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Abstract-In this paper we study the performance of a class of 1) The quasi-static assumption, i.e., the external traffic
distributed optimal routing algorithms of the gradient projection type arrival process for each OD pair is stationary over time. This
under weaker and more realistic assumptions than those considered thus assumption is approximately valid when there is a large number of
far. In particular, we show convergence to an optimal routing without user-pair conversations associated with each OD pair, and each of
assuming synchronization of computation at all nodes and measurement these conversations has an arrival rate that is small relative to the
of link lengths at all links, while taking into account the possib ility of link total arrival rate for the OD pair (i.e., a "many small users"
flow transients caused by routing updates. This demonstrates the assumption). An asymptotic analysis of the effect of violation of
robustness of these algorithms in a realistic distributed operating this assumption on the stationary character of the external traffic
environment. arrival rates is given in (7}.

2) The/ast settling time assumption, i.e., transients in the
flows Fij due to changes in routing are negligible. In other words,
once the routing is updated, the flows Fij settle to their new values
within time which is very small relative to the time between
routing updates. Thi~ assumption is typically valid in datagram
networks but less so in virtual circuit networks where, existing
virtual circuits may not be rerouted after a routing update. When
this assumption is violated, link flow measurements Fij reflect a
dependence not just on the current routing but also on possibly
several, past routings. A seemingly good model is to represent
each F'j as a convex combination of the rates of arrival at (i, j)
corresponding to two or more past routing updates.

3) The synchronous update assumption, i.e., all link rates
Fij are measured simultaneously, and are received simultaneously
at all network nodes who in turn simultaneously carry out a
routing update. However, there may be technical reasons (such as
software complexity) that argue against enforcing a synchrono\ls
update protocol. For example, the distributed routing algorithm of
the ARPANET [4} is not operated synchronously. Furthermore,
in an asynchronous updating environment, the rates Fij are
typically measured as time averages that reflect dependence on
more than one update.

In this paper we study gradient projection methods, which are
one of the most interesting classes of algorithms for distributed
optimal routing. A typical iteration in a gradient method consists
of making a small update in a direction which improves the value
of the cost function, e.g., opposite to the direction of the gradient.
A gradient projection method is a modification of this idea, so that
constrained optimization problems (such as the multicommodity
flow problem of this paper) may be handled as well: namely,
whenever an update leads to a point outside the feasible set (which
is determined by the constraints of the problem), feasibility is
enforced by projecting that point back into the feasible set. The
first application of this type of gradient projection method in data
communication routing is due to Gallager [1] as explained later in
[14}. Gallager's method operates in a space of link flow fractions.
Related gradient projection methods which operate in the space of
path flows are given in [3}, [5}, [15}, and [16}. This latter class of
methods is the starting point for the analysis of the present paper.
We conjecture, however ,that qualitatively similar results hold for
Gallager's method as well as for its second derivative version [6}.

Our main result states that gradient projection methods for
optimal routing are valid even if the settling time and synchronous
update assumption are violated to a considerable extent. Even
though we retain the quasi-static assumption in our analysis, we
conjecture that the result of this paper can be generalized along the
lines of another related study [7} where it is shown that a routing
algorithm based on a shortest path rule converges to a neighbor-
hood of the optimum. The size of this neighborhood depends on
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I. INTRODUCTION

T HE most popular formulation of the optimal distributed
routing problem in a data network is based on a

multicommodity flow optimization whereby a separable objective
function of the form

~ Dij(pij)
(i,j)

is minimized with respect to the flow variables FiJ subject to
multicommodity flow constraints [II-[3], [12]. Here (i,j) denotes
a generic directed network link, and Dij is a strictly convex
differentiable, increasing functiop of Fij which represents in turn
the total traffic arrival rate on link (i,j) measured, for example, in
packets or bits per second.

We want to find a touting that minimizes this objective. By a
routing we mean a set. of active paths for each origin-destination
(aD) pair (set of paths carrying some traffic of that aD pair),
together with the fraction of total traffic of the aD pair routed
along each active path.

A typical example of adaptive distributed routing, patterned
after the ARPANET algorithm [4], operates roughly as follows.

The total link arrival rates Fij are measured by time averaging
over a period of time, and are communicated to all network nodes.
Upon reception of these measured rates each node updates the part
of the routing dealing with traffic originating at that node. The
updating method is based on some rule, e.g., a shortest path
method [2], [4], or an iterative optimization algorithm [1], [5],
[6].

There are a number of variations of this idea; for example,
some relevant function of Fij may be measured in place ofFij
[such as average delay per packet crossing link (i, j)], or a
somewhat different type of routing policy may be used, but these
will not concern us for the time being. The preceding algorithm is
used in this paper as an example which is interesting in its own
right but also involves ideas that are common to other types of
routing algorithms.

Most of the existing analysis of distributed routing algorithms
such as the one above is predicated on several assumptions that are
to some extent violated in practice. These are as follows.
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tion. In the routing problem, the nonnegativity and the conserva-
tionof flow introduce inequality and equality constraints. While
equality constraints could be taken care of by eliminating some of
the variables, inequality constraints must be explicitly taken into
account. Another difference arises because, in the routing
algorithm, optimization is carried out with respect to path flow
variables, whereas the messages being broadcast contain estimates
of the link flows (see the next section). In earlier results the
variables being communicated were assumed to be the same as the
variables being optimized. Finally. the transient behavior of the
network (which results from the fact that we do not make the fast
settling time assumption) adds a few more particularities to the
model and the analysis.

III. THE ROUTING MODEL

We present here our basic assumptions, our notation, and the
model by which the nodes in a communication network frlay adjust
the routing of the flows through that network.

