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Distributed  Algorithms for Generating  Loop-Free  Routes 
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Abstract-We consider  the problem of maintaining  communication 
between  the  nodes  of  a  data  network  and  a  central  station in the 
presence  of  frequent  topological  changes  as,  for  example, in mobile 
packet  radio  networks. We argue  that  flooding  schemes  have  sig- 
nificant  drawbacks  for  such  networks,  and  propose  a general class  of 
distributed  algorithms  for  establishing new  loop-free routes to the 
station  for  any  node  left  without  a  route  due  to  changes in the network 
topology. By virtue  of  built-in  redundancy,  the  algorithms  are 
typically  activated very  infrequently  and,  even when they are, they do 
not  involve  any  communication  within  the  portion of the network that 
has not heen materially  affected by a  topological  change. 

I. INTRODUCTION 

T HERE has been considerable interest recently in mobile 
packet radio (PR) networks (see,  e.g., [l]).  In such net- 

works, it is often necessary to use intermediate PR’s as  re- 
peaters in order to transfer a message from a source to its 
destination. This gives  rise to  the usual routing problem en- 
countered in wire packet switched networks. Moreover, when 
the PR’s are mobile, the limited broadcast range, multipath 
interference, changes in shielding factors,  etc., induce rapid 
topological changes. Thus, communication links frequently 
go down while other links are established. In such  an  en- 
vironment, it is a formidable task for a routing algorithm to 
keep  communication going not  to  mention  trying  to optimize 
its transfer. 

Most  of the  routing schemes considered for PR networks 
involve the use of a central  station  that collects information 
regarding network connectivity and sets up routes  from PR’s 
to itself. One possibility  is to determine  routes on  the basis 
of a shortest  path algorithm. We refer to such  routes  estab 
lished by  the  station as the primary routes and  for  the sake 
of the following  discussion  we  assume that each PR has a 
single primary route to  the  station which may be altered 
periodically. 

A centralized routing algorithm of the  type  just described 
must by necessity  deal with topological changes through the 
station. By this we mean that  the  station must be informed 
of the topological changes that have occured in order to 
maintain up-to-date connectivity information which is in 
turn  the basis for altering primary routes when necessary. 
One  possibility that comes to mind is to require that each PR 
that becomes aware of a topological change should immedi- 
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ately send this  information to  the  station which in turn will 
take appropriate  action  if necessary. 

One difficulty with a scheme of this type, when topological 
changes  are frequent, is that a great  deal of  information is 
passed on  to  the  station. Thus, the  station may find itself 
swamped with messages  even though  many  of these messages 
do  not convey truly  important information since many  of the 
topological changes can be only temporary, lasting, for ex- 
ample, for only a few  seconds. A possible remedy would be  for 
a PR to take a time  out before reporting a topological change. 
This will  result in a reduction of topological change  messages 
flowing to  the  station  at  the expense of making decisions 
based on information that may be incomplete. 

A second and more  irritating  difficulty results from the  fact 
that  the primary routes over which a topological change  is to 
be reported may have been themselves affected  by  the topo- 
logical  change. Thus, a PR that has  lost  its primary route to 
the  station  due to a topological change must  find an  alternate 
route to report this fact to the  station.  In wire networks,  there 
is a failsafe method  for doing this, namely by using a flooding 
scheme whereby the topological change  message is broadcast 
to all neighbors who in turn broadcast it to all their neighbors 
and so on until  the message  reaches the  station.  For PR net- 
works, however, a flooding scheme is quite unsuitable. The 
reason  is that it triggers nearly simultaneous bursts of broad- 
cast  messages throughout  the network. This results in col- 
lisions of the  type arising when two messages  arrive at a PR, 
simultaneously. Collisions necessitate retransmissions, more 
collisions occur and the network can be driven to instability 
and  ultimate collapse. 

We thus arrive at  the conclusion that a scheme based on 
immediate reports of topological changes to the  station 
coupled with some type of  flooding scheme when a primary 
route fails  is dubious for PR networks  with  frequent topo- 
logical  changes. It  thus appears to  us  that  it is  necessary to 
have, in addition to  the primary routing algorithm operated 
by  the  station, a contingency  routing  algorithm to cope 
effectively with topological changes affecting primary routes. 

Desirable properties  for  such an algorithm are  as  follows. 
1) It should provide some redundancy in the form  of ad- 

ditional routes to  the  station which can be used when the 
primary route fails. This has the effect of drastically reducing 
the frequency  with which any particular PR will  lose  all its 
routes to  the station. 

2) It should not rely on  instructions  from  the  station in 
establishing new routes when all the existing routes of any 
PR fail. 
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3) It should not employ  flooding  or otherwise create 

4) It must  ensure that each  route is loop-free at all times. 
5) I t  must be capable  of  incorporating  awakened  links into 

existing  routes  with  little  communication overhead. 
The  purpose  of  this paper is to propose  and investigate 

some algorithms that can  form  the basis for developing con- 
tingency  routing  algorithms  with  properties 1)-5) above. In 
the  next  section, we introduce  a graph theoretic  problem 
closely related to  the contingency  routing  problem.  In  Section 
111,  we provide two example  algorithms  for solving this  prob- 
lem. In  Section IV, these  algorithms are embedded  within  a 
general class of  algorithms based on  a generalized numbering 
system. We conclude  the  paper  with  a discussion of  some im- 
plementation  aspects. 

serious problems  due to collisions. 

