditions (i) and (ii) are

violated.

which by the linear version of Farkas’ Lemma [Prop. 4.9(a)], implies that the system Ax ≤ b has a solution.

In conclusion, both (i) and (ii) imply that the system Ax ≤ b has a solution, which is in turn equivalent to

w∗ = q∗ = 0. Thus in proving the equivalence of (i) and (ii), we may assume that the system Ax ≤ b has a

solution and w∗ = q∗ = 0.

The cost function of the max crossing problem is

q(µ) = inf
(u,w)∈M

{w + µ′u}.

Since M contains vectors (u,w) with arbitrarily large components [for each (u,w) ∈M , we have (u,w) ∈M
for all u ≥ u and w ≥ w], it follows that q(µ) = −∞ for all µ that are not in the nonnegative orthant, and

we have

q(µ) =

{
infAx−b≤u µ′u if µ ≥ 0,

−∞ otherwise,

or equivalently,

q(µ) =

{
infx∈<n µ′(Ax− b) if µ ≥ 0,

−∞ otherwise.
(4.11)
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We now note that condition (i) is equivalent to 0 being an interior point of D (to see this note that if

x satisfies Ax − b < 0, then the set {u | Ax − b ≤ u} contains 0 in its interior and is contained in the set

D). By Prop. 3.3, it follows that (i) is equivalent to w∗ = q∗ = 0 and the set of optimal solutions of the

max crossing problem being nonempty and compact. Thus, using the form (4.11) of q, we see that (i) is

equivalent to µ = 0 being the only µ ≥ 0 satisfying q(µ) ≥ 0 or equivalently, satisfying A′µ = 0 and µ′b ≤ 0.

It follows that (i) is equivalent to (ii).

To show that (ii) is equivalent to (iii), we note that the recession cone of the set (4.10) is

{µ ≥ 0 | A′µ = 0, µ′b ≤ 0}.

Thus (ii) states that the recession cone of the set (4.10) consists of just the origin, which is equivalent to

(iii). Q.E.D.

There are several theorems of the alternative involving strict inequalities. Among the ones involving

linear constraints, the following is the most general.

Proposition 4.13: (Motzkin’s Transposition Theorem) Let A and B be p × n and q × n

matrices, and let b ∈ <p and c ∈ <q be vectors. The system

Ax < b, Bx ≤ c

has a solution if and only if for all µ ∈ <p and ν ∈ <q, with µ ≥ 0, ν ≥ 0, the following two conditions

hold:

A′µ+B′ν = 0 ⇒ b′µ+ c′ν ≥ 0, (4.12)

A′µ+B′ν = 0, µ 6= 0 ⇒ b′µ+ c′ν > 0. (4.13)

Proof: Consider the set

M =
{

(u,w) | w ≥ 0, Ax− b ≤ u for some x with Bx ≤ c
}
,

its projection on the x axis

D = {u | Ax− b ≤ u for some x with Bx ≤ c},

and the corresponding MC/MC framework. The cost function of the max crossing problem is

q(µ) =

{
inf(u,w)∈M{w + µ′u} if µ ≥ 0,

−∞ otherwise,
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or

q(µ) =

{
infAx−b≤u,Bx≤c µ′u if µ ≥ 0,

−∞ otherwise.
(4.14)

Similar to the proof of Gordan’s Theorem (Prop. 4.12), and using the linear version of Farkas’ Lemma [Prop.

4.9(b)], we may assume that the system Ax ≤ b, Bx ≤ c has a solution.

Now the system Ax < b, Bx ≤ c has a solution if and only if 0 is an interior point of D, so by Prop.

3.3, it follows that the system Ax < b, Bx ≤ c has a solution if and only if the set of optimal solutions of

the max crossing problem is nonempty and compact. Since q(0) = 0 and supµ∈<m q(µ) = 0, using also Eq.

(4.14), we see that the set of dual optimal solutions is nonempty and compact if and only if q(µ) < 0 for all

µ ≥ 0 with µ 6= 0 [if q(µ) = 0 for some nonzero µ ≥ 0, it can be seen from Eq. (4.14) that we must have

q(γµ) = 0 for all γ > 0]. We will complete the proof by showing that these conditions hold if and only if

conditions (4.12) and (4.13) hold for all µ ≥ 0 and ν ≥ 0.

We calculate the infimum of the linear program in (x, u) in the right-hand side of Eq. (4.14) by

computing the optimal dual value using linear programming duality. In particular, we have for all µ ≥ 0,

after a straightforward calculation,

q(µ) = inf
Ax−b≤u,Bx≤c

µ′u = sup
A′µ+B′ν=0, ν≥0

(−b′µ− c′ν).

Using this equation, we see that q(0) = 0 and q(µ) < 0 for all µ ≥ 0 with µ 6= 0 if and only if conditions

(4.12) and (4.13) hold for all µ ≥ 0 and ν ≥ 0. Q.E.D.

Subdifferential Theory

We finally provide a connection between dual optimal solutions in the MC/MC framework and subgradients.

In particular, we will show that the subdifferential of a convex function at a point can be identified with the

set of max crossing hyperplanes in a suitable MC/MC framework. Through this connection, the basic result

on nonemptiness and compactness of the subdifferential will follow as a special case of the MC/MC theory

developed in Section 3 (Props. 3.2 and 3.3).

