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computing it for any given point in the state space by the
developed algorithm. Moreover, in this case, the state
space is not partitioned in the usual sense, since the whole
state space coincides with a particular subregion deter-
mined as the result of this maximization.
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Infinite-Time Reachability of State-Space Regions
by Using Feedback Control
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Abstract—In this paper we consider some aspects of the problem
of feedback control of a time-invariant uncertain system subject to
gtate constraints over an infinite-time interval, The central question
that we investigate is under what conditions can the state of the
uncertain system be forced to stay in a specified region of the state
space for all times by using feedback control. At the same time we
study the behavior of the region of n-step reachability as n tends to
infinity. It is shown that in general this region may exhibit insta-
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bility as we pass to the limit, and that under a compactness as-
sumption this region converges to a steady state.

A special case involving a linear finite-dimensional system is
examined in more detail. It is shown that there exist ellipsoidal
regions in state space where the state can be confined by making
use of a linear time-invariant control law, provided that the system
is stabilizable. Such control laws can be calculated efficiently through
the solution of a recursive matrix equation of the Riccati type.

I. GENERAL REMARKS

HIS PAPER is concerned with the problem of keeping

the state of a discrete-time dynamic system in a
specified region of the state space in the presence of un-
certainty over an infinite-time interval by using feedback
control. The system equation contains uncertain param-
eters that take values in a given set. The current state of
the system is assumed to be known and available to the
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feedback controller. It is assumed that there are con-
straints on the value of control that can be applied, and it
is required that the state of the system stay in the specified
region for all possible values of the uncertain quantities.
When a stochastic deseription of the uncertain quantities
is available, a possible formulation of the problem would
be to require that the state constraints are satisfied at
each time with probability one. However, for the problem
considered in this paper, a detailed stochastic description
of the uncertain quantities is unnecessary. Only the set of
all possible values of the uncertain quantities is required
and is assumed given.

One possible way of viewing the problem of this paper
* is within the framework of regulation problems. In such
problems, one is concerned with finding a control law
that will keep the state of a system ‘“‘close” to some
reference point or equivalently in a sufficiently “small”
region containing that point. In optimal regulation theory,
an indirect approach is adopted toward achieving the
regulation objective whereby one seeks a control law that
minimizes a cost functional in which deviations from
the desired reference point are appropriately penalized.
The problem considered in this paper may be viewed as a
more direct formulation of the regulation problem whereby
a subset of the state space containing the reference point is
specified and a control law is sought that will keep the
state within this subset for all possible values of the
uncertain quantities and for all times. If one wishes to
adopt an optimal control viewpoint, this is equivalent to
specifying a cost funectional that takes the value zero
whenever the state and control satisfy the given con-
straints for all times and takes the value of, say, infinity
whenever some constraint is violated at some time.
Thus, in the problem of this paper, “large” deviations
from the reference point are equally penalized with
“small” deviations, a feature that may be undesirable in
some situations. On the other hand, as will be seen later,
the solution of the problem yields not just a single control
law, but rather a collection of control laws that can keep
the state within the specified region. In some cases it is
then possible to select a control law from this collection
that has other desirable features such as linearity and
stability; or, it is possible to select a control law that
somehow takes into account the desirability of keeping the
state as close as possible to the reference point. An example
of this situation is the case of a linear finite-dimensional
system examined in the last section of this paper. The
results of this paper also can be used in several other
ways in mathematical system studies. For example, in a
stochastic or minimax dynamic optimization problem
over an infinite-time interval, with state and control
constraints, the results of the paper can be used for
clarifying the issues associated with the steady-state
behavior of the state-space region of feasibility, i.e., the
set of initial states starting from which there exists a
control law resulting in satisfaction of all the state and
control constraints [13]. Another area where the results
of this paper can be useful is the area of pursuit-evasion
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games by using a similar formulation as the one deseribed
in [2].

The problem of this paper has been considered earlier in
[1], 2], [5], [9], [10] for some special cases under the
assumption that the control time interval is finite and it
has been called the problem of reachability of a target
tube. The purpose of this paper is to consider the same
problem when the control-time interval is infinite and to
examine the question of convergence to a steady state of
various algorithms given earlier.

