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computing it for any given point in the  state space by  the 
developed algorithm. Moreover, in this case, t,he &ate 
space is not  partitioned  in the usual sense, since t,he whole 
state space  coincides Kith  a part.icular subregion det,er- 
mined as the result of this maximization. 
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Infinite-Time  Reachability of State-Space Regions 
by Using  Feedback Control 

Absfrucf-h this paper we consider some aspects of the problem 
of feedback control of a time-invariant uncertain  system  subject to 
state constraints over an infinite-time interval. The  central question 
that we investigate is  under  what conditions  can the  state of the 
uncertain  system  be forced to stay  in a specified region of the  state 
space  for all times by using feedback control. At  the  same  time we 
study  the behavior of the region of n-step reachability as n tends to 
infinity. It is shown that in general this region  may  exhibit insta- 
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bility as we  pass to the limit, and  that  under a  compactness  as- 
sumption this region  converges to a steady  state. 

A special case involving a linear finite-dimensional system is 
examined in more detail. It is shown that  there exist  ellipsoidal 
regions in state space where  the  state can be co&ed by making 
use of a linear time-invariant  control law, provided that  the  system 
is stabilizable. Such control laws  can  be calculated efficiently through 
the solution of a recursive  matrix equation of the Riccati type. 

T 
I. GENERAL  REXARKS 

HIS PAPER is concerned with  the problem of keeping 
the  state of a discrete-time dynamic  system in a 

specified region of the  state space in  the presence of un- 
cert,ainty over an infinite-time interval  by using feedback 
control. The  system equation  contains  uncertain  param- 
eters  that,  take values in a given set,. The  current  state of 
the system is assumed to be  known and available to the 
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feedback controller. It is assumed that  there  are con- 
straint,s on the value of control that ca.n be applied, and it 
is required that  the  state of the  system  stay in the specified 
region  for all possible values of the uncertain  quantities. 
When  a st.ochastic description of t.he uncerta.in quantities 
is available, a possible formulation of the problem would 
be to  require that  the  stat,e  constraints  are satisfied a.t 
each  time wit.h probability one. However, for the problem 
considered in this paper, a detailed stochastic description 
of the uncertain  quantities is unnecessary. Only the  set of 
all possible values of the  uncertain  quantities is required 
and is assumed given. 

One  possible  way of viewing the problem of this paper 
is wit,hin the framework of regulatipn problems. In such 
problems,  one is concerned  with finding a control law 
that will keep the  state of a  system “close” to some 
reference point or equivalently in  a sufficiently “small” 
region containing that point. In optimal regulation theory, 
an indirect approach is adopted  toward a.chieving the 
regulation objective whereby  one seeks a control law that 
minimizes a cost functional in which deviations from 
the desired reference point are appropriat,ely penalized. 
The problem considered in  this paper  may  be viem-ed as a 
more direct, formulation of the regulation problem myhereby 
a subset of the  state space containing the reference point. is 
specified and  a cont,rol law is sought that will keep t,he 
state  uithin  this subset, for a.11 possible values of t,he 
uncertain  quantities  and for a.11 times. If one  wishes to 
adopt an opt.imal cont.ro1 viewpoint, this is equivalent to 
specifying a cost, functional t.hat  takes  the  value zero 
whenever the  state  and control satisfy  the given con- 
straints for all t,imes and t.akes the  value of, say,  infinity 
whenever some constraint is violated at some time. 
Thus,  in  the problem of this paper, “large” deviations 
from the reference point are equally penalized  wit.h 
“small” deviations, a feat-ure that may  be undesirable in 
some situations. On the ot.her hand,  as mill be seen la.ter, 
the solution of the problem yields not  just  a single control 
law, but  rat,her a collection of control laws that can  keep 
the  &ate within the specified  region. In  some  cases it is 
then possible to select a contzol law  from this collection 
that has  other desirable features  such  as  linearity  and 
st,ability; or, it is possible t.0 select a cont.ro1 law that 
somehow takes int.0 account  the desirabilit,y of keeping t.he 
state  as close as possible to  the reference point,. An example 
of t.his situation is the case of a linear finite-dimensional 
system  examined in the  last section of t.his paper. The 
results of this paper also can be used in several other 
ways  in mat,hematical system  studies.  For  example,.in  a 
stochastic or minimax dynamic opt,imization problem 
over an infinite-time interval, with state  and control 
constraints, the results of the paper  can  be  used for 
clarifying the issues  associat,ed with the  steady-state 
behavior of t.he state-spa.ce region of feasibility, i.e., the 
set of initial  states  starting from which there exist.s a 
cont,rol law resulting in satisfaction of all  the  st,ate  and 
control constraints [13]. Anot.her area where the results 
of this paper  can  be useful is the  area of pursuit-evasion 

games  by using a similar formulation as t,he  one described 

The problem of this paper has been  considered earlier in 
[I],  [2], [5], [9], [lo] for some special cases under the 
assumpt,ion that  the control time  interval is finite and it 
has been called t,he problem of reachability of a  target 
tube.  The purpose of t.his paper is to consider the same 
problem when the control-time interval is infinite and  to 
examine the question of convergence to a stea.dy state of 
various  algorithm given earlier. 