Let f : <n 7→ (−∞,∞] be a proper convex function. We say that a vector g ∈ <n is a subgradient of

f at a point x ∈ dom(f) if

f(z) ≥ f(x) + g′(z − x), ∀ z ∈ <n. (4.15)

The set of all subgradients of f at x is called the subdifferential of f at x, and is denoted by ∂f(x). By

convention, ∂f(x) is considered empty for all x /∈ dom(f).

Note that g is a subgradient of f at x if and only if the hyperplane in <n+1 that has normal (−g, 1) and

passes through
(
x, f(x)

)
supports the epigraph of f , as shown in the left-hand side of Fig. 4.5. From this
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Figure 4.5. Illustration of the subdifferential ∂f(x) of a convex function f (left figure) and its

connection with the MC/MC framework. The defining relation (4.15) can be written as

f(z)− z′g ≥ f(x)− x′g, ∀ z ∈ <n.

Thus, g is a subgradient of f at x if and only if the hyperplane in <n+1 that has normal (−g, 1)

and passes through
(
x, f(x)

)
supports the epigraph of f , as shown in the left-hand side figure.

The right-hand side figure shows that ∂f(x) is the set of max crossing solutions in the min

MC/MC framework where M is the epigraph of fx, the x-translation of f .

geometric view, it is evident that there is a strong connection with the MC/MC framework. In particular,

for any x ∈ dom(f), consider the x-translation of f , which is the function fx, whose epigraph is the epigraph

of f translated so that (x, f(x)) is moved to the origin of <n+1:

fx(z) = f(x+ z)− f(x), z ∈ <n.

Then the subdifferential ∂f(x) is the set of all max crossing solutions for the MC/MC framework corre-

sponding to the set

M = epi(fx) = epi(f)−
{

(x, f(x)
}
, (4.16)

as illustrated in Fig. 4.5. Based on this fact, we can use the max common/min crossing theory to obtain

results regarding the existence of subgradients, as in the following proposition.

Proposition 4.14: Let f : <n 7→ (−∞,∞] be a proper convex function. For every x ∈ ri
(
dom(f)),

the subdifferential ∂f(x) has the form

∂f(x) = S⊥ +G,

where S is the subspace that is parallel to the affine hull of dom(f), and G is a nonempty and compact

set. Furthermore, ∂f(x) is nonempty and compact if and only if x is in the interior of dom(f).
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Proof: The result follows by applying MC/MC Theorem II (Props. 3.2 and 3.3) to the set M given by Eq.

(4.16). Q.E.D.

5. NONCONVEX PROBLEMS AND ESTIMATES OF THE DUALITY GAP

In this section we focus on the MC/MC framework in the absence of the convex structure that guarantees

strong duality, and we aim to estimate the duality gap. Let us consider the case where M has the form

M = M̃ +
{

(u, 0) | u ∈ C
}
,

where M̃ is a compact set and C is a closed convex set, or more generally, where conv(M) is closed and

q∗ > −∞. Then, by Prop. 3.4, the duality gap w∗ − q∗ is equal to w∗ − w∗, where w∗ and w∗ are the min

common values corresponding to the sets M and conv(M). Thus estimates of the duality gap should depend

on how much M differs from its convex hull, at least along the vertical axis. A special case where interesting

estimates of this type can be obtained arises in separable optimization problems, as we now discuss.

Separable Problems and their Geometry

Suppose that x has m components x1, . . . , xm of dimensions n1, . . . , nm, respectively, and the problem has

the form

minimize

m∑

i=1

fi(xi)

subject to

m∑

i=1

gi(xi) ≤ 0, xi ∈ Xi, i = 1, . . . ,m,

(5.1)

where fi : <ni 7→ < and gi : <ni 7→ <r are given functions, and Xi are given subsets of <ni . Besides linear

programs, an important special case is when the functions fi and gi are linear, and the sets Xi are finite, in

which case we obtain a discrete/integer programming problem.

We call a problem of the form (5.1) separable. Its salient feature is that the minimization involved in

the calculation of the dual function

q(µ) = inf
xi∈Xi

i=1,...,m

{
m∑

i=1

(
fi(xi) + µ′gi(xi)

)
}

=

m∑

i=1

qi(µ),

is decomposed into the m simpler minimizations

qi(µ) = inf
xi∈Xi

{
fi(xi) + µ′gi(xi)

}
, i = 1, . . . ,m.
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These minimizations are often conveniently done either analytically or computationally, in which case the

dual function can be easily evaluated.

When the cost and/or the constraints are not convex, the separable structure is helpful in another,

somewhat unexpected way. In particular, in this case the duality gap turns out to be relatively small and

can often be shown to diminish to zero relative to the optimal primal value as the number m of separable

terms increases. As a result, one can often obtain a near-optimal primal solution, starting from a dual-

optimal solution. In integer programming problems, this may obviate the need for costly branch-and-bound

procedures.

The small duality gap size is a consequence of the structure of the set of achievable constraint-cost

pairs

S =
{(
g(x), f(x)

)
| x ∈ X

}
,

which plays a central role in the corresponding application of the Nonlinear Farkas Lemma (see Fig. 4.3).

In the case of a separable problem, this set can be written as a vector sum of m sets, one for each separable

term, i.e.,

S = S1 + · · ·+ Sm,

where

Si =
{(
gi(xi), fi(xi)

)
| xi ∈ Xi

}
.

