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Focus

@ Approximate solution of linear equations x = T(x), where
T(x) = Ax + b, Aisnxn, be®R”
by solving the projected equation
y="nT(y)

I is projection on a subspace of basis functions (with respect to some
norm)

@ This is the Galerkin approximation approach, but simulation plays a
central and non-traditional role. We consider very large n.

@ Starting point: Approximate DP/Bellman’s equation/policy evaluation

A : encodes the Markov chain structure, b : cost vector

Then y = NT(y) is the equation solved by TD methods [TD()A), LSTD()),
LSPE(N)]

@ We generalize to the case where A is arbitrary, subject only to
I —NA: invertible

(joint work with H. Yu - papers available from our web sites)



Benefits and Challenges of Generalization

@ A higher perspective for TD methods in approximate DP
Motivates improvements in various areas:
Exploration issues
Automatic generation of features

Error bounds
Simplified convergence analysis

@ An extension to a vast new area of applications
There are many linear systems of huge dimension in practice
@ Dealing with less structure

Lack of contraction
Absence of a Markov chain
lll-conditioning



Outline

0 Projected Equation Approximation
@ The Approximate DP Context
@ The General Projected Equation Context

e General LSTD and LSPE-Type Algorithms
@ Forms of the Algorithms
@ Choice of Markov Chain for a Contraction
@ Automatic Generation of Features
@ Multistep Versions - A-Methods

e Extensions
@ Nonlinear Extensions
@ Least Squares/Bellman Error-Type Methods



Projected Equation Approximation
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DP Context/Policy Evaluation

@ Markovian Decision Problems (MDP)
@ n states, transition probabilities depending on control
@ Policy iteration method; we focus on single policy evaluation

@ Bellman’s equation:
x=Ax+b

where
@ b: cost vector
o A has transition structure, e.g., A = «P for discounted problems, A = P for
average cost problems



Projected Equation Approximation
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Approximate Policy Evaluation

Approximation within subspace S = {¢r | r € £°}

X =~ or, ® is a matrix with basis functions as columns

Projected Bellman equation:

or = N(Adr + b)

Error bound, assuming A is contraction with modulus « € (0, 1)

1

—

I —or < 1 x" — X"

Long history, starting with TD()) (Sutton, 1988)
Least squares methods are currently more popular



Projected Equation Approximation
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Least Squares Policy Evaluation (LSTD)

@ Dates to 1996 (Bradtke and Barto), with A-extension by Boyan (2002)
@ |dea: Solve a simulation-based approximation of the projected equation
e The projectedABeIIman equation is written as Cr = d
o LSTD solves Cr = d, where
C~ C, d~d
are obtained using simulation
@ Does not need the contraction property of DP problems

@ Multistep version: LSTD()A) which is LSTD applied to the mapping

TV = (1= 0D NT(x) = AVx + bV,
k=0

where - -
AN = (1= 2) Y AAT, b =" N Ab
k=0

k=0
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Projected Value lteration (PVI)

@ Value lteration => Projection => Value lteration => Projection ...

T(®ry)

Projection
on S

Dripq = OT(Pre)

Subspace S

¢I}+1 =Tl T(q)ft)

@ T must be a contraction - T being a contraction is not enough

@ Norm matching is essential: a (Euclidean) projection norm for which T is
a contraction

@ There is a magical norm: the steady-state distribution norm (states are
weighted by the steady-state distribution of the Markov chain)
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Least Squares Policy Evaluation (LSPE)

Noisy
Projection
on S

Projection

d
1
|
|
|
i
|

oS !

i

|

req =T (ry)

or e Pryyy = TT(Or,) + ¢

Subspace § Subspace §

@ A simulation-based approximation to PVI
@ Dates to 1996 (Bertsekas and loffe); also in the Bertsekas and Tsitsiklis
(1996) book - used in a tetris application

LSPE: &ry1 =NT(®R) + €, €t is simulation noise with ¢, — 0
N——
PVI

@ Incremental like TD()) - no stepsize unlike TD()\)

@ Same complexity/same solution as LSTD

@ Asymptotically “identical" to LSTD, but differs in early stages

@ Allows for a favorable initial guess ry; may be an advantage in
optimistic/few samples approximate policy iteration
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Advantages of Projected Equation Methods in DP