In  Section I1 the problem is formulated and  two dif- 
ferent, notions of infinite-time reacha.bility are int.roduced. 
In  Section I11 we obtain necessary conditions and SI&- 

cient conditions for infinite-time reachability. We dem- 
onstrate  that if reachability can  be accomplished by  a 
time-varying control law it can also be  accomplished  by a 
time-invariant cont.ro1 law. We  also  consider a recursive 
set  algorithm for calculating t,he region of n-step reach- 
ability  and show that  the algorithm  can exhibit instability 
when passing to  the limit. In  Section IV we derive condi- 
tions  under which this recursive set algorit.hm converges 
to  the region of infinit,e-t.ime reacha,bility. This is ac- 
complished by introducing t,opological st,ructure on the 
spaces of definition of the  system  and  by assuming com- 
pactness of  some sets  related  to  the algorithm. Some 
important special cases for which the compact,ness as- 
sumption is satisfied are also discussed. The  results 
presented in Sections I11 and  IV  are applicable to a. very 
general class of systems for which t,he  state  space need 
not  be  a linear vector space. It. was chosen to  formulate 
the problem in a more general sett,ing, since no  less effort is 
required and no further results can be obta.ined when the 
class of systems  under consideration is narrowed. On the 
other  hand,  the reader will  lose little insight into  the 
struct,ure of the solut,ion by considering the system t.0 be 
defined  over a  Euclidean space. In  Section TT we consider 
in more det,ail the important, special case of a h e a r  
finitedimensional  system  driven  by  an  input  disturbance 
under  the assumption tha.t  the admissible sets for the 
control and the dist,urbances are ellipsoids. For this ca.se 
it is shown t,hat  there exist, ellipsoidal regions in  the  state 
space in which the  state can be  confined by  making  use of a 
suitable control law provided the  system is shbilizable. 
Furthermore,  it is shom-n that there exists a linear t.ime- 
invariant control law that can achieve reachability and, in 
addition, can  make the closed-loop system  asymptotically 
stable.  This cont.ro1  law can  be obt.ained from t,he solution 
of a recursive matrix  Riccati equation, which can be 
efficiently calculated in a digit.al comput.er. 

in 121. 

11. PROBLEM FORMULATION 
It is assumed that we are given a time-invariant discrete- 

time dynamic  system 

where x& and ua denote for all k the stat.e  and control of 
the system and wk denotes some uncerta,in parameter, 
which shall be referred to  as  the “disturbance.” The 
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quantities xr, uk, and w, are elements of spaces S,,  S,, S,, 
respectively, and  the function f :  S, X S ,  X S, + S,  
is given. It is assumed that t,he  control uk is  constrained to 
t.ake  values from a  subset U(xk)  of S, which may  depend 
on the current  state xp. It is also assumed that  the dis- 
turbance w k  can  t.ake  values  from  a  subset w(zk,uk) of S,, 
which may  again  depend b0t.h on the current.  st.ate xk 
and  the applied control uk. The  set W(xk,uk) does not 
depend, however,  on  previous values wi, i < k, of the 
disturbance. Thus we have 

ut E V(xJ c s,, W k  E W(Xk,U,)  c S,. (2) 

Given any nonempty  subset X of S,, the question of 
interest is under  what conditions does there exist a con- 
trol lam- { ~ , p l ,  - * * ] nith 

Pk :x - x u ,  Pk(X) € U ( 4 ,  vz E x, 
k = 0,1, * * . (3) 

and such that  the  state xk of the closed-loop syst,em 

~1;+1 = ~[Z~,/.LR(Z~),W~], k = 0,1, . - -  (4) 

belongs  t.o the  set X for all k and all possible values wk E 
w [ x k , P k ( x k )  1 

x, E x, +?lZUl, E w[xk,pk(zk)I, k = 0 , 1 , . . * .  (5) 

We -will consider two different questions of interest 
depending  upon the freedom that we have  in choosing the 
initial  state of the system. Let  us consider the following 
definitions. 

Definition 1: The set. X is  said to  be in j in i tdy  reach.able 
if there exists  a  control law { p o , p l , .  . . ] and some initial 
state zo E X for which relations (3), (4), and ( 5 )  are 
satisfied. 

Definition 2: The  set X is mid to  be strongly  reachable 
if there exists  a  control law {po,pl, .  . . ] such  t>hat, for all 
initial states zo E X the relations (3), (4), and (5) are 
satisfied. 

I t  is evident from Definitions 1 and 2 t.hat,  t,he  require- 
ment of infinit.e reachability is much  weaker than  the 
requirement of strong reachabilit.y, since for the former a e  
require that  the  state remains &hm the set X starting 
from at  least one x0 E X ,  while for the  latter we require 
that this occurs starting from every  initial  state zo E X. 
In t,he  next  section we shall give necessary a.nd sufficient 
conditions for both infinite and strong reachability of a 
set X .  We shall,  furthermore,  demonstrate  that t.he two 
notions are closely related  in  that, a set is infinitely reaeh- 
able if and only if it. contains  a  strongly  reachable set. 

