
IEEE TRANSACTlON~ ON AUTOMATIC CONTROL, VOL. AC-29, NO. II, NOVEMBER 1984 1009

ELI M. GAFNI AND DIMITRI P. BERTSEKAS, FELWW, ffiEE

Abstract-We consider a distributed iterative algorithm for dynami-
cally adjusting the input rate of each session of a voice or data network
using virtual circuits so as to exercise flow control. Each session origin
periodically receives information regarding the level of congestion along
the session path and iteratively corrects its input rate. In this paper we
place emphasis on voice networks, but the ideas involved are also relevant
for dynamic flow control in data networks.

The algorithm provides for the addition of new and termination of old
sessions and maintains at all times feasibility of link flows with respect to
capacity constraints. Fairness with respect to all sessions is built into the
algorithm and a mechanism is provided to control link utilization and
average delay per packet at any desired level.

In this paper we discuss a method of determining the input rates at
the entry point. To this end we will ignore the capability of discarding
packets within the network in order to simplify the analysis.
Throughout the paper we implicitly assume that we are dealing with a
virtual circuit network where communication between a user pair is
established by creating a session involving a path that remains
fIXed throughout the duration of the user pair conversation. The
method of choice of the session path (i.e., the routing algorithm) is
not considered in this paper. We propose an "on-line" iterative
algorithm that will solve a static problem. The hope is that the
algorithm converges fast enough relative to the session initiation and
termination process, and as a result will be able to "track" its
variation keeping the rates in the ballpark of the optimal rates at all
times.

The criterion used to determine input rates is based on the notion of
"fair allocation" introduced in Section ll. Roughly speaking, the
objective is to maximize the smallest session rate, and once this is
achieved to maximize the second smallest rate, etc. In Section ill we
introduce the algorithm, describe its convergence properties, and
discuss implementation issues.

The idea of the algorithm is to adjust the input rates of sessions on
the basis of the current level of cong~stion along the session path. The
necessary information is collected by a control packet sent periodi-
cally by each session origin along the path similarly as in flow control
methods. investigated by simulation in [1]. This method of adjusting
input rates seems also suitable for other situations where fast reaction
to momentary congestion is needed. For example, when the number
of users in the network is small but some of these users transmit in
traffic intensive, intermittent, but relatively long bursts, then a
dynamic method of flow control is needed. The ideas of this paper
may provide an alternative to the usual end-to-end windowing
schemes [11] or other techniques [7], [8] in such situations. Some
research along this direction may be found in [12].

I. INTRODUCTION

T HE purpose of this paper is to propose and investigate a flow
control algorithm for adjusting session rates in a data or voice

network. This algorithm is motivated by a voice coder scheme
introduced in [1J and called "embedded coding." In this scheme a
segment of talkspurt is coded into packets of different priority levels.
The higher priority packets contain the "core" of the speech while
the lower priority packets contain the information that "fine tunes"
it. Traditional voice flow control mechanisms either block the
initiation of a call or discard small segments of it while it is already in
progress. By contrast the embedded coding scheme dynamically
trades off between voice quality and congestion by discarding the
lower "priority" packets either at the point of congestion or the point
of entry. The level of congestion at which the gaps between the
segments, delivered by the traditional schemes, render the speech
unintelligible is much lower than the one at which the embedded
coding scheme delivers unintelligible information. This flexibility in
exercising flow control makes the embedded coding scheme attrac-
tive.

Alleviation and prevention of congestion by discarding lower
priority packets at the point of entry seems to be superior to
discarding them at the point of congestion. The latter amounts to a
waste of network resources. But, it would not be advisable to forgo
the capability of discarding lower priority packets at the point of
congestion because of the time delay involved in making the entry
points aware of downstream congestion. Based on this we believe that
both capabilities should be used. The rates at the entry points will be
determined based on longer time averages of congestion levels while
the capability of discarding packets at the point of congestion will
serve to alleviate intolerable momentary bottlenecks. The rates at the
entry point will be adjusted so that the capability of discarding
packets at the point of congestion will not be exercised too often.

ll. PROBLEM FORMULAnON

Manuscript received May 24, 1983; revised April 5, 1984. Paper
recommended by D. P. Looze, Past Chainnan of the Computational Methods
and Discrete Systems Committee. This work was conducted at the M.I. T
Laboratory for Infonnation and Decision Systems and was supported in part
by the Defense Advanced Research Projects Agency under Contract ONR/
N(xx}14-75-C-1183.

E. M. Gafni is with the Department of Computer Science, University of
California, Los Angeles, CA 90024.

D. P. Bertsekas is with the Laboratory for Infonnation and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA 02139.

Consider a network with nodes 1,2,... ,N and a set of
directed links .c. Eack link Q E .c has a capacity Ca associated
with it-a positive number. Let S denote a set of sessions taking
place between nodes. Each session s E S has an origin node
associated with it and traverses a subset of links denoted by .c$.
Note that we do not restrict the session to have a single
destination, so the set of links L$ may be for example a tree rooted
at the origin node of s and used for broadcasting messages
throughout the network. We denote by Sa the set of sessions
traversing a link Q E .c. If r $ is the input rate of session s (in data
units!s) , then the flow Fa of a link Q E .c is given by

Fa= ~ r$. (1)
$E~.

