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Recall the Classical Subgradient and Proximal Algorithms

Convex Optimization Problem

minimize f (x) subject to x ∈ X ,

where f : <n 7→ < is convex, and X is closed and convex.

Classical subgradient projection algorithm: Typical iteration

xk+1 = PX
(
xk − αk∇̃f (xk )

)
where αk is a positive stepsize and ∇̃ denotes (any) subgradient.

Classical proximal algorithm: Typical iteration

xk+1 = arg min
x∈X

{
f (x) +

1
2αk
‖x − xk‖2

}
where αk is a positive parameter.

Proximal has more solid convergence properties, but requires more overhead.

Proximal algorithm
duality
⇐⇒ augmented Lagrangian method.
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Problems with Many Additive Cost Components

minimize
m∑

i=1

fi (x) subject to x ∈ X ,

where fi : <n 7→ < are convex, and X is closed and convex.

Incremental algorithms (long history, early 90s-present): Typical iteration

Choose an index ik ⊂ {1, . . . ,m}.
Perform a subgradient iteration or a proximal iteration:

xk+1 = PX

(
xk − αk∇̃fik (xk )

)
or

xk+1 = arg min
x∈X

{
fik (x) +

1
2αk
‖x − xk‖2

}

Motivation is to avoid processing all the cost components at each iteration
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Separable Convex Optimization Problem

minimize
m∑

i=1

fi (x i ) subject to x i ∈ Xi , i = 1, . . . ,m,
m∑

i=1

hi (x i ) = 0

where fi : <n
i 7→ < are convex, hi : <n

i 7→ <r are linear, Xi ⊂ <n
i are closed and convex.

Dual problem decomposes

maximize
m∑

i=1

qi (λ) subject to λ ∈ <r

where qi is a “component" dual function:

qi (λ) = inf
x i∈Xi

{
fi (x i ) + λ′hi (x i )

}
The subgradient method exploits the separable structure (Lagrangian relaxation)

The proximal algorithm yields the augmented Lagrangian method but destroys the
separable structure

Incremental versions of the proximal algorithm yield incremental augmented
Lagrangian methods that exploit the separable structure
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References for this Overview Talk

Joint and individual works with A. Nedic and M. Wang.

Focus on convergence, rate of convergence, component formation, and
component selection.

Work on incremental gradient methods and extended Kalman filter for least
squares, 1994-1997 (DPB).

Work on incremental subgradient methods with A. Nedic, 2000-2010.

Work on incremental proximal methods, 2010-2012 (DPB).

Work on incremental constraint projection methods with M. Wang, 2012-2014
(following work by A. Nedic in 2011).

Work on incremental augmented Lagrangian methods 2015 (DPB).

General references:
Convex Optimization Algorithms book 2015 (DPB).

Nonlinear Programming: 3rd edition 2016 (DPB).
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Outline
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Incremental Subgradient Methods

Problem: minx∈X
∑m

i=1 fi (x), where fi and X are convex

Long history: LMS (Widrow-Hoff, 1960, for linear least squares w/out projection),
former Soviet Union literature 1960s, stochastic approximation literature 1960s,
neural network literature 1970s

Basic incremental subgradient method

xk+1 = PX
(
xk − αk∇̃fik (xk )

)
Stepsize selection possibilities:

I
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k <∞

I αk : Constant
I Dynamically chosen (based on estimate of optimal cost)

Index ik selection possibilities:
I Cyclically
I Fully randomized/equal probability 1/m
I Reshuffling/randomization within a cycle (frequent practical choice)
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Convergence Mechanism

Quadratic One-Dimensional Example: minx∈<
∑m

i=1(cix − bi )
2

(a ix - bi)
2

amini
i

bi

amaxi
i

b i

x*

xR

REGION OF CONFUSION FAROUT REGIONFAROUT REGION

Conceptually, the idea generalizes to higher dimensions, but is hard to
treat/quantify analytically