111. NECESSARY AND SUFFICIENT COKDITIONS 
FOR REACHABILITY 

In order to analyze the problem of infinite-time reach- 
ability, which  was described in  the previous section, it is 
helpful to  consider the problem of reachabilit,y of a  subset 
X of t,he  state space S, for one, and more generally, for a 
finite number of stages.  This problem has been  considered 
earlier [l], [ a ] ,  [9], [lo] in a somewhat  less general form. 

Let us assume that at. some time  instant. k the  &ate of 
the  system is x, E X. Then in order to guarantee  t.hat a t  
t,he  next  time  inst,ant (k + 1) the  state xr+l will belong to 
X ,  it is necessary to apply  control u, E C(Z,) for which 

must  have x, E X where the set X is defined by 
Xk+1 = f(zk,uk,wk) E X for all wk E W(xk,uk). Thus, we 

K = {x1 3 u E U(x) s.t. f[x,u,W(u,x)] 
c x] n x. (6) 

I n  (6) the symbol 3 denotes ‘Yhere exists,” t,he  initials 
s.t. &and  for  “such that,” f[x,u,W(u,x)] denot.es t,he set 
{f(x,u,w)Iw E W(u,z)) ,  and  the symbols C, II denot,e 
set inclusion and set. intersection. 

If we define a function R ma.pping subsets of S, into 
subsets of S, by  the  equation 

R ( Z )  = (x1 3 u E U(s )  s.t.f[x,u.,W(u,x)] 
c z) n z (7) 

then from (6) and (7) we have X = R(X) .  It is clear 
from the above discussion and Definition 2 that a.  necessary 
a.nd sufficient condition for strong  reachability of a set X 
is tha.t = R ( X )  = X ,  i.e., tha.t  the  set X is a fixed point 
of the function R. 

Proposition 1: The  set X is stxongly reachable if and 
only if 

R ( X )  = x. (8) 

We proceed  now to investigate conditions for infinite 
reachability.  Given  a  nonempty set, X ,  consider the  set 
R*(X) defined as follows: zo E R * ( X )  iff x. E X and 
there exists a  control law {p0 ,p1 ,  . . } s.t. (3), (4), and (5) 
are satisfied when x0 is taken  as  the  initial  state of t.he 
system. 

By Definition 1 we see that X is infinit.ely reachable if 
and only if R * ( X )  # 8. Furthermore, we have  the following 
proposition. 

Proposition 2: A set. X is infinit.ely reachable if and only 
if it contains  a  strongly  reachable set.  The largest  such 
strongly  reachable  set is R * ( X )  in t.he sense that R * ( X )  
is st,rongly reachable whenever nonempty and if X c X 
is  another  strongly  reachable  set  then X c R”(X) .  

Proof: From Definitions 1 and 2 it is clear that if X 
conta.ins a  strongly  reachable set it, is infinitely reachable. 
Kow let X be infinitely reachable, Z be any point in the 
nonempty  set R * ( X ) ,  and { po,pl, . . . } be  any contxol law 
such t,hat (3), (4), and (5) are satisfied when T is taken as 
t,he  initial  state of the system. I n  order to prove  t.hat R * ( X )  
is  strongly  reachable  by  Proposition 1 it. will be sufficient 
to prove that 

f[Z,po(~),W[T,po(z)]] c R*(X) .  

Indeed, if t,here existed some 2 E f [ e , p ~ ( z ) , w [ Z , p o ( Z ) ] ]  
such that 2 @ R * ( X ) ,  then  by  the definition of R * ( X )  
the  state Z,+I of t.he closed-loop syst.em 

xk+:+1 = f[~k,~~:+~(xr),~,t], k = 0,1,. . . 
nith initial  state = T Kill not. belong t.0 X for some k 
and a feasible choice of 2 ~ 0 , 1 ~ 1 ,  . , w k .  This  violates the 



x E R Y X )  (9) Furthermore, t.he equation 
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[ ~ ~ P ( z > I  E n Cn(X) ,  Y X  E R*(X). 
n= 1 

Proof: If &*(X)  = 0, i.e., the  set X is not infinit.ely 
reachable, (17) holds trivially in view of (16). Let q E 
R*(X) and  let p be a stationary control law that achieves 
strong  reachability of R*(X) in accordance  with Corollary 
1. Then  by t,he  definition of the  sets C,(X) and R*(X) 
we have (xo,p(xO)) E C,(X) for all n 2 1. Hence (zo,p(zo)) 
E n ,"=1 C,(X) and x. E P,[ n ,"=1 (?,(X)]. Thus we have 
R*(X) c P,[n,"=l C,(X)] .  In view of (16) the relation 
(17) is proved.  Assume now that P,[ C! ,"= C,(X) ] = 
fl rZl Rn(X)  # 0. Let p be  any  control law such that 
[z,r(z)] E fl,"= C,(z) for all 2 E n,"= R"(X).  Then  by 

c R n ( X )  for all n 2 1 and t.herefore 
(7) for every 2 E n z 1  R"(X) ,  f[.,P(.>,w[~,P(x)ll 

m 

f[.,c((4JW,dx)Il C n R Y X )  C x. 
n=l  

This implies that t,he  set n ,"=1 R"(X) is  strongly re?ch- 
able. In  view of Proposition 2 and (7) the desired equation 

The above proposition shows that,  at least for the case 
where (IS) holds, the region of infinite-time reacha.bility 
R * ( X )  is t.he intersection of the regions of n-step reach- 
ability Rn(X).  In  the next section we  will demonstrate 
that (18) holds in some important special cases by intro- 
ducing a  compactness  assumption.  Furthermore, we will 
show that  the set R*(X) is obtained as a well-defined 
limit of the sequence of sets R"(X) .  