Generally, a set that is the vector sum of a large number of possibly nonconvex but roughly similar sets

“tends to be convex” in the sense that any vector in its convex hull can be closely approximated by a vector

in the set. As a result, the duality gap tends to be relatively small. The analytical substantiation is based on

the following theorem, which roughly states that at most r + 1 out of the m convex sets “contribute to the

nonconvexity” of their vector sum, regardless of the value of m. A proof of the Shapley-Folkman Theorem

is given is several sources, including [Zho93] and [Ber99].

Proposition 5.1: (Shapley-Folkman Theorem) Let Si, i = 1, . . . ,m, be nonempty subsets of

<r+1, with m > r + 1, and let S = S1 + · · ·+ Sm. Then every vector s ∈ conv(S) can be represented

as s = s1 + · · ·+ sm, where si ∈ conv(Si) for all i = 1, . . . ,m, and si /∈ Si for at most r + 1 indices i.

As an illustration, let us use the Shapley-Folkman Theorem to estimate the duality gap in the case of
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a linear program with integer 0-1 constraints:

minimize

m∑

i=1

cixi

subject to

m∑

i=1

ajixi ≤ bj , j = 1, . . . , r,

xi = 0 or 1, i = 1, . . . ,m.

(5.2)

Let f∗ and q∗ denote the optimal primal and dual values, respectively. Note that the “relaxed” linear

program, where the integer constraints are replaced by xi ∈ [0, 1], i = 1, . . . ,m, has the same dual, so its

optimal value is q∗. The set S can be written as

S = S1 + · · ·+ Sm − (b, 0),

where b = (b1, . . . , br) and each Si consists of just two elements corresponding to xi = 0, 1, i.e.,

Si =
{

(0, . . . , 0, 0), (a1i, . . . , ari, ci)
}
.

Thus, S consists of a total of 2m points. A natural idea is to solve the “relaxed” program, and then try to

suitably “round” the fractional (i.e., noninteger) components of the relaxed optimal solution to an integer,

thereby obtaining a suboptimal solution of the original integer program (5.2).

Let us denote

γ = max
i=1,...,m

|ci|, δ = max
i=1,...,m

δi,

where

δi =





0 if a1i, . . . , ari ≥ 0,

0 if a1i, . . . , ari ≤ 0,

maxj=1...,r |aji| otherwise.

Note that δi is an upper bound to the maximum amount of constraint violation that can result when a

fractional variable xi ∈ (0, 1) is rounded suitably (up or down). The following proposition shows what can

be achieved with such a rounding procedure.†

Proposition 5.2: Assume that the relaxed version of the linear/integer problem (5.2) is feasible.

Then there exists x = (x1, . . . , xm), with xi ∈ {0, 1} for all i, which violates the inequality constraints

of problem (5.2) by at most (r + 1)δ, and has cost that is at most q∗ + (r + 1)γ.

† A slightly stronger bound [rγ and rδ in place of (r + 1)γ and (r + 1)δ, respectively] can be shown with an

alternative proof that uses the theory of the simplex method. However, the proof given here generalizes to the case

where fi and gi are nonlinear (see the subsequent Prop. 5.4).
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Proof: We note that the relaxed problem, being a feasible linear program with compact constraint set, has

an optimal solution with optimal value q∗. Since

conv(S) = conv(S1) + · · ·+ conv(Sm)− (b, 0),

we see that conv(S) is the set of constraint-cost pairs of the relaxed problem, so it contains a vector of the

form (u∗, q∗) with u∗ ≤ 0. By the Shapley-Folkman Theorem, there is an index subset I with at most r + 1

elements such that (u∗, q∗) can be written as

u∗ =
∑

i∈I
ui +

∑

i/∈I
ui, q∗ =

∑

i∈I
wi +

∑

i/∈I
wi,

where (ui, wi) ∈ conv(Si) for i ∈ I and (ui, wi) ∈ Si for i /∈ I. Each pair (ui, wi), i /∈ I corresponds to an

integer component xi ∈ {0, 1}. Each pair (ui, wi), i ∈ I may be replaced/rounded by one of the two elements

(ui, wi) of Si, yielding again an integer component xi ∈ {0, 1}, with an increase in cost of at most γ and

an increase of the level of each inequality constraint of at most δi. We thus obtain an integer vector x that

violates the inequality constraints by at most (r+ 1)δ, and has cost that is at most q∗+ (r+ 1)γ. Q.E.D.

The proof of the proposition also indicates the rounding mechanism for obtaining the vector x of the

above proposition. In practice, the simplex method provides a relaxed problem solution with no more than r

noninteger components, which are then rounded as indicated in the proof to obtain x. Note that x may not

be feasible, and indeed it is possible that the relaxed problem is feasible, while the original integer problem is

not (consider for example the constraints x1−x2 ≤ −1/2 and x1 +x2 ≤ 1/2). On the other hand if for each

j, all the constraint coefficients aj1, . . . , ajm are either 0 or have the same sign, we have δ = 0, and a feasible

solution that is (r + 1)γ-optimal can be found. Assuming this condition, let us consider now a sequence of

similar problems where the number of inequality constraints r is kept constant, but the dimension m grows

to infinity. Assuming that |f∗| = O(n), we see that the rounding error (r + 1)δ (which bounds the duality

gap f∗ − q∗) diminishes in relation to f∗, i.e., its ratio to f∗ tends to 0 as n→∞. In particular, we have

lim
n→∞

f∗ − q∗
f∗

→ 0.