In Section II the problem is formulated and two dif-
ferent notions of infinite-time reachability are introduced.
In Section III we obtain necessary conditions and suffi-
cient conditions for infinite-time reachability. We dem-
onstrate that if reachability can be accomplished by a
time-varying control law it can also be accomplished by a
time-invariant control law. We also consider a recursive
set algorithm for caleulating the region of n-step reach-
ability and show that the algorithm ean exhibit instability
when passing to the limit. In Section IV we derive condi-
tions under which this recursive set algorithm converges
to the region of infinite-time reachability. This is aec-
complished by introducing topological structure on the
spaces of definition of the system and by assuming com-
pactness of some sets related to the algorithm. Some
important special cases for which the compactness as-
sumption is satisfied are also discussed. The results
presented in Sections IIT and IV are applicable to a very
general class of systems for which the state space need
not be a linear vector space. It was chosen to formulate
the problem in a more general setting, since no less effort is
required and no further results ean be obtained when the
class of systems under consideration is narrowed. On the
other hand, the reader will lose little insight into the
structure of the solution by considering the system to be
defined over a Euclidean space. In Section V we consider
in more detail the important special case of a linear
finite-dimensional system driven by an input disturbance
under the assumption that the admissible sets for the
control and the disturbances are ellipsoids. For this case
it is shown that there exist ellipsoidal regions in the state
space in which the state can be confined by making use of a
suitable control law provided the system is stabilizable.
Furthermore, it is shown that there exists a linear time-
invariant control law that can achieve reachability and, in
addition, can make the closed-loop system asymptotically
stable. This control law can be obtained from the solution
of a recursive matrix Riccati equation, which can be
efficiently calculated in a digital computer.

II. ProBLEM FORMULATION

It is assumed that we are given a time-invariant discrete-

time dypamic system
Ty = f(xkiukywk); k= 0:1127' t (1)

where z; and u; denote for all k the state and control of
the system and w;, denotes some uncertain parameter,
which shall be referred to as the “disturbance.” The
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quantities z,, %, and w; are elements of spaces S,, S,, S,
respectively, and the function f: §; X S8, X 8, = S,
is given. It is assumed that the control u; is constrained to
take values from a subset U(x,) of S, which may depend
on the current state x;. It is also assumed that the dis-
turbance w; can take values from a subset W(zy,u;) of S,
which may again depend both on the current state a;
anid the applied control u;. The set W(xy,u:) does not
depend, however, on previous values w; 7 < k, of the
disturbance. Thus we have

U € U(xk) < Sy,

Given any nonempty subset X of S, the question of
interest is under what conditions does there exist a con-
trol law {ﬂo,y].,"'} with

we X > 8y wl(®) € Uw),

wr € W(r,u) C Sy 2

vz e X,

E=01-.- (3)
and such that the state z; of the closed-loop system
k=001, 4)

belongs to the set X for all £ and all possible values w, &
w [xk)ﬂk(xk) ]

z € X, Yy € Wigy,ulze)],

We will consider two different questions of interest
depending upon the freedom that we have in choosing the
initial state of the system. Let us consider the following
definitions.

Definition 1: The set X is sald to be infinitely reachable
if there exists a control law {Mo,m;- . } and some initial
state xy & X for which relations (3), (4), and (5) are
satisfied.

Definition 2: The set X is said to be strongly reachable
if there exists a control law { Moyl * } such that for all
initial states zp € X the relations (3), (4), and (5) are
satisfied.

It is evident from Definitions 1 and 2 that the require-
ment of infinite reachability is much weaker than the
requirement, of strong reachability, since for the former we
require that the state remains within the set X starting
from at least one zy € X, while for the latter we require
that this occurs starting from every initial state z, € X.
In the next section we shall give necessary and sufficient
conditions for both infinite and strong reachability of a
set X. We shall, furthermore, demonstrate that the two
notions are closely related in that a set is infinitely reach-
able if and only if it contains a strongly reachable set.

Tiyr = florme(i),wel,

E=01,--. (5

II1. NECESSARY AND SUFFICIENT CONDITIONS
FOR REACHABILITY

In order to analyze the problem of infinite-time reach-
ability, which was described in the previous section, it is
helpful to consider the problem of reachability of a subset
X of the state space S, for one, and more generally, for a
finite number of stages. This problem has been considered
earlier [1], [2], [9], [10] in a somewhat less general form.
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Let us assume that at some time instant & the state of
the system is z; & X. Then in order to guarantee that at
the next time instant (5 + 1) the state 211 will belong to
X, it is necessary to apply control 4, € U(z;) for which
Zept = f@pugw,) € X for all wy, € Wiag,u,). Thus, we
must have z; € X where the set X is defined by

X = {z] 2 v & U@) st. fl,u,W(nz)]
cX}nx (6

In (6) the symbol = denotes “there exists,” the initials
s.t. stand for ‘“such that,” flz,u,W(u,z)] denotes the set
{flzuw)|w € W(uz)}, and the symbols =, N denote
set inclusion and set intersection.

If we define a function B mapping subsets of S, into
subsets of S; by the equation

R(Z) = {x[ S u € Ul) s.t. flz,u, W(u,z) ]
czZtNz )

then from (6) and (7) we have X = R(X). It is clear
from the above discussion and Definition 2 that a necessary
and sufficient condition for strong reachability of a set X
isthat X = R(X) = X, i.e., that the set X is a fixed point
of the function £.

Proposition 1: The set X is strongly reachable if and
only if

R(X) = X. (8)

We proceed now to investigate conditions for infinite
reachability. Given a nonempty set X, consider the set
R*(X) defined as follows: zp € R*(X) iff zp € X and
there exists a control law { g, +} st (3), (4), and ()
are satisfied when z, is taken as the initial state of the
system.

By Definition 1 we see that X is infinitely reachable if
and only if B*(X) # 0. Furthermore, we have the following
proposition.