When (18) fails to hold  we have  the following  possi- 
bilities: 

(19) follows. Q.E.D. 

I 0, if 1x1 = 5, 1x1 = 6 
h(z,z) = 

, -1, if z < 0, 1x1 # 5,6. 
1, if z 2 0, 1x1 Z 5,6 

Let U(z)  = [ -2,2] and consider the problem of infinite- 
time reachability of the  set 

X = [-2,2] u {-6,-5,5,6). 

It can  be verified by  straightforward  calculation that for 
n > 1  

R"(X) = {-6,-5,5,6] U [-(1 + 2-n),-1) 

u ( - l a  u (1,(1 + 2-91 

R*(X) = { -6,6), P, [I C , ( X ) ]  = { -6;-5,5,61 
n =  1 

m 

n R Y X )  = { -6,-5,5,6] u (+I), 
n= 1 

proving that (22) is possible. 
If the points -6,6 are dropped from X ,  then 

R*(X) = 0 

m 

n R ~ X )  = { -5,s) u (-1,1), 
n = l  

proving that (20) is possible. 
If the points -5,5 are dropped from X, we have 

' # # " [ ' cn(x)] # ' (22) Finally, if the points -6,-5,5,6 are dropped  from X ,  
proving that (23) is possible. 

n=l n= 1 

B # R*(x) = P, 

In  t,hese cases the region of n-step reachability  exhibits 
inst.ability when passing to  the limit. All four cases are 
possible in general as  the following  example  shows. 

Consider the scalar  deterministic  system 

~ + l  = f ( 4  + g(xct)ux + h If(zJ + g(~ct)u~,~ctl 

we have 

R*(X) = P, [ n=l  ; C n ( X ) ]  = 0 

proving that (21) is possible. 
A final comment  concerns t,he  interpretation of the  sets 
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P,[ n ,"= C,(X)] and n,"= Rn(X)  when (18) fails to hold. 
Assume that we are given a.n arbit,rary  but fixed posit,ive 
integer k. Then  there exists a control law {po,pl,. a )  

depending on k such  t.hat when the  initial st.at,e x0 is any 
point in n ,"= R " ( X )  the  states a , .  . . ,xk are  guaranteed to 
belong t,o the  set X. Thus, f l  ,"=1 &!"(X) can  be charac- 
t,erized as  the region of reachability for a finite but, arbitrary 
number of steps.  The  control law t,hat achieves reach- 
ability for any fixed number of steps k must  satisfy 

[z,Pn(s)l E C,-,(X>, ++x E Rk--"(X), 
n = 0,1, * * -,k - 1 

and can be selected to be  stationary if desired. However, 
its value pn(x)  for z @ P,[ fl ,"=1 C,(X)]  will depend on the 
number of steps k. The  set P,[ n,"= C,(X) 1 is the set of 
points on  which this control law; can  be defined  indepen- 
dently of k .  When (1s) holds the contxol law can  be 
defined on the whole set. n ,"= R " ( X )  independently of k 
and  thus achieves reachabilit.y of X for any  number of 
steps. 

IV. COKVERGEKCE QUESTIOKS 

A question of importmame is  under  what circumstances, 
given the  set X ,  one can  obtain  the  set R * ( X )  as some 
"limit" of t,he sequence of sets { R n ( X ) ] .  An associated 
question  is  under  what  circumstances (IS) is sat.isfied and, 
therefore, we have R * ( X )  = nr= l  R " ( X ) .  The  key  to 
these questions is provided, as one  would expect, by 
c.ompactness conditions. Let  us assume that t.he spaces 
S,  and X, are equipped 1vit.h Hausdorff topologies [3]. 
The product space S, X X, is considered to  be a  Haus- 
dorff topological space equipped 1vit.h the product. topology. 
Then  the a.ssumption of compactness of t,he sets C,(X)  
in the  lat,ter topology has  important implications as  the 
following proposition shows. 

Proposition 4: Assume that  there exists a posit.ive 
integer no such that  the sets C,(X) are nonenlpt,y and 
compact  for  all n 2 n.,,. Then we have  the following. 

a) The  sets n;=, C,(X), &*(X), P,[n,"=,  C,(X)], 

b)  The  set X is infinitely reachable and 
n,"= R" (X) are  nonemptg  and  compact. 

0 z R*(x) = P, n c,(x) = n R ~ x ) .  
[ n I 1  I n:1 

e) Given any open set A e X, such that R * ( X )  c A ,  
there exists a positive  integer N s  uch  t.hat R * ( X )  
c R " ( X )  c A for  all n. 2 N .  