The line of analysis of the preceding proposition can be generalized to the nonlinear problem (5.1),

and similar results can be obtained. In particular, it can be shown under assumptions that generalize the

condition δ = 0 discussed earlier, that the duality gap satisfies

f∗ − q∗ ≤ (r + 1) max
i=1,...,m

γi,

where for each i, γi is a nonnegative scalar that depends on the structure of the functions fi, gi, and the

set Xi (see the following proposition). This estimate suggests that as m → ∞, the duality gap diminishes

relative to f∗ as m→∞.
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Estimates of Duality Gap in Separable Problems

We will now generalize the duality gap estimate of Prop. 5.2. We first derive a general duality gap estimate

for the case where the set M in the MC/MC framework is a vector sum, and then we specialize to the case

of a separable problem.

Proposition 5.3: Consider the MC/MC framework corresponding to a set M ⊂ <n+1 given by

M = M1 + · · ·+Mm,

where the sets Mi have the form

Mi = M̃i +
{

(u, 0) | u ∈ Ci
}
, i = 1, . . . ,m,

and for each i, M̃i is a compact set and Ci is convex, and such that C1 + · · ·+ Cm is closed. Let w∗

and q∗ be the min common and max crossing values, respectively, and assume that they are finite.

For i = 1, . . . ,m, assume that for each vector (ui, wi) ∈ conv(Mi), there exists a vector of the form

(ui, wi) ∈Mi, with ui − ui ∈ Ci, and let

γi = sup
(ui,wi)∈conv(Mi)

inf
(ui,wi)∈Mi
ui−ui∈Ci

(wi − wi).

Then

w∗ − q∗ ≤ (n+ 1) max
i=1,...,m

γi.

Proof: By the result of Prop. 3.4(c), q∗ is equal to the optimal value of the MC/MC problem corresponding

to conv(M). Since the sets Mi are assumed compact and C1 + · · ·+Cm is closed, conv(M) is closed, and it

follows that the vector (0, q∗) belongs to conv(M). By the Shapley-Folkman Theorem (Prop. 5.1), there is

an index subset I with at most n+ 1 elements such that (0, q∗) can be expressed as

0 =
∑

i∈I
ui +

∑

i/∈I
ui, q∗ =

∑

i∈I
wi +

∑

i/∈I
wi,

where (ui, wi) ∈ conv(Mi) for i ∈ I and (ui, wi) ∈Mi for i /∈ I. By the hypothesis, for any ε > 0 and i ∈ I,

there also exist vectors of the form (ui, wi) ∈Mi with wi ≤ γi+ ε and ui−ui ∈ Ci. Hence, the vector (u,w),

where

u =
∑

i∈I
ui +

∑

i/∈I
ui, w =

∑

i∈I
wi +

∑

i/∈I
wi,
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belongs to M , so that w∗ ≤ w. Thus, we have

w∗ ≤ w =
∑

i∈I
wi +

∑

i/∈I
wi ≤

∑

i∈I
(wi + γi + ε) +

∑

i/∈I
wi ≤ q∗ + (n+ 1) max

i=1,...,m
(γi + ε).

Since ε can be taken arbitrarily small, the result follows. Q.E.D.

Proposition 5.4: Consider the separable problem of Eq. (5.1):

minimize

m∑

i=1

fi(xi)

subject to

m∑

i=1

gi(xi) ≤ 0, xi ∈ Xi, i = 1, . . . ,m,

where the sets
{(
gi(xi), fi(xi)

)
| xi ∈ Xi

}
, i = 1, . . . ,m,

are compact. Assume that the primal and dual optimal values q∗ and f∗ are finite, and that for each

i, given any x̃i ∈ conv(Xi), there exists xi ∈ Xi such that

gi(xi) ≤ (čl gi)(x̃i),

where čl gi is the function whose components are the convex closures of the corresponding components

of gi. Then

f∗ − q∗ ≤ (n+ 1) max
i=1,...,m

γi,

where

γi = sup
{
f̂ i(x̃i)− (čl fi)(x̃i) | x̃i ∈ conv(Xi)

}
,

čl fi is the convex closure of fi, and f̂ i is given by

f̂ i(x̃i) = inf
{
fi(xi) | gi(xi) ≤ (čl gi)(x̃i), xi ∈ Xi

}
, ∀ x̃i ∈ conv(Xi).

Proof: Let

M̃i =
{(
gi(xi), fi(xi)

)
| xi ∈ Xi

}
, i = 1, ...,m,

and

Mi = M̃i +
{

(u, 0) | u ≥ 0
}
.
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Each Mi is the vector sum of a compact set and a closed convex set. Their vector sum becomes

M = M1 +M2 + · · ·+Mm.

Using Prop. 5.3 and a standard duality argument, we have

w∗ = inf
(0,w)∈M

w, q∗ = inf
(0,w)∈conv(M)

w.

To complete the proof, we now prove the following lemma:

Lemma 5.1: Let f : <n 7→ < and g : <n 7→ <r be functions, and let X be a set. Denote

M̃ =
{(
g(x), f(x)

)
| x ∈ X

}
,

and

M = M̃ +
{

(u, 0) | u ≥ 0
}
.

