
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 1 , JANUARY 1981 11

Distributed Algorithms for Generating Loop-Free Routes
in Networks with Frequently Changing Topology

ELI M. GAFNI, STUDENT MEMBER, IEEE, AND DIMITRI P. BERTSEKAS, SENIOR MEMBER, IEEE

Abstract-We consider the problem of maintaining communication
between the nodes of a data network and a central station in the
presence of frequent topological changes as, for example, in mobile
packet radio networks. We argue that flooding schemes have sig-
nificant drawbacks for such networks, and propose a general class of
distributed algorithms for establishing new loop-free routes to the
station for any node left without a route due to changes in the network
topology. By virtue of built-in redundancy, the algorithms are
typically activated very infrequently and, even when they are, they do
not involve any communication within the portion of the network that
has not heen materially affected by a topological change.

I. INTRODUCTION

T HERE has been considerable interest recently in mobile
packet radio (PR) networks (see, e.g., [l]). In such net-

works, it is often necessary to use intermediate PR’s as re-
peaters in order to transfer a message from a source to its
destination. This gives rise to the usual routing problem en-
countered in wire packet switched networks. Moreover, when
the PR’s are mobile, the limited broadcast range, multipath
interference, changes in shielding factors, etc., induce rapid
topological changes. Thus, communication links frequently
go down while other links are established. In such an en-
vironment, it is a formidable task for a routing algorithm to
keep communication going not to mention trying to optimize
its transfer.

Most of the routing schemes considered for PR networks
involve the use of a central station that collects information
regarding network connectivity and sets up routes from PR’s
to itself. One possibility is to determine routes on the basis
of a shortest path algorithm. We refer to such routes estab
lished by the station as the primary routes and for the sake
of the following discussion we assume that each PR has a
single primary route to the station which may be altered
periodically.

A centralized routing algorithm of the type just described
must by necessity deal with topological changes through the
station. By this we mean that the station must be informed
of the topological changes that have occured in order to
maintain up-to-date connectivity information which is in
turn the basis for altering primary routes when necessary.
One possibility that comes to mind is to require that each PR
that becomes aware of a topological change should immedi-

Paper approved by the Editor for Computer Communication of the
IEEE Communications Society for publication without oral presenta-
tion. Manuscript received October 11, 1979; revised May 5 , 1980. This
work was supported by Grant ONR-N00014-75-C-1183.

The authors are with the Laboratory for Information and Decision
Systems, Massachusetts Institute ofTechnology, Cambridge, MA 02139.

ately send this information to the station which in turn will
take appropriate action if necessary.

One difficulty with a scheme of this type, when topological
changes are frequent, is that a great deal of information is
passed on to the station. Thus, the station may find itself
swamped with messages even though many of these messages
do not convey truly important information since many of the
topological changes can be only temporary, lasting, for ex-
ample, for only a few seconds. A possible remedy would be for
a PR to take a time out before reporting a topological change.
This will result in a reduction of topological change messages
flowing to the station at the expense of making decisions
based on information that may be incomplete.

A second and more irritating difficulty results from the fact
that the primary routes over which a topological change is to
be reported may have been themselves affected by the topo-
logical change. Thus, a PR that has lost its primary route to
the station due to a topological change must find an alternate
route to report this fact to the station. In wire networks, there
is a failsafe method for doing this, namely by using a flooding
scheme whereby the topological change message is broadcast
to all neighbors who in turn broadcast it to all their neighbors
and so on until the message reaches the station. For PR net-
works, however, a flooding scheme is quite unsuitable. The
reason is that it triggers nearly simultaneous bursts of broad-
cast messages throughout the network. This results in col-
lisions of the type arising when two messages arrive at a PR,
simultaneously. Collisions necessitate retransmissions, more
collisions occur and the network can be driven to instability
and ultimate collapse.

We thus arrive at the conclusion that a scheme based on
immediate reports of topological changes to the station
coupled with some type of flooding scheme when a primary
route fails is dubious for PR networks with frequent topo-
logical changes. It thus appears to us that it is necessary to
have, in addition to the primary routing algorithm operated
by the station, a contingency routing algorithm to cope
effectively with topological changes affecting primary routes.

Desirable properties for such an algorithm are as follows.
1) It should provide some redundancy in the form of ad-

ditional routes to the station which can be used when the
primary route fails. This has the effect of drastically reducing
the frequency with which any particular PR will lose all its
routes to the station.

2) It should not rely on instructions from the station in
establishing new routes when all the existing routes of any
PR fail.