Proof: The fact. that fl r:=l C,(X) is  nonempty  and 
compact follows directly from [3, p. 225, theorem 1.61. 
Since the projection Pz: S, X S ,  - S, is a  continuous 
msp  and  in view of (l5), the relation 

B # P ,  [ ; C, (X)]  = Pr[C,(X)]  = ; R " ( X )  
n =  1 n = l  n =  1 

f0knt-s from the conclusion of [3, p. 252, problem 81. 
This  relation ca.n be proved as follows.  We have  in  general 

0 + P, [ c,(x)] c n pz[cn(x) I, 
m 

n= 1 n= 1 

and hence it is sufficient to prove the reverse inclusion. 
If z E f l  ,"=I P,[C,(X)],  then t,here exists a sequence 
{u.,}, 2 n.0 such t,hat (x,&) E C,(X) ,  nz 2 n.. The 
sequence (x,&) by  t,he conlpact.ness of C,(X) has at 
least one limit point (qu) E C,iX), for all n 2 no. Hence 
( 3 , ~ )  E n r= c,(x), implying &at, z E P, [ n ;= c,(x) I .  
Therefore, the reverse inclusion is proved. Now, by using 
Proposition 4, pa.rts  a)  and  b) a.re proven. The  statement of 
e)  follows again from [3, p. 225, t,heorem 1.61. Q.E.D. 

Proposition 4c) is pa,rticularly  interestzing since it 
states  that,  under  the assumptions of the proposition the 
sequence of sets { R " ( X ) ]  converges in a well-defined 
sense to  the set. R * ( X ) .  

The compactness of the  sets C,(X) ca.n be verified in a 
number of intereshg special cases. An important  special 
case where it can  be  trivially verified is when the  sets X 
and V(z) are finite (as  they will be  in  any digit.a.1 computer 
solution of t,he problem), and the spaces X, and X, are 
equipped with  their discrete topology [3]. In  this topology 
a set. is compact, if and only if it is finite. Then  the  sets 
C,(X) are finite and therefore  compact, and  the sequence 
{ R n ( X ) )  will  converge to R*(X) in a  finite  number of 
steps.  Another special case is when the  system  equation is 
of the form 

Z~+I = f ( z p , ~ J  + ZL~, k = 0,1, * . . (24) 

where S,, X,, S, are Euclidean  spaces of appropriat,e 
dimension  equipped with  the usual  norm topology. I n  
this topology a set, is  compact if and only if it is closed and 
bounded. Consider the ca.se  where the sets U and W are 
independent of s a.nd (x,u), respectively, and assume 
furt.hermore that  the set.s X ,  C are compact  and that  the 
funct,ion f is  continuous. The set, C ( X )  of (11) can be 
written for this case as 

C ( X )  = ((z,u)lz E x,u E I;,f(z,u) E E ]  (25)  

where the set E is given by 

E = { Z ~ Z  + W C X). (26) 

Let us first. show t,hat  the conlpactness of X implies the 
compactmess of E. If z g E ,  there exists a ,tu E W such 
tha.t z = (z + w) @ X. Since X is closed there exists a.n 
open ball B, centered at t,he origin such that (z i- B,) n 
X = 0. This in  turn implies that ( z  + B,) n E = 8, 
i.e., the complement of E is open a.nd therefore E is 
closed. Since  from (26) E is also bounded,  t,he compact- 
ness of E is proven. Kow from (25) the compactness of E,  
X ,  C and t,he  cont,inuitg of f imply the compactness of 
C ( X )  and t,herefore, by (15), the compactness of R ( X ) .  
By using similar reasoning the compactness of C,(X) 
can  be proven for all n. Thus, whenever these  sets  are 
nonempty the conclusions of Proposit,ion 4 hold. When the 
system of (24) is  linear, 

Xk+1 = AXk + Ua + t&, k = 0,1,.. ., 



610 IEEE TR.4NSilCTIONS ON AUTOMATIC CONTBOL, OCMEEB 1972 

the compactness of the  sets C,(X) can be proven X = { X I  3 u E U s.t. Ax + Bu 
similarly whenever the  set X is compact and  the  set U is 
closed. 

case where the system  equation is given by (24) but  the 
spaces S, and S ,  are  instead reflexive Banach spaces 
equipped  with  their weak  topologies [4]. Then  the  product where the  set E is defined as 
space S,  X S, with any of the norms 

+ G W  c X )  fl X .  (31) 

The above special case can be easily generalized to the It can be seen that this condition is equivalent to 
AX c [E + (-B)U] (32) 

E = {z lz  + GW c X). (33) 

l l ( x > u > l l  .= + l l U l l p ) l ' p ,  5 P < J 

ll(~,U)Il = n-lax ~ll~lllllUll1 
js a reflexive Banach  space  with a wea.k  topology  coinciding 
with  the product topology. By  assuming  t.hat the sets X 
and CT are weakly compact  and that  the function f is 
weakly continuous, we can  prove  again that  the assumption 
of Proposit.ion 4 is satisfied. The proof is entirely similar to 
the finite-dimensional  case and is based on the  fact  that, 
in a reflexive Banach  space a set is compact if and only if 
it is bounded  and weakly  closed [4]. 