Proposition 2: A set X is infinitely reachable if and only
if 1t contains a strongly reachable set. The largest such
strongly reachable set is R*(X) in the sense that R*(X)
is strongly reachable whenever nonempty and if XcXx
is another strongly reachable set then X C R*(X).

Proof: From Definitions 1 and 2 it is clear that if X
contains a strongly reachable set it is infinitely reachable.
Now let X be infinitely reachable, Z be any point in the
nonempty set R*(X), and { &, - -} be any control law
such that (3), (4), and (5) are satisfied when £ is taken as
the initial state of the system. In order to prove that R*(X)
is strongly reachable by Proposition 1 it will be sufficient
to prove that

fl8.m(@), W[Zma(2)]] € B*(X).

Indeed, if there existed some ¥ & f[Z,5(Z), W [Z,5:(Z) ]
such that & ¢ R*(X), then by the definition of R*(X)
the state 2,1 of the closed-loop system

Lrp1 = f[xk;ﬁk+1(xk)1wk]) k= 071) e

with initial state 2, = % will not belong to X for some %
and a feasible choice of wo,wy,- - -,u;. This violates the
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property of the control law { To,1,* * } and provides the
contradiction.

The fact that B¥*(X) is the largest strongly reachable
subset of X follows easily from its definition. Q.E.D.

An important observation from the proof of Proposition
2 is that if X is an infinitely reachable set, then if the
state of the system is to be guaranteed to stay for all
times within X, the initial state must be chosen within the
set R*(X) and the control law must keep the state for all
subsequent times within the set R*(X).

A further interesting observation from the proof of
Proposition 2 is that, since R*(X) is strongly reachable
whenever it is nonempty, if reachability can be accom-
plished by a time-varying control law, it can also be
accomplished by a time-invariant control law wp. This
control law can be defined as follows: If z & R*(X), u(z)
is any element of U(x). If # €& R*(X), consider any control
law { Moy, ¢ -}, which is such that (3), (4), and (5) are
satisfied when the starting state is z and let x(2) = uo(2).
When this control law is used and the initial state belongs
to R*(X), then all subsequent states are guaranteed to
belong to R*(X). We summarize the above discussion in
the following corollary.

Corollary 1: If X is infinitely reachable there exists a
stationary control law u: X — S, with p(z) € U(x)
¥ & € X such that if the initial state belongs to B*(X),
all subsequent states of the resulting closed-loop system
are guaranteed to belong to R*(X).

We turn now to the question of characterizing the set
R*(X) which, as the previous discussion shows, is of
central importance in the problem of infinite-time reach-
ability of the set X. Since the set R*(X) can be considered
as the “region of infinite-time reachability” an obvious
question is whether R*(X) can be characterized as some
limit of the “region of n-step reachability”” as n tends to
infinity. The latter region is the subset of X consisting of
all initial states starting from which there exists a control
law that can keep the state of the closed-loop system
within X for at least » steps. This subset can be charac-
terized in terms of the function R of (7).

The set R(X) is the set of all states z € X from which
the state can be guaranteed to belong to X at the next
time instant by applying suitable control law. By using the
same logic as before, we conclude that the set B|R(X)]
is the set of all states z € R(X) from which the
state can be guaranteed to belong to R(X) at the next
time instant and, therefore, can be guaranteed to belong
to the set X for the next two time instants. It can be
easily seen that R[R(X)] is also equal to the set of all
states 2 € X |[rather than @ & R(z)] from which the
state can be guaranteed to belong to B(X) at the next
time instant. Similarly, in order that there exist a con-
trol law such that starting from the initial statez € X
the state of the closed-loop system is guaranteed to stay in
the set X for the next n-time instants, it is necessary and
sufficient that

r & BYX) ©)
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where R” denotes the composition R-E - -R (n times)
and where the function R is defined in (7). It is clear that

R*H(X) € RM(X), ¥n> L (10)

Thus, the set X is reachable for the next » steps if and
only if the set R™*(X) is-nonempty (R™(X) # @). The
elements of B*(X) are initial states in X, starting from
which reachability of the set X is guaranteed for the next n
steps by using a suitable control law. It would appear
from the above discussion that, based on Definition 1, a
set X is infinitely reachable if and onlyif N,_; R*(X) = @
and, furthermore; if Nj-; BRYX) = R*(X). This
conjecture is incorrect in general, as we shall discuss below
and demonstrate by example. The reason for this is that
although there may exist initial states from which the set
X is reachable for any given number of steps, there may
not exist a control law that can accomplish reachability
(from any of those initial states) for all times. In order

'to obtain conditions that relate the sets (1;-; R*(X) and

R*(X), it will be necessary to consider, in addition to the
function R of (7) which determines a set of initial states
from which reachability is possible, another function C
which determines the class of control laws which ac-
complish reachability. The function C maps subsets of
8, into subsets of S; X 8, and is defined by

C(Z) = {@wlz € Z,u € U),
flew,Wwa)] < Z}. (11)