0090-6778/81/0100-0011$00.75 0 1981 IEEE

12 IEEE TkANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 1, JANUARY 1981

3) It should not employ flooding or otherwise create

4) It must ensure that each route is loop-free at all times.
5) I t must be capable of incorporating awakened links into

existing routes with little communication overhead.
The purpose of this paper is to propose and investigate

some algorithms that can form the basis for developing con-
tingency routing algorithms with properties 1)-5) above. In
the next section, we introduce a graph theoretic problem
closely related to the contingency routing problem. In Section
111, we provide two example algorithms for solving this prob-
lem. In Section IV, these algorithms are embedded within a
general class of algorithms based on a generalized numbering
system. We conclude the paper with a discussion of some im-
plementation aspects.

serious problems due to collisions.

11. A PROBLEM ON ACYCLIC DIRECTED GRAPHS

Following standard terminology, we say that a directed
graph is acyclic if it contains no directed cycle. By this we mean
that every link of the graph is assigned a direction and it is
impossible to find a nontrivial directed path that originates
and terminates at the same node. Assume that we are given
an acyclic directed graph (ADG for short) with a special node
which is referred to as the destination. We say that the ADG is
destination oriented if for every node there exists a directed
path originating at this node and terminating at the destina-
tion. Otherwise, we say that the ADG is destination disori-
ented. It is easy -to see that a connected ADG is destination
disoriented if and only if there exists a node other than the
destination that has no outgoing link, i.e., it is not the head
node of any link.

We consider the following problem (P): given a connected
destination disoriented ADG transform it to a destination
oriented ADG by reversing the directions of some of its links.

Problem (P) is closely related to the contingency routing
problem described in the previous section. The destination can
be associated with the station of a PR network while other
nodes can be associated with PRs. Any communication link
between any pair of PR's has a direction associated with ic
and can be used for sending messages to the station in this
direction only. If the resulting directed graph has no directed
cycles and it is destination oriented, then every link will be
part of a route leading to the station when used in the assigned
direction. This provides redundancy in that for each PR there
may be several downstream neighbors along which there is a
path leading to the station. If communication with one of
these neighbors is disrupted (for example, the one on a pri-
mary route) then the PR can communicate with the station
through one of its other downstream neighbors (i.e., through
one of its secondary routes). It is possible, however, that due
to topological changes a PR will be left without a downstream
neighbor. This means that the corresponding ADG has become
destination disoriented. The problem that we are then faced
with is to reverse the direction of communication along several
links so as to reestablish a directed path to the station for each
PR. This is in fact problem (P).

Naturally, there is a large number of algorithms for solving
problem (P). For example, one can assign positive weights on

lsl Iteration 2nd Iteration 3rd Iteration

Ffi
4th lteration Final Destination Oriented ADG

Fig. 1. Full reversal method.

all links and use a shortest path algorithm. We are, however,
interested in algorithms that not only solve problem (P), but
also have other desirable properties in connection with the
contingency routing problem.

Communication between nodes in a data network is subject
to strict unambiguous rules (protocol) and the implementation
of our algorithms in the context of a communication network
will have to incorporate these rules. Since these rules are not
yet universal and change from network to network, we have
decided to detach the statement and analysis of the algorithms
that follow from this context and use the more abstract graph
theoretic framework.

111. TWO ALGORITHMS FOR SOLVING PROBLEM (P)
The two algorithms for problem (P) that follow will be

stated loosely and described pictorially as they are executed
on a linear machine. The proof of all our claims about these
algorithms will be given in Section IV in the context of a more
general algorithm.

Full Reversal Method: At each iteration each node other
than the destination that has no outgoing link reverses the
directions of all its incoming links.

Fig. 1 provides an example of the sequence of successive
iterations of this algorithm. The nodes that reverse at each
iteration are marked by R . The algorithm provides a sequence
of ADG's and terminates when a destination oriented ADG is
obtained.

Partial Reversal Method: Every node i other than the desti-
nation keeps a list of its neighboring nodes'j that have re-
versed the direction of the corresponding links (i , i). At each
iteration each node i that has no outgoing link reverses the
directions of the links (i , j) for all j which do not appear on
its list, and empties the list. If not such j exists (i.e., the list
is full), node i reverses to the directions of all incoming links
and empties the list.

Fig. 2 provides an example of the sequence of successive
iterations of this algorithm (starting with empty lists). The
examples of Figs. 1 and 2 are extreme in that they require a
large number of reversals. The reader can convince himself
through other examples that in most networks (particularly
with relatively high connectivity) the reversal process will be
initiated infrequently and will typically not require a long
chain of iterations.

We claim the following for both algorithms.
1) If the graph is connected then the reversal process will

GAFNI AND BERTSEKAS: DISTRIBUTED ALGORITHMS FOR GENERATING LOOP-FREE ROUTES 13

1st Iteration 2nd Iteration 3rd Iteration

R 77
4th Iteration Final Destination Oriented ADG

Fig. 2. Partial reversal method.

terminate after a finite number of iterations at a destination
oriented ADG.

2) The directed graph generated at each iteration is acyclic.
3) The direction of any link between two nodes that have a

direct path to the destination in the initial ADG will never be
reversed.