Conditions (32) and (33) are  stated in terms of sets and 
are, therefore, difKcult to verify. A suEcient condition in 
terms of the matrices K ,  Q, R and A ,  B, G in order that 
the conditions (32) and (33) hold is given by the following 
proposition. Furthermore, when this sufficient condition 
holds, the proposition shows that reachability  can  be 
achieved  by a linear time-inva.riant control law for which 
the resulting closed-loop system is asymptotically  stable. 

Proposition 5: A sufficient condition for the relations 
(32) and (33) to hold and therefore for t.he ellipsoid X = 
{xlz'Kx 5 11 to  be strongly reachable is that 

K = A'(F-' + BR-'B')-'A + $ (34) 
V. THE CASE OF a LINEAR 

FINITE-DIMENSIONAL  SYSTEM for some positive-definite matrix $ and for some 0 < 
< 1 for which the matrix F defined  below is positive 

In t.his section we consider a special case which involves definite 
the linear discret.e-time system 

~ p + l  = Asp + Bup + G w ~ ,  k = 0,1,* * (27) F = [(I - @K-l - - - ' GQ-lG'1-l > 0. (35) B 
where xp E E" (n-dimensional Euclidean space), up E 
E", ' w k  E E', and t.he matxices A ,  B, G have the appropri- 
ate dimensions with the  matrix A assumed invertible.' 

Under  these  circumstances a linear time-invariant control 
law  which achieves reachability is given  by 

We a.ssume that  the control up and  the  disturbance wp p ( ~ )  = - (R + B'FB)-'B'FAz. (36) 
are  restricted  to  take values in  the ellipsoids 

With this control law the resulting closed-loop system is 
u = (UlU'RU 5 11 (28) asymptotically stable. . .  

W = {wIw'Qw 5 11 Proof: G u m e  that (34) and (35) hold, and consider 
(29) the ellipsoid 

where R and Q are positive-definite symmetric matrices of 
appropriate dimensions. 

Our objective in this section is to show that  there exist 
strongly reachable ellipsoidal sets  corresponding to  the 
system (27) and the constraint  sets (28) and (29) provided 
that  the system is stabilizable, i.e., there exists a  matrix L 
such  that.  the  matrix ( A  - BL) is stable (has eigenvalues 
within t,he unit disk of the complex plane). At the same 
time we will be able to show that  there exists a linear 
control law that achieves reachability and makes the 
closed-loop system asymptotically stable; we  will  give 
an efficient algorithm for its  computation. 

In  order for an ellipsoid 

x = {s\x'Kx I I f ,  (30) 

where K is a positive-definite symmet.ric matrix, t.0 be a 
strongly reachable set, we must, have, by Proposition 1 and 

E = {zlz'Fz 5 I f .  (37) 

We shall show that c E. By (33) it is sufficient to prove 
that [E + GW] C X .  The  support function 161 of the  set 
X is given by 

and the support function of I? + GW is given by 

u(plE + G W )  = (q'F-'p)' + (p'GQ-'G'q)*. (39) 

It can be seen from (35) that  the inequality u(q1E + GW) 
5 m(plX) holds for all q E E" implying + G W  c X, 
and  t,hus E c E. 

In order to prove (32) it is therefore sufficient to prove 

AX c [E + (--B)U]. (40) 

The  support function of AX is given by 

The results of this sect,ion can be proven  without the assumption Or, by using (34), 
of invertibility of A at the expense of somewhat more complicated 
derivat.ions. The mat,rix A ,  however, d be invertible  in most. cases, dqlAX) = [q'[(F-' + BR-'B')-' f A'-'$A-'l-'QI' 
including the case where the  system (27) results from sampling of a 
continuous-time system. 5 [q'(F-1 + BR-' B')q]+. (41) 
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The  support function of [E + (- B) U] is  given by proved a.bove is that transients  due to initial  stat.es will 

&]E + ( -B)u)  = (@-1q)+ + (Q’BR-~B’Q)?. (42) vanish  eventually  during the operation of the closed- 
loop system.  More  accurately,  for any E > 0 it can  be 

By comparing (41) and (42) we obtain  guaranteed that after  a sufficient number of steps the 

a(qIAX) < + ( -B)u) ,  for all q E En state of the system mill be confined in  the  set X + EB 
where B is the  unit ball in En; this mill occur for every ini- 

implying (40) and therefore (32) and (33). tial  state in E”. 
In order to show t.hat  the control law (36) achieves A question of import.ance is under  what  conditions  t.here 

reachability, it is sufficient to show that. exist ellipsoids X and corresponding matrices K for which 

~ 2 + 1  = [A - B(R + B‘FB)-’B’FA]xk E E 
whenever xk E X .  By  denoting 

L = (R + B’FB)-lB‘FA, 

it is sufEcient to show that 

X ~ ‘ ( A  - BL)‘F(A - B L ) x ~  5 x ~ ‘ K x ~  5 1. 