@ All operations are done in low-dimension

@ The high-dimensional vector x need not be stored

@ The projection norm is implemented in simulation - need not be known a
priori

@ There is a projection norm (the distribution norm) that induces
contraction of MA and a priori error bounds
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General/NonDP Projected Equation Methods

A does not have a transition probability structure

No Markov chain, no contraction guarantee

We may introduce an artificial Markov chain for sampling/projection
With clever choice of the chain, NMA may be a contraction
Computable error bounds are available

All operations are done in low-dimension

The high-dimensional vector x need not be stored
Methods:

e LSTD analog (does not require NA to be a contraction)
o LSPE analog (requires MA to be a contraction)
@ TD()) analog (requires MNA to be a contraction)



General LSTD and LSPE-Type Algorithms
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Projected Equation Approximation Method (LSTD-like)

@ Let I be projection with respect to

n
IXlle = | > &ix?,
i=1

where £ € R" is a probability distribution with positive components
@ Explicit form of projected equation ®r = M(A®r + b)

2
r=argmin> ¢ <¢(i)’r = aye()'r - b,-)
=

rews T4

where ¢(/)’ denotes the ith row of the matrix ¢
@ Optimality condition/equivalent form:

> &io(i) (¢(i)za,,¢(j)> r=Y &b
i=1 j=1 i=1

Expected value Expected value

@ The two expected values are approximated by simulation
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Simulation Mechanism

—_—
Row Sampling According to &

Column Sampling
According to P

Row sampling: Generate sequence {i, i1, ...} according to &, i.e.,
relative frequency of each row i is &;

Column sampling: Generate sequence { (i, o), (1, /1), - .. } according to
some transition probability matrix P with

pi>0 if  a;#£0,

i.e., for each i, the relative frequency of (i, /) is p;
Row sampling may be done using a Markov chain with transition matrix
Q (unrelated to P)

Row sampling may also be done without a Markov chain - just sample
rows according to some known distribution ¢ (e.g., a uniform)
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Row and Column Sampling

—_—
Row Sampling According to &
(May Use Markov Chain Q)

Column Sampling

According to

Markov Chain
P~ A

@ Row sampling ~ State Sequence Generation in DP. Affects:
e The projection norm
@ Whether NA is a contraction
@ Column sampling ~ Transition Sequence Generation in DP. Can be
totally unrelated to row sampling. Affects:

e The sampling/simulation noise
e Matching P with |A| has an effect like in importance sampling
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LSTD-Like Method

@ Optimality condition/equivalent form of projected equation

DD (¢<i)—2aq¢</)> = > e

Expected value Expected value

@ The two expected values are approximated by row and column sampling
(batch 0 — 1)

@ Attime t, we solve the linear equation

iqb (/k) ’%(J )) qu(fk bi,

k=0

@ Thenrn —r*
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LSPE-Type Method

@ Consider PVI
¢r,+1 :I'I(Ad)rt—i—b), t=0,1,...
@ Expressing the projection as a least squares minimization, we have

rer =argmin || or — (Adr + b)H?
reRs

or equivalently

rzﬂ-(Zacb(i)qs(f)’) Zfl (ZW!) ”*“)

Expected value Expected value

@ Approximate the two expected values by row and column sampling

Mot = (Zaﬁ(ik)aﬁ(ik)’) qu(, ( ’k’k¢(/)rt+bfk)
k=0

@ If MA is a contraction with respect to some norm, r; — r*
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Row Sampling for Contraction |

Must have Row Sums of |A| < 1 to have hope of contraction of MNA

Proposition: Let ¢ be the invariant distribution of an irreducible Q such that
A< Q

Then T and NT are contraction mappings under any one of the following

three conditions:

(1) For some scalar a € (0,1), we have |A| < aQ.

(2) There exists an index / such that |a;| < g; forallj=1,...,n.

(3) There exists an index i such that 37 |a;| < 1.