The problem broadly stated is to choose a vector of session input
rates r = (..', r $' ...) which results in a set of "satisfactory"
link flows {Fa I Q E .c}, and at the same time maintains a certain
degree of "fairness" for all sessions.

It is customary to consider as one of the characteristics of a fair

0018-9286/84/1100-1009$01.00 @ 1984 mEE

1010 IEEE TRANSACllONS ON AUTOMAllC CONTROL, YOLo AC-29, NO. II, NOVEMBER 1984

allocation of resources in a network the feature that it is indifferent
to the geographical separation of the session's origin and
destinations. Although there might be different priorities assigned
to sessions, these priorities are not assigned on the basis of

geographical distance. Moreover, two sessions of the same
priority should obtain the same rate, if the rate of one can be
traded for the rate of the other without overloading the network or
reducing the rate of any other session. This is in the spirit of
making the network "transparent" to the user.

To capture the notion of fairness and priority as presented
above we define the notion of fair allocation.

For a vector x = (xl, x2, ..', xn) in the Euclidean space Rn,
we consider the vector x = (Xl, x2, ..', xn) the coordinates of

which are the same as those of x but are rearranged in order of
increasing value, i.e., we have Xl ~ X2 ...~ xn and with each i
= I, ..', n we can associate a distinct i' such that Xi = xi'. We

call x the increasing permutation of x. Given a subset X of Rn
we will say that a vector x E X is a/air allocation over X if for
every vector yEX the increasing permutation x of x is lexico-
graphically greater or equal to the increasing permutation y of y,
i.e., if yi > xi for some}, then there exists an i<j such that

yi<xi.
If we view X as a "feasible" set, a fair allocation vector x Over

X solves a hierarchy of problems. The first problem is to
maximize the minimal coordinate of vectors in X. The second
problem is to maximize the second minimal coordinate over all
vectors which solve the first problem, etc.

Hayden [4] proposed an algorithm which results in a rate vector
r = (. ." r s, ...) which is a fair allocation over the set defmed by

Fa~pCa, VaE£ (2)

where p is some constant between 0 and 1. Jaffe [3] proposed an
algorithm which obtains a rate vector r such that the vector (. ."

(jsr s, ...) is a fair allocation over the set defined by

(jsrs~Ca-Fa, vsES, aE£s, (3)

Fa~Ca, '9'aE£, rs~O, VsES (4)

where (js is some positive constant that characterizes the priority
of session s.

The rationale behind the fair allocation problem based on (2) is
quite simple: we maximize the minimum session rate while not
allowing the flow of any link to be more than some given fraction
of its capacity. The rationale behind (3), (4) is somewhat more

sophisticated. Primarily, it enables us to establish preferences
among sessions, and to accommodate fluctuations of a session rate
which depend linearly on the rate as we will demonstrate shortly.

While Jaffe's algorithm is not iterative and as a result is
unsuitable for distributed operation, Hayden's algorithm may
result in transient flows that are larger than some link capacities
(for an example, see [4, p. 39]).

OUr purpose in this paper is to propose and analyze an iterative
algorithm that solves a problem that is more general than Jaffe's
[3], maintains at all times feasibility of link flows with respect to
capacities, and is suitable for distributed operation. To this end we
generalize the set defined by (3), (4) as follows.

For each link a E .c and session s E S let go: R + -+ R + and
(js: R + -+ R + be functions mapping the nonnegative portion of
the real line R + into itself. We are interested in fmding a rate

vector r such that the vector (.." (js(r s), ...) is a fair allocation

over the set defined by

(js(rs)~ga(Ca-Fa), ---

CJ(FQ)=~~-~~~:='Y

~
sEa. sEa.

~ 'Y~ -i~)-:~ r S) r s' ~ 'Y ./C;;:;; .

sEa.

~s'(rs') =rs t ga(Ca-Fa)=-:-- (Ca-Fa)2. (8)
'YZCa

Then from t5), (7), and (8) we obtain

I7(Fa)~'Y .,rc-;;;;~'Y ";Caga(Ca-Fa)=Ca-Fa.

We are thus guaranteed to be able to accomm<>date the standard
deviation of the flow resulting from the fair allocation.

In the second interpretation, the length of time over which the
rate is averaged is relatively long with respect to the "time
constant" of the counting process of the number of off-hook
speakers in talkspurt mode. In this case we deal concurrently with
all the off-hook sessions and want to be able to accomm<>date the
standard deviation around the mean of the process (i.e., the
instantaneous effect of the number of speakers at the talkspurt

VsES,

aE£s (5)

Fa~Ca, VaE.£, rs~O, VsES. (6)

A vector r with this property will be called a/air allocation rate.
We make the following assumptions regarding the functions

ga(') and 13s(').
Assumption A: For all a E .c, ga(') is monotonically

nondecreasing and, for all s E S, fJs(.) is continuous, monotoni-
cally increasing, and maps R + onto R +. (This implies also that
the inverse fJs-l(.) exists, is continuous, monotonically increas-
ing, and maps R + onto R +.)

Assumption B: The function Hsa(.) defmed by

Hsa(f)=fJs-1[ga(f)], VsES, aE.£, fER:+- (7)
is convex and differentiable on R + and satisfies

Hsa(O) = O.

