Temporal Difference Methods and Approximate Monte Carlo Linear Algebra

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

RL Workshop, Lille 2008

Focus

• Approximate solution of linear equations x = T(x), where

$$T(x) = Ax + b,$$
 A is $n \times n, b \in \Re^n$

by solving the projected equation

$$y = \Pi T(y)$$

 Π is projection on a subspace of basis functions (with respect to some norm)

- This is the Galerkin approximation approach, but simulation plays a central and non-traditional role. We consider very large n.
- Starting point: Approximate DP/Bellman's equation/policy evaluation

A: encodes the Markov chain structure, b: cost vector

Then $y = \Pi T(y)$ is the equation solved by TD methods $[TD(\lambda), LSTD(\lambda), LSPE(\lambda)]$

• We generalize to the case where A is arbitrary, subject only to

 $I - \Pi A$: invertible

(joint work with H. Yu - papers available from our web sites)

Benefits and Challenges of Generalization

 A higher perspective for TD methods in approximate DP Motivates improvements in various areas:

> Exploration issues Automatic generation of features Error bounds Simplified convergence analysis

- An extension to a vast new area of applications
 There are many linear systems of huge dimension in practice
- Dealing with less structure

Lack of contraction Absence of a Markov chain Ill-conditioning

Outline

- Projected Equation Approximation
 - The Approximate DP Context
 - The General Projected Equation Context
- General LSTD and LSPE-Type Algorithms
 - Forms of the Algorithms
 - Choice of Markov Chain for a Contraction
 - Automatic Generation of Features
 - Multistep Versions λ-Methods
- Extensions
 - Nonlinear Extensions
 - Least Squares/Bellman Error-Type Methods

DP Context/Policy Evaluation

- Markovian Decision Problems (MDP)
- n states, transition probabilities depending on control
- Policy iteration method; we focus on single policy evaluation
- Bellman's equation:

$$x = Ax + b$$

where

- b: cost vector
- A has transition structure, e.g., A = αP for discounted problems, A = P for average cost problems

Approximate Policy Evaluation

- Approximation within subspace $S = \{ \Phi r \mid r \in \Re^s \}$
 - $x \approx \Phi r$, Φ is a matrix with basis functions as columns
- Projected Bellman equation:

$$\Phi r = \Pi(A\Phi r + b)$$

• Error bound, assuming ΠA is contraction with modulus $\alpha \in (0, 1)$

$$||x^* - \Phi r^*|| \le \frac{1}{1 - \alpha} ||x^* - \Pi x^*||$$

- Long history, starting with $TD(\lambda)$ (Sutton, 1988)
- Least squares methods are currently more popular

Least Squares Policy Evaluation (LSTD)

- Dates to 1996 (Bradtke and Barto), with λ -extension by Boyan (2002)
- Idea: Solve a simulation-based approximation of the projected equation
 - The projected Bellman equation is written as Cr = d
 - LSTD solves $\hat{C}r = \hat{d}$, where

$$\hat{C} \approx C$$
, $\hat{d} \approx d$

are obtained using simulation

- Does not need the contraction property of DP problems
- Multistep version: LSTD(λ) which is LSTD applied to the mapping

$$T^{(\lambda)}(x) = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k T^{k+1}(x) = A^{(\lambda)} x + b^{(\lambda)},$$

where

$$A^{(\lambda)} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k A^{k+1}, \qquad b^{(\lambda)} = \sum_{k=0}^{\infty} \lambda^k A^k b$$

Projected Value Iteration (PVI)

Value Iteration => Projection => Value Iteration => Projection

$$\Phi r_{t+1} = \Pi T(\Phi r_t)$$

- ΠT must be a contraction T being a contraction is not enough
- Norm matching is essential: a (Euclidean) projection norm for which T is a contraction
- There is a magical norm: the steady-state distribution norm (states are weighted by the steady-state distribution of the Markov chain)

Least Squares Policy Evaluation (LSPE)

- A simulation-based approximation to PVI
- Dates to 1996 (Bertsekas and Ioffe); also in the Bertsekas and Tsitsiklis (1996) book - used in a tetris application

LSPE:
$$\Phi r_{t+1} = \underbrace{\Pi T(\Phi r_t)}_{\text{PVI}} + \epsilon_t$$
, ϵ_t is simulation noise with $\epsilon_t \to 0$