Adapting the stepsize αk to the farout and confusion regions is an important issue

Shaping the confusion region is an important issue
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Incremental Proximal Method

Select index ik and set

xk+1 = arg min
x∈X

{
fik (x) +

1
2αk
‖x − xk‖2

}

Many similarities with incremental subgradient
Similar stepsize choices

Similar index selection schemes

Can be written as
xk+1 = PX

(
xk − αk∇̃fik (xk+1)

)
where ∇̃fik (xk+1) is a special subgradient at xk+1 (index advanced by 1)

Compared to incremental subgradient
Likely more stable

May be harder to implement
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Incremental Subgradient-Proximal Methods

Typical iteration
Choose ik ∈ {1, . . . ,m} and do a subgradient or a proximal iteration

xk+1 = PX
(
xk − αk∇̃fik (xk )

)
or xk+1 = arg min

x∈X

{
fik (x) +

1
2αk
‖x − xk‖2

}
where αk is a positive stepsize and ∇̃ denotes (any) subgradient.

Idea: Use proximal when easy to implement; use subgradient otherwise

A very flexible implementation

The proximal iterations still require diminishing αk for convergence
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Convergence Analysis

Under Lipschitz continuity-type assumptions (Nedic and Bertsekas, 2000):
Convergence to the optimum for diminishing stepsize.

Convergence to a neighborhood of the optimum for constant stepsize.

Faster convergence for randomized index selection (relative to a worst-case cyclic
choice).
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Incremental Aggregated Gradient Method

xk+1 = PX

(
xk − αk

m∑
i=1

∇̃fi (x`i )

)
where ∇̃fi (x`i ) is a “delayed" subgradient of fi at some earlier iterate x`i with

k − b ≤ `i ≤ k , ∀ i, k .

Key idea: Replace current subgradient components with earlier computed versions

Only one component subgradient may be computed per iteration

Proposed for nondifferentiable fi and diminishing stepsize by Bertsekas, Nedic,
and Borkar (2001)

Key Work (Blatt, Hero, and Gauchman, 2008): Differentiable strongly convex fi , no
constraints, constant stepsize, and linear convergence.

This is a gradient method with error proportional to the stepsize.

A fundamentally different convergence mechanism (relies on differentiability and
aims at cost function descent (no region of confusion).

Intense recent activity by many researchers (Gurbuzbalaban, Ozdaglar, Parrilo,
2015).
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Incremental Aggregated Proximal Method

Select index ik and set

xk+1 ∈ arg min
x∈X

fik (x) +
∑
i 6=ik

∇̃fi (x`i )
′(x − xk ) +

1
2αk
‖x − xk‖2


and ∇̃fi (x`i ) is a “delayed" subgradient of fi at some earlier iterate x`i with

k − b ≤ `i ≤ k , ∀ i, k .

Equivalently,

xk+1 ∈ arg min
x∈X

{
fik (x) +

1
2αk
‖x − zk‖2

}
,

where
zk = xk − αk

∑
i 6=ik

∇̃fi (x`i ).

If f is differentiable and strongly convex, linear convergence can be shown with
constant but sufficiently small αk (DPB 2015).
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Separable Convex Optimization: A Summary

minimize
m∑

i=1

fi (x i ) subject to x i ∈ Xi , i = 1, . . . ,m,
m∑

i=1

hi (x i ) = 0

where fi : <n
i 7→ < are convex, hi : <n

i 7→ <r are linear, Xi ⊂ <n
i are closed and convex.