We have

conv(M) ⊂
{

(čl g(x̃), f̌(x̃)) | x̃ ∈ conv(X)
}

+
{

(u, 0) | u ≥ 0
}
,

where f̌ is the convex closure of f and ǧ is the function whose components are the convex closures of

the corresponding components of g.

Proof: By Caratheodory’s Theorem, any (u,w) ∈ conv(M) is the convex combination of at most r + 2

elements of M ,

(u,w) =

r+2∑

j=1

αj(uj , wj), (uj , wj) ∈M, j = 1, ..., r + 2,

where
∑r+2
j=1 αj = 1 and αj ≥ 0 for all j. Since (uj , wj) ∈ M , there exists xj ∈ M such that g(xj) ≤

uj , f(xj) = wj . Let x̃ =
∑r+2
j=1 αjxj , so that

x̃ ∈ conv(X), (čl g)(x̃) ≤
r+2∑

j=1

αjg(xj) ≤ u, (čl f)(x̃) ≤
r+2∑

j=1

αjf(xj) = w.

It follows that (u,w) ∈
{

((čl g)(x̃), f̌(x̃)) | x̃ ∈ conv(X)
}

+
{

(u, 0) | u ≥ 0
}
. Q.E.D.

For i = 1, ...,m, for each vector (ui, wi) ∈ conv(Mi), using the preceding lemma, we have that there

exists x̃i ∈ conv(Xi) satisfying

(čl gi)(x̃i) ≤ ui, f̌ i(x̃i) = wi.
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It follows that there exists xi ∈ Xi such that

gi(xi) ≤ (čl gi)(x̃i) ≤ ui.

Letting ūi = gi(xi) and w̄i = fi(xi) we have that for each vector (ui, wi) ∈ conv(Mi), there exists a vector

of the form (ūi, w̄i) ∈ Mi with ui − ūi ∈ Ci, where Ci = {u | u ≥ 0}. We now apply the result of Prop. 5.3

and obtain

w∗ − q∗ ≤ (n+ 1) max
i=1,...,m

γi.

Q.E.D.

Estimates of Duality Gap in Minimax

Let us now consider duality gap issues in the context of minimax problems.† We saw in Sections 2 and 4

that minimax theory can be developed within the context of the MC/MC framework. In particular, consider

a function φ : X × Z 7→ < defined over nonempty sets X and Z, and the MC/MC framework involving the

set

M = epi(p),

where p : <m 7→ [−∞,∞] is the function given by

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z)− u′z

}
, u ∈ <m.

Let us assume that (ĉlφ)(x, µ) <∞ for all x ∈ X and µ ∈ Z, so that the corresponding crossing function is

(cf. Prop. 2.4)

q(µ) = inf
x∈X

(ĉlφ)(x, µ). (5.3)

Then we have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

(ĉlφ)(x, z) = sup
µ∈<m

q(µ) = q∗. (5.4)

Let us also assume that

inf
x∈X

sup
z∈Z

φ(x, z) <∞,

so that w∗ < ∞ in the corresponding MC/MC framework. Then, using also the discussion in Sections 2-4

[cf. Prop. 3.4(b)], we see that

sup
z∈Z

inf
x∈X

φ(x, z) ≤ q∗ = (čl p)(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z), (5.5)

where čl p is the convex closure of p.

† The ideas of this subsection on minimax problems are due to Mengdi Wang.
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Thus the gap between “infsup” and “supinf” can be decomposed into the sum of two terms: w∗− q∗ =

g1 + g2, where

g1 = inf
x∈X

sup
z∈Z

φ(x, z)− (čl p)(0) = p(0)− (čl p)(0),

g2 = (čl p)(0)− sup
z∈Z

inf
x∈X

φ(x, z) = sup
z∈<m

inf
x∈X

(ĉlφ)(x, z)− sup
z∈Z

inf
x∈X

φ(x, z).

The term g1 can be attributed to the lack of convexity and/or closure of φ with respect to x; it would be 0

if φ were closed and convex with respect to x for each z. Similarly, the term g2 can be attributed to the lack

of concavity and/or upper semicontinuity of φ with respect to z.

In cases where φ has a separable form in x and φ is concave and upper semicontinuous with respect

to z, we have g2 = 0, while the Shapley-Folkman Theorem can be used to estimate g1, similar to Prop.

5.4. Similarly, we can estimate the duality gap if φ has a separable form in z and φ is convex and lower

semicontinuous with respect to x, or if φ separable in both x and z.
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7. APPENDIX: CONVEX ANALYSIS BACKGROUND

We summarize here some convex analysis backgound, with few proofs or detailed explanations. All the

results for which we give no proofs can be found in Rockafellar [Roc70], as well as other convex analysis

sources. We give page references to our text [BNO03]. The reader may wish to skip this section and return

to it later as needed.

Relative Interior and Closure

Let C be a nonempty convex set. We say that x is a relative interior point of C if x ∈ C and there exists

an open sphere S centered at x such that S ∩ aff(C) ⊂ C, i.e., x is an interior point of C relative to aff(C).

The set of all relative interior points of C is called the relative interior of C, and is denoted by ri(C). The

set C is said to be relatively open if ri(C) = C. The vectors in the closure of C that are not relative interior

points are said to be relative boundary points of C, and their collection is called the relative boundary of C.

