Rollout, Policy Iteration, and
Distributed Reinforcement Learning

Current Course at ASU
(Research monograph to appear; partial draft at my website)

Dimitri P. Bertsekas

February 2020

Bertsekas Reinforcement Learning 1/28

° Approximate Policy Iteration
e Approximate Policy Iteration with Value and Policy Networks
e Multiagent Rollout - Simplifying and Parallelizing the One-Step Lookahead

° Multiprocessor Parallelization

Bertsekas Reinforcement Learning 2/28

AlphaGo (2016) and AlphaZero (2017)

AlphaZero

Plays much better than all chess programs

Plays different!

Alphazero has discovered a new way to play!

Learned from scratch ... with 4 hours of training!

Same algorithm learned multiple games (Go, Shogi)

The AlphaZero methodology is based on several ideas:
@ The fundamental DP idea of policy iteration/improvement.
@ Approximations with value and policy neural net approximations.
@ Massive parallel computation.
@ Lookahead approximations: Monte Carlo Tree Search.

We will aim to:
Develop a methodology that relates to AlphaZero, but applies far more generally.

Bertsekas Reinforcement Learning 4/28

Recall the a-Discounted Markovian Decision Problem

andom Transition
Infinite Horizon

Tk+1 = -Tlm Uk, wk
‘—> —>{)—b(} ‘{Tk-o-l}—»(—> .-
Random Cost
(‘Tlm U, wk:)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wx) with state, control, and random disturbance.
@ Policies 1 that map states to controls, with p(x) € U(x) for all x and k.
@ Cost of stage k: g (x, u(xx). wk); a € (0, 1] is the discount factor.
@ Cost of policy u

N—1
Ju(X0) = Jim Ew, {kzg o g (X, (i), Wk)}
@ Optimal cost function J*(xp) = min, J,.(xo).
@ Optimality condition: Minimize the RHS of Bellman’s equation
w(x) € arg min E{g(x u.w) +J" (f(x.u.w)) }

Bertsekas Reinforcement Learning 5/28

Policy lteration Algorithm

] Policy
Base N Policy Improvement
> Policy > Evaluation > . >
o J Bellman Eq. with
" J,, instead of J*

Rollout Policy f

Fundamental policy improvement property

Jia(x) < Ju(x), forall x

There are many variants of policy iteration

Optimistic, multistep, Q-learning versions, etc.

OUR FOCUS: APPROXIMATE VERSIONS)

Bertsekas Reinforcement Learning 6/28

Approximate Policy lteration

Approximate Approximate
Beee Policy Policy
» Policy »| Evaluation »| Improvement >
i Value Policy
Network Network
Rollout Policy fi
Policy improvement property holds approximately)

Methodological issues to deal with for challenging large-scale problems

@ Theoretical issues: Error bounds, convergence guarantees, sampling efficiency,
etc.

@ Implementation choices: What to approximate, how to sample, how to train,
on-line vs off-line, model-free vs model-based, etc.

@ No guarantee of success: We just try different schemes based on theoretical
understanding, intuition, experience ... hopefully something will work.

OUR FOCUS: DISTRIBUTED (ASYNCHRONOUS) COMPUTATION)

Bertsekas Reinforcement Learning 7/28

About this Talk

We will focus on two types of distributed computation schemes

@ Multiagent parallelization: Deal with large control spaces, e.g., controls with
multiple components

@ Multiprocessor parallelization: Deal with large state spaces through partitioning,
and distributed training of multiple value and policy networks (one per set of the
state space partition).

References

@ Distributed asynchronous value iteration papers (DPB, 1982-83), Parallel and
Distributed Computation book (DPB and Tsitsiklis, 1989).

@ Distributed asynchronous policy iteration and Q-learning papers (Williams and
Baird, 1993, DPB and Yu, 2010-14).

@ Multiagent rollout paper (DPB, 2019).

@ Partitioned rollout and policy iteration for POMDP paper (Bhattacharya, Badyal,
Wheeler, Gil, DPB, 2020).

Bertsekas Reinforcement Learning 8/28

Approximation in Value Space: From Values J(x) to a Policy /i(x)

Approximate Q-Factor Q(z, u)

Min Approximation First Stage “Future”

Atz min F {g(az, u,w) + o (f(z,u, w)) }

uelU(xz) w
E{-} Approximation Optimal Cost Approximation
At state x, use J (in place of J*) in Bellman’s Eg. to obtain a control & = ji(x). J
THE THREE APPROXIMATIONS:

@ How to construct J.
@ How to simplify E{-} operation.
@ How to simplify min operation.

Each of the three approximations can be designed almost independently of the others,
leading to a large variety of methods.