We now provide an alternative statement of both algorithms
which, within the context of the contingency routing problem,
allows the addition of new directed links in an ADG without
forming a cycle.

Full Reversal Method: At each stage of the algorithm, we
associate with every node i a pair (ai, i) where i is the unique
identification number of the node and ai is an integer. The
set of pairs {(ai, i)} is ordered lexicographically, i.e., (aj, i) >
(aj, j) if ai > ai or if ai = ai and i > j . Let N be the set of
nodes and consider a set of integers {olio li EN} such that in the
initial ADG in problem (P) the direction of any link (i, j) goes
from i to j if and only if (aio, i) >(a;, j) . Such a set can be
shown to exist (see [2 , p. 291). The kth iteration of the full
reversal method k = 0, 1, ..., can be implemented as follows.
At the beginning of the iteration each node i has an integer
aik associated with it. A node i other than the destination
has no outgoing link if for every neighbor j of i we have
(aik, i) < (aik, j) . At the kth iteration such a node i increases
f f i k to

a:+ ’ = max {a: l j is a neighbor of i} + 1,

while all others nodes j maintain the same number, i.e., a:+‘ =
a:. In addition, link directions are reversed according to the
rule that link (i, j) should be directed from i to j if (aik+’, i) >
(a:+ ’ , j) . Thus, in this scheme the .directions of any link
(i, j) is determined by the ordering of the “numbers” (qk,
i), (aik, j) and are always oriented from higher to lower
“number.” This precludes the formation of a cycle. Further-
more, within the context of contingency routing, it is trivial
to assign a direction to a new link in the graph without forming
a cycle by simply orienting the link from the node with a higher
“number” to the node with lower “number.”

Partial Reversal Method: At each stage of the algorithm, we
associate with every node i a triple (ai, Pi, i) where ai and pi
are integers. The set of triples {(ai, pi, i)} is ordered lexico-
graphically. The initial set of triples {(aio, pio, i) li E N } is such
that aio = 0, for all i and for any link (i , j) we have (aio, pio,

i) > (a?, b?, j) if and only if the direction of (i, j) in the
initial ADG in problem (P) goes from i to j . The kth iteration
is implemented as follows. A node i other than the destination
for which (aik, P i k , i) < (a:, /3:, j) for all neighbors j in-
creases qk to

a:+1 = min {a: l j is a neighbor of i} + 1

and sets Pik io

I min (0; 1 j ‘is neighbor of i with at+

=C$}-l
p;+1 -, -

if there exists a neighbor j with aik+’ = a:

1’ 0: otherwise.

All other nodes j maintain the same integers ai and Pi, i.e.,

The two algorithms described in this section are repre-
sentative of a general class of algorithms for problem (P),
which are based on a generalized numbering system. The next
section is devoted to the development of this class.

a.k+ 1 = qik, pjk+ 1 = pik.
1

IV. A GENERAL CLASS OF ALGORITHMS

We are given a connected graph G the nodes of which are
denoted by 1, 2, - e , N + 1. Node N + 1 is designated as the
destination. The set of links is denoted by L .

Let A be a countably infinite set which is totally ordered
by a relation < in the sense that for any two distinct elements
al and a2 of A there holds a l < a2 or a2 < a l , but not both.
Assume that A is partitioned into N disjoint subsets A l , .-,
AN, each of which is countably infinite and unbounded in the
sense that there exists no element a* E A and index i E { 1, *-,

N } such that for all ai E Ai we haveai <a*. Assume further that
each subset Ai is equipped with an addition operation under
which it is an Abelian group. This means that for each i there
is a mapping p : Ai X Ai + Ai such that 1) if b E Ai, c E Ai
then p(b, c) E Ai, 2) there exists an element z E Ai such that
p(z , b) = b for all b E Ai, 3) for each b E Ai there exists an
b E Ai such that p(b , 5) = z ; 4) for each b E Ai, c € A i , and
d E Ai we have p(b, c) = p(c, b) and p(p(b, c), d) = p(b , p(c,

Where there is no danger of confusion we use the symbol
“+” to denote the addition operation on each group Ai and
the symbol “-” to denote its inverse, i.e., we denote p(a, b) =
a + b, and d = a - b if p(d , b) = a for all a, b EAi.

Examples: For the full reversal method, each set Ai, i =
1, .-, N , consists of the set of pairs (ai, i) where ai is an integer.
The addition operation on Ai is p[(a i , i), (ai’, i)] = (ai +
ai’, i). For the partial reversal method, each set Ai, i = 1, -,
N , consists of the set of triples (ai, pi, i) where ai and pi are
integers. The addition operation on Ai is p[(ai, pi, i), (ai’,
pi‘, i)] = (ai + ai’, Pi i- pi’, i). The order on A = UiEl Ai in
both cases is specified lexicographically as described in the pre-
vious section.

-

4).

