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AlphaGo (2016) and AlphaZero (2017)

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation

U U1 U2

AlphaZero (Google-Deep Mind) Chess from Another Planet

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation

U U1 U2

AlphaZero (Google-Deep Mind) Plays much better than all computer programs

Plays different!

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training!

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Plays much better than all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Features

If J̃µ

(
F (i)

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

Wp′ : Lyapounov region for p′ Wp′ VI converges to Ĵ ′
p from within

Wp′

W+: Lyapounov region for p(x) ≡ 1, x ≠ t W+

Lyapounov functions J ≥ Ĵp [satisfy J(xk) → 0 for all π-stable π]

Ĵp′ J∗, Ĵp, and J+ are solutions of Bellman’s Eq. with J∗ ≤ Ĵp ≤ J+

Region of restricted optimal cost functions

Region of solutions of Bellman’s Eq. P ∗ = 0 P̂ = γ2 − 1

An optimal control/regulation problem Ĵp Ĵp(x) Wp

An arbitrary space shortest path problem

VI → Ĵp from J0 ∈ Wp VI → J+ from J0 ≥ J+

1

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i)

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

 

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

Wp0 : Lyapounov region for p0 Wp0 VI converges to Ĵ 0
p from within

Wp0

W+: Lyapounov region for p(x) ⌘ 1, x 6= t W+

1

Alphazero has discovered a new way to play!

1

The AlphaZero methodology is based on several ideas:
The fundamental DP idea of policy iteration/improvement.

Approximations with value and policy neural net approximations.

Massive parallel computation.

Lookahead approximations: Monte Carlo Tree Search.

We will aim to:
Develop a methodology that relates to AlphaZero, but applies far more generally.
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Recall the α-Discounted Markovian Decision Problem

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +
k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +
k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost
System xk+1 = f (xk , uk ,wk ) with state, control, and random disturbance.

Policies µ that map states to controls, with µ(x) ∈ U(x) for all x and k .

Cost of stage k : αk g
(
xk , µ(xk ),wk

)
; α ∈ (0, 1] is the discount factor.

Cost of policy µ

Jµ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µ(xk ),wk

)}

Optimal cost function J∗(x0) = minµ Jµ(x0).

Optimality condition: Minimize the RHS of Bellman’s equation

µ∗(x) ∈ arg min
u∈U(x)

E
{

g(x , u,w) + J∗
(
f (x , u,w)

)}
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Policy Iteration Algorithm

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

u = µ̃(x, r) Current State x µ µ̃

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized Jµ

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J*

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

Fundamental policy improvement property

Jµ̃(x) ≤ Jµ(x), for all x

There are many variants of policy iteration
Optimistic, multistep, Q-learning versions, etc.

OUR FOCUS: APPROXIMATE VERSIONS

Bertsekas Reinforcement Learning 6 / 28



Approximate Policy Iteration

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k
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Policy improvement property holds approximately

Methodological issues to deal with for challenging large-scale problems
Theoretical issues: Error bounds, convergence guarantees, sampling efficiency,
etc.

Implementation choices: What to approximate, how to sample, how to train,
on-line vs off-line, model-free vs model-based, etc.

No guarantee of success: We just try different schemes based on theoretical
understanding, intuition, experience ... hopefully something will work.

OUR FOCUS: DISTRIBUTED (ASYNCHRONOUS) COMPUTATION
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About this Talk

We will focus on two types of distributed computation schemes
Multiagent parallelization: Deal with large control spaces, e.g., controls with
multiple components

u = (u1, . . . , um)

Multiprocessor parallelization: Deal with large state spaces through partitioning,
and distributed training of multiple value and policy networks (one per set of the
state space partition).

References
Distributed asynchronous value iteration papers (DPB, 1982-83), Parallel and
Distributed Computation book (DPB and Tsitsiklis, 1989).

Distributed asynchronous policy iteration and Q-learning papers (Williams and
Baird, 1993, DPB and Yu, 2010-14).

Multiagent rollout paper (DPB, 2019).

Partitioned rollout and policy iteration for POMDP paper (Bhattacharya, Badyal,
Wheeler, Gil, DPB, 2020).
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Approximation in Value Space: From Values J̃(x) to a Policy µ̃(x)

Approximate Q-Factor Q̃k(xk, uk)

Min Approximation E{·} Approximation Cost-to-Go Approximation

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k
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Path
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1

Optimal Cost Terminal Cost Approximation Policy µ State Space First Stage “Future”

Truncated Rollout Approximate Truncated Rollout Approximate Base Policy Cost

Partial Folding Software Critic Software Complete Folding Current Partial Folding

Clients Facilities Corresponding to Open xij i j zj = 0 or 1 Open Close Null
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E
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k+ℓ−1∑

i=k+1

gi
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)
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1

At state x , use J̃ (in place of J∗) in Bellman’s Eq. to obtain a control ũ = µ̃(x).