Assumption fJ is not very restrictive. It is satisfied in particular
if both fJ -; l(.) and ga(.) are convex, differentiable, and monotoni-
cally increasing on R +, and ga(O) = O. Also the convexity
assumption in Assumption B can be replaced by a concavity
assumption without affecting the convergence result of the next
section, but this will not be pursued further.

The introduction of the nonlinear functions fJs(.) and ga(.)
allows us to assign different priorities to different sessions in a
more flexible marmer than in (3), and allows additional freedom in
mathematically expressing algorithmic design objectives. As an
example let us provide justification for the use of a particular form
for ga in the case where each session is a voice conversation.

Suppose that the length of time over which each session rate is
averaged is short relative to the "time constant" of the counting
process of the number of off-hook speakers which are currently in
talkspurt mode. Since about 30 percent of a talkspurt is silence
and some segments of the talkspurt need more encoding than
others, we view the bit rate generated by the vocoder for session s
E S as a stochastic process with mean r s-the rate assigned to
user s E S. We thus implicitly assume that the vocoder has the
means of dynamically reconfiguring to the demands of the voice to
achieve the desired average rate. Suppose that we want to reserve
excess capacity on each link so as to be abl~ to accommodate a
variation at least as large as the standard deviation of the flow on
the link. Assume that the standard deviation of the rate of each
session s E S is 'Y .rs where 0 < 'Y < 1. For a fIXed link a E .£
let s' E S be such that

s' =arg max rs.
sEa.

Then, by the independence of the rates of different sessions, we
have, assuming F a ~ Ca, that the standard deviation u(F a) of the
flow Fa satisfies

Suppose we take in (5)

(.--(

,1:-- f

r
,-

I

GAFNI AND BERTSEKAS: SESSION INPUT RATES IN COMMUNlCAllON NETWORKS

mode is washed out by the long time average). Let q be the
fraction of time a speaker is in the talkspurt mode and assume his
rate while in the talkspurt mode is constant. Then using notations
as before

a(Fg) =

If S*(l) = S we are done; otherwise we can consider the problem
of maximizing the minimal value of .Bs(r s) in the reduced network
similarly as earlier. This will determine a new optimal value wi
with wi > wi. a new set of bottleneck links £*(2), and a set of
sessions S*(2) such that

.Bs(r s) = w!. VsE S*(2)

in any fair allocation vector.IfS*(l) U S*(2) = S we are done;
otherwise we can proceed by constructing a reduced network and
continue in the same manner as earlier until we exhaust all
sessions. This argument constructs a fair allocation rate r* and
shows that it is uniquely defined in terms of the scalars wi. wi,
..'. and the corresponding sets S*(l), S*(2), Note also that
the session rates r:, s E S and associated ink flows F:, a E £
satisfy

1/2

1/2
[ga(Ca-Fa)] 1/2.

(l-q
~ -CQr;

q ,

(l-q .

~ -;;- CQ

Again, by choosing gQ as in (8) with 'Y =(q/l -q)1/2 we obtain
o(FQ) ~ CQ -FQ.

The point we want to make by the above arguments is that there
is often a need to allow gQ to be a nonlinear function, which may
depend also on CQ, rather than only on the excess capacity as (3)
implies. The exact role of gQ is up to the network designer to
decide, and our formulation allows him a great deal of flexibility
in this regard.

It is possible to show that Assumptions A and B guarantee
existence and uniqueness of a fair allocation rate. The proof
given below is constructive and is based on a finitely terminating
algorithm, basically the one of [3]. However this algorithm, in
contrast with the one of the next section, is not suitable for
distributed, on-line operation since it must be restarted each time
an old session is terminated or a new one is initiated.

Consider first the problem of fmding a vector r = (0 0 0, r s,
0 .0) that maximizes

rs*= min HSQ(Ca-F:>.
aE£,

vsES. (10)

The algorithm of the next section is based on this property.
We can also show the reverse property, namely, that if a rate

vector r* satisfies (10), then it is a fair allocation rate. To see this
let i = (..', is, ...) satisfy (10) or equivalently

/;'s(is) = min ga(Ca-Fa), YsES. (11)
aEJ:,

Observe that from the defiDition (9) of wi and (11) we obtain

* WI'" WI

where

WI=min min ga(Ca-Fa).
sEa aE£,

min .Bs(rs)
sEa

over the feasible set

Ro= {rl (5) and (6) are satisfied}.

This is the first problem in the hierarchy of problems solved by a
fair allocation rate, and can be solved simply by observing that its
optimal value [i.e., maxrERo minsE~ ~s(rs)] is equal to

Let tiE.£ be any link such that

g.;(C.;-F.;) = WI'

Then from (11) we have

fs=fJs-I(wt>. vsES.;-

The inequality WI ~ wr implies that F.; = ~se~.; is ~ ~se~.;r: =
Fl where r* is the fair allocation rate. But this implies that

--
WI =g.;(C4-F.;)~g.;(C.;-F.f)~ wr.

Therefore. we must have WI = wrand it follows that the vector f
solves the first problem in the hierarchy of the fair allocation
problem. Proceeding similarly as earlier we can show that f solves
all the problems in the hierarchy of the fair allocation problem and
is therefore a fair allocation rate.