This  last  relation is evident  from the following identity: 

the conditions (34) and (35) in Propositmion 5 are satisfied. 
Furthermore, it is necessary to provide  means for the 
comput.ation of such  matrices.  This  computa.tion is 
possible by making  use of t.he  recursive  algorithm 

Kf-1 = A + BR-’B’)--IA’ + # (46) 

which is well known in  Riccati  equation  theory. 

totically  stable,  first  notice that from (35) 
In order  t,o show that  the dosed-loop system  is asymp 

implying 
K < F .  (44) 

Also consider the system 

X~+I = ( A  - B L ) z ~ .  (45) 

Then, by using (43), (44), and (45), we have, for every 
index N > 0, the following: 

xN’KxN + a’(# + L’RL)xR 
X-1 

k = O  
x- 1 

< xN’FxN + xk’($ + L’RL)xk 
k = O  

- - XN-1’ [ ( A  - BL)  ’F(A - BL) + t,b 

+ L‘RLIXN-I + x,’(# + L’RL)x, 
N - 2  

k = O  

....................................... 
< XI’KXl + XO’(# + L’RL)xo 
< x ~ ’ [ ( A  - BL)’F(A - BL) + t,b + L’RL]% 
= Q ‘ K x ~ .  

Thus for every N > 0 we have 
N - 1 

x N ’ K x N  + ~k,’($ + L’RL)x~ < ~ ‘ K x O ,  
k = O  

which implies that  the system (45) is  asymptotically 
stable. Q.E.D. 

An immediate consequence of t,he  asymptotic  stability 

where N denotes the time index where the backwards 
computation starts. This algorithm  has been considered in 
[l], [2] in connection  with  finite-time  reachability  prob- 
lems. The convergence of the algorit.hm t.0 a  steady- 
state solution, which satisfies the conditions (34) and (359, 
has been considered in deta.il in [l]. A closer examination of 
(46) and (47) shows t,hat, the matrices R and 3. must be 
relatively  “small”  or else the algorithm will not converge 
to a  positive-definite  solution. JSow in any  practical 
situation one is  given the mat.rix Q specifying t.he  constraint 
set for the  input disturbance,  and  there is usually  a 
certain degree of freedom in adjusting  t,he  control con- 
straints, i.e., the matrix R,  and of course, the matrix +, 
which plays the role of a design para.meter. In this sense a 
possible design procedure  is to initially select the mat.rices 
R and t,b and,  in case the algorithm does not converge to  a 
solution  satisfying (34) and (35) , to decrease  these  matrices 
by  multiplication  with  scalars less than one and  repeat 
the procedure  until convergence and  sat,isfaction of the 
designer. It is importa,nt., however, to know under  what 
circumstances  there exist matrices R and # such  t.hat the 
algorithm converges to a  steady  state, a.nd furthermore, 
under  what  conditions  such mat.rices can  be  obtained  by 
repeatedly  multiplying  any  initially selected matrices R1 
and $1 by factors of less than one. This is the object 
of the next  proposition which states  that t.he design 
procedure  outlined  above  is successful provided the 
system (27) is stabilizable,  i.e., if there exists a. matrix L 
such that  the matrix ( A  - BL) is st.able. Notice that  the 
system (27) is  stabilimble provided that  the  pair (A,@ is 
controllable (but not conversely) [ll]. This  proposition 
has been proven  earlier [I 1. Unfortuna~tely,  t,he proof is 
quit,e  lengthy  and,  due t.0 space  limitation, it \vi11 not  be 
reproduced  here. 

Proposition 6: Assume that  the system (27) and  t,he 
positivedehite symmet.ric matrix Q are given and that 
the syst,em (27) is stabilizable.  Then given any  positive- 
definite  symmetric ma,trices $1 and R 1  of appropriat,e 
dimension, there exists  a  scalar ’1, 0 < ’1 < 1 such tha.t 
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for every scalar P ,  0 < 0 5 PI, there exist scalars al, bl 
depending on ,8 such that for all matrices J, = ~ $ 1 ,  R = 

bR1 with 0 < a I al, 0 < b I bl, the algorithm of (46)- 
(48) converges to a positive-definite symmetric  matrix K 
satisfying ( 3 4 )  and (35). 

Proposition 6 shows the existence of strongly  reachable 
ellipsoidal sets for the case of the linear  system (27) 
provided that  this system is stabilisable  and the control 
constraint  set is taken sufficiently large. Furthermore, 
such ellipsoidal sets  can be efficiently computed using the 
algorithm of (46)-(48). The same  algorithm provides the 
control law (36), which is  linear  and makes the closed- 
loop system  asymptotically  stable. 

VI. CONCLUSIONS 

I n  this  paper we considered the question of whether the 
state of an  uncertain system  can be  kept within  a specified 
region of the  state space for infinite time  by using feed- 
back control. This question is basic in problems of feed- 
back control of uncertain  systems  subject to  state con- 
straints over an infinite-time interval since it relates to  the 
behavior of the region of feasibility as  the control  interval 
tends to infinity. The notion of strong  reachability of a 
set is of central  importance  in the problem of the paper 
since it was proved that in order to achieve infinite-time 
reachability of the feasible region the  state of the system 
must be  confined within some strongly reachable subset of 
the feasible region. A related  question also examined in 
this paper concerns the limiting  behavior of the region 
of n-step  reachability  as n tends  to infinity,  and  is im- 
portant  in  the analysis of dynamic  programmieg algori- 
thms over an infinite-time  interval. It has received fur- 
ther  attention in [13], where the convergence of a  dynamic 
programming  algorithm  related to a  stochastic  optimal 
control problem similar to  the one in [12] is proved. 