11. A PROBLEM ON ACYCLIC DIRECTED GRAPHS 

Following  standard  terminology, we  say that  a directed 
graph is acyclic if it contains no directed  cycle. By this we mean 
that every link  of  the  graph is assigned a  direction  and it is 
impossible to find  a  nontrivial  directed  path that originates 
and  terminates at  the same node. Assume that we are given 
an acyclic directed  graph (ADG for  short)  with  a special node 
which is referred to as the destination. We say that  the ADG  is 
destination  oriented if for every node  there  exists  a  directed 
path  originating  at  this  node  and  terminating at  the destina- 
tion.  Otherwise, we  say that  the ADG  is destination  disori- 
ented. It is  easy -to  see  that a  connected ADG  is destination 
disoriented  if  and  only if there  exists  a  node other  than  the 
destination that has no outgoing  link, i.e., it is not  the head 
node  of  any  link. 

We consider  the  following  problem (P): given a  connected 
destination  disoriented ADG transform it  to  a destination 
oriented ADG by reversing the  directions  of  some  of its links. 

Problem (P) is closely related to  the contingency  routing 
problem  described in the previous section. The destination  can 
be associated  with the  station  of  a PR network while other 
nodes can be associated  with PRs. Any  communication  link 
between  any pair of  PR's has  a  direction  associated  with ic 
and  can be used for  sending messages to the  station  in  this 
direction  only. If the resulting  directed graph has no directed 
cycles  and it is destination  oriented,  then every link will be 
part of a  route  leading to the  station when used  in  the assigned 
direction.  This provides redundancy in that  for each PR there 
may be several downstream neighbors along which  there is a 
path  leading to the  station. If communication  with  one of 
these  neighbors is disrupted  (for  example,  the  one on  a pri- 
mary route)  then  the PR can communicate  with  the  station 
through  one  of  its  other  downstream  neighbors (i.e., through 
one of its  secondary  routes). It is possible, however, that due 
to topological  changes  a PR will be left  without  a  downstream 
neighbor. This  means that  the corresponding ADG has  become 
destination  disoriented. The problem that we are then  faced 
with is to reverse the  direction of communication  along several 
links so as to reestablish  a  directed  path to the  station  for  each 
PR.  This is in fact  problem (P). 

Naturally,  there is a large number  of  algorithms  for solving 
problem (P). For  example,  one  can assign positive weights on 

lsl Iteration 2nd Iteration 3rd  Iteration 
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4th  lteration Final Destination Oriented  ADG 

Fig. 1. Full reversal method. 

all links  and use a  shortest  path  algorithm. We are,  however, 
interested  in  algorithms that  not only solve problem (P), but 
also have other desirable properties  in  connection  with the 
contingency  routing  problem. 

Communication  between  nodes  in  a  data  network is subject 
to  strict unambiguous rules (protocol)  and  the  implementation 
of  our  algorithms  in the  context of  a  communication  network 
will  have to incorporate  these rules. Since  these rules are not 
yet universal and change from  network to network, we have 
decided to detach  the  statement  and analysis of  the  algorithms 
that follow  from  this context and use the more  abstract  graph 
theoretic  framework. 

111. TWO ALGORITHMS FOR SOLVING PROBLEM (P) 
The two algorithms  for  problem (P) that follow will  be 

stated  loosely  and  described  pictorially as they are executed 
on  a  linear  machine. The  proof  of all our claims about these 
algorithms will be given in Section IV in the  context  of  a more 
general algorithm. 

Full Reversal Method: At  each  iteration  each  node  other 
than  the  destination that has no outgoing  link reverses the 
directions  of all its  incoming  links. 

Fig. 1 provides an example  of the sequence  of successive 
iterations  of  this  algorithm.  The  nodes  that reverse at each 
iteration  are  marked  by R .  The algorithm provides a  sequence 
of ADG's and  terminates when a  destination  oriented ADG  is 
obtained. 

Partial Reversal Method: Every node i other  than  the  desti- 
nation  keeps  a list of  its  neighboring nodes'j  that have re- 
versed the  direction  of  the  corresponding  links (i ,  i). At  each 
iteration  each  node i that has no outgoing  link reverses the 
directions  of  the  links (i ,  j )  for all j which do  not appear on 
its  list,  and  empties  the  list.  If not such j exists (i.e., the list 
is full),  node i reverses to the  directions  of all incoming  links 
and  empties  the  list. 

Fig. 2 provides an example  of the sequence  of successive 
iterations of this  algorithm  (starting  with empty lists). The 
examples  of Figs. 1 and 2 are  extreme  in  that  they  require  a 
large number  of reversals. The reader  can  convince himself 
through  other  examples that in  most  networks  (particularly 
with relatively high connectivity)  the reversal process will be 
initiated  infrequently  and will typically not require  a  long 
chain  of  iterations. 

We claim the  following  for both algorithms. 
1) If  the  graph is connected then  the reversal process will 
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Fig. 2. Partial reversal method. 

terminate  after  a finite number  of  iterations  at  a  destination 
oriented ADG. 

2 )  The  directed  graph  generated at each  iteration is acyclic. 
3) The  direction  of  any  link  between two nodes that have a 

direct path  to  the  destination  in  the initial ADG  will  never be 
reversed. 

We now  provide  an alternative statement  of  both  algorithms 
which,  within the  context of the contingency  routing  problem, 
allows  the  addition  of new directed links in  an ADG without 
forming  a cycle. 