We shall use the notation

C,(X) = C[R'(X}], n>2 (12)
(X)) = CX). (13)

It can be easily seen that
Con(X) € Cu(X), n21L (14)

It can also be seen that from (7), (11), (12), and (13) we
have

Pz[Cn(X)] = Rn(X)’ n 2> 1, (15)

and hence

PI[ ﬂl C,,_(X)] c N R*X) (16)
n= n=1

where P,|C.(X)] denotes the projection of the set Cn(X)
on the space S,. Notice that by (15) the set C,(X) com-
pletely determines the set R"(X) of initial states from
which the set X is reachable for n steps. However, a
closer examination of (11) reveals that the sets C,(X),
Cri(X) - -C(X) completely determine the class of all
control laws that achieve reachability of X for n steps.
We have the following proposition.

Proposition 3: There holds

R*X) C P, [ n c,,(X)} c Fﬁl R"(X). (17
=1 n=

n

Furthermore, the equation
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P,[ fi C,,(X)] = 61 R™(X) 5 @ (18)

implies that
R*(X) = PI[ n C’,L(X):l - 0 BYX) = §. (19)
n=1 n=1

When (18) holds, the class of stationary control laws u
which achieves reachability of the set X in the sense of
Corollary 1 is the set of all functions u: S, — S, for which

()] € rionoz), ¥z € RMX).

Proof: If R*(X) = B, i.e., the set X is not infinitely
reachable, (17) holds trivially in view of (16). Let 2y €
R*(X) and let » be a stationary control law that achieves
strong reachability of R*(X) in accordance with Corollary
1. Then by the definition of the sets C,(X) and R*(X)
we have (zg,u(20)) € C(X) for all n > 1. Hence (xo,n(z0))
€ Npi1C(X) andxo € P,[N oy Co{(X)]. Thus we have
R¥X) < P,[N;-; C(X)]. In view of (16) the relation
(17) is proved. Assume now that P.[N,;.; C.(X)] =
Nyoq RMX) = @. Let u be any control law such that
[zu(@)] € N;_1Culx) for all z € N;_; R*(X). Then by
(7 for every z € N;_; R*X), flzu(@),Wz,u(z)]]
c R*(X) for all » > 1 and therefore

flon@Wizu@)]] © élR%X) c X.

This implies that the set N;_; B"(X) is strongly reach-
able. In view of Proposition 2 and (7) the desired equation
(19) follows. Q.E.D.
The above proposition shows that, at least for the case
where (18) holds, the region of infinite-time reachability
R*(X) is the intersection of the regions of n-step reach-
ability E*(X). In the next section we will demonstrate
that (18) holds in some important special cases by intro-
ducing a compactness assumption. Furthermore, we will
show that the set R*(X) is obtained as a well-defined
limit of the sequence of sets R*(X).
When (18) fails to hold we have the following possi-
bilities:
0 =R¥X) = P,

06| = 0 em @

B=R*X) =P, | N CuX | = N R X ()
n=1 N, n=1

B RYX) = P,| N CuX) | N RNX) (22)
L n=1 _ n=1

§ = R*(X) = P, [ F_]l C,,(X)] » 6113”()(). (23)

In these cases the region of n-step reachability exhibits

instability when passing to the limit. All four cases are

possible in general as the following example shows.
Consider the scalar deterministic system

T = f(x) + g@)ur + A[f(2) + glwn) v,z
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where f, g, and % are the functions given by

2z, if |2 = 1,56

_ e, if || =6

@) =10, if |z| = 5

10z, iflz] =1

@ = {1, if 2] = 5,6
g 0, ifle =51 =6
and

0, ifla] =5]s =6
hzx) = { 1, ifz>0, ]z =56

-1, if 2 <0, |x| # 5,6.

Let U(z) = [—2,2] and consider the problem of infinite-
time reachability of the set
X =1[-22] U {-6,—55,6}.

It can be verified by straightforward calculation that for
n>1

RYX) = {—6,—556} U [—(L + 277,~1)
U (—L1) U 1,0 + 2]

R¥X) = {—66}, P, ijl Cn(X)} = {—6;—5,5,6}

N R(X) = {—6,—55,6} U (—1,1),

n=1

proving that (22) is possible.
If the points —6,6 are dropped from X, then

R*X) =0
A cn(X)] = {—55)
Fle"(X) — (=55} U (—1,1),

proving that (20) is possible.
If the points —5,5 are dropped from X, we have

R*(X) = PI[ N Cn(X):| = {—6,6}
n=1
N R"X) = {—66} U (-1,
n=1
proving that (23) is possible.