THE THREE APPROXIMATIONS:

How to construct J̃.

How to simplify E{·} operation.

How to simplify min operation.

Each of the three approximations can be designed almost independently of the others,
leading to a large variety of methods.
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x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �
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` + 1 Stages Optimal trajectory
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i
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E
n
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�
fk+1(xk+1, uk+1, wk+1)

�o
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ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
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Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

Assigns x to µ(x, r) Pairs (xs, us) Training Data

u = µ(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. TRUNCATED ROLLOUT with BASE
POLICY µ

Approximate Policy Evaluation Approximate Policy Improvement

(Assigns x to u)

Value Network Policy Network

J̃ State-Control Pairs Data-Trained Classifier with µ

Initial State Current State Approximation Truncated Rollout Using
a Local Policy Network

State Space Partition

Each Set Has a Local Value Network and a Local Policy Network

Terminal Cost Supplied by Local Value Network Terminal State

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

Assigns x to µ(x, r) Pairs (xs, us) Training Data

u = µ(x, r) Current State x µ Rollout Policy µ̃ Randomized µ(·, r)

Jµ instead of J* Bellman Eq. TRUNCATED ROLLOUT with BASE
POLICY µ

Approximate Policy Evaluation Approximate Policy Improvement

(Assigns x to u)

Value Network Policy Network

J̃ State-Control Pairs Data-Trained Classifier with µ

Initial State Current State Approximation Truncated Rollout Using
a Local Policy Network
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Each Set Has a Local Value Network and a Local Policy Network

Terminal Cost Supplied by Local Value Network Terminal State

1

Optimization and training over a parametric family of policies µ(x , r), where r is a
parameter (e.g., a neural net).
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From Value Approx. J̃(x) to Policy µ(x , r)

Base Policy Rollout Policy Approximation in Value Space

One-Step or Multistep Lookahead

Approximation in Policy Space

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

1
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1

x is classified as type u ⇐⇒ at state x we apply control u

Training the rollout policy as a classifier:

We generate a training set of sample pairs (xs, us), s = 1, . . . , q, by one-step
lookahead, i.e.,

us ∈ arg min
u∈U(x)

E
{

g(xs, u,w) + αJ̃
(
f (xs, u,w)

)}

Approximate the one-step lookahead policy using the training set.

Example: Introduce a parametric family of policies µ(x , r) of some form (e.g., a
neural net). Then estimate r by least squares fit

min
r

q∑
s=1

∥∥us − µ(xs, r)
∥∥2
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From Policy µ to Value Approx. J̃
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One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ
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Value Network Policy Network J̃ State-Control Pairs Data-Trained
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Terminal Cost Supplied bu Local Value Network

1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. TRUNCATED ROLLOUT with BASE
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Policy µ defines a cost approximation J̃ ≈ Jµ through truncated simulation

How to approximate Jµ(x)?

For deterministic problems: Run µ from x once and accumulate stage costs.

For stochastic problems: Run µ from x many times and Monte Carlo average.

Use truncation: Simulate µ for a limited number of stages, and neglect the costs of
the remaining stages or add some cost approximation at the end to compensate.
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Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

Assigns x to µ(x, r) Pairs (xs, us) Training Data

u = µ(x, r) Current State x µ Rollout Policy µ̃ Randomized µ(·, r)

Jµ instead of J* Bellman Eq. TRUNCATED ROLLOUT with BASE
POLICY µ

Approximate Policy Evaluation Approximate Policy Improvement

(Assigns x to u)

Value Network Policy Network Value Data

J̃ State-Control Pairs Data-Trained Classifier with µ

Initial State Current State Approximation Truncated Rollout Using
a Local Policy Network

State Space Partition

Each Set Has a Local Value Network and a Local Policy Network

Terminal Cost Supplied by Local Value Network Terminal State

1

Policy improvement property: In the idealized case (no approximations),

Jµ̃(x) ≤ Jµ(x), for all x

With approximations, policy improvement is approximate (within an error bound).

There are many variants of this scheme: Optimistic policy iteration, Q-learning,
temporal differences, etc.

Most RL algorithms, including Alphazero, use variants of the above scheme.

Some variants are highly optimistic, i.e., use very little data between value updates
and policy updates.

HOW DO WE USE PARALELLIZATION IN ROLLOUT AND APPROXIMATE PI?
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Four Possible Types of Parallelization

Q-factor parallelization: At the current state x , one-step lookahead/rollout does a
separate Q-factor calculation for each control u ∈ U(x). These calculations are
decoupled and can be executed in parallel.

Monte Carlo parallelization: Each of the Q-factor calculations involves a Monte Carlo
simulation when the problem is stochastic. Monte Carlo simulation can be parallelized.