Full Reversal Method: At  each stage of  the algorithm, we 
associate with every node i a pair (ai, i )  where i is the  unique 
identification  number  of  the  node  and ai is an integer. The 
set of pairs {(ai, i)} is ordered  lexicographically, i.e., (aj, i )  > 
(aj, j )  if ai > ai or if ai = ai and i > j .  Let N be the set of 
nodes  and  consider a set of integers {olio li EN} such that in the 
initial ADG in problem (P) the  direction  of  any  link (i, j )  goes 
from i to j if and  only if (aio, i) >(a;, j ) .  Such  a set can  be 
shown to exist (see [ 2 ,  p. 291). The kth iteration  of  the full 
reversal method  k = 0, 1, ..., can  be  implemented as follows. 
At  the  beginning  of  the  iteration  each  node i has  an  integer 
aik associated  with it. A  node i other  than  the  destination 
has no outgoing  link if for every neighbor j of i we have 
(aik, i) < (aik, j ) .  At the  kth  iteration such  a  node i increases 
f f i k  to 

a:+ ’ = max {a: l j  is a  neighbor of i} + 1, 

while  all others  nodes j maintain  the  same  number, i.e., a:+‘ = 
a:. In addition,  link  directions are reversed according to  the 
rule that  link (i,  j )  should  be  directed  from i to j if (aik+’, i) > 
(a:+ ’ , j ) .  Thus, in this scheme the .directions of  any  link 
(i, j )  is determined  by the ordering of the “numbers” (qk, 
i), (aik, j )  and are always oriented  from  higher to lower 
“number.”  This  precludes  the  formation  of  a cycle. Further- 
more,  within  the context of  contingency  routing, it is  trivial 
to assign a  direction to a new link in the graph  without  forming 
a cycle  by simply  orienting  the link from  the  node  with  a  higher 
“number” to  the node  with  lower  “number.” 

Partial Reversal Method: At each stage of the algorithm, we 
associate with every node i a triple (ai, Pi, i )  where ai and pi 
are integers. The set of triples {(ai, pi, i)} is ordered lexico- 
graphically. The initial set of triples {(aio, pio, i) li E N }  is such 
that aio = 0, for all i and  for  any  link ( i , j )  we  have (aio, pio, 

i) > (a?, b?, j )  if and  only if the  direction  of (i, j )  in  the 
initial ADG in  problem (P) goes from i to j .  The kth iteration 
is implemented as follows. A  node i other  than  the  destination 
for which (aik, P i k ,  i )  < (a:, /3:, j )  for all neighbors j in- 
creases qk to 

a:+1 = min {a: l j  is a neighbor of i} + 1 

and sets Pik io 

I min (0; 1 j ‘is neighbor  of i with at+ 

=C$}-l 
p;+1 -, - 

if there exists a  neighbor j with aik+’ = a: 

1’ 0: otherwise. 

All other  nodes j maintain the same integers ai and Pi, i.e., 

The  two  algorithms  described in this section are repre- 
sentative of a general  class of  algorithms for problem (P), 
which are  based on a  generalized  numbering  system.  The next 
section is devoted to  the development of this class. 

a.k+ 1 = qik, pjk+ 1 = pik. 
1 

IV. A  GENERAL CLASS OF ALGORITHMS 

We are given a  connected  graph G the nodes  of  which are 
denoted  by  1, 2, - e ,  N + 1. Node N + 1 is designated as the 
destination.  The  set of links is denoted by L . 

Let A be  a  countably  infinite set which is totally  ordered 
by  a relation < in  the sense that for any two distinct elements 
al  and a2 of A there  holds a l  < a2 or a2 < a l ,  but  not  both. 
Assume that A is partitioned  into N disjoint subsets A l ,  .-, 
AN,  each  of  which is countably infinite and  unbounded in the 
sense that  there exists no element a* E A and  index i E { 1, *-, 

N }  such  that  for all ai E Ai we haveai <a*. Assume further  that 
each  subset Ai is equipped  with  an  addition  operation  under 
which it is an  Abelian  group.  This  means that  for each i there 
is a  mapping p :  Ai X Ai + Ai such that 1) if b E Ai, c E Ai 
then p(b, c) E Ai, 2 )  there exists an element z E Ai such that 
p(z ,  b )  = b for all b E Ai, 3) for  each b E Ai there exists an 
b E Ai such  that p(b ,  5) = z ;  4) for each b E Ai, c € A i ,  and 
d E Ai we have p(b, c) = p(c,  b)  and p(p(b,  c), d) = p(b ,  p(c,  

Where there is no danger  of  confusion we  use the  symbol 
“+” to denote  the  addition  operation on each  group Ai and 
the symbol “-” to denote  its inverse, i.e., we denote p(a, b)  = 
a + b,  and d = a - b if p(d ,  b )  = a for all a, b EAi. 

Examples: For  the full reversal method,  each set Ai, i = 
1, .-, N ,  consists of the  set  of pairs (ai, i )  where ai is an integer. 
The  addition  operation on Ai is p[ (a i ,  i), (ai’, i)] = (ai + 
ai’, i). For  the partial reversal method,  each set Ai, i = 1, -, 
N ,  consists of the set of triples (ai, pi, i )  where ai and pi are 
integers. The  addition  operation on Ai is p[(ai, pi, i), (ai’, 
pi‘, i)] = (ai + ai’, Pi i- pi’, i). The  order on A = UiEl Ai in 
both cases  is specified  lexicographically as described  in the pre- 
vious section. 