We summarize the conclusions from the preceding arguments
in the following proposition.

Proposition 1: Let Assumptions A and B hold.
1) There exists a unique fair allocation rate.
2) r* = ("'. r s. ...) is a fair allocation rate if and only if it

satisfies

.8s(r..*) = n1in ga(Ca- F:'J.
aE£,

VsES

or equivalently

Ca- I (Js-l(wf).
sES.(I)n3.

rt= min Hsa(Ca-Ff}. vsES.
aE.£,

Some appreciation of the role of the functions .Bs() and ga(.) in
influencing the allocation of communication resources in a fair
allocation can be gained by making the simplifying assumption
that .Bs(.) and ga(.) are linear of the form

.Bs(rs)=rshs. VsES (12a)

ga(Ca-Fa) = (Ca-Fa)qa. VaE£. (12b)

This follows easily from the fact that both go and .B -1 are
monotonically nondecreasing. Denote $

S*(I)={sESI'£s()'£*(I)*O}. (9b)

For any fair allocation rate (. .., r s, ...) the rate of the sessions in
S* (1) is equal to .Bs-'(wi), i.e.,

rs=.Bs-I(Wt*>, vsES*(I)

while .£*(1) may be viewed as the set of bottleneck links the
presence of which does not allow us to increase minsE3 .Bs(r s)
beyond the level wi. Therefore, for the purposes of determining
further a fair allocation rate vector, the rates of the sessions s E
S* (I) are fixed at .Bs-1(w~ and we can consider a reduced
network whereby the links a E .£* (1) and sessions s E S* (1)
are eliminated while the capacity Ca of each link a E£ .£* (1) is
replaced by

1012 IEEE TRANSAcnONS ON AUTOMATIC CONTROL, YOLo AC-29, NO. II, NOVEMBER 1984

Let r* = (..', rs*. ...) be a unique fair allocation rate andF* =
(. .', F:, ...) be the corresponding set of total link flows [cf.
(I)]. Then from Proposition I and (12) we have

r.*~(Ca-F:)qubs-1, VsES, aE£s

with equality holding for all a and s in the "first level bottleneck"
sets £*(1), S*(I) of (9). By adding the inequality above over all s
E Sa we obtain

F:~~Ca-F:)qa ~ b.-
.ea,

from which

to consider, in addition to (5) and (6), the constraint

rs~Rs, VsES (14)

where Rs is given upper bound to the rate of session rate s. We
may view Rs either as a limit on rate imposed by technological
restrictions or as a maximum desired rate by session s. The
problem of fmding a fair allocation rate over the set defmed by
(5), (6), and (14) can be reduced to the problem considered earlier
by introducing for each s E S, an artificial link as traversed only
by session s by setting the capacity Cas of that link equal to

Cas = Rs+ fls(Rs)

and by selecting the function gas to be the identity. Then the
constraintqa ~ bs-

F: sES.-~- -
Ca ! +qa ~ bs-1

sES.

VaE£ (13a) fJs(rs)~gas(Cas- rs) = Cas- rs

becomes r s + .Bs(r s) ~ Ca = Rs + .Bs(Rs) and is equivalent to
(14). It can be easily sho~n [cf. (20)] that with the definitions
above the algorithm of the next section maintains the inequality
(14) after every iteration.

and

VaE£* (1). (13b)

ill.

THE ALGORITHM

Let rk = (000, r:, 0' ,) be the rate vector obtained after k
iterations and let {F~} be the corresponding set of total link flows,
Assume that(We note that by a similar calculation we can actually obtain the

exact value of the utilization of any link o. It is given by

~ b-1F. qa ~ .s I F.-F.
~= .sea: -~

Ca

O~F~< Ca, VaE £. (15)

The new ratevectorrk+l = ("', r:+l, ...) obtained at the (k +
I)st iteration is given by

r:+l= min {r:+'Y~[Hsa(Ca-F~)-r:]},
aE£,

where 'Y~ is given by

-+
-I l+qa ~ bs-1

sE~:

Cal+qa ~ b;
sES; vsES (16)

k-'Ya- (17)

where S: is the subset of sessions s E Sa for which link a is a
bottleneck link, i.e., bsr: = (Ca -F:>qa, and P: = ~sE$.rs*. This
formula generalizes (13).) a

An important conclusion from (13) is that while the scalars bs
control the session priorities, i.e., the relative allocations of rate
among sessions sharing the same links, the scalars qa control the link
utilizations, i.e., the level of congestion and average packet delay on
individual links. Thus, if the desired maximum link utilization is p we
see from (13) that the scaling factors qa should be set at

I + ~ H.:a(Ca-F~)
sE$.

p

qa='

(l-p) }; b.-l
.Ei.