- Incremental like $TD(\lambda)$ no stepsize unlike $TD(\lambda)$
- Same complexity/same solution as LSTD
- Asymptotically "identical" to LSTD, but differs in early stages
- Allows for a favorable initial guess r₀; may be an advantage in optimistic/few samples approximate policy iteration

Advantages of Projected Equation Methods in DP

- All operations are done in low-dimension
- The high-dimensional vector x need not be stored
- The projection norm is implemented in simulation need not be known a priori
- There is a projection norm (the distribution norm) that induces contraction of ΠA and a priori error bounds

General/NonDP Projected Equation Methods

- A does not have a transition probability structure
- No Markov chain, no contraction guarantee
- We may introduce an artificial Markov chain for sampling/projection
- With clever choice of the chain, ΠA may be a contraction
- Computable error bounds are available
- All operations are done in low-dimension
- The high-dimensional vector x need not be stored
- Methods:
 - LSTD analog (does not require ΠA to be a contraction)
 - LSPE analog (requires ΠA to be a contraction)
 - TD(λ) analog (requires ΠA to be a contraction)

Projected Equation Approximation Method (LSTD-like)

Let Π be projection with respect to

$$||x||_{\xi} = \sqrt{\sum_{i=1}^{n} \xi_i x_i^2},$$

where $\xi \in \Re^n$ is a probability distribution with positive components

• Explicit form of projected equation $\Phi r = \Pi(A\Phi r + b)$

$$r = \underset{r \in \mathbb{R}^s}{\operatorname{arg\,min}} \sum_{i=1}^n \xi_i \left(\phi(i)'r - \sum_{j=1}^n a_{ij} \phi(j)'r - b_i \right)^2$$

where $\phi(i)'$ denotes the *i*th row of the matrix Φ

Optimality condition/equivalent form:

$$\underbrace{\sum_{i=1}^{n} \xi_{i} \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)'}_{\text{Expected value}} r^{*} = \underbrace{\sum_{i=1}^{n} \xi_{i} \phi(i) b_{i}}_{\text{Expected value}}$$

• The two expected values are approximated by simulation

Simulation Mechanism

- Row sampling: Generate sequence $\{i_0, i_1, ...\}$ according to ξ , i.e., relative frequency of each row i is ξ_i
- Column sampling: Generate sequence $\{(i_0, j_0), (i_1, j_1), \dots\}$ according to some transition probability matrix P with

$$p_{ij} > 0$$
 if $a_{ij} \neq 0$,

i.e., for each i, the relative frequency of (i, j) is p_{ij}

- Row sampling may be done using a Markov chain with transition matrix Q (unrelated to P)
- Row sampling may also be done without a Markov chain just sample rows according to some known distribution ξ (e.g., a uniform)

Row and Column Sampling

Row Sampling According to ξ (May Use Markov Chain Q)

- Row sampling ~ State Sequence Generation in DP. Affects:
 - The projection norm
 - Whether ΠA is a contraction
- Column sampling ~ Transition Sequence Generation in DP. Can be totally unrelated to row sampling. Affects:
 - The sampling/simulation noise
 - Matching P with |A| has an effect like in importance sampling

LSTD-Like Method

Optimality condition/equivalent form of projected equation

$$\underbrace{\sum_{i=1}^{n} \xi_{i} \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)'}_{\text{Expected value}} r^{*} = \underbrace{\sum_{i=1}^{n} \xi_{i} \phi(i) b_{i}}_{\text{Expected value}}$$

- The two expected values are approximated by row and column sampling (batch $0 \rightarrow t$)
- At time t, we solve the linear equation

$$\sum_{k=0}^{t} \phi(i_{k}) \left(\phi(i_{k}) - \frac{a_{i_{k}j_{k}}}{p_{i_{k}j_{k}}} \phi(j_{k}) \right)' r_{t} = \sum_{k=0}^{t} \phi(i_{k}) b_{i_{k}}$$