- 

4). 
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Let V be the  set  of  N-tuples u = (al, a 2 ,  e-, aN)  where 
ai E Ai for  each I. Each u = (a ;-, aN)  E V assigns a direction 
on each  link (i, j )  E L with i, j # N + 1  according to the rule 

ai > ai * Link (i, j )  is directed  from i to j. 

It assigns 'to each  link (i, N + 1) E L the  direction  from i to 
N + 1. The  resulting  directed graph is clearly acyclic for each 
u E V.  A sequence { u,} corresponds to a sequence of acyclic 
graphs. We will describe a class  of algorithms  that  generate 
sequences { u,} C V according to rules that guarantee that 
there  exists  an  index /c such that uk = UK for all k and 
the ADG corresponding to UE is destination  oriented. Clearly, 
any  algorithm  of  this type solves problem (P).. 

For  each u = (al, s.1, aN)  E V denote by S(u) the subset  of 
.{ 1, -e, N }  given  by 

S(v)={iI(i,N+l)qL, andai<aj  foral l j  

with(i , j)E L ,  i =  l,-,N}. (1) 

Clearly, S(u) is nonempty if and  only  if the ADG correspond- 
ing to u is destination  disoriented. 

We consider  algorithms  of  the  form 

Uk+l EM@,),  uo : given (2) 

where M is a  point-to-set  mapping  which assigns to each ele- 
ment u E V a  nonempty subset M(u) of V.  The meaning  of 
(2) is that Uk+l is selected  arbitrarily  among  the  elements  of 
M(uk). Thus, the sequence { u,} generated by (2)  need not be 
unique. As  will become  apparent  shortly,  this  lack  of  unique- 
ness captures  the  distributed  and  asynchronous  nature of the 
contingency  routing algorithms we envision. 

We will make  the  following  assumptions regarding algo- 

(A.1):  There  exist  functions gi: V + .Ai ,  i = 1, -, N ,  such 
rithm (2). 

- that, for  each u = (al, -e, a ~ )  E V ,  the set M(u) is  given by 

M(u) = t u }  if S(u) is empty (3a) 

M(u) = {E = GI,  -, i i ~ )  I V # u and  either iii 

= ai or iii = gi(u), Vi = 1, -a, N }  

if S(u) is  nonempty.  (3b) 

(A.2): For  each u = (al, e.., a ~ )  E V and i = 1, .-, N the 
functions gi satisfy 

gi(u) > ai if i E S(u) (4) 

gi(u) = ai if i $! S(u). (5) 

Furthermore, gi(u) depends  only  on ai and  those aj for which 
(i, j )  E L ,  i.e.,  for  each i, u = (al, e-, a ~ )  and ut = (a1 ', .-, a ~ ' )  
such that ai = ai' and ai = ait for all j with (i, j )  E L ,  we have 

gi(V) = gi(J)- 

(A.3): For  each  i E { 1, *-, N } ,  and  each sequence { uk} C V 
for which i E S(uk) for an infinite  number of indices k ,  the 
sequence 

I k 

is unbounded  in A i ,  where a{ denote  the  coordinates of ur. 
Note  that (A.l) implies that if uk+ E M(uk), k = 0, 1, -, 

then Uk+l # uk iff S(uk) is nonempty,  and  if S(UF) is empty 
for  some E then uk = uc for all k > E .  

ExampZes: In the  full reversal method,  the  function gi is 
defined  for all u = ((011, l), -, (aN, N))  by 

In  the  partial reversal method,  the  function gj  is defined  for all 
u = (6% 9 01 Y I), *.*? (%-9 ON, N))  by 

where 

mjn {Pi I (i, j )  E L, iii = ai} - 1 if  there  exists j with 
- 
P i  = (i,j)E L, Cri=&j 

Pi otherwise. 

It is  easy to see that  the corresponding  algorithms  satisfy 
Assumptions (A.1)-(A.3).  Within the  context of these two 
algorithms  and  the discussion of  the  previous'sections  one  can 
appreciate  the value of  introducing the general algorithm via a 
point-to-set  mapping as in (2). Thus,  (2)  and  (3)  imply that if 
the ADG corresponding to uk is destination  disoriented  and, 
hence,  the  set S(uk) of  nodes  with no outgoing  link is non- 
empty,  then  any  one  of  the  nodes in s(~,) or several of  these 
nodes,  simultaneously,  can  initiate  a reversal, i.e., can apply 
the  mapping gi to u. The  timing  and  order  in  which reversals 
take place is unspecified.  Different  orders  of reversals merely 
correspond to different  sequences { u,} generated  by  algorithm 

The  following  propositions give our main results regarding 
algorithm  (2). The proofs are relegated to  the Appendix. 

Proposition I :  Assume that  the graph G is connected  and 
that (A.l)-(A.3) hold.  Then given any uo E V there  exists  a 
u* E V (depending  only on uo)  such that  for every sequence 
{ u,} generated by algorithm  (2)  there is an index E such that 
uk = U* for all k 2 E .  

Proposition 2: Assume that  the graph G is connected  and 
that (A.1)-(A.3) hold.  Let {uk} = {(al,, -e, aNk)}  be a se- 
quence  generated by algorithm  (2).  Then  for every node 

(2). 

