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A Class of Generalized Bellman Equations

Ordinary Bellman equation for a policy µ of an n-state MDP

J = TJ

where

(TJ)(i) def
=

n∑
j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αJ(j)

)
, i = 1, . . . , n

pij (u): transition probs, g(i, u, j): cost per stage, α: discount factor

Generalized Bellman equation

J = T (w)J

where w is a matrix of weights wi`:

(T (w)J)(i) def
=
∞∑
`=1

wi`(T `J)(i), wi` ≥ 0,
∞∑
`=1

wi` = 1 (for each i = 1, . . . , n)

Both can be solved for Jµ, the cost vector of policy µ.
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TD(λ) Special Cases

Classical TD(λ) mapping, λ ∈ [0, 1)

T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J, wi` = (1− λ)λ`−1

A generalization: State-dependent λi ∈ [0, 1)

(T (λ)J)(i) = (1− λi )
∞∑
`=1

λ`−1
i (T `J)(i), wi` = (1− λi )λ

`−1
i
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Generalized Bellman Eqs with Subspace Projection: Φr = ΠT (w)(Φr)

Φ is an n × s matrix of features, defining subspace S = {Φr | r ∈ <s},
r ∈ <s is a vector of weights.
Π is projection onto S with respect to a weighted Euclidean semi-norm
‖J‖2

ξ =
∑n

i=1 ξi
(
J(i)

)2, where ξ = (ξ1, . . . , ξn), with ξi≥ 0.
If ‖ · ‖ξ is a norm, this is Galerkin approximation specialized to DP.

Example: TD(λ) T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J, λ ∈ [0, 1)

Subspace S = {Φr | r ∈ "s}

Jµ

Simulation errorΠJµ

Bias

λ = 0

λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)
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Generalized Bellman Eqs with Aggregation

Aggregation case (r is the cost vector of an “aggregate" problem)

r = DT (w)(Φr), (low-dimensional) Φr = ΦDT (w)(Φr), (high-dimensional)

where Φ and D are nonnegative matrices whose rows are prob. distributions.

Comparison with projection case

Φr = ΠT (w)(Φr)

Aggregation is a special case of projection if ΦD is a semi-norm projection.
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First Benefit of the Generalization

Φr = ΠT (w)(Φr)

State-dependent weights wi`

Similar approximation properties as the TD(λ) mapping T (λ) (control the
bias-variance tradeoff)

New sampling schemes based on multiple short simulation trajectories
(free form sampling)

They control more flexibly the bias-variance tradeoff

They naturally introduce exploration of the potential of other policies (in
the context of policy iteration)
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Second Benefit of the Generalization

Semi-norm projection - Can have ξi = 0

More flexibility in simulation (some states need not be visited)

Aggregation and projected equations become strongly connected if
semi-norm projection is allowed

Use of semi-norm allows (for the first time) multistep aggregation
methods - analogs of TD(λ), LSTD(λ), LSPE(λ)
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Projected Value Iteration for Projected Equation Φr = ΠT (w)(Φr)

Exact form of projected value iteration

Φrk+1 = ΠT (w)(Φrk )

or

rk+1 = arg min
r

n∑
i=1

ξi

(
φ(i)′r −

∞∑
`=1

wi`
(
T `(Φrk )

)
(i)

)2

, (φ(i)′: i th row of Φ)

We view the expression minimized as an expected value that can be
simulated with Markov chain trajectories:

ξi will be the “frequency" of i as start state of the trajectories

wi` will be the “frequency" of trajectory length ` when i is the start state
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Simulation-Based Implementation of Projected Value Iteration
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NLPs are solved by gradient/Newton methods.
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Modern view: Post 1990s
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Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.
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1

Approximation using trajectories t = 1, . . . ,m

rk+1 = arg min
r

m∑
t=1

(
φ(it )′r − Ct (rk )

)2 (it : start state, Ct (rk ): sample cost)

As freq. of start state i → ξi , freq. of start-state/length (i, `)→ ξiwi`

Opt. condition for simulation-based least squares

converges to

Opt. condition for exact least squares
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Matrix Inversion Method (Extension of LSTD(λ))
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1

Find r̂ such that

r̂ = arg min
r

m∑
t=1

(
φ(it )′r − Ct (r̂)

)2

This is a linear system of equations (the equivalent optimality condition).
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Example: Classical TD Sampling

T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J

Generate one single infinitely long trajectory

Segment it, and weigh the segments of length ` with geometric weights
wi` = (1− λ)λ`−1

Use the Markov chain invariant distribution as weight vector
ξ = (ξ1, . . . , ξn)

Requires modifications to deal with transient states and exploration (an
off-policy scheme and modified TDs)
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New Sampling Schemes

Geometric sampling

T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J

Generate many short trajectories with random/geometrically distributed
length (parameter λ, the same for all start states)

Arbitrary restart distribution ξ. Provides implementation of LSPE(λ) and
LSTD(λ) with exploration.

