Temporal Difference Methods and Approximate Monte Carlo Linear Algebra

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

RL Workshop, Lille 2008
Focus

- Approximate solution of linear equations $x = T(x)$, where
 $T(x) = Ax + b$, \(A \) is \(n \times n \), \(b \in \mathbb{R}^n \)
 by solving the projected equation
 \[
y = \Pi T(y)\]
 \(\Pi \) is projection on a subspace of basis functions (with respect to some norm)
- This is the Galerkin approximation approach, but simulation plays a central and non-traditional role. We consider very large \(n \).
- Starting point: Approximate DP/Bellman’s equation/policy evaluation
 \(A \) : encodes the Markov chain structure, \(b \) : cost vector
 Then \(y = \Pi T(y) \) is the equation solved by TD methods [TD(\(\lambda \)), LSTD(\(\lambda \)), LSPE(\(\lambda \))]
- We generalize to the case where \(A \) is arbitrary, subject only to
 \[
 I - \Pi A : \text{invertible}
 \]
 (joint work with H. Yu - papers available from our web sites)
Benefits and Challenges of Generalization

- A higher perspective for TD methods in approximate DP
 Motivates improvements in various areas:
 - Exploration issues
 - Automatic generation of features
 - Error bounds
 - Simplified convergence analysis

- An extension to a vast new area of applications
 There are many linear systems of huge dimension in practice

- Dealing with less structure
 - Lack of contraction
 - Absence of a Markov chain
 - Ill-conditioning
Outline

1. Projected Equation Approximation
 - The Approximate DP Context
 - The General Projected Equation Context

2. General LSTD and LSPE-Type Algorithms
 - Forms of the Algorithms
 - Choice of Markov Chain for a Contraction
 - Automatic Generation of Features
 - Multistep Versions - λ-Methods

3. Extensions
 - Nonlinear Extensions
 - Least Squares/Bellman Error-Type Methods
Markovian Decision Problems (MDP)
- \(n \) states, transition probabilities depending on control
- Policy iteration method; we focus on single policy evaluation

Bellman’s equation:
\[
x = Ax + b
\]
where
- \(b \): cost vector
- \(A \) has transition structure, e.g., \(A = \alpha P \) for discounted problems, \(A = P \) for average cost problems
Approximate Policy Evaluation

- Approximation within subspace \(S = \{ \Phi r \mid r \in \mathbb{R}^s \} \)
 \[
x \approx \Phi r, \quad \Phi \text{ is a matrix with basis functions as columns}
\]

- Projected Bellman equation:
 \[
 \Phi r = \Pi(A\Phi r + b)
 \]

- Error bound, assuming \(\Pi A \) is contraction with modulus \(\alpha \in (0, 1) \)
 \[
 \| x^* - \Phi r^* \| \leq \frac{1}{1 - \alpha} \| x^* - \Pi x^* \|
 \]

- Long history, starting with TD(\(\lambda \)) (Sutton, 1988)
- Least squares methods are currently more popular
Least Squares Policy Evaluation (LSTD)

- Dates to 1996 (Bradtke and Barto), with λ-extension by Boyan (2002)
- Idea: Solve a simulation-based approximation of the projected equation
 - The projected Bellman equation is written as $Cr = d$
 - LSTD solves $\hat{C}r = \hat{d}$, where $\hat{C} \approx C$, $\hat{d} \approx d$ are obtained using simulation
- Does not need the contraction property of DP problems
- Multistep version: LSTD(λ) which is LSTD applied to the mapping

$$T^{(\lambda)}(x) = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k T^{k+1}(x) = A^{(\lambda)} x + b^{(\lambda)},$$

where

$$A^{(\lambda)} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k A^{k+1}, \quad b^{(\lambda)} = \sum_{k=0}^{\infty} \lambda^k A^k b$$
Projected Value Iteration (PVI)

- Value Iteration => Projection => Value Iteration => Projection

\[\Phi r_{t+1} = \Pi T(\Phi r_t) \]

- \(\Pi T \) must be a contraction - \(T \) being a contraction is not enough
- Norm matching is essential: a (Euclidean) projection norm for which \(T \) is a contraction
- There is a magical norm: the steady-state distribution norm (states are weighted by the steady-state distribution of the Markov chain)
Least Squares Policy Evaluation (LSPE)