Note 1: Under conditions (1) and (2), T and M T are contraction mappings
with respect to the specific norm || - ||¢
Note 2: Applies to DP discounted and stochastic shortest path problems
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Row Sampling for Contraction I

Must have Row Sums of |A| < 1

Proposition: Let £ be the invariant distribution of a Q with no transient states.
Assume
Al <Q

and that / — MA is invertible. Then the mapping M T,, where
is a contraction with respect to || - ||¢ for all v € (0, 1).
Note 1: T, and MNT have the same fixed points

Note 2: MT need not be a contraction
Note 3: Applies to average cost problems (Yu and Bertsekas 2006)
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Back to Discounted DP/Exploration

@ Here A = aP, where P corresponds to the policy evaluated and « is the
discount factor

@ If we take Q = P for row sampling, then MA is a contraction

@ We may also use Markov chain Q # P for row sampling, to change ¢
and induce exploration; for example use

Policy R (off policy) prob. 3, Policy P (on policy) prob. 1 — 3

@ The LSTD-type algorithm always applies (it does not require that MA be
a contraction)

@ If NA can be shown to be a contraction, the LSPE())- and TD(\)-type
algorithms apply. In particular, we get convergence with no bias if:

(1) Forall A €[0,1)if 3 <1 —a?
(2) Forall g €[0,1)if X is sufficiently large
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Application to Diagonally Dominant Systems

@ Consider the solution of the system
Cx =d,
where d € ®" and C is an n x n matrix such

ci # 0, Z|C,]'|§|C/,'|, i=1,...,n

J#

@ Convert to the system x = Ax + b, where b; = & and
0 fi=j
aj = Ci g : .
{c; if i #j

n
> lal=>
= i

so row sums of |A| < 1
@ Under the earlier conditions, MA is a contraction.

@ We have

cj .
:;}gt i=1,...,n,
1
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Automatic Generation of Powers of A as Basis Functions

@ Use ¢ whose jth row is

o(i)" = (9(/) (Ag)(i) -~ (A°g)(i))
where g is some vector
@ Example in the MDP case: Use as features finite horizon costs

@ A justification if A is a contraction and g = b: the fixed point of T has an
expansion of the form
X = Z Ab
k=0

@ While (A"g)(i) is hard to generate, it can be approximated by sampling
(in effect we use noisy features)
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Multistep Versions (Fixed Step and A-Methods)

@ Replace T by a multistep mapping with the same fixed points, e.g., T%
where k is fixed, or

T = (=D NTH AN = (1= 2) D NAT
k=0 k=0

where X € (0, 1) is such that the infinite series converges
@ Motivation for \-methods, assuming that

spectral radius of A = o(A) < 1

@ Proposition: If I — Alis invertible and o(A) < 1, then

o(AM) <1, ¥vae(0,1), iim1a(A(*)):0

@ As ) increases the contraction becomes stronger

@ We must have A < 1/0(A) for a \-method to apply. There are no
restrictions for a k-step method
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A-Methods

@ When the LSTD/LSPE-type methods given earlier are applied to
or =nTN(or)

they yield generalizations to LSTD(A) and LSPE())
@ The formulas involve temporal differences, based on the expansion

TV(x) = x+ > A"(A"b+ A" x — ATx)
m=0
@ The entire analysis of TD()), LSTD(\), and LSPE()) for DP generalizes
subject to the following restrictions:

e Eigenvalues of AA must be within the unit circle for LSTD analogs
e Additional contraction assumptions for LSPE()) and TD()) [i.e., MAM) is a
contraction]
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Forms of A\-Methods |

@ Row and column sampling are done using the same Markov chain P.
Define w0 = 1 and for m > 1

Wi m = Qi1 Biitinre Qi m_1ikem
m=— g L :
p’k’k+1 Pi i1k Py m—1iksm
@ Example: Discounted DP
Wk.m = am, Vv k

@ LSPE-type method
t -1y t
le1 =+ (Z ¢(ik)¢(/k)'> Z (i) Z A" Wi m—k O (im),
k=0 k=0 m=k

where d;(im) are the temporal differences

Ai(im) = by + Wi 16(ims1)' 1t — S(im)' 1, £>0, m>0
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Forms of A\-Methods Il

@ Recursive/efficient update for LSPE-type method
e = n+ By (G + hy)
where
B = Bi—1 + ¢(i)p(ir)’, Ci = Ci1 + ze(Wea(is1) — (ir)),
he = hi—1 + ziby,, Zr = AWi—1,1Zi—1 + ¢(ii).