What is interesting about this formula is that it allows the "on-
line" control of the utilization of every link regardless of the
number and priority of the sessions traversing the link. This is
particularly useful when, as is usually the case, the number and
priority of sessions on each link is unknown a priori and changes
over time. Thus, when a new session passing through a link a is
added or tenninated, the corresponding factor qQ is adjusted using
the formula above in order to maintain the desired level of link
utilization. It will be seen in the next section that by adjusting the
factors qQ we can control not only the link utilizations but also
the rate of convergence of the fair allocation algorithm. It
should be noted also that a major difficulty with traditional end-to-
end window flow control with fixed window sizes is that the
average delay per packet on a congested link is roughly
proportional to the number of active windowed sessions traversing
the link [9] and cannot be bounded via control of link utilization as
in our scheme. It is also worth noting that adjustment of the
function to guarantee any desired link utilization is possible even
when it does not have the linear form (12b). However, the
corresponding implementation is somewhat complicated.

We f1nal1y mention that in some situations it may be reasonable

and H:a(.) denotes the first derivative of HSQ(')' In a practical
implementation of the algorithm the link flows F: can either be
measured (by taking a time average), or they can be mathemati-
cally computed as the sum of the session rates r:, s E Sa. The
session rates computed via (16), (17) will have to be translated
into physical rates by software residing at the session origin
nodes.

The following lemma shows among other things that property
(15) is maintained by the algorithm at each iteration, and therefore
if the initial link flows Pa are within the link capacities Ca the
same is true/or all link flows generated by the algorithm. This
allows in particular the initiation of new sessions at zero rate and
the termination of old ones without violating capacity constraints
or otherwise disrupting the algorithm-a property not shared by
Hayden's algorithm [4].

Lemma 1: Let Assumptions A and B hold and assume that the
initial rate vector ro is such that

O~r~, vsES, O~POa<Ca, VaE£. (18)

Then if {rk} is a rate sequence genera~ by the algorithm (16)
with 'Y~ given by (17) we have for all k

O~r:, vsES, O~F~<Ca, VaE£. (19)

Furthermore,

F~~}; HSQ(Ca-F~), vaE£, k~ I. (20)
sEi.

Proof.' See Appendix A.

GAFNI AND BERTSEKAS: SESSION INPUT RATES IN COMMUNICAnON NElWORKS 1013

Fa

Fig. 1.

vt

The idea behind the choice of expression (17) as well as the
intuition behind Lemma 1 can be best explained by the use of Fig.
1. Let the function Ga('): R+ -.R+ be given by

Ga(Fa)= }; Hsa(Ca-Fa). (21)
sES.

The figure depicts the relations between F~ and F~+ 1, as if the
network consisted of the single link o. F~+ 1 is determined by
intersecting the tangent to the graph of Ga(Fa) at the point (F~,
Ga(F~), with the line y = Fa. The reader can easily convince
himself that, for k > 1, F~ must lie in the area where

Fa~Ga(Fa)

which gives rise to the lemma. Fig. 2 shows why just monotonic-
ity of Ga(') is not sufficient for the lemma to hold.

We can now state the main result of this paper.
Proposition 2: Under the assumptions of Lemma 1 the

sequence {rk} converges to the fair allocation rate.
Proof." See Appendix A.

Rate of Convergence

The rate of convergence of the algorithm will be derived
assuming that the functions (is and ga are linear [cf. (12)], and that
there is a single "bottleneck:' link per session. In particular the
following holds.

Assumption C: a) The functions (is<.) and go< .) are linear of
the form

.Bs(r s) = r shs. VsE S

ga(Ca-Fa) = (Ca-Fa)qa.

(22)

(23)~aE£

where bs, qQ are positive scalars.
b) For every session s E S there exists a unique link as such

that

r!hs=(Cas-F.1's)qas= min (Ca-F.1')qa
aE3,

(24)

For every 'Y E (.y, 1)

Ir:-r:1 ~O('Yk), vsES (30)

IF~-F:I ~O('Yk), VaE£ (31)

where O(.) denotes a function such that for some constant w and
all x ~ 0 we have 100x) I ~ wx.

Proof" See Appendix A.
A remarkable fact about the convergence ratio .y of (29) is that

it is also an upper bound on all link utilizations [cf. (13)]. In fact
for the links and sessions of the "first level bottleneck set" £*(1)
the convergence ratio is exactly equal to the link utilization. This
shows that by properly adjusting the link parameters go we can
control simultaneously both the link utilizations and the rate
of convergence of the algorithm.

where r* = (. .., rs*. ...) is the unique fair allocation rate and F*
= (..', F:, ...) is the corresponding set of total link flows.

Note that Assumption C implies both Assumptions A and B.
The following proposition establishes a linear rate of convergence
of the algorithm.

Proposition 3: Let Assumption C hold.
a) For every link a in the "first level bottleneck set" [~f. (9)]

(25)

(26)

(27)

Vk~K.

L*(I) = {aE"c I wt=(Ca-F;')qa

and every session s in the corresponding set

8*(1)= {sES 1"c.nL*(I):FO}

there exists an integer k such that

F~=F:, vk~k

qa. ~ bml
rk+l- r *- mea., (rk-r*)..-s s,

I+qa. ~ bml
mea"

(28)

A Variation of theA/gorithm

In iteration (16) we have assumed that updating of all the rates
r s takes place simultaneously. It is possible to consider other
related algorithms whereby a single rate rs is updated using (16),
then the flows Fa are updated to reflect the change in r s, then
another session rate is updated using (16) and so on until all the
session rates are taken up cyclically in a fixed order. This one-
session-at-a-time mode of operation is reminiscent of the Gauss-
Seidel method for solving systems of equations and is perhaps
better suited for distributed implementation. It is possible to show
that the convergence result of this section holds for this modified
algorithm as well.