When the  uncertain system is stochastic, the class of 
admissible control laws may  be  further  restricted by 
measurability requirements. The question of reachability 
with  a  control law within such a  restricted class has  not 
been touched upon  in  this paper. It should be expected, 
however, that  the investigation of this  question will 
benefit from the results  presented. As an example, consider 
the case examined in Section IV involving the system 
(24) and  the question of whether  there exists a Borel 
measurable control law p :  X + U that achieves infinite- 
time  reachability of the compact  set X .  By Proposition 3 
this  amounts  t’o asking whether  there exists a Borel 
measurable selector for the multivalued mapping 

which maps the  set R*(X) (assumed nonempty) into  the 
Bet  of all subsets of X,. Now for every closed subset S of 
S,, the  set 

M - ~ s )  = (. E R*(x)(&qx) n X z 01 
= P, [ c,(x) n (R*(x)~s)  

n = l  1 

is compact  by the compactness of n,“= C , ( X ) .  Hence the 
mapping M is Borel measurable according to  the definition 
of [7]. By using a  theorem of Kuratowski  and Rull- 
Nardzewski it follows that there exists a Borel measurable 
selector-control law (see [7, corollary 1.11). Thus for this 
case, whenever there exists a  control law achieving 
infinite-time reachability of the  set X ,  this control law 
can  be  taken  to  be Borel measurable. 

The special case of a  linear finite-dimensional system 
was examined in  the  latter  part of the paper  with emphasis 
on obtaining ellipsoidal sets within which the  state can 
be confined by using feedback control. An efficient al- 
gorithm was given for  calculating such sets  and associated 
linear control laws. Since the formulation of the regulation 
problem in  terms of hard-state  space  constraints is 
attractive  in some cases, the design procedure suggested 
appears to  have potential for some practical applications. 
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Extension of Analytical Design  Techniques 
to MultivaEiable  Feedback  Control  Systems 

Absfrucf-Analytical design  techniques  are developed for multi- 
variable  feedback control systems.  The design includes a saturation 
constraint  and provides for a disturbance at  the  system output and 
additive  noise at the  system  input  The  system  inputs (signal, noise, 
and  disturbance)  are  assumed  to  be  generated by independent, 
stationary,  stochastic processes  that  are  adequately  represented by 
rational power-spectral-densitg matrices. System  elements  are 
represented by rational transfer function matrices  using  the bilateral 
Laplace transform.  The design is applicable to  linear  time-hvariant 
systems. Design formulas  are derived for  the  general  case  where the 
transfer function matrix  representing the fixed elements of the 
system  may  not  be  square. 

The  basic design consists of minimizing a weighted sum of the 
output  mean-square  errors  and the mean-square  values of a selected 
set of saturation signals. A variational  technique is used  in  the 
optimization, and  the technique of spectral factorization is  used  to 
obtain a solution. An example is  presented  to  illustrate  the  design 
procedure. 

T [ll 
IXTRODTSCTION 

HE analytical design techniques of Sewton et al. 
are extended to multivariable feedback control 

systems in t.his paper. The syst.em configurat.ion under 
consideration is shown in Fig. 1. All elements of t.he 
syst,em are assumed to  be linear and t,ime invariant,. 
The  input vect,ors (signal, noise, and dist,urbance) are 
generated  by  st,ationary  stochastic .processes  whose  power 
spectral densit.ies are known. The design includes a 
saturat.ion  const.raint and provides for a  dist,urbance 
input when the feedback network  can be h e d  a priori .  

The analysis  is  carried out, in  the frequency  domain 
using the bilat,eral  Laplace  t>ransform. A variational 
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Fig. 1. Multivariable  system. Wavy underline is italic  boldface 
in  text. 

technique employed  by  Bongiorno [ 2 ]  is used to minimize 
a perfornmnce  index consist,ing of a weight.ed sum of the 
output mean-square errors plus a weighted sum of t.he 
mean-square values of a  set of saturat.ion signa.ls  (i.e., 
a set of signals that might tend  to  saturate in amplitude if 
not  constrained). 

Some aspects of this problem ha.ve been solved in  recent 
years; however,  most attempts  have been hampered by 
the need to perform matrix spect.ra1 factorizations. 
Youla [3] derived conditions under which a  rational mat,rix 
may  be  spectrally  factored,  and  presented a.n algorithm 
for accomplishing the factorization.  Davis 141 present,ed 
an  alt,ernate method of performing t.he fact,orixat,ion, and 
Tuel [5] developed a  numerical solution and a  computer 
program t.0 perform the factorization. 

A number of papers  have been  published that  treat 
relat,ed t,opics. Amara [6] solved t,he  mult.ivariable free- 
configuration Wiener  problem, relying on matrix  spectral 
factorization. Hsieh and Leondes [7] first developed a 
solution for the semi-free-configuration Wiener problem 
in  the form of a. set of simulta.neous algebraic equations, 
thus avoiding the need to perform the  matrix  spectral 
factorization. However,  Hsieh and Leondes did not, prove 
that a. solution t.o their  equations existed and  Davis [4] 
states  that,  their met.hod fails in  the case of a  predictor. 
Bongiorno [2] recently solved t,his same problem  using 