Finally, if the points —6,—5,5,6 are dropped from X,
we have

R(X) = Pz[ fi Cn(X):l ~ 9
N R X) = (=1,0),
n=1

proving that (21) is possible.
A final comment concerns the interpretation of the sets
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P N;_ i Cu(X)] and N R*(X) when (18) fails to hold.
Assume that we are given an arbitrary but fixed positive
integer k. Then there exists a control law { Moy, - ¢ }
depending on & such that when the initial state z, is any
point in N ;_; R*(X) the states xy,- - -,z are guaranteed to
belong to the set X. Thus, N,_; R*(X) can be charac-
terized as the region of reachability for a finite but arbitrary
number of steps. The control law that achieves reach-
ability for any fixed number of steps & must satisfy

[z;#n(x)] E Ck—n(-X)r Yz E Rk~n(X)’
n=01--%k—1

and can be selected to be stationary if desired. However,
its value u,(z) forz & P, [N, C,{(X)] will depend on the
number of steps k. The set P,[N;_; C,(X)]is the set of
points on which this control law can be defined indepen-
dently of k. When (18) holds the control law can be
defined on the whole set N, _; R*(X) independently of k&
and thus achieves reachability of X for any number of
steps.

IV. CONVERGENCE QQUESTIONS

A question of importance is under what circumstances,
given the set X, one can obtain the set R*(X) as some
“limit” of the sequence of sets {R"(X)}. An associated
question is under what circumstances (18) is satisfied and,
therefore, we have B*(X) = N;_; BR*(X). The key to
these questions is provided, as one would expect, by
compactness conditions. Let us assume that the spaces
S; and S, are equipped with Hausdorff topologies [3].
The product space S, X S, is considered to be a Haus-
dorff topological space equipped with the product topology.
Then the assumption of compactness of the sets €, (X)
in the latter topology has important implications as the
following proposition shows.

Proposition 4: Assume that there exists a positive
integer n, such that the sets C,(X) are nonempty and
compact for all n 2> ny. Then we have the following,.

a) The sets N7~y C.(X), R*X), P.[N7.; Cu(X)],
N ;-1 R*(X) are nonempty and compact.
b) The set X is infinitely reachable and

B = R*(X) = P,,[ n cn(X)] _ F_'i R*(X).

¢) Given any open set A C 8, such that R*(X) — A4,
there exists a positive integer Ns uch that B*(X)
C R*(X)c Aforalln > N.

Proof: The fact that N;_, C,(X) is nonempty and
compact follows directly from [3, p. 225, theorem 1.6].
Since the projection P,: 8, X S, — S, is a centinuous
map and in view of (15), the relation

g le: ﬁl C,,(X):f _ F}l PUC(D)] = N RY(X)
n= n= n=1

follows from the conclusion of [3, p. 252, problem 8].
This relation can be proved as follows. We have in general
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9= P, 0 c.0]c N Ricoo)

and hence it is sufficient to prove the reverse inclusion.
If # € N7y PIC.(X)], then there exists a sequence
{u,,}, n > ng such that (z,u,) &€ C.(X), m > n. The
sequence (z,um) by the compactness of C,(X) has at
least one limit point (z,u) &€ C,(X), for all n > n,. Hence
(zu) € NyoyCu(X), implying thatz &€ P, [N ., C(X)].
Therefore, the reverse inclusion is proved. Now, by using
Proposition 4, parts a) and b) are proven. The statement of
¢) follows again from [3, p. 225, theorem 1.6]. Q.E.D.

Proposition 4e¢) is particularly interesting since it
states that under the assumptions of the proposition the
sequence of sets {R"(X )} converges in a well-defined
sense to the set B*(X).

The compactness of the sets C,(X) can be verified in a
number of interesting special cases. An important special
case where it can be trivially verified is when the sets X
and U(z) are finite (as they will be in any digital computer
solution of the problem), and the spaces S, and S, are
equipped with their discrete topology [3]. In this topology
a set is compact if and only if it is finite. Then the sets
C.(X) are finite and therefore compact, and the sequence
{R"(X)} will converge to R*(X) in a finite number of
steps. Another special case is when the system equation is
of the form

Zppr = flZrU) + Wy k=201,--- (24)

where S,, S., S, are Euclidean spaces of appropriate
dimension equipped with the usual norm topology. In
this topology a set is compact if and only if it is closed and
bounded. Consider the case where the sets U7 and W are
independent of x and (z,u), respectively, and assume
furthermore that the sets X, U are compact and that the
function f is continuous. The set C(X) of (11) can be
written for this case as

CX) = {(wu)le € X,u € Uflzuw) € B}  (25)
where the set £ is given by

E = {2z + W C X}. (26)

Let us first show that the compactness of X implies the
compactness of E. If z & E, there exists a w & W such
that z = (z + w) & X. Since X is closed there exists an
open ball B, centered at the origin such that (z + B;) N
X = 0. This in turn implies that (z + B,) N E = §,
ie., the complement of # is open and therefore E is
closed. Since from (26) F is also bounded, the compact-
ness of E is proven. Now from (25) the compactness of E,
X, U and the continuity of f imply the compactness of
C(X) and therefore, by (15), the compactness of E(X).
By using similar reasoning the compactness of C,(X)
can be proven for all n. Thus, whenever these sets are
nonempty the conclusions of Proposition 4 hold. When the
system of (24) is linear,

Tpy1 = Az + u, + wi, k=201,---,
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the compactness of the sets C,(X) can be proven
similarly whenever the set X is compact and the set U is
closed.