A distributed asynchronous algorithm which is intermediate
between the one above and the one of iteration (16) can be
implemented as follows. Each session origin sends at arbitrary
times (compare to the formalism of [5], [6]) along the session path
a control packet containing the current rate of the session. As the
packet travels to its destination the information needed to compute
the right side of (16) is collected. (We assume here for simplicity a
single destination per session and that each link a on the session
path maintains the current value of Fa as the sum of all currently

b) Let

~ b,;;lqas ""
mEa., .i= max 1

sEa I +qas ~ b,;;

mEa.,

(29)

1014 IEEE TRANSACTIONS ON AUTOMAllC CONTROL, VOL. AC-29, NO. II, NOVEMBER 1984

and therefore also

F~~O. VaE£. (A.3)

From (A.I) we have

H.(Ca- PO.) -r~G:(po')
r}~ ,

I-G:(po')
and by adding over all sE Sa we obtain

Ga(po') -po'G:(PO.)

YsES, aE£s

F:~- ,
I-Ga'(~)

Since 1 -Ga'(~) > 0 we obtain from the inequality above

F~~Ga(~)+(F~-~)Ga'(~).
Since Ga(') is convex the right side of this inequality is less or
equal to Ga(F~) and we obtain

F~~Ga(F~). (A.4)

Since Ga(') is monotonically nonincreasing and Ga(F) = 0 for F
~ Ca we obtain from (A.4)

VaE£

assigned session rates r s, s E Sa, and the form of the function
Hsa(') for each s E Sa') The destination returns the new rate to
the session origin and the links along the session path.

Unfortunately the algorithm in the form just given is not
guaranteed to converge and may produce link flows exceeding
capacity. The difficulty is that some sessions may update their
rates much faster than others and a situation may occur whereby
some session may increase its rate well above its fair allocation on
an empty link through several updates during the time that another
session is still (due to communication delays) in the process of
completing a single update. The latter session thinking that the
link is empty may increase substantially its rate and fmd that the
link has insufficient excess capacity.

It is therefore necessary to impose an additional synchroniza-
tion mechanism in the preceding algorithm. One simple possibil-
ity, close in spirit to recent work of Mosely [10], is to maintain at
each link a status flag for each session whereby, after a session
updates its rate, the flag is set. The session is not allowed to
increase (but may reduce) its rate until all other sessions sharing
the link also update their rates at least once. When this occurs all
status flags are reset and the sessions can update their rates again
in the usual manner. This amounts to replacing iteration (16) by
the iteration

r:+l= min {R:a(r:, F~)}
aE£,

(A.5)
where

F~< Ca.

From (A.2)-(A.5) we obtain (19) and (20).

PROOF OF PRoPOSmoN 2
r} + 'Y~[Hsa(Ca- F~) -r}]

if the flag of session s at link Q is reset
min {r}, r} + 'Y~[HSD(Ca- F~) -r}]}

otherwise.

R:a(r:, F~)=

Denote

* tim O r k
rs= m rs.k-~

VsES.

This algorithm, even when it is implemented totally asynchron-
ously, guarantees that no session can increase its rate more than
once before all other sessions sharing a link with it perform at
least one update, thereby guaranteeing that link flows will always
stay within capacity. We refer to Mosely [10] for a convergence
analysis and detailed discussion of asynchronous flow control
algorithms.

Fix s E S and consider a subsequence {r~} kE 3Cs converging to is*.
We have from (16)

r1= lim min {r~-I+'Y~-I[Hsa(Ca-F~-I)-r~-I]}.
k-+m aE.£,
kEX,

Since .cs consists of a finite number of links we may assume (by
passing to a subsequence of Xs if necessary) that there exists a link
as such that

ApPENDIX A

PROOF OF LEMMA 1

It suffices to show (19), (20) for k = 1
Ga: R + -..R + defined by

*- lim{ k-1 k-I [H (C ...1-1) i-I
]} (A 6)rs- rs +'Ya sas as-l'a -rs ..

k-+X, s s

k-+~

Since {F a:-IhEXs is bounded above and below we may assume (by
passing to a subsequence of :JCs if necessary) that for some F as

.Consider the function

if O~Fa~Ca~ Hsa(Ca-Fa)
sES.

Ga(F a) =
0 if Fa>Cao

Denote alsoFrom (16) and (17) we have
'Yas= = lim k-1

I-G' (F) kEX'Yas'as as .
k-+~VsES

We have from (A.6)

r: ~(I-:Yas)
or

Jim inf r:-l+YaSHsaS(CaS-FaS)
k-X
k-~

Hsa(Ca-£iO.) -r~G:(£iO.)
VsE S. (A. i)r1= miD [J..aE£, 1- G :(POa)

~(l-.yas)rs*+.yafisas(Cas- lim sup F~s)k-~Since G a(.) in monotonically nonincreasing we have G ;(POJ ~ 0,
and since also Hsa(Ca-POJ ~ 0 we obtain from the hypothesis r~
~ 0 and (A. I)

and fmally

r: ~Hsas(Ca..- lirn sup F~s).k-~rl~O. vsES, (A.2)

GAFNI AND BERTSEKAS: SESSION INPUT RATES IN COMMUNICAllON NElWORKS 1015

Since the choice of s was arbitrary we conclude that for every s E
S there exists as E .£S such that (A.7) holds.