- A simulation-based approximation to PVI
- Dates to 1996 (Bertsekas and Ioffe); also in the Bertsekas and Tsitsiklis (1996) book - used in a tetris application

$$\text{LSPE: } \Phi r_{t+1} = \Pi T(\Phi r_t) + \epsilon_t, \quad \epsilon_t \text{ is simulation noise with } \epsilon_t \rightarrow 0$$

- Incremental like TD(\(\lambda\)) - no stepsize unlike TD(\(\lambda\))
- Same complexity/same solution as LSTD
- Asymptotically “identical” to LSTD, but differs in early stages
- Allows for a favorable initial guess \(r_0\); may be an advantage in optimistic/few samples approximate policy iteration
Advantages of Projected Equation Methods in DP

- All operations are done in low-dimension
- The high-dimensional vector x need not be stored
- The projection norm is implemented in simulation - need not be known a priori
- There is a projection norm (the distribution norm) that induces contraction of ΠA and a priori error bounds
A does not have a transition probability structure

No Markov chain, no contraction guarantee

We may introduce an artificial Markov chain for sampling/projection

With clever choice of the chain, ΠA may be a contraction

Computable error bounds are available

All operations are done in low-dimension

The high-dimensional vector x need not be stored

Methods:

- LSTD analog (does not require ΠA to be a contraction)
- LSPE analog (requires ΠA to be a contraction)
- TD(λ) analog (requires ΠA to be a contraction)
Projected Equation Approximation Method (LSTD-like)

- Let \(\Pi \) be projection with respect to
 \[
 \|x\|_\xi = \sqrt{\sum_{i=1}^{n} \xi_i x_i^2},
 \]
 where \(\xi \in \mathbb{R}^n \) is a probability distribution with positive components.

- Explicit form of projected equation \(\Phi r = \Pi(A\Phi r + b) \)
 \[
 r = \arg \min_{r \in \mathbb{R}^s} \sum_{i=1}^{n} \xi_i \left(\phi(i)' r - \sum_{j=1}^{n} a_{ij} \phi(j)' r - b_i \right)^2
 \]
 where \(\phi(i)' \) denotes the \(i \)th row of the matrix \(\Phi \).

- Optimality condition/equivalent form:
 \[
 \sum_{i=1}^{n} \xi_i \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)' r^* = \sum_{i=1}^{n} \xi_i \phi(i) b_i
 \]
 Expected value

- The two expected values are approximated by simulation.
Row sampling: Generate sequence \(\{i_0, i_1, \ldots \} \) according to \(\xi \), i.e., relative frequency of each row \(i \) is \(\xi_i \)

Column sampling: Generate sequence \(\{(i_0, j_0), (i_1, j_1), \ldots \} \) according to some transition probability matrix \(P \) with

\[
p_{ij} > 0 \quad \text{if} \quad a_{ij} \neq 0,
\]

i.e., for each \(i \), the relative frequency of \((i, j) \) is \(p_{ij} \)

Row sampling may be done using a Markov chain with transition matrix \(Q \) (unrelated to \(P \))

Row sampling may also be done without a Markov chain - just sample rows according to some known distribution \(\xi \) (e.g., a uniform)
Row and Column Sampling

Row Sampling According to ξ
(May Use Markov Chain Q)

- Row sampling \sim State Sequence Generation in DP. Affects:
 - The projection norm
 - Whether ΠA is a contraction

- Column sampling \sim Transition Sequence Generation in DP. Can be totally unrelated to row sampling. Affects:
 - The sampling/simulation noise
 - Matching P with $|A|$ has an effect like in importance sampling
LSTD-Like Method

- Optimality condition/equivalent form of projected equation

\[
\sum_{i=1}^{n} \xi_i \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)' r^* = \sum_{i=1}^{n} \xi_i \phi(i) b_i
\]

The two expected values are approximated by row and column sampling (batch 0 → t)

- At time t, we solve the linear equation

\[
\sum_{k=0}^{t} \phi(i_k) \left(\phi(i_k) - \frac{a_{i_k j_k}}{p_{i_k j_k}} \phi(j_k) \right)' r_t = \sum_{k=0}^{t} \phi(i_k) b_{i_k}
\]

- Then \(r_t \rightarrow r^* \)
LSPE-Type Method

Consider PVI

\[\Phi r_{t+1} = \Pi (A\Phi r_t + b), \quad t = 0, 1, \ldots \]