The above special case can be easily generalized to the
case where the system equation is given by (24) but the
spaces S, and 8, are instead reflexive Banach spaces
equipped with their weak topologies [4]. Then the product
space 8, X S, with any of the norms

@l = {llll? + llull?}>, 1<p <o,

[l = max {{[a],|lu(l}

is a reflexive Banach space with a weak topology coinciding
with the product topology. By assuming that the sets X
and U are weakly compact and that the function f is
weakly continuous, we can prove again that the assumption
of Proposition 4 is satisfied. The proof is entirely similar to
the finite-dimensional case and is based on the fact that
in a reflexive Banach space a set is compact if and only if
it 1s bounded and weakly closed [4].

V. THE CASE oF A LINEAR
FINITE-DIMENSIONAL SYSTEM

In this section we consider a special case which involves
the linear discrete-time system

Zen = Azy + Buy + Guy, 27

where 2, € E® (n-dimensional Euclidean space), u, €
E™ w, € E7, and the matrices 4, B, G have the appropri-
ate dimensions with the matrix A assumed invertible.!
We assume that the control u; and the disturbance w:
are restricted to take values in the ellipsoids

U = {u|u'Ru < 1}
W = {w|lw'Qw < 1}

k = 0)1’--.

(28)
(29)

where R and @ are positive-definite symmetric matrices of
appropriate dimensions.

QOur objective in this section is to show that there exist
strongly reachable ellipsoidal sets corresponding to the
system (27) and the constraint sets (28) and (29) provided
that the system is stabilizable, i.e., there exists a matrix L
such that the matrix (4 — BL) is stable (has eigenvalues
within the unit disk of the complex plane). At the same
time we will be able to show that there exists a linear
control law that achieves reachability and makes the
closed-loop system asymptotically stable; we will give
an efficient algorithm for its computation.

In order for an ellipsoid

X = {z]2'Kz < 1}, (30)

where K is a positive-definite symmetric matrix, to be a
strongly reachable set, we must have, by Proposition 1 and
@7),

1 The results of this section can be proven without the assumption
of invertibility of A at the expense of somewhat more complicated
derivations. The matrix 4, however, will be invertible in most cases,
including the case where the system (27) results from sampling of a
continuous-time system.
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X = {z| D u € Ust. Az + Bu
+GWcX}nX (31)

It can be seen that this condition is equivalent to

AX c [E 4+ (—B)U] (32)
where the set F is defined as
E = {2z + GW < X}. (33)

Conditions (32) and (33) are stated in terms of sets and
are, therefore, difficult to verify. A sufficient condition in
terms of the matrices K, @, B and A, B, G in order that
the conditions (32) and (33) hold is given by the following
proposition. Furthermore, when this sufficient condition
holds, the proposition shows that reachability can be
achieved by a linear time-invariant control law for which
the resulting closed-loop system is asymptotically stable.

Proposition 5: A sufficient condition for the relations
(32) and (33) to hold and therefore for the ellipsoid X =
{z|z’Kz < 1} to be strongly reachable is that

K = A'(F-1 + BR-1B")"4 + ¢ (34)

for some positive-definite matrix ¢ and for some 0 < 8
< 1 for which the matrix F defined below is positive
definite

F= [(1 — K- — 1%3 GQ‘lG':\_1 > 0. (35)

Under these circumstances a linear time-invariant control
law which achieves reachability is given by

u(z) = — (R + B'FB)'B'FAx. (36)

With this control law the resulting closed-loop system is
asymptotically stable.

Proof: Assume that (34) and (35) hold, and consider
the ellipsoid

E = {¢e'Fz < 1}. (37)

We shall show that £ — E. By (33) it is sufficient to prove
that [E + GW] < X. The support function [6] of the set
X is given by

o(g|X) = sup {{ga)lz € X} = (K9} (38)
and the support function of £ + GW is given by
o(glE + GW) = (¢'F ') + (¢'GQ'G'9).  (39)

It can be seen from (35) that the inequality o-(q|E + GW)
< o(g|X) holds for all ¢ € E” implying E + GW C X,

and thus £ C E.
In order to prove (32) it is therefore sufficient te prove

AX c [E + (—B)Ul (40)
The support function of AX is given by
o(gAX) = (¢AK-'A'g)},
or, by using (34),
o(glAX) = [¢'[(F~! + BR™B’)~ + A’-g4—1]-1¢]}
< l¢'(F- + BR™' B')q]. (41)
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The support function of [£ 4 (—B)U] is given by
o(glE + (=B)U) = (¢'F~'9)* + (¢'BR'B'g)*. (42)
By comparing (41) and (42) we obtain
o(g|AX) < o(glE + (—B)u), forallg € E"

implying (40) and therefore (32) and (33).
In order to show that the control law (36) achieves
reachability, it is sufficient to show that