14 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 1, JANUARY 1981

Let V be the set of N-tuples u = (al, a 2 , e-, aN) where
ai E Ai for each I. Each u = (a ;-, aN) E V assigns a direction
on each link (i, j) E L with i, j # N + 1 according to the rule

ai > ai * Link (i, j) is directed from i to j.

It assigns 'to each link (i, N + 1) E L the direction from i to
N + 1. The resulting directed graph is clearly acyclic for each
u E V. A sequence { u,} corresponds to a sequence of acyclic
graphs. We will describe a class of algorithms that generate
sequences { u,} C V according to rules that guarantee that
there exists an index /c such that uk = UK for all k and
the ADG corresponding to UE is destination oriented. Clearly,
any algorithm of this type solves problem (P)..

For each u = (al, s.1, aN) E V denote by S(u) the subset of
.{ 1, -e, N } given by

S(v)={iI(i,N+l)qL, andai<aj foral l j

with(i , j)E L , i = l,-,N}. (1)

Clearly, S(u) is nonempty if and only if the ADG correspond-
ing to u is destination disoriented.

We consider algorithms of the form

Uk+l EM@,), uo : given (2)

where M is a point-to-set mapping which assigns to each ele-
ment u E V a nonempty subset M(u) of V. The meaning of
(2) is that Uk+l is selected arbitrarily among the elements of
M(uk). Thus, the sequence { u,} generated by (2) need not be
unique. As will become apparent shortly, this lack of unique-
ness captures the distributed and asynchronous nature of the
contingency routing algorithms we envision.

We will make the following assumptions regarding algo-

(A.1): There exist functions gi: V + .Ai , i = 1, -, N , such
rithm (2).

- that, for each u = (al, -e, a ~) E V , the set M(u) is given by

M(u) = t u } if S(u) is empty (3a)

M(u) = {E = GI, -, i i ~) I V # u and either iii

= ai or iii = gi(u), Vi = 1, -a, N }

if S(u) is nonempty. (3b)

(A.2): For each u = (al, e.., a ~) E V and i = 1, .-, N the
functions gi satisfy

gi(u) > ai if i E S(u) (4)

gi(u) = ai if i $! S(u). (5)

Furthermore, gi(u) depends only on ai and those aj for which
(i, j) E L , i.e., for each i, u = (al, e-, a ~) and ut = (a1 ', .-, a ~ ')
such that ai = ai' and ai = ait for all j with (i, j) E L , we have

gi(V) = gi(J)-

(A.3): For each i E { 1, *-, N } , and each sequence { uk} C V
for which i E S(uk) for an infinite number of indices k , the
sequence

I k

is unbounded in A i , where a{ denote the coordinates of ur.
Note that (A.l) implies that if uk+ E M(uk), k = 0, 1, -,

then Uk+l # uk iff S(uk) is nonempty, and if S(UF) is empty
for some E then uk = uc for all k > E .

ExampZes: In the full reversal method, the function gi is
defined for all u = ((011, l), -, (aN, N)) by

In the partial reversal method, the function gj is defined for all
u = (6% 9 01 Y I), *.*? (%-9 ON, N)) by

where

mjn {Pi I (i, j) E L, iii = ai} - 1 if there exists j with
-
P i = (i,j)E L, Cri=&j

Pi otherwise.

It is easy to see that the corresponding algorithms satisfy
Assumptions (A.1)-(A.3). Within the context of these two
algorithms and the discussion of the previous'sections one can
appreciate the value of introducing the general algorithm via a
point-to-set mapping as in (2). Thus, (2) and (3) imply that if
the ADG corresponding to uk is destination disoriented and,
hence, the set S(uk) of nodes with no outgoing link is non-
empty, then any one of the nodes in s(~,) or several of these
nodes, simultaneously, can initiate a reversal, i.e., can apply
the mapping gi to u. The timing and order in which reversals
take place is unspecified. Different orders of reversals merely
correspond to different sequences { u,} generated by algorithm

The following propositions give our main results regarding
algorithm (2). The proofs are relegated to the Appendix.

Proposition I : Assume that the graph G is connected and
that (A.l)-(A.3) hold. Then given any uo E V there exists a
u* E V (depending only on uo) such that for every sequence
{ u,} generated by algorithm (2) there is an index E such that
uk = U* for all k 2 E .

Proposition 2: Assume that the graph G is connected and
that (A.1)-(A.3) hold. Let {uk} = {(al,, -e, aNk)} be a se-
quence generated by algorithm (2). Then for every node

(2).