I 
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i E { 1, -, N }  for which there exist links ( i ,  j l ) ,  0'1, j 2 ) ,  
( i m , N +  l)withaio > a j , o , a j , o > a j z O , - ~ , a j m - l  0 >aim 0 ,we 
have - 

ai0 = a: V k  = 0,  1, -. 
Proposition  1 shows that  the algorithm essentially termi- 

nates in a finite  number of  iterations at  an element u* which 
corresponds to a destination  oriented ADG. A rather remark- 
able fact is that u* depends ,only on uo and does not depend 
on  the particular sequence { uk} generated by the algorithm. In 
the  context of the reversal methods,  this means that regardless 
of the  timing  and  order of reversals the  same  final  destination 
oriented  ADG will  be  obtained  within  a finite number of 
iterations. Praposition 2 shows an  important  stability property 
of  the algorithm, namely, that a node that lies on a directed 
path  to  the  destination i n  the initial ADG corresponding to 
vo essentially  will not  participate in the  algorithm (will  never 
undergo a reversal in  the  context  of  the reversal algorithm). 

CONCLUSIONS 
The algorithms proposed in this paper can  form the basis 

for developing contingency  routing algorithms for mobile PR 
networks with a central  station.  In  such schemes, each PR will 
have a generalized number (i.e., an element of a suitable to- 
tally ordered set) associated with it. Link directions will 
always  be oriented  from higher to lower number. This pre- 
cludes the formation of loops and provides reliable secondary 
routes  that can  be used for  transmitting  connectivity  informa- 
tion and  data to the  station  when. primary routes fail. The 
station does not have to respond immediately to a topological 
change as long as secondary routes are available but  can  at  any 
time intervene and reestablish primary and secondary routes 
on the basis of some  criterion. This can  be done  by assigning 
new generalized numbers to selected nodes. When a PR loses 
all its routes to  the  station  it undergoes a reversal  process 
whereby on  the basis of  the numbers of  its neighbors is selects 
a number according to the rules of  one of the algorithms pro- 
posed. This number is broadcast to all neighbors who thus be- 
come implicitly informed of any reversals in the  direction o i  
communication that  affect them. 

A number of practical issues  will  have to be resolved before 
a scheme of  the  type described can be  implemented in a real 
operating environment. For example, an error  detection 
scheme will  be required to ensure that each PR operates on 
the basis of correct  numbers  for all its neighbors. One pos- 
sibility here is to require each PR  to acknowledge a number 
change of a neighbor the first time  it sends a packet to  that 
neighbor after a change has  been  made as  evidence that  he  has 
heard the  correct  number.  Another difficulty has to  do  with 
the possibility of some numbers becoming too large during 
the algorithmic process. This will happen, for example, if  the 
network becomes disconnected. One possibility for dealing 
with this is to require all nodes, the numbers of which have 
exceeded the allowable limit, to wait for  the  station to in- 
tervene and reset the number to lower values. This can be 
combined  with other possibilities  involving, for example, 
distributed schemes for reducing high numbers  starting  from 
the  destination  and proceeding in the  direction  of nodes  with 

high numbers. It  thus appears that it is possible to resolve 
satisfactorily the  implementation aspects of  the algorithms 
described. 

It is of interest to compare the algorithms of this paper 
with distributed  shortest  path algorithms based on minimum 
number of  hops to the  station [3], [4]. The algorithms of 
this paper do. not guarantee the  generation  of  shortest paths 
and must rely on  the  station  for periodic optimization of 
routing. On  the  other  hand,  they offer two  substantial advan- 
tages  over shortest  path algorithms. Firstly, because of  the 
multiplicity of available routes to  the station  the contingency 
algorithm will be activated only in  the typically rare occasion 
where a PR will  lose  all of  its available routes to the  station. 
Even  if this occurs it is unlikely that a long chain of reversals 
and message exchanges will be necessary before a destination 
oriented ADG  is established. This is particularly true  for  net- 
works with high connectivity. It is important to emphasize in 
this  connection the result of Proposition 2 which essentially 
states  that  the nodes that have not  lost all their  routes to  the 
station will not participate in the reversal  process or com- 
munication exchange. Secondly, in order to awaken a new 
link no direction reversals or  communication will be neces- 
sary other  than  the necessary exchange of  end node numbers. 
This is particularly important in networks  with P R s  fre- 
quently moving into new  areas and establishing  new con- 
nections  with  other PRs. By contrast in distributed  shortest 
path algorithms the failure  'of a link on the  shortest  path  tree 
or  the awakening of a link near the  station can trigger  mes- 
sage exchanges which can propagate through the  entire  net- 
work. Thus, both  the frequency of activation and  the com- 
munication overhead are much higher for  shortest  path algo- 
rithms. In  addition, our algorithms guarantee loop freedom 
of generated routes at. all times (although not necessarily 
loopfree  communication). This is not  the case for some of 
the  distributed  shortest  path algorithms, e.g., the original 
ARPANET algorithm [4]. 

APPENDIX 

In  this Appendix, we prove Propositions  1  and 2. We assume 
that  the graph G is connected  and that (A.1)-(A.3) hold. 
Throughout  the Appendix, we denote the  coordinates of 

Proof of Proposition I :  We establish the proof  through a 
sequence of lemmas. 

Lemma I :  For every sequence {uk} generated by algo- 
rithm (2), there exists an index k such that s (Vk)  is empty  for 
all k 2 E.  