A central fact about relative interiors is given in the following proposition ([BNO03], p. 40).

Proposition 7.1: Let C be a nonempty convex set.

(a) (Line Segment Principle) If x ∈ ri(C) and x ∈ cl(C), then all points on the line segment

connecting x and x, except possibly x, belong to ri(C).

(b) ri(C) is a nonempty convex set, and has the same affine hull as C.

(c) (Prolongation Lemma) A vector x is a relative interior point of C if and only if every line segment

in C having x as one endpoint can be prolonged beyond x without leaving C [i.e., for every x ∈ C,

there exists a γ > 0 such that x+ γ(x− x) ∈ C].
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A relative interior condition is central in the following useful characterization of the set of optimal

solutions in the case where the cost function is linear or, more generally, concave. For a proof, see [BNO03],

p. 43.

Proposition 7.2: Let X be a nonempty convex subset of <n, let f : X 7→ < be a concave function,

and let X∗ be the set of vectors where f attains a minimum over X, i.e.,

X∗ =

{
x ∈ X

∣∣∣ f(x∗) = inf
x∈X

f(x)

}
.

If X∗ contains a relative interior point of X, then f must be constant over X, i.e., X∗ = X.

Recession Cones

Given a nonempty convex set C, we say that a vector d is a direction of recession of C if x+ αd ∈ C for all

x ∈ C and α ≥ 0. The set of all directions of recession is the recession cone of C and it is denoted by RC .

The following is the basic result relating to recession cones (see [BNO03], p. 50).

Proposition 7.3: (Recession Cone Theorem) Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex cone.

(b) A vector d belongs to RC if and only if there exists a vector x ∈ C such that x+ αd ∈ C for all

α ≥ 0.

(c) RC contains a nonzero direction if and only if C is unbounded.

(d) RC = Rri(C).

(e) For any collection of closed convex sets Ci, i ∈ I, where I is an arbitrary index set and ∩i∈ICi 6= ∅,
we have

R∩i∈ICi = ∩i∈IRCi .

Given a closed proper convex function f : <n 7→ (−∞,∞], the level sets of f are the sets
{
x | f(x) ≤ γ

}
,

γ ∈ <. It can be shown that all the nonempty level sets of f have the same recession cone. In particular, if

one of them is compact, all of them are compact (see [BNO03], p. 93).
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The lineality space of a convex set C, denoted by LC . It is defined as the set of directions of recession

d whose opposite, −d, are also directions of recession:

LC = RC ∩ (−RC).

The following is a useful decomposition result (see [BNO03], p. 56).

Proposition 7.4: (Decomposition of a Convex Set) Let C be a nonempty convex subset of

<n. Then, for every subspace S that is contained in the lineality space LC , we have

C = S + (C ∩ S⊥).

The following is a useful closedness criterion for a vector sum (see [BNO03], p. 67). As a special case,

it yields that the vector sum of two sets is closed if both sets are closed and convex, and one of the two is

bounded, so that its recession cone is just the origin.

Proposition 7.5: Let C1, . . . , Cm be nonempty closed convex subsets of <n such that the equality

y1 + · · · + ym = 0 with yi ∈ RCi implies that each yi belongs to the lineality space of Ci. Then, the

vector sum C1 + · · ·+ Cm is a closed set and

RC1+···+Cm = RC1 + · · ·+RCm .

Partial Minimization of Convex Functions

There are some useful conditions guaranteeing that closedness is preserved under partial minimization, while

simultaneously the partial minimum is attained. Starting with a function F : <n+m 7→ [−∞,∞] of two

vectors x ∈ <n and z ∈ <m, we consider the function

f(x) = inf
z∈<m

F (x, z), x ∈ <n.

Convexity of F implies convexity of f , as stated in the following proposition (see [BNO03], Section 2.3.3).
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Proposition 7.6: Consider a function F : <n+m 7→ (−∞,∞] and the function f : <n 7→ [−∞,∞]

defined by

f(x) = inf
z∈<m

F (x, z).

Then:

(a) If F is convex, then f is also convex.

(b) We have

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P
(
epi(F )

))
, (7.1)

where P (·) denotes projection on the space of (x,w), i.e., for any subset S of <n+m+1, P (S) =
{

(x,w) | (x, z, w) ∈ S
}
.

It is not necessarily true that closedness of F implies closedness of f , as we have discussed in Section

1.3.3. Indeed, as Prop. 7.6(b) suggests, if the projection operation does not preserve closedness of epi(F ),

then epi(f) may not be closed. The following propositions provide conditions guaranteeing closedness (see

[BNO03], Section 2.3.3).

Proposition 7.7: Let F : <n+m 7→ (−∞,∞] be a closed proper convex function, and consider the

function f given by

f(x) = inf
z∈<m

F (x, z), x ∈ <n.

Assume that for some x ∈ <n and γ ∈ < the set

{
z | F (x, z) ≤ γ

}

is nonempty and compact. Then f is convex, closed, and proper. Furthermore, for each x ∈ dom(f),

the set of minima in the definition of f(x) is nonempty and compact.