• Then $r_t \rightarrow r^*$

LSPE-Type Method

Consider PVI

$$\Phi r_{t+1} = \Pi(A\Phi r_t + b), \qquad t = 0, 1, \dots$$

Expressing the projection as a least squares minimization, we have

$$r_{t+1} = \underset{r \in \Re^s}{\operatorname{arg\,min}} \ \left\| \Phi r - (A \Phi r_t + b) \right\|_{\xi}^2,$$

or equivalently

$$r_{t+1} = \underbrace{\left(\sum_{i=1}^{n} \xi_{i} \phi(i)\phi(i)'\right)^{-1}}_{\text{Expected value}} \underbrace{\sum_{i=1}^{n} \xi_{i} \phi(i) \left(\sum_{j=1}^{n} a_{ij}\phi(j)'r_{t} + b_{i}\right)}_{\text{Expected value}}$$

Approximate the two expected values by row and column sampling

$$r_{t+1} = \left(\sum_{k=0}^{t} \phi(i_k)\phi(i_k)'\right)^{-1} \sum_{k=0}^{t} \phi(i_k) \left(\frac{a_{i_k j_k}}{p_{i_k j_k}}\phi(j_k)'r_t + b_{i_k}\right)$$

• If ΠA is a contraction with respect to some norm, $r_t \to r^*$

Row Sampling for Contraction I

Must have Row Sums of $|A| \leq 1$ to have hope of contraction of ΠA

Proposition: Let ξ be the invariant distribution of an irreducible Q such that

$$|A| \leq Q$$

Then T and ΠT are contraction mappings under any one of the following three conditions:

- (1) For some scalar $\alpha \in (0, 1)$, we have $|A| \leq \alpha Q$.
- (2) There exists an index \bar{i} such that $|a_{\bar{i}j}| < q_{\bar{i}j}$ for all $j = 1, \ldots, n$.
- (3) There exists an index \bar{i} such that $\sum_{j=1}^{n} |a_{\bar{i}j}| < 1$.

Note 1: Under conditions (1) and (2), T and ΠT are contraction mappings with respect to the specific norm $\|\cdot\|_{\xi}$

Note 2: Applies to DP discounted and stochastic shortest path problems

Row Sampling for Contraction II

Must have Row Sums of $|A| \le 1$

Proposition: Let ξ be the invariant distribution of a Q with no transient states. Assume

$$|A| \leq Q$$

and that $I - \Pi A$ is invertible. Then the mapping ΠT_{γ} , where

$$T_{\gamma} = (1 - \gamma)I + \gamma T,$$

is a contraction with respect to $\|\cdot\|_{\xi}$ for all $\gamma \in (0,1)$.

Note 1: ΠT_{γ} and ΠT have the same fixed points

Note 2: ΠT need not be a contraction

Note 3: Applies to average cost problems (Yu and Bertsekas 2006)

Back to Discounted DP/Exploration

- Here A = αP, where P corresponds to the policy evaluated and α is the discount factor
- If we take Q = P for row sampling, then ΠA is a contraction
- We may also use Markov chain Q ≠ P for row sampling, to change ξ and induce exploration; for example use

```
Policy R (off policy) prob. \beta, Policy P (on policy) prob. 1 - \beta
```

- The LSTD-type algorithm always applies (it does not require that ΠA be a contraction)
- If ΠA can be shown to be a contraction, the LSPE(λ)- and TD(λ)-type algorithms apply. In particular, we get convergence with no bias if:
 - (1) For all $\lambda \in [0, 1)$ if $\beta \leq 1 \alpha^2$
 - (2) For all $\beta \in [0,1)$ if λ is sufficiently large

Application to Diagonally Dominant Systems

Consider the solution of the system

$$Cx = d$$

where $d \in \Re^n$ and C is an $n \times n$ matrix such

$$c_{ii} \neq 0,$$

$$\sum_{j \neq i} |c_{ij}| \leq |c_{ii}|,$$
 $i = 1, \ldots, n$

• Convert to the system x = Ax + b, where $b_i = \frac{d_i}{c_{ii}}$ and

$$a_{ij} = \begin{cases} 0 & \text{if } i = j \\ -\frac{c_{ij}}{c_{ii}} & \text{if } i \neq j \end{cases}$$

We have

$$\sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} \frac{|c_{ij}|}{|c_{ii}|} \le 1, \qquad i = 1, \ldots, n,$$

so row sums of |A| < 1

• Under the earlier conditions, ΠA is a contraction.