Proof: Assume the  contrary, i.e., there exists a sequence 
tuk}  generated by algorithm (2) such that S(uk) is nonempty 
for an infinite  number  of indices k. Since s ( u k )  is a subset 
of  the  finite  set { 1, - - e ,  N},  the assertion above and Assumption 
(A.l) imply that  there exists an infinite index set K and 
some  node i E { 1, -, N}  such that 

Vk, ck,  yk,-etC.,  by aik, g i k , Z i k ,  etC. 
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We have for every k 

k 
a;+1 = a: + [g&) - air] .  (8) 

r=O 

From (6), (8), and  Assumption (A.3) it follows that {a ik}  
is unbounded in Ai and,  hence, also unbounded in A .  From 
(6), we obtain 

a:  <a: V k E K ,  jwi th( i , j )E  f .  (9) 

Since  for all j E { 1, - e ,  N},  {aik}is “monotonically  nonde- 
creasing”  in the sense of  the  total order ofAi,  it follows  from 
(9), that  for all nodes j with (i, j )  € L , {a:} is unbounded in A 
and,  hence, j E S(uk) for an infinite  number of indices k. Re- 
peating for all nodes j with (i, j )  E L , the  argument  made above 
for  node i and  continuingin  this manner we obtain  that,  for all 
nodes j that are connected to i by an  undirected  path in G, 
the sequences {Itik)’are unbounded  in A .  Since G is connected 
we conclude that {aik} is unbounded  in A for all j E { 1 ,  e-, 
N } .  On the  other  hand,  for every node j directly connected to 
the  destination’-[i.e.,  with (j, N + 1) E f ]  we  have j 4 S(uk) 
for all k,  and,  therefore, a: = a; for all k.  This contradicts 
the earlier conclusion that {a:} is unbounded for all j E 

Lemma  1  proves the  portion of  Proposition  1 that asserts 
that every sequence  generated by algorithm (2)  essentially 
terminates in a  finite  number  of  iterations  at  some u*. It re- 
mains to show that u* depends  only on uo and  not  on  the 
particular sequence  generated  by  the  algorithm. To show 
this, we’need  some  preliminary  lemmas  and definitions. 

Lemina 2: For  any u E V, if i E S(U) and j E S(U) then 
(i, j )  L. 

Proof: Assume (i, j )  E f .  Then i E S(u) implies ai > 
ai while j € S(u) implies ai < ai, a contradiction. . ‘ Q.E.D. 

Definition 1: Two‘firiite sequences {uo, - 0 . )  urn} and {Vo, ;e., 

u,} in’ V are said to be equivalent if uo = Vo and urn = U,. 
Consider,  for i = 1 ,  --, N ,  the mapping f i :  V + V defined 

for  each u = (al, --, aN)  by 

{ 1, ..*) N}. Q.E.D. 

- 

fi(u) = (111 , ..., ai- 1 9  gi(u), ai+ 1, ’ ‘ - 3  aN)* (1 0) 

From  Lemma 2 and  Assumptions (A.l) and (A.2), it follows 
easily that, for every u = ( a l ,  -, a N )  E V, if i E S(U), j E 
S(u) and i # j then . .  . .  

i E St fi(91 , i E S [ f i (v)~ 

and 

f i t f i y  = fi[fi(u)l 
- - (a1 9 ..., ai- 1 3 gi(V), ai+ 1 > 11.9  ei- 1 9 gi(u), 

ai+ 1 9 ’ a . 9  a ~ ) .  

A similar statement  holds for more than  two nodes in S(U). 

Using this fact and  the definitions (3) and (10) of M and f i ,  
respectively,  we obtain  the  following  lemma. 

Lemma 3: For every finite sequence {UO, e-, urn} for 
which ++ E M(uk) for all k = 0, 1, e:-, m - 1,  there exists an 
equivalent  sequence {io, *-, u,} and  nodes io,  e-, in- such 
that 

- 

ik E S(%) and %+ 1 = fik(Uk), 

V k = O , l ; . . , n - l .  

Lemma 3 shows that  for  any  finite sequence  generated  by 
algorithm (2)  there exists an equivalent  sequence  generated by 
the  algorithm 

(1 1)  

where % is the  point-to-set  mapping  defined for all u E V by 

%(u) = 
{fi(u) I i E S(u)} if S(u) is nonempty 

, (12) if S(u) is empty. 

Note  that every sequence  generated by algorithms (11) and 
(12) can also be generated by algorithm (2).  Thus,  in  a sense, 
algorithms (2) ,  (1 1) and  (12) are equivalent. 

’ For  any u E V for  which S(u) is nonempty we denote  by 
i(u) the numerically smallest node i in S(u), i.e., 

i(u) = min { i  I i E S(u)}. (13) 

Consider the  point-to-point  algorithm 

Uk+l =f iuk) ,  uo: given (14) 

where the  function E V + Vis given by 

Xu) = 
fi(v)(u) if S(u) is nonempty 

if S(u) is empty. 

For  any uo E V ,  algorithm  (14) will generate  a  (unique) se- 
quence { i j k } .  Since,  this  sequence  can also be generated  by 
algorithm (2) ,  it follows  from  Lemma 1 that there exists some 
u* E V (depending only’on uo) and  a smallest index k such 
that Ck = U* for all k 2 k. The  idea  of the  proof  of  the re- 
mainder of  Proposition’  1 is to show that for any  sequence 
{ uk} generated  by  algorithm (1  1) starting  from  the  same ini- 
tial element uo, the sequences { ijo, e-, &} and { uo, ..e, %} 
are equivalent.  and,  hence, % = i& = u*. We will need the 
following  lemma as a first step  in  this argument. 