Let o(E .c be such that

01 = arg min ga(Ca- Iim SUp F~).
ae.e k-~

of .£S is fmite. From (A.9) we obtain for all s E S

min 'Y: [Hsa(Ca -F:) -r!J = O.
ae.c,

Since 'Y:>O for all aE.£s we obtain

r!= min Hsa(Ca-F:), YsES.
ae.c,

The result now follows from Proposition 1. Q.E.D.

Using the rtlonotonicity of .8s-1 we obtain

Hsas(Cas- lim sup F~s)~Hsal(Cal- lim sup F~I)k-~ k-~
and therefore from (A.7)

rt~Hsal(Cal- lim sup F~J. VSESal. (A. g)k-~
SumIning (A.8) over all SESal we obtain

lim inf F~I ~}::; lim inf r} = }::; rt
k-~ k-~

seso, ses.,

~ }::; Hsal(Cal- lim sup F~I).k-~
ses.,

On the other hand from (20) we have

lim sup F~I ~ }::; Hsal(Cal-lim sup F~I).
k~~ e o k~~s e.,

It follows that the last two inequalities as well as (A.8) hold as
equations, the entire sequence {F~I} converges to };sesa r.*while
each sequence {r}}. s E Sas' converges to rs*. 1

Consider now a new network derived from the previous one by
deleting link ai, and all the sessions traversing it. We consider the
algorithm executed in the same manner as before with the same initial
rates for the remaining sessions but with the capacity of each link a E
,£ replaced by

PROOF OF PRoPOsmoN 3

a) Let al be any link in £*(1). Since rk -+ r* and F: -+ F*,
Assumption C implies that for all s E Sat

lirn bs-Iq"I(Cal-F~I)=r~
k-+~

lirn bs-lq,,(C,,-F~»r~, Va*al.
k-+~

Therefore, from (16) we obtain for all k sufficiently large

b -l C P k k$ qa($- a)-r$
r}+l=r}+ VSESal'

l+qa ~ b,;;1
mESo,

We also have

(A. to)

Ca- ~ r:.
sES.,

r!=b.-lqal(Cal-F:J. VSESal
and combining these two equations we obtain

qal ~ b,;;l
mE3r k+l- r*- " (rk-r*) l+qal ~ b,;;l

mE3..

b.-lqal(F:1-F~J+ (A.it)
l+qal :}: b;;,1

mESo,

We have

...k+1 F * -~ (k+1 r *\ Fk - F* -~ (r k- r *\ 1"" -QI- £J r. -." QI QI- £J ..,
mE3.. mE3.,

This will result in the same rate sequence for the sessions s Et: Sa)
as in the original algorithm. A trivial modification of the argument
used to show (20) in Lemma 1 shows that we will have

lim sup F~~};; Hsa(Ca- lim sup F~) voE£.
k-~ k-~.$e~. "

This relation can be used to repeat the argument given earlier in
order to show the convergence of the sequences {r}} to r:for all
sessions s Et: Sa) traversing the link 02 where so by adding (A. II) over all s E Sal we obtain for all k

sufficiently large
a2=arg rnin ga(Ca- lim sup F~).

aE£ k-~
a~a,

By repeating this procedure we will eventUally exhaust all links
thereby showing that each rate sequence {r}}, s E S converges to
rs*. each flow sequence {F~}, a E £, converges toP: = ~sEaa rs*.
and each stepsize sequence h~}, a E £, converges to

'Y:=

~1+l-F:l=O.
This proves (27) and from (A. 11) we also obtain (28).

b) From part a) we have that (30) and (31) hold for a E £*(1)
and s E S*(l), We will prove that they hold for a and s in the
"second level bottleneck sets" £*(2) and S*(2), respectively.
The same method of proof can then be used to show (30) and (3 I)
for a E £*(3) and sE S*(3), etc., until all links and sessions are
exhausted. To this end we will need the following lemma the
proof of which is ieft for the reader.

Lemma 2: Consider two nonnegative sequences {Xk}, {Uk}
such that for some p E (0,1)

1+ ~ H;"(Ca-F:)
sE~.

By taking limits in (16) we have for all s E S

rf= lim min {r~+'Y~[Hsa(Ca-F~)-r~]}
k-~ aE.c,

= min lim {r~+'Y~[Hsa(Ca-F~)-r~]} (A.9)
aE.c, k-m

where the interchange of min and Iim above is valid since all the
sequences inside the braces converge and the number of elements

Xk+I~PXk+Uk, vk~O

and for some y and tE (p, 1) we have

Uk~ytk, vk~O.

Then for each 'YE (t, 1) there exists w such that

Xk~wyk, vk~O.

1016 IEBE TRANSACTIONS ON AUTOMAnC CONTROL, YOLo AC-29, NO. II, NOVEMBER 1984

Returning to the proof of Proposition 3b), let 02 be any link in£*(2).
Th~ set of sessions traversing 02 consists of the two sets

Baz = S*(2)nSaz

Baz = S*(l) n SOl.