Free-form sampling

(T (w)J)(i) def
=
∞∑
`=1

wi`(T `J)(i), wi` ≥ 0,
∞∑
`=1

wi` = 1 (for each i = 1, . . . , n)

Anything goes as long as
freq. of start state i → ξi , freq. of start-state/length (i, `)→ ξiwi`



Main Ideas Simulation-Based Solution Aggregation as a Semi-Norm Projected Equation

Free-Form Sampling
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Trajectories can be segmented into overlapping pieces, and even
duplicated, to create extra shorter trajectories.
Deals well with exploration.
Lengths of trajectories can be dependent on the start state.
Controls more flexibly the bias-variance tradeoff

Long segments < − > Large sample variance

Can use large wi` for large ` selectively for some critical states i to
reduce bias.
Some weights may have “partially deterministic form" rather than be fully
simulated.
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Selective Bias-Variance Control: An Example

An example where TD(0) gives large bias and TD(1) large variance
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TD(0.9)
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II

One-stage costs are weighted disproportionally to future costs in TD(0).
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Block TD(λ)-Type Algorithm: An Example

Use an upper bound m on the length of trajectories

This makes sense if few samples are collected before changing policies
(optimistic PI).

We can use geometrically weighted coefficients (same λ ∈ (0, 1) for all i)

wi` = (normalization const) · λ`−1, ` = 1, . . . ,m

The geometrically weighted coefficients can be state-dependent

wi` = (normalization const) · λ`−1
i , ` = 1, . . . ,m

This allows more flexible control of the bias-variance tradeoff.

Note the wi` are “partially deterministic" (less noise).

Exploration is allowed through trajectory restarts to control the weights
ξi .
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Aggregation Framework

pij(u)

dxi φjy

ji

x y

Original
System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

Matrix D Matrix Φ

Introduce s aggregate states, aggregation and disaggregation
probabilities
They define a s-dimensional aggregate Markov chain with single step
Bellman equation

r = DT (Φr)

Can obtain approximation Φr using the multistep versions

Φr = ΦDT (λ)(Φr) or Φr = ΦDT (w)(Φr)

which allow bias-variance tradeoff. If ΦD is a semi-norm projection the
preceding methodology applies.
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Two Common Types of Aggregation

Hard aggregation: The aggregate states are disjoint subsets Sx of states
with ∪x Sx = {1, . . . , n}, and dxi > 0 only if i ∈ Sx , φix = 1 if i ∈ Sx .

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =




1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




Aggregation with discretization grid of representative states: Each
aggregate state is a single original system state x ∈ {1, . . . , n}, and
dxx = 1.
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The aggregate states are disjoint subsets Sx of states

Common case: Sx is a group of states with “similar features"

Hard aggregation is a special case: ∪x Sx = {1, . . . , n}
Aggregation with representative states is a special case: Sx consists of
just one state
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Connection with Semi-Norm Projection

Assume that the approximation is piecewise constant with interpolation:
constant within the aggregate states, interpolated for the other states,
i.e., the disaggregation and aggregation probs satisfy

φix = 1 ∀ i ∈ Sx , dxi > 0 iff i ∈ Sx

Then ΦD is a semi-norm projection with

ξi = dxi/s, ∀ i ∈ Sx

The use of a semi-norm is critical since ξi = 0 for i /∈ ∪x Sx (except in the
case of hard aggregation where ξi > 0 for all i).



Main Ideas Simulation-Based Solution Aggregation as a Semi-Norm Projected Equation

Multistep Aggregation

Multistep aggregation analogs of TD(λ), LSPE(λ), and LSTD(λ) are
well-defined.
Multistep aggregation with free-form sampling is well-defined.

Generate many short trajectories with the original system.
The start state of each trajectory must be in ∪x Sx .

A lot of flexibility for exploration.

Flexible control of bias-variance tradeoff (use longer trajectories for
“critical" start states).

The multistep equation Φr = ΦDT (w)(Φr) is a sup-norm contraction if T
is.
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Concluding Remarks

Presented a class of generalized weighted Bellman equations.

They allow state-dependent weights.
They allow the use of a variety of sampling methods.

Flexible treatment of the bias-variance tradeoff.
They allow semi-norm projection.

Connection between projected equations and aggregation equations.

Also allows multistep aggregation methods of the TD(λ) type (but more
general).

The methodology extends to the much broader field of Galerkin
approximation.
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