The assumption that there exists a vector x ∈ <n and a scalar γ such that the level set

{
z | F (x, z) ≤ γ

}

is nonempty and compact is equivalent to assuming that all the nonempty level sets of the form
{
z | F (x, z) ≤

γ
}

are compact. This is so because all these sets have the same recession cone, namely
{
dz | (0, dz) ∈ RF

}
.
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A simple but useful special case of the preceding proposition is the following:

Proposition 7.8: Let X and Z be nonempty convex sets of <n and <m, respectively, let F :

X × Z 7→ < be a closed convex function, and assume that Z is compact. Then the function f given

by

f(x) = inf
z∈Z

F (x, z), x ∈ X,

is a closed real-valued convex function over X.

The following is a slight generalization of Prop. 7.7.

Proposition 7.9: Let F : <n+m 7→ (−∞,∞] be a closed proper convex function, and consider the

function f given by

f(x) = inf
z∈<m

F (x, z), x ∈ <n.

Assume that for some x ∈ <n and γ ∈ < the set

{
z | F (x, z) ≤ γ

}

is nonempty and its recession cone is equal to its lineality space. Then f is convex, closed, and proper.

Furthermore, for each x ∈ dom(f), the set of minima in the definition of f(x) is nonempty.

Closures of Convex Functions

A nonempty subset E of <n+1 is the epigraph of some function if for every (x,w) ∈ E, the set
{
w | (x,w) ∈ E

}

is either the real line or else it is a halfline that is bounded below and contains its (lower) endpoint. Then

E is the epigraph of any function f : X 7→ [−∞,∞] such that

X ⊃
{
x | there exists (x,w) ∈ E

}
,

and

f(x) = inf
{
w | (x,w) ∈ E

}
, ∀ x ∈ X.

If E is the empty set, it is the epigraph of the function that is identically equal to ∞.
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The closure of the epigraph of a function f : X 7→ [−∞,∞] can be seen to be a legitimate epigraph of

another function. This function, called the closure of f , is denoted by cl f , and is given by†

(cl f)(x) = inf
{
w | (x,w) ∈ cl

(
epi(f)

)}
, x ∈ <n.

Similarly, the closure of the convex hull of the epigraph of f is the epigraph of some function, denoted čl f ,

necessarily closed and convex, which is called the convex closure of f . It can be seen that čl f is the closure

of the function F : <n 7→ [−∞,∞] given by

F (x) = inf
{
w | (x,w) ∈ conv

(
epi(f)

)}
. (7.2)

It is easily seen that F convex, but it need not be closed and its domain may be strictly contained in

dom(čl f) (it can be seen though that the closures of the domains of F and čl f coincide).

From the point of view of optimization, an important property is that the minimal values of f , cl f , F ,

and čl f coincide, as stated in the following proposition:

Proposition 7.10: Let f : X 7→ [−∞,∞] be a function. Then

inf
x∈X

f(x) = inf
x∈<n

(cl f)(x) = inf
x∈<n

F (x) = inf
x∈<n

(čl f)(x),

wheer F is given by Eq. (7.2). Furthermore, any vector that attains the infimum of f also attains the

infimum of cl f , F , and čl f .

Proof: If epi(f) is empty, i.e., f(x) = ∞ for all x, the results trivially hold. We thus may assume that

epi(f) is nonempty. Let f∗ = infx∈<n(cl f)(x). For any sequence
{

(xk, wk)
}
⊂ cl

(
epi(f)

)
with wk → f∗, we

can construct a sequence
{

(xk, wk)
}
⊂ epi(f) such that xk ∈ X, and |wk −wk| → 0, so that wk → f∗. This

shows that

f∗ = inf
x∈X

f(x) = inf
x∈<n

(cl f)(x).

To show that infx∈<n F (x) = f∗, we note that clearly F (x) ≤ f(x) for all x ∈ <n. If f∗ = −∞,

then infx∈<n F (x) = f∗. Assume to arrive at a contradiction that −∞ < f∗ and infx∈<n F (x) < f∗. Then

there exists (x,w) ∈ conv
(
epi(f)

)
such that F (x) ≤ w < f∗, and x =

∑m
i=1 αixi, w =

∑m
i=1 αiwi for some

(xi, wi) ∈ epi(f) and αi ≥ 0 with
∑m
i=1 αi = 1. It follows that

m∑

i=1

αifi(xi) ≤
m∑

i=1

αiwi < f∗,

† In Rockafellar [Roc70], cl f is called the “lower semicontinuous hull of f” while in Rockafellar and Wets [RoW98],

cl f is called the “lower closure of f .”
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while f(xi) ≥ f∗ for all i – a contradiction. Hence infx∈<n F (x) = f∗. Since čl f is the closure of F , it

follows also that infx∈<n(čl f)(x) = f∗.

We have f(x) ≥ (cl f)(x) for all x, so if x∗ attains the infimum of f ,

inf
x∈<n

(cl f)(x) = inf
x∈X

f(x) = f(x∗) ≥ (cl f)(x∗),

showing that x∗ attains the infimum of (cl f). Similarly, x∗ attains the infimum of F and čl f . Q.E.D.

Working with the closure of a convex function is often useful because in some sense the closure “differs

minimally” from the original. In particular, a proper convex function coincides with its closure on the relative

interior of its domain. This and other properties of closures are derived in the following proposition.