Lemma 4: Let’ {uk} be a  sequence  generated by algo- 
rithm (1 1). Assume that  for  a  node i and  two indices p and q 
with p < q we have a: = aip. Assume further  that i ES(up) .  
Then  for all k with p < k < q ,  we  have i E S(uk), and j 4 
S(uk) for all j with ( i ,  1) E L. 

Proof: B y  Lemma 1,  for all j with (i,  j )  E L we have 
j 4 S(up) and,  hence,  by (A.2), ai”’ = ai”. The  hypothesis 
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alp = aiq and  Assumption (A.2) imply that aik = aip for all 
k with p < k < 4. Since i E S(up) and sip" = a / ,  we obtain 
i E. S(up+ ,). We complete  the  proof  by  repeating this argu- 
ment  for p + 1, .*., 4. Q.E.D. 

Any finite  sequence u,, -, urn+ generated  by  algorithm 
(11) for  which s ( u k )  is nonempty  for all k E 0, -, m can be 
specified by uo and  the set of  nodes io ,  *-, i ,  for  which 
Uk+l = h k ( u k )  for k E 0, .-, m .  This  motivates the following 
definition. 

Definition 2: Given a uo E V and  a set of  nodes io, e-, i, 
we  say that  the sequence {uo ; io,  .-, im } is valid if 

ik E S(Uk), V k  = 0, 1 , ’.*, m 
where ul; - ,  are defined recursively by 

%+I =f ik(Uk) ,  V k  = 0,  1 ,  **’, m. 

Clearly, there is a  one-to-one  correspondence  between 
valid sequences  and  “nonterminating” finite sequences 
generated  by  algorithm (11). We can thus  unambiguously 
talk about equivalences of valid sequences  generated  by 
algorithm (1 1) (cf. Definition 1). The  following  lemma fol- 
lows  easily from  Definitions 1 and  2  and  the remark  following 
Definition 1 .  

Lemma 5: If {up;  i p ,  i p + l ,  -, I , ,  z,+~, -, i q }  is a valid 
sequence  and (i, , i, + 1 )  4 L ,  then  the  sequence {up ; i p ,  
i,+ ... , i,+ ,, i, , -1, i q }  is  valid and  equivalent to {up ; i,, 

The  following  lemma  provides  the crucial construction 
for the  remainder  of the  proof  of  Proposition 1. 

Lemma 6: Let { u i }  be a  sequence  generated  by algo- 
rithm (1 I), and  assume that,  for some k,, uko + + R u k 0 ) .  
For  each k for  which s ( u k )  is nonempty  let ik be the  node 
for which 

. .  

i p + l ,  > ~ m ~ l m + 1 , * . * ~ i q } *  
. .  ... 

Ok+ 1 = f i k ( u k ) -  (1 6 )  

Let p 2 0 be  the first index k ,  for  which i k l  # i (uk l ) .  Then 
there exists an index k2 > p for  which ik2  = i(up) and if 4 is 
the first such  index, i.e., 

iq = i(up), ik # i(up), V k  E { p ,  -, 4 - 1) (17) 

then  the  sequence {up;  i(up), i p ,  -, iq-  1} is  valid and  equiv- 
alent to { u p ;  i p ,  ip+ - 0 ,  i q } .  

Proofi If there were no index k2  > p for which (1 7) 
holds, then by (A.l) and Lemma 4 i(up) E s ( u k )  for all 
k > p which  contradicts  the  conclusion of Lemma 1. 

If q satisfies ( l i ) ,  then a$up) = a&,), It  follows  from 
Lemma 4 and  the  fact i(up) E S(up)  that 

i ( u p )  E S ( v k ) ,  V k  E { P ,  .’’? 4) (18) 

j 9 s ( u k ) ,  V k  E { P ,  41, j with ( i ( V p ) , j )  E L. (19) 

and,  therefore, 

( i k , i ( V p ) ) q  L, V k = p , p +  1;-,q-l .  (20) 

By using (20) and Lemma 5 it follows that  the sequence 
{ u p ;  j p ,  .-, i q - 2 ,  i(u,), i q - , }  is  valid and  equivalent to {up;  
i p ,  .-, iq- 1, i(up)}. Applying again (20) and Lemma 5 we  have 
that  the sequence { u p ;  ip, - * ,  i q - 3 ,  i(up), i q - 2 ,  i q - 1 }  is  valid 
and equivalent to {up ; ip7 *-, iq- 1, i(up)} and  continuing  in 
this manner the result follows. Q.E.D. 

The  proof of the  remainder of Proposition 1 is now straight- 
forward.  Let { u k }  be  a  sequence  generated by algorithm (1 1) 
and  let {ijk} be  the sequence  generated by algorithm (14) with 
ijo = uo. It will suffice to show that  there exists an  index k and 
an  element u* E V such that 

Vk = c k  = u*, V k  2 i (2  1 4  

u k # U k - l ,   i j k # f k - l ,  V k < k .  (2 1b) 

Let p be the first index ko for  which uko+ f 6ko+ 1, i.e., 

uk = 4 ,  V k  < p  (22) 

up+  1 f Gp+l.  (23) 

Let 4 be  the  index satisfying (17). Applying  Lemma 6 ,  we 
obtain  a  sequence { f i k }  that can  be  generated  by  algorithm 
(1  1) for which 

A -  

Uk = Uk, V k  <Jl + 1 (24) 

& = I l k ,  V k 2 q .  (25) 

Note  from (22)-(24) that ( 4 )  has at least its first ( p  + 1) 
element identical with ( 9 )  whereas { u k }  has  only its first p 
elements identical with ( 4 ) .  Furthermore,  from  (25)  it fol- 
lows that { u k }  “terminates”  at the same element as {Vk}. 