Zyy1 = [A — B(R + B'FB)"'B'FAlx, € E
whenever z, & X. By denoting
L = (R + B'FB)"'B'FA,
it is sufficient to show that
#'(A — BLY'F(A — BL)x;, < a/Kz, < 1.
This last relation is evident from the following identity :
K = (4 — BL))F(A — BL) + ¢ + L'RL, (43)

which is well known in Riccati equation theory.
In order to show that the closed-loop systém is asymp-
totically stable, first notice that from (35)

F~'=(1-8) (K*l - éGQ—lG’)

<Kt — é ¢Q-1 ¢’ <K,
implying
K<PF.
Also consider the system

Tr41 = (A — BL)xk-

(44)

(45)

Then, by using (43), (44), and (45), we have, for every
index N > 0, the following:

N1
zy'Kzy + kz—:o ' (¢ + L'RL)z,
N1

< zy'Fzy +Aki—oxk’(¢ + L'RL)x;
= zx1'[(A — BL)F(A — BL) + ¢

N-—

2
+ L’RLlzy + kgo 2’ (¢ + L'RL)x,

N-2
= zy1'Kay1 + k;) /(¢ + L'RL)z;
< .‘171'K221 -+ Io'(!ﬁ + L’RL)xo
< z'[(A — BLYF(A — BL) + ¢ 4+ L'RL]x
= z¢'Kxy.
Thus for every, N > 0 we have
N—1

en' Ky + ’kz_:o 2/ (¢ + L'RL)x, < xo'Kao,

which implies that the system (45) is asymptotically
stable. Q.E.D.
An immediate consequence of the asymptotic stability
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proved above is that transients due to initial states will
vanish eventually during the operation of the closed-
loop system. More accurately, for any ¢ > 0 it can be
guaranteed that after a sufficient number of steps the
state of the system will be confined in the set X + B
where B is the unit ball in E*; this will occur for every ini-
tial state in E™. :

A question of importance is under what conditions there
exist ellipsoids X and corresponding matrices K for which
the conditions (34) and (35) in Proposition 5 are satisfied.
Furthermore, it is necessary to provide means for the
computation of such matrices. This computation is
possible by making use of the recursive algorithm

Kia=AF "+ BRB)TA" + ¢ (46)

F, = [(1 — K — 1—;—‘3 GQ—IG’]_I (47)

Ky=¢ (48)

where N denotes the time index where the backwards
computation starts. This algorithm has been considered in
[1], 2] in connection with finite-time reachability prob-
lems. The convergence of the algorithm to a steady-
state solution, which satisfies the conditions (34) and (35),
has been considered in detail in [1]. A closer examination of
(46) and (47) shows that the matrices B and ¢ must be
relatively ‘“small” or else the algorithm will not converge
to a positive-definite solution. Now in any practical
situation one is given the matrix @ specifying the constraint
set for the input disturbance, and there is usually a
certain degree of freedom in adjusting the control con-
straints, i.e., the matrix R, and of course, the matrix ¢,
which plays the role of a design parameter. In this sense a
possible design procedure is to initially select the matrices
R and ¢ and, in case the algorithm does not converge toa
solution satisfying (34) and (35), to decrease these matrices
by multiplication with scalars less than one and repeat
the procedure until convergence and satisfaction of the
designer. It is important, however, to know under what
circumstances there exist matrices B and ¢ such that the
algorithm converges to a steady state, and furthermore,
under what conditions such matrices can be obtained by
repeatedly multiplying any initially selected matrices I
and ¢y by factors of less than one. This is the object
of the next proposition which states that the design
procedure outlined above is successful provided the
system (27) is stabilizable, i.e., if there exists a matrix L
such that the matrix (4 — BL) is stable. Notice that the
system (27) is stabilizable provided that the pair (4,B) is
controllable (but not conversely) [11]. This proposition
has been proven earlier [1]. Unfortunately, the proof is
quite lengthy and, due to space limitation, it will not be
reproduced here.

Proposition 6: Assume that the system (27) and the
positive-definite symmetric matrix @ are given and that
the system (27) is stabilizable. Then given any positive-
definite symmetric matrices 1 and R: of appropriate
dimension, there exists a scalar 81, 0 < B1 < 1 such that
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for every scalar 8, 0 < 8 < B, there exist scalars ay, by
depending on 8 such that for all matrices ¥ = ayy, B =
bR: with 0 < a < a1, 0 < b £ by, the algorithm of (46)—
(48) converges to a positive-definite symmetric matrix K
satisfying (34) and (35).

Proposition 6 shows the existence of strongly reachable
ellipsoidal sets for the case of the linear system (27)
provided that this system is stabilizable and the control
constraint set is taken sufficiently large. Furthermore,
such ellipsoidal sets can be efficiently computed using the
algorithm of (46)-(48). The same algorithm provides the
control law (36), which is linear and makes the closed-
loop system asymptotically stable.