Proposition 7.11: Let f : <n 7→ [−∞,∞] be a function. Then:

(a) cl f is the greatest closed function majorized by f , i.e., if g : <n 7→ [−∞,∞] is closed and satisfies

g(x) ≤ f(x) for all x ∈ <n, then g(x) ≤ (cl f)(x) for all x ∈ <n.

(b) čl f is the greatest closed and convex function majorized by f , i.e., if g : <n 7→ [−∞,∞] is closed

and convex, and satisfies g(x) ≤ f(x) for all x ∈ <n, then g(x) ≤ (cl f)(x) for all x ∈ <n.

(c) Let f be convex. Then cl f is convex, and it is proper if and only if f is proper. Furthermore,

(cl f)(x) = f(x), ∀ x ∈ ri
(
dom(f)

)
,

and if x ∈ ri
(
dom(f)

)
and y ∈ dom(cl f), then

(cl f)(y) = lim
α↓0

f
(
y + α(x− y)

)
.

Proof: (a) Let g : <n 7→ [−∞,∞] be closed and such that g(x) ≤ f(x) for all x ∈ <n. Choose any

x ∈ dom(cl f). Since epi(cl f) = cl
(
epi(f)

)
, there is a sequence

{
(xk, wk)

}
∈ epi(f) such that xk → x,

wk → (cl f)(x). Using the lower semicontinuity of g, we have

g(x) ≤ lim inf
k→∞

g(xk) ≤ lim inf
k→∞

f(xk) ≤ lim inf
k→∞

wk = (cl f)(x).

Since epi(f) ⊂ epi(cl f), we have (cl f)(x) ≤ f(x) for all x ∈ <n, so cl f is the greatest closed function

majorized by f .

66



7. Convex Analysis Background

(b) Similar to the proof of part (a).

(c) If epi(f) is convex, then cl
(
epi(f)

)
is convex, implying that cl f is convex. Furthermore, epi(f) contains

a vertical line if and only if cl
(
epi(f)

)
contains a vertical line (since these two sets share the same relative

interior). Thus cl f is proper if and only if f is. For a proof of the remaining statement, see [Roc70], Ch. 7.

Q.E.D.

Hyperplane Theorems

An important tool for our analysis is the following proposition (see [BNO03], p. 118).

Proposition 7.12: (Nonvertical Hyperplane Theorem) Let C be a nonempty convex subset

of <n+1 that contains no vertical lines. Let the vectors in <n+1 be denoted by (u,w), where u ∈ <n

and w ∈ <. Then:

(a) C is contained in a closed halfspace corresponding to a nonvertical hyperplane, i.e., there exist

a vector µ ∈ <n, a scalar β 6= 0, and a scalar γ such that

µ′u+ βw ≥ γ, ∀ (u,w) ∈ C.

(b) If (u,w) does not belong to cl(C), there exists a nonvertical hyperplane strictly separating (u,w)

and C.

The following two hyperplane separation theorems will be important tools in the analysis (see [BNO03],

pp. 115 and 193).

Proposition 7.13: (Proper Separation Theorem) Let C be a nonempty convex subset of <n

and let x be a vector in <n. There exists a hyperplane that properly separates C and x if and only if

x /∈ ri(C).
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Proposition 7.14: (Polyhedral Proper Separation Theorem) Let C and P be two nonempty

convex subsets of <n such that P is polyhedral. There exists a hyperplane that separates C and P ,

and does not contain C if and only if

ri(C) ∩ P = ∅.

Conjugate Functions

Consider an extended real-valued function f : <n 7→ [−∞,∞]. The conjugate function of f is the function

h : <n 7→ [−∞,∞] defined by

h(y) = sup
x∈<n

{
x′y − f(x)

}
, y ∈ <n. (7.3)

We have the following basic result, which involves the conjugate of the conjugate function (or double conju-

gate, see [BNO03], p. 426).

Proposition 7.15: (Conjugacy Theorem) Let f : <n 7→ [−∞,∞] be a function, let h be its

conjugate, and consider the conjugate of h, denoted by f‡:

f‡(x) = sup
y∈<n

{
y′x− h(y)

}
, x ∈ <n.

(a) We have

f(x) ≥ f‡(x), ∀ x ∈ <n.

(b) If f is convex, then properness of any one of the functions f , h, and f‡ implies properness of the

other two.

(c) If f is closed proper convex, then

f(x) = f‡(x), ∀ x ∈ <n.

(d) Let čl f be the convex closure of f . If (čl )f(x) > −∞ for all x ∈ <n, then

(čl )f(x) = f‡(x), ∀ x ∈ <n.
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Minimax Theory

Consider a function φ : X × Z 7→ <, where X and Z are nonempty subsets of <n and <m, respectively. We

will focus on deriving conditions guaranteeing that

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

sup
z∈Z

φ(x, z), (7.4)

and that the infimum and the supremum above are attained. We note the definition and a basic property of

saddle points (see [BNO03], Section 2.6).

Definition 7.1: A pair of vectors x∗ ∈ X and z∗ ∈ Z is called a saddle point of φ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z.

Proposition 7.16: A pair (x∗, z∗) is a saddle point of φ if and only if the minimax equality (7.4)

holds, and x∗ is an optimal solution of the problem

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X,
(7.5)

while z∗ is an optimal solution of the problem

maximize inf
x∈X

φ(x, z)

subject to z ∈ Z.
(7.6)
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