For s E Baz we have similarly as earlier [cf. (A.II)] for all
sufficiently large k

q~ }; b,/jl
rk+ I -r* -mEa.. (r k - r*)$ $- $ $

l+q~ }; b,/jl
mEa..

b;lq~(F~-F~)
(A. 12)+

[4] H. Hayden, "Voice flow control in an integrated network," M.S.
thesis, Dep. Elec. Eng. Comput. Sci., Mass. Inst. Technol., Cam-
bridge, MA, June 1981.

[5] D. P. Bertsekas, "Distributed asynchronous computation of fIXed
points," Mathematical Programm., vol. 27, pp. 107-120,)983.

[6] D. P. Bertsekas, "Distributed dynamic prograrnriling," IEEE Trans.
Automat. Contr., vol. AC-27, pp. 610-'616, 1982.

(7] F. H. Moss and A. Segall, "An optimal control approach to dynamic
routing in networks," IEEE Trans. Automat. Contr., vol. AC-27,
pp. 329-339, 1982.

[8] B. Hajek and R. G. Ogier, "Optimal dynamic routing in communica-
tion networks with continuous traffic," Coordinated Science Lab.,
Univ. Illinois, Urbana, Rep. 1982.

[9] R. 'G. Gallager, Class Notes on Data Communication Networks,
Course 6.263, Dep. Elec. Eng. Comput. Sci., Mass. Inst. Technol.,
Cambridge, MA, 1983.

[10] J. Mosley, "Asynchronous distributed flow control algorithms,"
Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci., Mass. Inst.
Technol., Cambridge, MA, June 1984.

[11] M. Gerla and L. Kleinrock, "Flow control: A comparative survey,"
IEEE Trans. Commun., vol. COM-28, pp. 553-574, 1980.

[12] D. Oshinski, "Use of fair rate assignment algorithms in networks with
bursty sessions," M.S. thesis, Dep. Elec. Eng. Comput. Sci., Mass.
Inst. Technol., Cambridge, MA, May 1984.

l+qaz ~ b,;;'
mes"

Adding this equation over s E Baz and using the fact

F~-F~= ~ (r:-r!)+ ~ (r:-r!)
seB" seD"

we obtain

(A. 13)~ (r:+1-r..*)
mEB.,

=.1

+q/r2 ~ bs-J
mEa.,

Since tJ~ ~ S*(I) jt follows from what has been shown alreadythat for any 'Y E ('Y, I) .

I

~ (r~-r..*) I (A. 14)

Eli M. Gafni received the engineering degree in
electrical engineering from the Technion-Israel
Institute of Technology, Haifa. Israel, the M.S.
degree from the University of Illinois,
Urbana-Charnpaign, in 1979, and the Ph.D. degree
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, in 1982.

From 1972 to 1977, he served in the Israeli
Defense Force as a Technical Officer, where he
participated in projects involving estimation and
control. He is currently an Assistant Professor in the

Department of Computer Science, University of California, Los Angeles. His
research interests are in communication networks, distributed algorithms, and

optimization.

~ (,~+ 1 -"'> I

(A.

IS)

and from (A.12)

Ir:+l-r:I~O('Yk).

This shows (30) and (31) for a E £*(2) and s E S*(2), and
proceeding similarly we can show (30) and (31) for all a E £ and
s E S. Q.E.D.

Dimitri P. Bertsekas (S'70-SM'77-F'84) received
the Diploma of Mechanical and El~~cal
Engineering from the National Technical University
of Athens, Athens, Greece, in 1965, the M.S.E.E.
degree from George Washington University,
Washington, DC, in 1969, and the Ph.D. degree in
electrical engineering from Massachusetts Institute
of Technology, Cambridge, in 1971.

He has served on the faculty of Stanford
University, Stanford, CA, and the University of
lllinois, Urbana-Champaign. He is currently

Professor of Electrical Engineering and Computer Science at M.I. T. His
research interests are in optimization theory and algorithmic aspects of
communication networks. He is the author of Dynamic Programming and
Stochastic Control (New York: Academic, 1976) and Constrained
Optimization and Lagrange Multiplier Methods (New York: Academic,
1982) and coauthor of Stochastic Optimal Control: The9iscrete Time Case
(New York: Academic, 1978).

REFERENCES

[1] T. Bially, B. Gold, and S. Seneff, "A technique for adaptive voice flow
control in integrated packet networks," IEEE Trans Commun., vol.
COM-28, pp. 325-333, 1980.

[2] B. M. Gafni, "The integration of routing and flow control for voice and
data in a computer communication network," Ph.D. dissertation,
Dep. Blec. Bng. Comput. Sci., Mass. lost. Technol., Cambridge,
MA, Aug. 1982.

[3] J. M. Jaffe, "Bottleneck flow control," IEEE Trans. Commun., vol.
COM-29, pp. 954-962, 1981.

I mEa.. I

where .y is given by (29). It follows from Lemma 1 and (A.13)
that for any 'Y E ('Y, 1)

.mEB., \Adding

(A.I4) and (A.I5) we obtain for any 'YE(i. 1)

IF~-F:z1 ~O('Yk)