Expressing the projection as a least squares minimization, we have

\[r_{t+1} = \arg \min_{r \in \mathbb{R}^s} \| \Phi r - (A\Phi r_t + b) \|_\xi^2, \]

or equivalently

\[r_{t+1} = \left(\sum_{i=1}^{n} \xi_i \phi(i) \phi(i)' \right)^{-1} \sum_{i=1}^{n} \xi_i \phi(i) \left(\sum_{j=1}^{n} a_{ij} \phi(j)' r_t + b_i \right) \]

Approximate the two expected values by row and column sampling

\[r_{t+1} = \left(\sum_{k=0}^{t} \phi(i_k) \phi(i_k)' \right)^{-1} \sum_{k=0}^{t} \phi(i_k) \left(\frac{a_{ij} \phi(j)'}{p_{ikj}} r_t + b_{ik} \right) \]

If \(\Pi A \) is a contraction with respect to some norm, \(r_t \rightarrow r^* \)
Row Sampling for Contraction I

Must have Row Sums of $|A| \leq 1$ to have hope of contraction of ΠA

Proposition: Let ξ be the invariant distribution of an irreducible Q such that

$$|A| \leq Q$$

Then T and ΠT are contraction mappings under any one of the following three conditions:

1. For some scalar $\alpha \in (0, 1)$, we have $|A| \leq \alpha Q$.
2. There exists an index \bar{i} such that $|a_{ij}| < q_{ij}$ for all $j = 1, \ldots, n$.
3. There exists an index \bar{i} such that $\sum_{j=1}^{n} |a_{ij}| < 1$.

Note 1: Under conditions (1) and (2), T and ΠT are contraction mappings with respect to the specific norm $\| \cdot \|_{\xi}$

Note 2: Applies to DP discounted and stochastic shortest path problems
Must have Row Sums of $|A| \leq 1$

Proposition: Let ξ be the invariant distribution of a Q with no transient states. Assume

$|A| \leq Q$

and that $I - \Pi A$ is invertible. Then the mapping ΠT_γ, where

$$T_\gamma = (1 - \gamma)I + \gamma T,$$

is a contraction with respect to $\| \cdot \|_\xi$ for all $\gamma \in (0, 1)$.

Note 1: ΠT_γ and ΠT have the same fixed points

Note 2: ΠT need not be a contraction

Note 3: Applies to average cost problems (Yu and Bertsekas 2006)
Here $A = \alpha P$, where P corresponds to the policy evaluated and α is the discount factor.

If we take $Q = P$ for row sampling, then ΠA is a contraction.

We may also use Markov chain $Q \neq P$ for row sampling, to change ξ and induce exploration; for example use

Policy R (off policy) prob. β, Policy P (on policy) prob. $1 - \beta$

The LSTD-type algorithm always applies (it does not require that ΠA be a contraction).

If ΠA can be shown to be a contraction, the LSPE(λ)- and TD(λ)-type algorithms apply. In particular, we get convergence with no bias if:

1. For all $\lambda \in [0, 1)$ if $\beta \leq 1 - \alpha^2$
2. For all $\beta \in [0, 1)$ if λ is sufficiently large
Consider the solution of the system

\[Cx = d, \]

where \(d \in \mathbb{R}^n \) and \(C \) is an \(n \times n \) matrix such that

\[c_{ii} \neq 0, \quad \sum_{j \neq i} |c_{ij}| \leq |c_{ii}|, \quad i = 1, \ldots, n \]

Convert to the system \(x = Ax + b \), where \(b_i = \frac{d_i}{c_{ii}} \) and

\[a_{ij} = \begin{cases}
0 & \text{if } i = j \\
-\frac{c_{ij}}{c_{ii}} & \text{if } i \neq j
\end{cases} \]

We have

\[\sum_{j=1}^{n} |a_{ij}| = \sum_{j \neq i} \frac{|c_{ij}|}{|c_{ii}|} \leq 1, \quad i = 1, \ldots, n, \]

so row sums of \(|A| \leq 1 \)

Under the earlier conditions, \(\Pi A \) is a contraction.
Automatic Generation of Powers of A as Basis Functions