Bertsekas Reinforcement Learning 10/28

Parametric Approximation in Policy Space

Uncertainty
Control
u = p(z,r) System Current State x
™ Environment >
Controller|
- ,Ll,(, 7")
Optimization and training over a parametric family of policies u(x, r), where r is a
parameter (e.g., a neural net). J

Bertsekas Reinforcement Learning 11/28

From Value Approx. J(x) to Policy u(x, r)

Training Data
State-Control Policy

Approximation | pig (xs,us) | Data-Trained |Assigns = to u(z,r)
m Valug Space > Classifier ——
J
X is classified as type u <= at state x we apply control u J

Training the rollout policy as a classifier:
@ We generate a training set of sample pairs (x°,u®), s =1,..., q, by one-step
lookahead, i.e.,

S A s T s
u’ e argurenJPX)E{g(x u,w) + ad(f(x*, u, w))}

@ Approximate the one-step lookahead policy using the training set.

@ Example: Introduce a parametric family of policies u(x, r) of some form (e.g., a
neural net). Then estimate r by Ieast squares fit

mlnz [|uf = u(x%, n)|?

Bertsekas Reinforcement Learning 12/28

From Policy . to Value Approx. J

— Initial State
Truncated Rollout
™\ Policy p
\/. | Terminal Cost
Approximation

State Space

Policy . defines a cost approximation J ~ J,, through truncated simulation J

How to approximate J,,(x)?
@ For deterministic problems: Run p from x once and accumulate stage costs.
@ For stochastic problems: Run p from x many times and Monte Carlo average.

@ Use truncation: Simulate p for a limited number of stages, and neglect the costs of
the remaining stages or add some cost approximation at the end to compensate.

Bertsekas Reinforcement Learning 13/28

From to to

Base Approximation Approximation
»| Policy in Value Space _|in Policy Space
“ Value Policy
Network Network
Value Data Policy Data
Rollout Policy

@ Policy improvement property: In the idealized case (no approximations),

Ja(x) < Ju(x), for all x

@ With approximations, policy improvement is approximate (within an error bound).

@ There are many variants of this scheme: Optimistic policy iteration, Q-learning,
temporal differences, etc.

@ Most RL algorithms, including Alphazero, use variants of the above scheme.

@ Some variants are highly optimistic, i.e., use very little data between value updates
and policy updates.

v

HOW DO WE USE PARALELLIZATION IN ROLLOUT AND APPROXIMATE PI?)

Bertsekas Reinforcement Learning 14/28

Four Possible Types of Parallelization

Q-factor parallelization: At the current state x, one-step lookahead/rollout does a
separate Q-factor calculation for each control u € U(x). These calculations are
decoupled and can be executed in parallel.

Monte Carlo parallelization: Each of the Q-factor calculations involves a Monte Carlo
simulation when the problem is stochastic. Monte Carlo simulation can be parallelized.

Multiagent parallelization: When the control has m components, u = (u', ..., u™) the
lookahead minimization at x involves the computation of as many as n™ Q-factors,
where n is the max number of possible values of u’. We will consider schemes that
reduce the computation dramatically (to n- m).

Multiprocessor parallelization: Use a state space partition, and execute separate (but
coupled) value and policy approximations on each subset in parallel.

WE WILL FOCUS ON THE LAST TWO)

Bertsekas Reinforcement Learning 15/28

A Spiders-and-Fly Example (or Search-and-Rescue)

Uk U
7 7™
78 7%
7+ 78
- = 7
7
7™ 7~ 7™
7~

15 spiders move along 4 directions (< 1 unit) w. perfect observation; fly moves randomeJ

@ Obijective is to catch the fly in minimum time.
@ One-step lookahead and rollout are impossible: ~ 5'° Q-factors.

@ We reformulate one-step lookahead but maintain the cost improvement property:

Spiders move one-at-a-time with knowledge of other spiders’ and fly’s positions.
The control is broken down into a sequence of 15 spider moves (5 - 15 = 75 Q-factors).

Bertsekas Reinforcement Learning 17/28

Trading off Control and State Complexity (NDP book, 1996)

Control uj*
Random Transition

3 m—1 Th1 = [Tk, Up, wi)
uk @
Random Cost

akg(xy, uk, wy)

Stage k
An equivalent reformulation - “Unfolding" the control action
@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions
I O,), PP, U, UB), - I (kU U
@ Multiagent (one-component-at-a-time) rollout is just standard rollout for the
reformulated problem.

@ The increase in size of the state space does not adversely affect rollout.
@ The cost improvement property is maintained.

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to nm, where n is the number of possible choices for each component uj.