I

GAFNI AND BERTSEKAS: DISTRIBUTED ALGORITHMS FOR GENERATING LOOP-FREE ROUTES 15

i E { 1, -, N } for which there exist links (i , j l) , 0'1, j 2) ,
(i m , N + l)withaio > a j , o , a j , o > a j z O , - ~ , a j m - l 0 >aim 0 ,we
have -

ai0 = a: V k = 0, 1, -.
Proposition 1 shows that the algorithm essentially termi-

nates in a finite number of iterations at an element u* which
corresponds to a destination oriented ADG. A rather remark-
able fact is that u* depends ,only on uo and does not depend
on the particular sequence { uk} generated by the algorithm. In
the context of the reversal methods, this means that regardless
of the timing and order of reversals the same final destination
oriented ADG will be obtained within a finite number of
iterations. Praposition 2 shows an important stability property
of the algorithm, namely, that a node that lies on a directed
path to the destination i n the initial ADG corresponding to
vo essentially will not participate in the algorithm (will never
undergo a reversal in the context of the reversal algorithm).

CONCLUSIONS
The algorithms proposed in this paper can form the basis

for developing contingency routing algorithms for mobile PR
networks with a central station. In such schemes, each PR will
have a generalized number (i.e., an element of a suitable to-
tally ordered set) associated with it. Link directions will
always be oriented from higher to lower number. This pre-
cludes the formation of loops and provides reliable secondary
routes that can be used for transmitting connectivity informa-
tion and data to the station when. primary routes fail. The
station does not have to respond immediately to a topological
change as long as secondary routes are available but can at any
time intervene and reestablish primary and secondary routes
on the basis of some criterion. This can be done by assigning
new generalized numbers to selected nodes. When a PR loses
all its routes to the station it undergoes a reversal process
whereby on the basis of the numbers of its neighbors is selects
a number according to the rules of one of the algorithms pro-
posed. This number is broadcast to all neighbors who thus be-
come implicitly informed of any reversals in the direction o i
communication that affect them.

A number of practical issues will have to be resolved before
a scheme of the type described can be implemented in a real
operating environment. For example, an error detection
scheme will be required to ensure that each PR operates on
the basis of correct numbers for all its neighbors. One pos-
sibility here is to require each PR to acknowledge a number
change of a neighbor the first time it sends a packet to that
neighbor after a change has been made as evidence that he has
heard the correct number. Another difficulty has to do with
the possibility of some numbers becoming too large during
the algorithmic process. This will happen, for example, if the
network becomes disconnected. One possibility for dealing
with this is to require all nodes, the numbers of which have
exceeded the allowable limit, to wait for the station to in-
tervene and reset the number to lower values. This can be
combined with other possibilities involving, for example,
distributed schemes for reducing high numbers starting from
the destination and proceeding in the direction of nodes with

high numbers. It thus appears that it is possible to resolve
satisfactorily the implementation aspects of the algorithms
described.

It is of interest to compare the algorithms of this paper
with distributed shortest path algorithms based on minimum
number of hops to the station [3], [4]. The algorithms of
this paper do. not guarantee the generation of shortest paths
and must rely on the station for periodic optimization of
routing. On the other hand, they offer two substantial advan-
tages over shortest path algorithms. Firstly, because of the
multiplicity of available routes to the station the contingency
algorithm will be activated only in the typically rare occasion
where a PR will lose all of its available routes to the station.
Even if this occurs it is unlikely that a long chain of reversals
and message exchanges will be necessary before a destination
oriented ADG is established. This is particularly true for net-
works with high connectivity. It is important to emphasize in
this connection the result of Proposition 2 which essentially
states that the nodes that have not lost all their routes to the
station will not participate in the reversal process or com-
munication exchange. Secondly, in order to awaken a new
link no direction reversals or communication will be neces-
sary other than the necessary exchange of end node numbers.
This is particularly important in networks with P R s fre-
quently moving into new areas and establishing new con-
nections with other PRs. By contrast in distributed shortest
path algorithms the failure 'of a link on the shortest path tree
or the awakening of a link near the station can trigger mes-
sage exchanges which can propagate through the entire net-
work. Thus, both the frequency of activation and the com-
munication overhead are much higher for shortest path algo-
rithms. In addition, our algorithms guarantee loop freedom
of generated routes at. all times (although not necessarily
loopfree communication). This is not the case for some of
the distributed shortest path algorithms, e.g., the original
ARPANET algorithm [4].

APPENDIX

In this Appendix, we prove Propositions 1 and 2. We assume
that the graph G is connected and that (A.1)-(A.3) hold.
Throughout the Appendix, we denote the coordinates of

Proof of Proposition I : We establish the proof through a
sequence of lemmas.

Lemma I : For every sequence {uk} generated by algo-
rithm (2), there exists an index k such that s (Vk) is empty for
all k 2 E.

Proof: Assume the contrary, i.e., there exists a sequence
tuk} generated by algorithm (2) such that S(uk) is nonempty
for an infinite number of indices k. Since s (u k) is a subset
of the finite set { 1, - - e , N}, the assertion above and Assumption
(A.l) imply that there exists an infinite index set K and
some node i E { 1, -, N} such that

Vk, ck, yk,-etC., by aik, g i k , Z i k , etC.