VI. CoNcLUsIONS

In this paper we considered the question of whether the
state of an uncertain system can be kept within a specified
region of the state space for infinite time by using feed-
back control. This question is basic in problems of feed-
back control of uncertain systems subject to state con-
straints over an infinite-time interval since it relates to the
behavior of the region of feasibility as the control interval
tends to infinity. The notion of strong reachability of a
set is of central importance in the problem of the paper
since it was proved that in order to achieve infinite-time
reachability of the feasible region the state of the system
must be confined within some strongly reachable subset of
the feasible region. A related question also examined in
this paper concerns the limiting behavior of the region
of n-step reachability as n tends to infinity, and is im-
portant in the analysis of dynamic programmieg algori-
thms over an infinite-time interval. It has received fur-
ther attention in [13], where the convergence of a dynamic
programming algorithm related to a stochastic optimal
control problem similar to the one in [12] is proved.

When the uncertain system is stochastic, the class of
admissible control laws may be further restricted by
measurability requirements. The question of reachability
with a control law within such a restricted class has not
been touched upon in this paper. It should be expected,
however, that the investigation of this question will
benefit from the results presented. As an example, consider
the case examined in Section IV involving the system
(24) and the question of whether there exists a Borel
measurable control law u: X — U that achieves infinite-
time reachability of the compact set X. By Proposition 3
this amounts to asking whether there exists a Borel
measurable selector for the multivalued mapping

W@ = {dea € 0 C,00},

which maps the set R*(X) (assumed nonempty) into the
set of all subsets of S,. Now for every closed subset S of
S, the set

M~(S) = {z € R¥X)|M(z) N S = B}
- P,[ N C.(X) N (R*(X)xS)}
n=1
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is compact by the compactness of N _; C,.(X). Hence the
mapping M is Borel measurable according to the definition
of [7]. By using a theorem of Kuratowski and Rull-
Nardzewski it follows that there exists a Borel measurable
selector-control law (see [7, corollary 1.1]). Thus for this
case, whenever there exists a control law achieving
infinite-time reachability of the set X, this control law
can be taken to be Borel measurable.

The special case of a linear finite-dimensional system
was examined in the latter part of the paper with emphasis
on obtaining ellipsoidal sets within which the state can
be confined by using feedback control. An efficient al-
gorithm was given for calculating such sets and associated
linear control laws. Since the formulation of the regulation
problem in terms of hard-state space constraints is
attractive in some cases, the design procedure suggested
appears to have potential for some practical applications.
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Extension of Analytical Design Techniques
to Multivariable Feedback Control Systems

JAMES E. WESTON, MEMBER, IERE, aAND JOSEPH J. BONGIORNO, JR., MEMBER, IEEE

Abstract—Analytical design techniques are developed for multi-
variable feedback control systems. The design includes a saturation
constraint and provides for a disturbance at the system output and
additive noise at the system input. The system inputs (signal, noise,
and disturbance) are assumed to be generated by independent,
stationary, stochastic processes that are adequately represented by
rational power-spectral-density matrices. System elements adre
represented by rational transfer function matrices using the bilateral
Laplace transform. The design is applicable to linear time-invariant
systems. Design formulas are derived for the general case where the
transfer function matrix representing the fixed elements of the
system may not be square.

The basic design consists of minimizing a weighted sum of the
output mean-square errors and the mean-square values of a selected
set of saturation signals. A variational technique is used in the
optimization, and the technique of spectral factorization is used to
obtain a solution. An example is presented to illustrate the design
procedure.

INTRODUCTION

HE analytical design techniques of Newton et al.
[1] are extended to multivariable feedback control
systems in this paper. The system configuration under
consideration is shown in Fig. 1. All elements of the
system are assumed to be linear and time invariant.
The input vectors (signal, noise, and disturbance) are
generated by stationary stochastic processes whose power
spectral densities are known. The design includes a
saturation constraint and provides for a disturbance
input when the feedback network can be fixed a priori.
The analysis is carried out in the frequency domain
using the bilateral Laplace transform. A variational
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techriique employed by Borigiorno [2] is used to minimize
a performance index consisting of a weighted sum of the
output mean-square errors plus a weighted sum of the
mean-square values of a set of saturation signals (i.e.,
a set of signals that might tend to saturate in amplitude if
not constrained).

Some aspects of this problem have been solved in recent
years; however, most attempts have been hampered by
the need to perform matrix spectral factorizations.
Youla [3] derived conditions under which a rational matrix
may be spectrally factored, and presented an algorithm
for accomplishing the factorization. Davis {4] presented
an alternate method of performing the factorization, and
Tuel [5] developed a numerical solution and a computer
program to perform the factorization.

A number of papers have been published that treat
related topics. Amara [6] solved the multivariable free-
configuration Wiener problem, relying on matrix spectral
factorization. Hsieh and Leondes [7] first developed a
solution for the semi-free-configuration Wiener problem
in the form of a set of simultaneous algebraic equations,
thus avoiding the need to perform the matrix spectral
factorization. However, Hsieh and Leondes did not prove
that a solution to their equations existed and Davis [4]
states that their method fails in the case of a predictor.
Bongiorno [2] recently solved this same problem using