Dual problem decomposes

maximize
m∑

i=1

qi (λ) subject to λ ∈ <r

where qi is a “component" dual function:

qi (λ) = inf
x i∈Xi

{
fi (x i ) + λ′hi (x i )

}
The subgradient method exploits the separable structure (Lagrangian relaxation)

The proximal algorithm yields the augmented Lagrangian method but destroys the
separable structure

Incremental versions of the proximal algorithm yield incremental augmented
Lagrangian methods that exploit the separable structure
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Proximal - Augmented Lagrangian Relation

Proximal Algorithm for the Dual Problem

λk+1 ∈ arg max
λ∈<r

{
m∑

i=1

qi (λ)− 1
2αk
‖λ− λk‖2

}

Dualization using Fenchel duality –> augmented Lagrangian method
Introduce the augmented Lagrangian function

Lα(x , λ) =
m∑

i=1

fi (x i ) + λ′
m∑

i=1

hi (x i ) +
α

2

∥∥∥∥∥
m∑

i=1

hi (x i )

∥∥∥∥∥
2

where α > 0 is a parameter. For a sequence {αk} and a starting λ0, set

xk+1 ∈ arg min
x i∈Xi , i=1,...,m

Lαk (x , λk )

Update λ according to

λk+1 = λk + αk

m∑
i=1

hi (x i
k+1)

A major flaw: min of Lαk (x , lk ) is not separable.
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Incremental Augmented Lagrangian Method

Incremental Proximal Algorithm for the Dual Problem
At iteration k , pick index ik , and set

λk+1 ∈ arg max
λ∈<r

{
qik (λ)− 1

2αk
‖λ− λk‖2

}

Dualization using Fenchel duality –> Incremental augmented Lagrangian
method

Pick index ik , and update the single component x ik according to

x ik
k+1 ∈ arg min

x ik ∈Xik

{
fik (x ik ) + λ′k hik (x ik ) +

αk

2
∥∥hik (x ik )

∥∥2
}
,

while keeping the others unchanged, x i
k+1 = x i

k for all i 6= ik . Update λ according to

λk+1 = λk + αk hik (x ik
k+1)
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Incremental Aggregated Augmented Lagrangian Method (IAAL)

Incremental Aggregated Proximal Algorithm for the Dual Problem
At iteration k , pick index ik , and set

λk+1 ∈ arg max
λ∈<r

{
qik (λ)− 1

2αk
‖λ− zk‖2

}
,

where
zk = λk + αk

∑
i 6=ik

∇̃qi (λ`i )

Bertsekas (M.I.T.) Incremental Gradient 20 / 1



Implementation of IAAL

Dualization using Fenchel duality –> Incremental aggregated augmented
Lagrangian method

Pick index ik , and update the single component x ik according to

x ik
k+1 ∈ arg min

x ik ∈Xik

fik (x ik ) + λ′k hik (x ik ) +
αk

2

∥∥∥∥∥∥hik (x ik ) +
∑
i 6=ik

hi (x i
`i )

∥∥∥∥∥∥
2


while keeping the others unchanged, x i
k+1 = x i

k for all i 6= ik .

Update λ according to

λk+1 = λk + αk

hik (x ik
k+1) +

∑
i 6=ik

hi (x i
`i )


Here hi (x i

`i
), i 6= ik , come from earlier iterations.
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Comparison with Alternating Direction Methods of Multipliers (ADMM)

ADMM Iteration for Separable Problems (DPB 1989)

Perform a separate augmented Lagrangian minimization over x i , for each i = 1, . . . ,m,

x i
k+1 ∈ arg min

x i∈Xi

fi (x i ) + λ′k hi (x i ) +
α

2

∥∥∥∥∥∥hi (x i )− hi (x i
k ) +

1
m

m∑
j=1

hj (x j
k )

∥∥∥∥∥∥
2
 ,

and then update λk according to

λk+1 = λk +
α

m

m∑
i=1

hi (x i
k+1)

Comparison with Incremental Aggregated Augmented Lagrangian
The two methods involve fairly similar operations

ADMM has guaranteed convergence for any constant α, and under weaker
conditions (dual differentiability and strong convexity are not required)

IAAL has stepsize restrictions

At each iteration, all components x i are updated in ADMM, but a single
component x i is updated in IAAL (m times greater overhead per iteration)
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Incremental Methods with Constraint Projection

minimize
m∑

i=1

fi (x) subject to x ∈ ∩q
`=1X`,

where fi : <n 7→ < are convex, and the sets X` are closed and convex.