16 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 1 , JANUARY 19.81 .

We have for every k

k
a;+1 = a: + [g&) - air] . (8)

r=O

From (6), (8), and Assumption (A.3) it follows that {a ik}
is unbounded in Ai and, hence, also unbounded in A . From
(6), we obtain

a: <a: V k E K , jwi th(i , j)E f . (9)

Since for all j E { 1, - e , N}, {aik}is “monotonically nonde-
creasing” in the sense of the total order ofAi, it follows from
(9), that for all nodes j with (i, j) € L , {a:} is unbounded in A
and, hence, j E S(uk) for an infinite number of indices k. Re-
peating for all nodes j with (i, j) E L , the argument made above
for node i and continuingin this manner we obtain that, for all
nodes j that are connected to i by an undirected path in G,
the sequences {Itik)’are unbounded in A . Since G is connected
we conclude that {aik} is unbounded in A for all j E { 1 , e-,
N } . On the other hand, for every node j directly connected to
the destination’-[i.e., with (j, N + 1) E f] we have j 4 S(uk)
for all k, and, therefore, a: = a; for all k. This contradicts
the earlier conclusion that {a:} is unbounded for all j E

Lemma 1 proves the portion of Proposition 1 that asserts
that every sequence generated by algorithm (2) essentially
terminates in a finite number of iterations at some u*. It re-
mains to show that u* depends only on uo and not on the
particular sequence generated by the algorithm. To show
this, we’need some preliminary lemmas and definitions.

Lemina 2: For any u E V, if i E S(U) and j E S(U) then
(i, j) L.

Proof: Assume (i, j) E f . Then i E S(u) implies ai >
ai while j € S(u) implies ai < ai, a contradiction. . ‘ Q.E.D.

Definition 1: Two‘firiite sequences {uo, - 0 .) urn} and {Vo, ;e.,

u,} in’ V are said to be equivalent if uo = Vo and urn = U,.
Consider, for i = 1 , --, N , the mapping f i : V + V defined

for each u = (al, --, aN) by

{ 1, ..*) N}. Q.E.D.

-

fi(u) = (111 , ..., ai- 1 9 gi(u), ai+ 1, ’ ‘ - 3 aN)* (1 0)

From Lemma 2 and Assumptions (A.l) and (A.2), it follows
easily that, for every u = (a l , -, a N) E V, if i E S(U), j E
S(u) and i # j then

i E St fi(91 , i E S [f i (v)~

and

f i t f i y = fi[fi(u)l
- - (a1 9 ..., ai- 1 3 gi(V), ai+ 1 > 11.9 ei- 1 9 gi(u),

ai+ 1 9 ’ a . 9 a ~) .

A similar statement holds for more than two nodes in S(U).

Using this fact and the definitions (3) and (10) of M and f i ,
respectively, we obtain the following lemma.

Lemma 3: For every finite sequence {UO, e-, urn} for
which ++ E M(uk) for all k = 0, 1, e:-, m - 1, there exists an
equivalent sequence {io, *-, u,} and nodes io, e-, in- such
that

-

ik E S(%) and %+ 1 = fik(Uk),

V k = O , l ; . . , n - l .

Lemma 3 shows that for any finite sequence generated by
algorithm (2) there exists an equivalent sequence generated by
the algorithm

(1 1)

where % is the point-to-set mapping defined for all u E V by

%(u) =
{fi(u) I i E S(u)} if S(u) is nonempty

, (12) if S(u) is empty.

Note that every sequence generated by algorithms (11) and
(12) can also be generated by algorithm (2). Thus, in a sense,
algorithms (2) , (1 1) and (12) are equivalent.

’ For any u E V for which S(u) is nonempty we denote by
i(u) the numerically smallest node i in S(u), i.e.,

i(u) = min { i I i E S(u)}. (13)

Consider the point-to-point algorithm

Uk+l =f iuk) , uo: given (14)

where the function E V + Vis given by

Xu) =
fi(v)(u) if S(u) is nonempty

if S(u) is empty.

For any uo E V , algorithm (14) will generate a (unique) se-
quence { i j k } . Since, this sequence can also be generated by
algorithm (2) , it follows from Lemma 1 that there exists some
u* E V (depending only’on uo) and a smallest index k such
that Ck = U* for all k 2 k. The idea of the proof of the re-
mainder of Proposition’ 1 is to show that for any sequence
{ uk} generated by algorithm (1 1) starting from the same ini-
tial element uo, the sequences { ijo, e-, &} and { uo, ..e, %}
are equivalent. and, hence, % = i& = u*. We will need the
following lemma as a first step in this argument.

Lemma 4: Let’ {uk} be a sequence generated by algo-
rithm (1 1). Assume that for a node i and two indices p and q
with p < q we have a: = aip. Assume further that i ES(up) .
Then for all k with p < k < q , we have i E S(uk), and j 4
S(uk) for all j with (i , 1) E L.