Automatic Generation of Powers of A as Basis Functions

Use Φ whose ith row is

$$\phi(i)' = (g(i) (Ag)(i) \cdots (A^s g)(i))$$

where g is some vector

- Example in the MDP case: Use as features finite horizon costs
- A justification if A is a contraction and g = b: the fixed point of T has an expansion of the form

$$x^* = \sum_{k=0}^{\infty} A^k b$$

• While $(A^k g)(i)$ is hard to generate, it can be approximated by sampling (in effect we use noisy features)

Multistep Versions (Fixed Step and λ -Methods)

Replace T by a multistep mapping with the same fixed points, e.g., T^k where k is fixed, or

$$T^{(\lambda)} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k T^{k+1}, \qquad A^{(\lambda)} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k A^{k+1},$$

where $\lambda \in (0, 1)$ is such that the infinite series converges

• Motivation for λ -methods, assuming that

spectral radius of
$$A \equiv \sigma(A) \leq 1$$

• Proposition: If I - A is invertible and $\sigma(A) \leq 1$, then

$$\sigma(A^{(\lambda)}) < 1, \quad \forall \ \lambda \in (0,1), \qquad \lim_{\lambda \to 1} \sigma(A^{(\lambda)}) = 0$$

- As λ increases the contraction becomes stronger
- We must have $\lambda < 1/\sigma(A)$ for a λ -method to apply. There are no restrictions for a k-step method

λ -Methods

When the LSTD/LSPE-type methods given earlier are applied to

$$\Phi r = \Pi T^{(\lambda)}(\Phi r)$$

they yield generalizations to LSTD(λ) and LSPE(λ)

The formulas involve temporal differences, based on the expansion

$$T^{(\lambda)}(x) = x + \sum_{m=0}^{\infty} \lambda^m (A^m b + A^{m+1} x - A^m x)$$

- The entire analysis of $TD(\lambda)$, LSTD(λ), and LSPE(λ) for DP generalizes subject to the following restrictions:
 - ullet Eigenvalues of λA must be within the unit circle for LSTD analogs
 - Additional contraction assumptions for LSPE(λ) and TD(λ) [i.e., $\Pi A^{(\lambda)}$ is a contraction]

Forms of λ -Methods I

• Row and column sampling are done using the same Markov chain P. Define $w_{k,0} = 1$ and for $m \ge 1$

$$W_{k,m} = \frac{a_{i_k i_{k+1}}}{p_{i_k i_{k+1}}} \frac{a_{i_{k+1} i_{k+2}}}{p_{i_{k+1} i_{k+2}}} \cdots \frac{a_{i_{k+m-1} i_{k+m}}}{p_{i_{k+m-1} i_{k+m}}}$$

Example: Discounted DP

$$\mathbf{w}_{\mathbf{k},\mathbf{m}} = \alpha^{\mathbf{m}}, \quad \forall \mathbf{k}$$

LSPE-type method

$$r_{t+1} = r_t + \left(\sum_{k=0}^t \phi(i_k)\phi(i_k)'\right)^{-1} \sum_{k=0}^t \phi(i_k) \sum_{m=k}^t \lambda^{m-k} W_{k,m-k} d_t(i_m),$$

where $d_t(i_m)$ are the temporal differences

$$d_t(i_m) = b_{i_m} + w_{m,1}\phi(i_{m+1})'r_t - \phi(i_m)'r_t, \qquad t \ge 0, \ m \ge 0$$

Forms of λ -Methods II

Recursive/efficient update for LSPE-type method

$$r_{t+1} = r_t + B_t^{-1} (C_t r_t + h_t)$$

where

$$B_t = B_{t-1} + \phi(i_t)\phi(i_t)',$$
 $C_t = C_{t-1} + z_t(w_{t,1}\phi(i_{t+1}) - \phi(i_t))',$
 $h_t = h_{t-1} + z_tb_{i_t},$ $z_t = \lambda w_{t-1,1}z_{t-1} + \phi(i_t).$

• LSTD(λ)-type method is just

$$r_t = C_t^{-1} h_t$$

• $TD(\lambda)$ -type method is

$$r_{t+1} = r_t + \gamma_t z_t d_t(i_t)$$

where γ_t is the stepsize

Convergence Result

Proposition: Assume that P is irreducible, and that λ satisfies

$$\lambda \max_{i,j} |a_{ij}|/p_{ij} < 1, \qquad \lambda \in [0,1).$$

Let r_t be generated by the LSTD(λ)-type algorithm. Then,

$$r_t \rightarrow r_{\lambda}^*$$
 with probability 1

The same is true for the LSPE(λ)-type algorithm [assuming also that $\sigma(A^{(\lambda)}) \leq 1$]