@ LSTD(\)-type method is just
= C[_1ht

@ TD()\)-type method is
1 = 1+ e zede (i)

where ~; is the stepsize
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Convergence Result

Proposition: Assume that P is irreducible, and that \ satisfies

amax|a;l/py < 1, A€ [0,1).
I

Let r; be generated by the LSTD(\)-type algorithm. Then,
r—r with probability 1
The same is true for the LSPE()\)-type algorithm [assuming also that
o(AV) < 1]
@ Here ry is the solution of the projected equation

or =nTY(or)

@ Similar result for TD())-type extension, under suitable (stochastic
approximation-type) conditions for the stepsize
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A Nonlinear Equation with Scalar Nonlinearities

@ Consider the system
x = T(x) = Af(x) + b,

where f : R" — R is a mapping with scalar function components of the
form f(x) = (fi(x1), ..., fa(Xn)).

@ Assume that each of the mappings f; : it — R is nonexpansive:
Ifi(x) —fi(x)| < |x—Xl, Vi=1,....n x,X€eR

Then if Ais a contraction with respect to a weighted Euclidean norm, T
is also a contraction

@ This structure implies favorable choices of a Markov chain for simulation



Optimal Stopping

Let T(x) = aPf(x) + b, where P is irreducible transition probability with
invariant distribution &, a € (0, 1) is a scalar discount factor, and f has
components

fi(x)) = min{c;, x;}, i=1,...,n,

where ¢; are some scalars.

Then x = T(x) is the Q-factor equation corresponding to a discounted
optimal stopping problem

In this case, MA is a contraction with respect to || - || [Tsitsiklis and Van
Roy (1999), who gave a Q-learning algorithm with linear function
approximation]

The LSPE algorithm has been generalized to this problem (Yu and
Bertsekas 2007; also the 3rd Edition of my DP text 2007)

There is no “good" LSTD-type algorithm for this problem (the fixed point
equation to be approximated is nonlinear)

Extensions
(o] J
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Linear Least Squares/Regresion/Bellman Error Methods

@ Consider solving the problem

min || A®r — b2
reys

to approximate the weighted least squares solution of Ax = b.

@ Here A: m x nmatrix, £ is a known probability distribution vector,
b e R", and ® is an n x s matrix of basis functions.

@ The solution is
r = (®'AZAdD) o' A'=b,
where = is the diagonal m x m matrix having ¢ along the diagonal

@ To approximate the solution, we replace ®’A’=A® and ¢’A'=b with
simulation-based estimates



Extensions
(o] le]

Issues in Regresion/Bellman Error Methods

@ Need to sample two columns for each row — more noise
@ Variance reduction — a form of importance sampling may be essential
@ Dealing with (near) singular ¢’ A'’=A¢

e Add a small multiple of the identity to ®’A’=A® (like a prior in a regression
setting), i.e., approximate by simulation

r* = (¢'AZAd 4+ +I)"Td'A'=b
where ~ is small positive parameter
o Use a proximal method:
et = (' AZAG + 5, l) ™ (O'A'Zb + ry),
where ~v; is a1posmve parameter. This converges to the correct solution
(P'A'=AD) 'A'=
@ Applications in inverse problems and other areas (huge dimension - e.g.,
n=10°, A: fully dense)



Concluding Remarks

TD methods can be naturally extended to solve linear systems of
equations

In doing so, perspective and new methods are obtained for approximate
DP
The overall approach is very simple:

e Start with a deterministic algorithm
o Write it in terms of expected values
e Approximate the expected values by simulation

The approach applies to many linear algebra-type problems - beyond
those discussed here (e.g., computing the dominant eigenvalue of a
matrix, approximating the invariant distribution of a Markov chain)

There is considerable literature and theoretical work on Monte Carlo
linear algebra methods (starting with von Neumann)

The new element here is linear function approximation and the
connection with TD methods

Exciting prospect: Application to linear algebra problems of huge
dimension, far beyond the DP context

Extensions
oe] )
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