Proof: B y Lemma 1, for all j with (i, j) E L we have
j 4 S(up) and, hence, by (A.2), ai”’ = ai”. The hypothesis

. GAFNI AND BERTSEKAS: DISTRIBUTED ALGORITHMS FOR GENERATING LOOP-FREE ROUTES 17

alp = aiq and Assumption (A.2) imply that aik = aip for all
k with p < k < 4. Since i E S(up) and sip" = a / , we obtain
i E. S(up+ ,). We complete the proof by repeating this argu-
ment for p + 1, .*., 4. Q.E.D.

Any finite sequence u,, -, urn+ generated by algorithm
(11) for which s (u k) is nonempty for all k E 0, -, m can be
specified by uo and the set of nodes io , *-, i , for which
Uk+l = h k (u k) for k E 0, .-, m . This motivates the following
definition.

Definition 2: Given a uo E V and a set of nodes io, e-, i,
we say that the sequence {uo ; io, .-, im } is valid if

ik E S(Uk), V k = 0, 1 , ’.*, m
where ul; - , are defined recursively by

%+I =f ik(Uk) , V k = 0, 1 , **’, m.

Clearly, there is a one-to-one correspondence between
valid sequences and “nonterminating” finite sequences
generated by algorithm (11). We can thus unambiguously
talk about equivalences of valid sequences generated by
algorithm (1 1) (cf. Definition 1). The following lemma fol-
lows easily from Definitions 1 and 2 and the remark following
Definition 1 .

Lemma 5: If {up; i p , i p + l , -, I , , z,+~, -, i q } is a valid
sequence and (i, , i, + 1) 4 L , then the sequence {up ; i p ,
i,+ ... , i,+ ,, i, , -1, i q } is valid and equivalent to {up ; i,,

The following lemma provides the crucial construction
for the remainder of the proof of Proposition 1.

Lemma 6: Let { u i } be a sequence generated by algo-
rithm (1 I), and assume that, for some k,, uko + + R u k 0) .
For each k for which s (u k) is nonempty let ik be the node
for which

. .

i p + l , > ~ m ~ l m + 1 , * . * ~ i q } *
.

Ok+ 1 = f i k (u k) - (1 6)

Let p 2 0 be the first index k , for which i k l # i (uk l) . Then
there exists an index k2 > p for which ik2 = i(up) and if 4 is
the first such index, i.e.,

iq = i(up), ik # i(up), V k E { p , -, 4 - 1) (17)

then the sequence {up; i(up), i p , -, iq- 1} is valid and equiv-
alent to { u p ; i p , ip+ - 0 , i q } .

Proofi If there were no index k2 > p for which (1 7)
holds, then by (A.l) and Lemma 4 i(up) E s (u k) for all
k > p which contradicts the conclusion of Lemma 1.

If q satisfies (l i) , then a$up) = a&,), It follows from
Lemma 4 and the fact i(up) E S(up) that

i (u p) E S (v k) , V k E { P , .’’? 4) (18)

j 9 s (u k) , V k E { P , 41, j with (i (V p) , j) E L. (19)

and, therefore,

(i k , i (V p)) q L, V k = p , p + 1;-,q-l . (20)

By using (20) and Lemma 5 it follows that the sequence
{ u p ; j p , .-, i q - 2 , i(u,), i q - , } is valid and equivalent to {up;
i p , .-, iq- 1, i(up)}. Applying again (20) and Lemma 5 we have
that the sequence { u p ; ip, - * , i q - 3 , i(up), i q - 2 , i q - 1 } is valid
and equivalent to {up ; ip7 *-, iq- 1, i(up)} and continuing in
this manner the result follows. Q.E.D.

The proof of the remainder of Proposition 1 is now straight-
forward. Let { u k } be a sequence generated by algorithm (1 1)
and let {ijk} be the sequence generated by algorithm (14) with
ijo = uo. It will suffice to show that there exists an index k and
an element u* E V such that

Vk = c k = u*, V k 2 i (2 1 4

u k # U k - l , i j k # f k - l , V k < k . (2 1b)

Let p be the first index ko for which uko+ f 6ko+ 1, i.e.,

uk = 4 , V k < p (22)

up+ 1 f Gp+l. (23)

Let 4 be the index satisfying (17). Applying Lemma 6 , we
obtain a sequence { f i k } that can be generated by algorithm
(1 1) for which

A -

Uk = Uk, V k <Jl + 1 (24)

& = I l k , V k 2 q . (25)

Note from (22)-(24) that (4) has at least its first (p + 1)
element identical with (9) whereas { u k } has only its first p
elements identical with (4) . Furthermore, from (25) it fol-
lows that { u k } “terminates” at the same element as {Vk}.