• Here r_{λ}^* is the solution of the projected equation

$$\Phi r = \Pi T^{(\lambda)}(\Phi r)$$

 Similar result for TD(λ)-type extension, under suitable (stochastic approximation-type) conditions for the stepsize

A Nonlinear Equation with Scalar Nonlinearities

Consider the system

$$x = T(x) = Af(x) + b$$

where $f: \Re^n \mapsto \Re^n$ is a mapping with scalar function components of the form $f(x) = (f_1(x_1), \dots, f_n(x_n))$.

• Assume that each of the mappings $f_i : \Re \mapsto \Re$ is nonexpansive:

$$|f_i(x_i)-f_i(\bar{x}_i)|\leq |x_i-\bar{x}_i|, \quad \forall i=1,\ldots,n, x_i,\bar{x}_i\in\Re.$$

Then if *A* is a contraction with respect to a weighted Euclidean norm, *T* is also a contraction

• This structure implies favorable choices of a Markov chain for simulation

Optimal Stopping

• Let $T(x) = \alpha Pf(x) + b$, where P is irreducible transition probability with invariant distribution ξ , $\alpha \in (0,1)$ is a scalar discount factor, and f has components

$$f_i(x_i) = \min\{c_i, x_i\}, \qquad i = 1, \ldots, n,$$

where c_i are some scalars.

- Then x = T(x) is the Q-factor equation corresponding to a discounted optimal stopping problem
- In this case, ΠA is a contraction with respect to $\|\cdot\|_{\xi}$ [Tsitsiklis and Van Roy (1999), who gave a Q-learning algorithm with linear function approximation]
- The LSPE algorithm has been generalized to this problem (Yu and Bertsekas 2007; also the 3rd Edition of my DP text 2007)
- There is no "good" LSTD-type algorithm for this problem (the fixed point equation to be approximated is nonlinear)

Linear Least Squares/Regresion/Bellman Error Methods

Consider solving the problem

$$\min_{r \in \Re^s} \|A\Phi r - b\|_{\xi}^2$$

to approximate the weighted least squares solution of Ax = b.

- Here A: m × n matrix, ξ is a known probability distribution vector, b∈ ℝ^m, and Φ is an n × s matrix of basis functions.
- The solution is

$$r^* = (\Phi' A' \Xi A \Phi)^{-1} \Phi' A' \Xi b,$$

where Ξ is the diagonal $m \times m$ matrix having ξ along the diagonal

• To approximate the solution, we replace $\Phi'A' \equiv A\Phi$ and $\Phi'A' \equiv b$ with simulation-based estimates

Issues in Regresion/Bellman Error Methods

- Need to sample two columns for each row more noise
- Variance reduction a form of importance sampling may be essential
- Dealing with (near) singular Φ'A'ΞAΦ
 - Add a small multiple of the identity to Φ'A' Ξ AΦ (like a prior in a regression setting), i.e., approximate by simulation

$$r^* = (\Phi' A' \Xi A \Phi + \gamma I)^{-1} \Phi' A' \Xi b$$

where γ is small positive parameter

Use a proximal method:

$$r_{t+1} = (\Phi' A' \Xi A \Phi + \gamma_t I)^{-1} (\Phi' A' \Xi b + \gamma_t r_t),$$

where γ_t is a positive parameter. This converges to the correct solution $(\Phi'A' \equiv A\Phi)^{-1}\Phi'A' \equiv b$

 Applications in inverse problems and other areas (huge dimension - e.g., n = 10⁹, A: fully dense)

Concluding Remarks

- TD methods can be naturally extended to solve linear systems of equations
- In doing so, perspective and new methods are obtained for approximate DP
- The overall approach is very simple:
 - Start with a deterministic algorithm
 - Write it in terms of expected values
 - Approximate the expected values by simulation
- The approach applies to many linear algebra-type problems beyond those discussed here (e.g., computing the dominant eigenvalue of a matrix, approximating the invariant distribution of a Markov chain)
- There is considerable literature and theoretical work on Monte Carlo linear algebra methods (starting with von Neumann)
- The new element here is linear function approximation and the connection with TD methods
- Exciting prospect: Application to linear algebra problems of huge dimension, far beyond the DP context