Apply  now the same procedure to { c k } .  This yields another 
sequence  with its first @ + 2) elements identical with ti&} 
and  the  same  terminating  element as { u k } .  From Lemma 1 ,  
we  have that  there exists a  smallest  index k such that i& = 
UF for all k 2 k. Hence,  in a finite number of iterations 
this process will terminate  at  the  point  where  the  sequence 
ti&} obtained is identical to ti&}. Since {Ck} has the same 
terminating  element as { u k }  it follows .that for some k and 
u* E V ,  (21) holds. Q.E.D. 

Proof of Proposition 2: The  definition of S(U) and 
Assumptions (Ail)  and (A.2) imply that aim = ai,,, for all 
k.’ Since airn- 1 > ai,’ by hypothesis, we obtain j,- 4 
S(uk) for all k which  implies that aim- IC = aim - 1 O for all 
k .  Proceeding similarly, we  show that aik = ai0 for all k .  

Q.E.D. 

0 
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A Comparison of Four Methods for Analog  Speech  Privacy 

Abstract-Four well-known procedures  for  analog  speech  privacy 
have  been  compared  in terms of residual  intelligibility, bandwidth 
expansion, and encoding  delay.  Intelligibility scores  have been de- 
termined  from a perceptual  experiment  where  about 70 untrained 
listeners were  given the  task of recognizing  each of 200 spoken  digits 
that occurred  in  a  balanced  set of 50 encrypted  four-digit  utterances, 
and by averaging  resulting  probabilities of correct  digit  recognition. 
Bandwidth  expansion has been expressed in terms of a new segmental 
measure  that  is  more sensitive to  short-time bandwidth  manipulations 
than a conventional,  long-time-averaged  power  spectrum  measure- 
ment. Encoding  delay is a  straightforward  function of analog 
scrambler  parameters. 

The  scrambling  procedures  that have  been  compared are sample 
permutation (S), block  permutation ( E ) ,  frequency  inversion ( F ) ,  and  a 
combination  of  methods B and F ,  denoted by [ B F ] .  Sample permu- 
tations involved  a  contiguous  set of Ls (2 to 128) 8 kHz samples, while 
block  permutations operated on a  contiguous  set of Ng (4 to 128) speech 
segments  each of  which  was L g  (8 to 256) samples long. Frequency 
inversion is obtained by simply  inverting  the  ,sign of every  other 
Nyquist (8 kHz)  sample.  The  parameters, Ls, Ng , and L g  , determine 
residual intelligibility as well as transmission  properties  such as 
encoding  delay  and bandwidth. 

The  comparisons  in  our  study  provide  a  quantitative  justification 
for  the  popular  approach [ B F ] .  For example,  with N g  = 8 and Lg = 
128, although  the encoding  delay is as much as 128 ms, the  bandwidth 
expansion  is  only  about 100 Hz (using the new segmental  measure), 
and  the  digit intelligibility I is 20 percent. Note that  in  the specific 
problem of recognizing  ten  digits,  purely  random  (input-independent) 
listener  responses  correspond to I = 10 percent. 
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I. INTRODUCTION 

T HE purpose  of  this  paper is to compare  four  well-known 
procedures  for andog privacy from  a  comprehensive view- 

point that includes measures of  residual  intelligibility  and 
transmission  suitability.  Although  analog  scramblers have been 
widely discussed, [ 11 -[ lo]  , there  appears to be little  docu- 
mentation  of  quantitative  comparisons  such as those  attempted 
in  this  paper. What  is nor attempted  in this  paper is a  compari- 
son  of  an  exhaustive  set  of  analog  scramblers,  which  would 
include,  for  example,  the  rather  complex  procedure  of 
analog  sample masking [6]. The  scramblers  included  in  our 
study are relatively simple procedures  (Section 11) based on 
sample  permutation (S), segment  or  block  permutation (B), 
frequency inversion (q and  a  combination of methods B and 
F,  denoted  by [BF] . The  criteria for comparisons will include 
residual  intelligibility, (I), encoding  delay (D), and bandwidth 
expansion (expressed by parameters W, and W, to be  defined 
in  Section 111). In  general, it is desirable to realize smallest pos- 
sible values  of I ,  D and  bandwidth  expansion,  although 
the last parameter may sometimes be uncritical (see Sec- 
tion 111). Issues beyond  the  scope of this  paper  include 
cryptanalysis [ l ]  , [5]  and  effects  of  channel  impairments on 
the  quality of descrambled  speech [3],  [5], [6]. 

Analog scramblers  in  general,  and  the simple examples  of 
this  paper  in  particular,  can  only  provide privacy in the  con- 
text of  casual eavesdropping. For security in the presence of 

' formal  cryptanalysis,  digital  encryption [ 1 11 , [ 121  is certainly 
more  appropriate. The problem  with  the  digital  approach,  of 
course, is that  the available transmission  bandwidth  may not 
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