- Use Φ whose ith row is
 $$\phi(i)' = (g(i) (Ag)(i) \cdots (A^s g)(i))$$
 where g is some vector
- **Example in the MDP case:** Use as features finite horizon costs
- A justification if A is a contraction and $g = b$: the fixed point of T has an expansion of the form
 $$x^* = \sum_{k=0}^{\infty} A^k b$$
 While $(A^k g)(i)$ is hard to generate, it can be approximated by sampling (in effect we use noisy features)
Multistep Versions (Fixed Step and λ-Methods)

- Replace T by a multistep mapping with the same fixed points, e.g., T^k where k is fixed, or

$$T^{(\lambda)} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k T^{k+1}, \quad A^{(\lambda)} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k A^{k+1},$$

where $\lambda \in (0, 1)$ is such that the infinite series converges

- Motivation for λ-methods, assuming that

spectral radius of $A \equiv \sigma(A) \leq 1$

- Proposition: If $I - A$ is invertible and $\sigma(A) \leq 1$, then

$$\sigma(A^{(\lambda)}) < 1, \quad \forall \lambda \in (0, 1), \quad \lim_{\lambda \to 1} \sigma(A^{(\lambda)}) = 0$$

- As λ increases the contraction becomes stronger

- We must have $\lambda < 1 / \sigma(A)$ for a λ-method to apply. There are no restrictions for a k-step method
When the LSTD/LSPE-type methods given earlier are applied to

$$\Phi r = \Pi T^{(\lambda)}(\Phi r)$$

they yield generalizations to LSTD(\(\lambda\)) and LSPE(\(\lambda\))

- The formulas involve temporal differences, based on the expansion

$$T^{(\lambda)}(x) = x + \sum_{m=0}^{\infty} \lambda^m (A^m b + A^{m+1} x - A^m x)$$

- The entire analysis of TD(\(\lambda\)), LSTD(\(\lambda\)), and LSPE(\(\lambda\)) for DP generalizes subject to the following restrictions:
 - Eigenvalues of \(\lambda A\) must be within the unit circle for LSTD analogs
 - Additional contraction assumptions for LSPE(\(\lambda\)) and TD(\(\lambda\)) [i.e., \(\Pi A^{(\lambda)}\) is a contraction]
Forms of λ-Methods I

- Row and column sampling are done using the same Markov chain P. Define $w_{k,0} = 1$ and for $m \geq 1$

 $$w_{k,m} = \frac{a_{i_k i_{k+1}}}{p_{i_k i_{k+1}}} \frac{a_{i_{k+1} i_{k+2}}}{p_{i_{k+1} i_{k+2}}} \cdots \frac{a_{i_{k+m-1} i_{k+m}}}{p_{i_{k+m-1} i_{k+m}}}$$

- Example: Discounted DP

 $$w_{k,m} = \alpha^m, \quad \forall \ k$$

- LSPE-type method

 $$r_{t+1} = r_t + \left(\sum_{k=0}^{t} \phi(i_k) \phi(i_k)' \right)^{-1} \sum_{k=0}^{t} \phi(i_k) \sum_{m=k}^{t} \lambda^{m-k} w_{k,m-k} d_t(i_m),$$

 where $d_t(i_m)$ are the temporal differences

 $$d_t(i_m) = b_{i_m} + w_{m,1} \phi(i_{m+1})' r_t - \phi(i_m)' r_t, \quad t \geq 0, \ m \geq 0$$
Recursive/efficient update for LSPE-type method

\[r_{t+1} = r_t + B_t^{-1} (C_t r_t + h_t) \]

where

\[B_t = B_{t-1} + \phi(i_t)\phi(i_t)', \quad C_t = C_{t-1} + z_t (w_{t,1} \phi(i_{t+1}) - \phi(i_t))', \]

\[h_t = h_{t-1} + z_t b_i, \quad z_t = \lambda w_{t-1,1} z_{t-1} + \phi(i_t). \]

- LSTD(λ)-type method is just

\[r_t = C_t^{-1} h_t \]

- TD(λ)-type method is

\[r_{t+1} = r_t + \gamma_t z_t d_t(i_t) \]

where γ_t is the stepsize.
Proposition: Assume that P is irreducible, and that λ satisfies

$$
\lambda \max_{i,j} |a_{ij}|/p_{ij} < 1, \quad \lambda \in [0, 1).
$$

Let r_t be generated by the LSTD(λ)-type algorithm. Then,

$$
r_t \rightarrow r_\lambda^* \quad \text{with probability 1}
$$

The same is true for the LSPE(λ)-type algorithm [assuming also that $\sigma(A^{(\lambda)}) \leq 1$]

- Here r_λ^* is the solution of the projected equation

$$
\Phi r = \Pi T^{(\lambda)}(\Phi r)
$$

- Similar result for TD(λ)-type extension, under suitable (stochastic approximation-type) conditions for the stepsize
Consider the system

\[x = T(x) = Af(x) + b, \]

where \(f : \mathbb{R}^n \mapsto \mathbb{R}^n \) is a mapping with scalar function components of the form \(f(x) = (f_1(x_1), \ldots, f_n(x_n)) \).