Apply now the same procedure to { c k } . This yields another
sequence with its first @ + 2) elements identical with ti&}
and the same terminating element as { u k } . From Lemma 1 ,
we have that there exists a smallest index k such that i& =
UF for all k 2 k. Hence, in a finite number of iterations
this process will terminate at the point where the sequence
ti&} obtained is identical to ti&}. Since {Ck} has the same
terminating element as { u k } it follows .that for some k and
u* E V , (21) holds. Q.E.D.

Proof of Proposition 2: The definition of S(U) and
Assumptions (Ail) and (A.2) imply that aim = ai,,, for all
k.’ Since airn- 1 > ai,’ by hypothesis, we obtain j,- 4
S(uk) for all k which implies that aim- IC = aim - 1 O for all
k . Proceeding similarly, we show that aik = ai0 for all k .

Q.E.D.

0

REFERENCES
[I] R . E. Kahn, S . A. Gronemeyer, J . Burchfiel, and R . C. Kun-

zelman, “Advances in packet radio technology,” Proc. IEEE, vol.
66, pp. 1468-1496, 1978.

[21 E. Lawler, Combinatorial Optimization: Networks and Marroids.
New York: Holt, Rinehart and Winston, 1976.

[31 P. Merlin and A. Segall, “A failsafe distributed routing protocol,”
IEEE Trans. Commun., vol. COM-27, pp. 1280-1288, 1979.

18 IEEE T'RANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. I , JANUARY 1981

A Comparison of Four Methods for Analog Speech Privacy

Abstract-Four well-known procedures for analog speech privacy
have been compared in terms of residual intelligibility, bandwidth
expansion, and encoding delay. Intelligibility scores have been de-
termined from a perceptual experiment where about 70 untrained
listeners were given the task of recognizing each of 200 spoken digits
that occurred in a balanced set of 50 encrypted four-digit utterances,
and by averaging resulting probabilities of correct digit recognition.
Bandwidth expansion has been expressed in terms of a new segmental
measure that is more sensitive to short-time bandwidth manipulations
than a conventional, long-time-averaged power spectrum measure-
ment. Encoding delay is a straightforward function of analog
scrambler parameters.

The scrambling procedures that have been compared are sample
permutation (S), block permutation (E) , frequency inversion (F) , and a
combination of methods B and F , denoted by [B F] . Sample permu-
tations involved a contiguous set of Ls (2 to 128) 8 kHz samples, while
block permutations operated on a contiguous set of Ng (4 to 128) speech
segments each of which was L g (8 to 256) samples long. Frequency
inversion is obtained by simply inverting the ,sign of every other
Nyquist (8 kHz) sample. The parameters, Ls, Ng , and L g , determine
residual intelligibility as well as transmission properties such as
encoding delay and bandwidth.

The comparisons in our study provide a quantitative justification
for the popular approach [B F] . For example, with N g = 8 and Lg =
128, although the encoding delay is as much as 128 ms, the bandwidth
expansion is only about 100 Hz (using the new segmental measure),
and the digit intelligibility I is 20 percent. Note that in the specific
problem of recognizing ten digits, purely random (input-independent)
listener responses correspond to I = 10 percent.

Paper approved by the Editor for Data Communication Systems of
the IEEE Communications Society for publication without oral presen-
tation. Manuscript received March 24, 1980; revised June 19, 1980.

The authors are with Bell Laboratories, Murray Hill, NJ 07974.

I. INTRODUCTION

T HE purpose of this paper is to compare four well-known
procedures for andog privacy from a comprehensive view-

point that includes measures of residual intelligibility and
transmission suitability. Although analog scramblers have been
widely discussed, [11 -[lo] , there appears to be little docu-
mentation of quantitative comparisons such as those attempted
in this paper. What is nor attempted in this paper is a compari-
son of an exhaustive set of analog scramblers, which would
include, for example, the rather complex procedure of
analog sample masking [6]. The scramblers included in our
study are relatively simple procedures (Section 11) based on
sample permutation (S), segment or block permutation (B),
frequency inversion (q and a combination of methods B and
F, denoted by [BF] . The criteria for comparisons will include
residual intelligibility, (I), encoding delay (D), and bandwidth
expansion (expressed by parameters W, and W, to be defined
in Section 111). In general, it is desirable to realize smallest pos-
sible values of I , D and bandwidth expansion, although
the last parameter may sometimes be uncritical (see Sec-
tion 111). Issues beyond the scope of this paper include
cryptanalysis [l] , [5] and effects of channel impairments on
the quality of descrambled speech [3], [5], [6].

Analog scramblers in general, and the simple examples of
this paper in particular, can only provide privacy in the con-
text of casual eavesdropping. For security in the presence of

' formal cryptanalysis, digital encryption [1 11 , [121 is certainly
more appropriate. The problem with the digital approach, of
course, is that the available transmission bandwidth may not

0090-6778/81/0100-0018$00.75 0 1981 IEEE