Multiagent parallelization: When the control has m components, u = (u1, . . . , um) the
lookahead minimization at x involves the computation of as many as nm Q-factors,
where n is the max number of possible values of u i . We will consider schemes that
reduce the computation dramatically (to n ·m).

Multiprocessor parallelization: Use a state space partition, and execute separate (but
coupled) value and policy approximations on each subset in parallel.

WE WILL FOCUS ON THE LAST TWO
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A Spiders-and-Fly Example (or Search-and-Rescue)

15 spiders move along 4 directions (≤ 1 unit) w. perfect observation; fly moves randomly

Objective is to catch the fly in minimum time.

One-step lookahead and rollout are impossible: ≈ 515 Q-factors.
We reformulate one-step lookahead but maintain the cost improvement property:

I Spiders move one-at-a-time with knowledge of other spiders’ and fly’s positions.
I The control is broken down into a sequence of 15 spider moves (5 · 15 = 75 Q-factors).
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max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ
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Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
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o
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1

An equivalent reformulation - “Unfolding" the control action
The control space is simplified at the expense of m − 1 additional layers of states,
and corresponding m − 1 cost functions

J1(xk , u1
k ), J

2(xk , u1
k , u

2
k ), . . . , J

m−1(xk , u1
k , . . . , u

m−1
k )

Multiagent (one-component-at-a-time) rollout is just standard rollout for the
reformulated problem.

The increase in size of the state space does not adversely affect rollout.

The cost improvement property is maintained.

Complexity reduction: The one-step lookahead branching factor is reduced from
nm to nm, where n is the number of possible choices for each component u i

k .
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A Single Step of Policy Iteration

Shortest path All at once One at a time

Time to catch the flies
Base policy (each spider follows the shortest path): 85

Rollout (all spiders move at once, 625 move choices): 34

Rollout (spiders move one at a time, 20 move choices): 34
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Multiagent Parallelization and Coordination Issues

One-at-a-time rollout and all-at-once rollout produce different rollout policies. One
may be better than the other.

Exact policy iteration issues. One-at-a-time rollout used repeatedly (as in policy
iteration) may stop short of the optimal.

We speculate that in approximate policy iteration, one-at-a-time rollout will often
perform about as well as all-at-once rollout.

We can try to induce agent parallelization and asynchronism: Divide agents in
“weakly coupled groups" ... Require little or no coordination among groups.
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Group Coordination Issues

Several interesting theoretical and algorithmic issues remain to be resolved
How do we form groups? Use feature-based groupings?

Frequency of communication?

Aggregated coordination between groups?

Distributed info processing?
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Multiprocessor Parallelization: State Space Partitioning
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State i Feature Extraction Mapping Feature Vector ⇧(i) Linear Cost
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Partition the state space into several subsets and construct a separate policy and value
approximation in each subset.

Use features to generate the partition.

How do we implement truncated rollout and policy iteration with partitioning?
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Distributed Asynchronous Policy Iteration (Williams and Baird, 1993,
Bertsekas and Yu, 2010)

An old and fairly obvious training idea:
Assign one processor to each subset of the partition.

Each processor uses a local value and a local policy approximation, and maintains
asynchronous communication to other processors.

Update values locally on each subset (policy evaluation by value iteration).

Update policies locally on each subset (policy improvement, possibly using
multiagent parallelization).

Communicate asynchronously local values and policies to other processors.

However:
The obvious algorithm fails (for the lookup table representation case - a
counterexample by Williams and Baird, 1993).

The DPB-HJY algorithm, 2010, corrects this difficulty and proves convergence
(assuming a lookup table representation for policies and cost functions).

Admits extension to neural net approximations (some error bounds available).
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Approximate Policy Iteration with
Local Value and Policy Networks
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Start with some base policy and a value network for each set.

Obtain a policy and a value network for the truncated rollout policy. Repeat.

Partitioning may be a good way to deal with adequate state space exploration.
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Distributed RL for POMDP (BBWGB paper, 2020)

20 potentially damaged locations along a pipeline.

Damage of each location is imperfectly known; evolves according to a Markov
chain (5 levels of damage). Number of states: ≈ 1015

Repair robot moves left or right, visits and repairs locations. May want to give
preference to “urgent" repairs.

Belief space partitioning with 6 policy networks and 3 value networks.
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Concluding Remarks on Distributed RL

RL is a VERY computationally intensive methodology.

Parallel asynchronous computation is an obvious answer.

It is important to identify methods that are amenable to distributed computation.

One-time rollout with a base policy, multiagent parallelization, and/or local value
and policy networks is well-suited. Often easy to implement, typically reliable.

Repeated rollout (i.e, approximate policy iteration) with partitioned architecture
and multiagent parallelization, and/or local value and policy networks is
well-suited, but is more complicated and more ambitious.

Rollout has close connections to model predictive control.

Rollout has many applications to discrete/combinatorial optimization problems.

There are many interesting analytical and implementation challenges.
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Thank you!
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