Assume that each of the mappings \(f_i : \mathbb{R} \mapsto \mathbb{R} \) is nonexpansive:

\[|f_i(x_i) - f_i(\bar{x}_i)| \leq |x_i - \bar{x}_i|, \quad \forall \ i = 1, \ldots, n, \ x_i, \bar{x}_i \in \mathbb{R}. \]

Then if \(A \) is a contraction with respect to a weighted Euclidean norm, \(T \) is also a contraction.

This structure implies favorable choices of a Markov chain for simulation.
Let $T(x) = \alpha Pf(x) + b$, where P is irreducible transition probability with invariant distribution ξ, $\alpha \in (0, 1)$ is a scalar discount factor, and f has components

$$f_i(x_i) = \min\{c_i, x_i\}, \quad i = 1, \ldots, n,$$

where c_i are some scalars.

Then $x = T(x)$ is the Q-factor equation corresponding to a discounted optimal stopping problem.

In this case, ΠA is a contraction with respect to $\| \cdot \|_\xi$ [Tsitsiklis and Van Roy (1999), who gave a Q-learning algorithm with linear function approximation]

The LSPE algorithm has been generalized to this problem (Yu and Bertsekas 2007; also the 3rd Edition of my DP text 2007)

There is no “good” LSTD-type algorithm for this problem (the fixed point equation to be approximated is nonlinear)
Consider solving the problem

$$\min_{r \in \mathbb{R}^s} \| A\Phi r - b \|_\xi^2$$

to approximate the weighted least squares solution of $Ax = b$.

Here $A : m \times n$ matrix, ξ is a known probability distribution vector, $b \in \mathbb{R}^m$, and Φ is an $n \times s$ matrix of basis functions.

The solution is

$$r^* = (\Phi' A' \Xi A\Phi)^{-1} \Phi' A' \Xi b,$$

where Ξ is the diagonal $m \times m$ matrix having ξ along the diagonal

To approximate the solution, we replace $\Phi' A' \Xi A\Phi$ and $\Phi' A' \Xi b$ with simulation-based estimates.
Issues in Regression/Bellman Error Methods

- Need to sample two columns for each row – more noise
- Variance reduction – a form of importance sampling may be essential
- Dealing with (near) singular $\Phi' A' \Xi A \Phi$
 - Add a small multiple of the identity to $\Phi' A' \Xi A \Phi$ (like a prior in a regression setting), i.e., approximate by simulation
 \[r^* = (\Phi' A' \Xi A \Phi + \gamma I)^{-1} \Phi' A' \Xi b \]
 where γ is small positive parameter
 - Use a proximal method:
 \[r_{t+1} = (\Phi' A' \Xi A \Phi + \gamma_t I)^{-1} (\Phi' A' \Xi b + \gamma_t r_t), \]
 where γ_t is a positive parameter. This converges to the correct solution $$(\Phi' A' \Xi A \Phi)^{-1} \Phi' A' \Xi b$$
- Applications in inverse problems and other areas (huge dimension - e.g., $n = 10^9$, A: fully dense)
Concluding Remarks

- TD methods can be naturally extended to solve linear systems of equations.
- In doing so, perspective and new methods are obtained for approximate DP.
- The overall approach is very simple:
 - Start with a deterministic algorithm
 - Write it in terms of expected values
 - Approximate the expected values by simulation
- The approach applies to many linear algebra-type problems - beyond those discussed here (e.g., computing the dominant eigenvalue of a matrix, approximating the invariant distribution of a Markov chain).
- There is considerable literature and theoretical work on Monte Carlo linear algebra methods (starting with von Neumann).
- The new element here is linear function approximation and the connection with TD methods.
- Exciting prospect: Application to linear algebra problems of huge dimension, far beyond the DP context.