Bertsekas Reinforcement Learning 18/28

A Single Step of Policy Iteration

Shortest path All at once One at a time

Time to catch the flies
@ Base policy (each spider follows the shortest path): 85
@ Rollout (all spiders move at once, 625 move choices): 34
@ Rollout (spiders move one at a time, 20 move choices): 34

Bertsekas Reinforcement Learning 19/28

Multiagent Parallelization and Coordination Issues

i 72
o 7
ikl Kol 7~
= 7
okl I
7 7
7 7

@ One-at-a-time rollout and all-at-once rollout produce different rollout policies. One
may be better than the other.

@ Exact policy iteration issues. One-at-a-time rollout used repeatedly (as in policy
iteration) may stop short of the optimal.

@ We speculate that in approximate policy iteration, one-at-a-time rollout will often
perform about as well as all-at-once rollout.

@ We can try to induce agent parallelization and asynchronism: Divide agents in
“weakly coupled groups" ... Require little or no coordination among groups.

Bertsekas Reinforcement Learning 20/28

Group Coordination Issues

7 7
7~ 7
| ~/
" b
78 7™
~ NEB

Several interesting theoretical and algorithmic issues remain to be resolved
@ How do we form groups? Use feature-based groupings?
@ Frequency of communication?
@ Aggregated coordination between groups?
@ Distributed info processing?

Bertsekas Reinforcement Learning

21/28

Multiprocessor Parallelization: State Space Partitioning

Feature 3%
Extraction

»
>

State Space Feature Space

Partition the state space into several subsets and construct a separate policy and value
approximation in each subset. J

@ Use features to generate the partition.
@ How do we implement truncated rollout and policy iteration with partitioning? J

Bertsekas Reinforcement Learning 23/28

Distributed Asynchronous Policy lteration (Williams and Baird, 1993,

Bertsekas and Yu, 2010)

An old and fairly obvious training idea:
@ Assign one processor to each subset of the partition.

@ Each processor uses a local value and a local policy approximation, and maintains
asynchronous communication to other processors.

@ Update values locally on each subset (policy evaluation by value iteration).

@ Update policies locally on each subset (policy improvement, possibly using
multiagent parallelization).

@ Communicate asynchronously local values and policies to other processors.

However:

@ The obvious algorithm fails (for the lookup table representation case - a
counterexample by Williams and Baird, 1993).

@ The DPB-HJY algorithm, 2010, corrects this difficulty and proves convergence
(assuming a lookup table representation for policies and cost functions).

@ Admits extension to neural net approximations (some error bounds available).

Bertsekas Reinforcement Learning 24/28

Approximate Policy Iteration with

Local Value and Policy Networks

Each Set Has a Local Value Network
and a Local Policy Network

—— Initial State

Truncated Rollout
LN Using the
Local Policy Network

Terminal Cost
Supplied by
Local Value Network

Terminal State

State Space Partition

@ Start with some base policy and a value network for each set.
@ Obtain a policy and a value network for the truncated rollout policy. Repeat.
@ Partitioning may be a good way to deal with adequate state space exploration.

Bertsekas Reinforcement Learning

Distributed RL for POMDP (BBWGB paper, 2020)

@ %
&=

 —

@ 20 potentially damaged locations along a pipeline.

@ Damage of each location is imperfectly known; evolves according to a Markov
chain (5 levels of damage). Number of states: ~ 10'®

@ Repair robot moves left or right, visits and repairs locations. May want to give
preference to “urgent” repairs.

@ Belief space partitioning with 6 policy networks and 3 value networks.

Cost Comparison for Partitioned Architecture

mmm pAPI-T (6 policy nets, 3 value nets)
mm pAPI-NT (6 policy nets)
6800 API (1 policy net)

6600

Cost

6400

6200

6000

Base policy Iteration 1 Tteration 2 Iteration 3 _Iteration 4

Bertsekas Reinforcement Learning

26/28

Concluding Remarks on Distributed RL

RL is a VERY computationally intensive methodology.
Parallel asynchronous computation is an obvious answer.
It is important to identify methods that are amenable to distributed computation.

One-time rollout with a base policy, multiagent parallelization, and/or local value
and policy networks is well-suited. Often easy to implement, typically reliable.

@ Repeated rollout (i.e, approximate policy iteration) with partitioned architecture
and multiagent parallelization, and/or local value and policy networks is
well-suited, but is more complicated and more ambitious.

@ Rollout has close connections to model predictive control.
@ Rollout has many applications to discrete/combinatorial optimization problems.

There are many interesting analytical and implementation challenges.

Bertsekas Reinforcement Learning 27/28

Thank you!

Bertsekas Reinforcement Learning 28/28

	Approximate Policy Iteration
	Approximate Policy Iteration with Value and Policy Networks
	Multiagent Rollout - Simplifying and Parallelizing the One-Step Lookahead
	Multiprocessor Parallelization