Incremental constraint projection algorithm
Choose indexes ik ∈ {1, . . . ,m} and `k ∈ {1, . . . , q}.
Perform a subgradient iteration or a proximal iteration

xk+1 = PX`k

(
xk − αk∇̃fik (xk )

)
or xk+1 = arg min

x∈X`k

{
fik (x) +

1
2αk
‖x − xk‖2

}
where αk is a positive stepsize and ∇̃ denotes (any) subgradient.

Connection to feasibility/alternating projection methods.
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Incremental Random Projection Method

Problem

minimize
m∑

i=1

fi (x) subject to x ∈ X = ∩q
`=1X`,

Typical iteration
Choose indexes ik ∈ {1, . . . ,m} and `k ∈ {1, . . . , q}.
Set

xk+1 = PX`k

(
xk − αk∇̃fik (x̄k )

)
x̄k = xk (subgradient iteration) or x̄ = xk+1 (proximal iteration).∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <∞ (diminishing stepsize is essential).

Two-way progress
Progress to feasibility: The projection PX`k

(·).

Progress to optimality: The “subgradient/proximal" iteration xk − αk∇̃fik (x̄k ).
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Visualization of Convergence

) x∗

xk

k xk+1

Incremental Projection Method
Large Stepsize

Incremental Projection Method
Small Stepsize

Gradient Projection Method Alternating Projection Method
for Feasibility

k xk+1

) x∗xk = xk+2

xk

k xk+1

) x∗= xk+2

Progress to feasibility should be faster than progress to optimality. Gradient stepsizes
αk should be << than the feasibility stepsize of 1.
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Sampling Schemes for Constraint Index `k

Nearly independent sampling

inf
k≥0

Prob(`k = X` | Fk ) > 0, ` = 1, . . . , q,

where Fk is the history of the algorithm up to time k .

Cyclic sampling
Deterministic or random reshuffling every q iterations.

Most distant constraint sampling

`k = arg max
`=1,...,q

∥∥xk − PX`
(xk )

∥∥
Markov sampling
Generate `k as the state of an ergodic Markov chain with states 1, . . . , q.
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Sampling Schemes for Cost Component Index ik

Random independent uniform sampling

Each index i ∈ {1, . . . ,m} is chosen with equal probability 1/m, independently of
earlier choices.

Cyclic sampling
Deterministic or random reshuffling every m iterations.

Markov sampling
Generate ik as the state of a Markov chain with states 1, . . . ,m, and steady state
distribution {1/m, . . . , 1/m}.
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Convergence Theorem

Assuming Lipschitz continuity of the cost, linear regularity of the constraint, and
nonemptiness of the optimal solution set, {xk} converges to some optimal solution x∗

w.p. 1, under any combination of the preceding sampling schemes.

Idea of the convergence proof
There are two convergence processes taking place:

Progress towards feasibility, which is fast (geometric thanks to the linear regularity
assumption).

Progress towards optimality, which is slower (because of the diminishing stepsize
αk ).

This two-time scale convergence analysis idea is encoded in a coupled
supermartingale convergence theorem, which governs the evolution of two
measures of progress

E[dist2(xk ,X )] : Distance to the constraint set, which is fast

E[dist2(xk ,X∗)] : Distance to the optimal solution set, which is slow

Bertsekas (M.I.T.) Incremental Gradient 30 / 1



Concluding Remarks

Incremental methods exhibit interesting convergence behavior, and can lead to
great efficiencies for large-sum cost functions

Incremental proximal methods enhance reliability and can be combined
seamlessly with incremental gradient/subgradient methods

Incremental proximal methods when dualized yield incremental augmented
Lagrangian methods that can take advantage of constrained problem separability

Constraint projection variants provide flexibility and enlarge the range of potential
applications

Incremental methods are amenable to distributed asynchronous implementation
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Thank you!
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