We are given a network described by a directed graph G = (V,
E). (V is the set of nodes, E the set of directed links.) For each
pair w = (i, j) of distinct nodes i and j (also called on origin-
destination, or 00 pair) we introduce P w, a set of directed paths
from i to j, containing no loops. (These are the candidate paths for
carrying the flow from itoj.)' For each 00 pair w = (i,j), letrw
be the total arrival rate at node i of traffic that has to be sent to
node j (measured, for example, in packets or bits per second). For
each path pEP w, we denote by xw.P the amount of flow which is
routed through path p. Naturally, we have the constraints

the extent of violation of the quasi-static assumption. A similar
deviation from optimality can be caused by errors in the
measurement of pij. In our analysis, these errors are neglected.

A practical routing algorithm that nearly falls within the
framework of the present paper is the one implemented in the
CODEX network [18]. There destination nodes of OD pairs
asynchronously assign and reroute virtual circuits to shortest paths
with respect to link lengths that relate to first derivatives of link
costs. Only one virtual circuit can be rerouted at a time, but
several virtual circuits can be rerouted before new measurements
are received. More precisely, a destination node assigns (or
reroutes) a virtual circuit to a path for which the assignment
(rerouting) results in minimum cost. This is equivalent to
assignment (rerouting) on a shortest path with respect to link
lengths which are first derivatives of link costs evaluated at a flow
that lies between the current flow and the flow resulting once the
assignment (rerouting) is effected. Another difference is that, in
the CODEX network, each virtual circuit may carry flow that is a
substantial portion of a link's capacity. This may place a lower
bound on the amount of flow that can be diverted to a shortest path
at each iteration.

In the next section we provide some background on distributed
asynchronous algorithms and discuss the relation of the result of
the present paper with earlier analyses. In Section III we
formulate our class of distributed asynchronous routing al-
gorithms and present our main results. In Section IV we study a
related algorithm. The proofs of our results may be found in the
Appendix.

Xw.p~O. vp E pw. v w.

}: xw,p=rw. V w.
pEP.

Let us define a vector Xw with components xw,p, p E Pw. Suppose
that there is a total of M aD pairs and let us index them so that w
takes values in {I, "', M}. Then, the totality of flows through
the network may be described by a vector x = (XI, "', XM)'
Naturally, X is subject to the constraint X E G where, G =
GI X G2 X '" X GM, and Gw is the simplex defined by (3.1)
and (3.2).

For any link (i, j) in the network, let Fij denote the
corresponding traffic arrival rate at that link. Clearly,

M

Fij= ~ ~ xw,p, (3.3)
w= I pEP.

(i,j)Ep

i.e., the total flow on link (i, j) is the sum of path flows of all
paths traversing (i, j). Alternatively, (3.3) may be written as

Pij=(eij, x) (3.4)

where (.,,) denotes the usual inner product and eij is an
appropriate vector with Oor I entries.

A cost function, corresponding to some measure of congestion
through the network, is introduced. We assume the separable
form

j)= }: j)ij(Fii). (3.5)
(i,j)EE

We assume that for each link (i, j) E E, the function j)ij is

I A simple choice is to let P w be the set of all directed paths from i to j. For

practical reasons. however. one may wish to consider a smaller set P w' While
such a restriction may increase the optimal value of the cost function. there
may be benefits relating to ease of implementation. In any case. only those
paths in P w that carry positive flOVi will be involved in the calculations of the
following algorithm. Furthermore a shortest path algorithm can be used to
augment Pw with new paths (see [3J. [5J. and [15J).

II. ASYNCHRONOUS OPTIMIZATION ALGORITHMS

We provide here a brief discussiQn of the currently available
theory and tools of analysis of asynchronous distributed al-
gorjthms. An extensive survey may be be found in [17J. In a
typical such algorithm (aimed at solving an optimization problem)
each processor i has in its memory a vector Xi which may be
interpreted as an estimate of an optimal solution. Each processor
obtains measurements, performs computations, and updates some
of the components of its vector. Concerning the other compo-
nents, it relies entirely on messages received from other proces-
sors. We are mainly interested in the case where minimal
assumptions are placed on the orderliness of message exchanges.

There are two distinct approaches for analyzing algorithmic
convergence. The first approach is essentially a generalization of
the Lyapunov function method for proving convergence of
centralized iterative processes. The idea here is that, no matter
what the precise sequence of message exchange is, each update by
any processor brings its vector Xi closer to the optimum in some
sense. This approach applies primarily to problems involving
monotone or contraction mappings with respect to a "sup-"norm
(e.g., a distributed shortest path algorithm) [8J, [9]; it is only
required that each processor communicates to every other
processor an infinite number of times.

The second approach is based on the idea that if the processors
communicate fast enough relative to the speed of convergence of
the computation, then the evolution of their solution estimates Xi
may be (up to first order in the step-size used) the same as if all
processors were communicating to each other at each time
instance [10J, [IIJ. The latter case is, however, mathematically
equivalent to a centralized (synchronous) algorithm for which
there is an abundance of techniques and results. Notice that in this
approach, slightly stronger assumptions are placed on the nature
of the communication process than in the first one. This is
compensated by the fact that the corresponding method of analysis
applies to broader classes of algorithms.

The method of analysis of the present paper is close in spirit to
the second approach outlined above. Unfortunately, however, the
results available cannot be directly applied to the routing problem
studied in this paper and a new proof is required. One reason is
that earlier results concern algorithms for unconstrained optimiza-
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defined on [0, 00), is real valued (finite), convex, and continu-
ously differentiable. We also assume that the derivative of jjij is
Lipschitz continuous on any bounded interval. A typical example
is when jj expresses average delay per message based on the
Kleinrock independence assumption [12].

We are interested in the case where the nodes in the network
adjust the path routing variables xw,p so as to minimize (3.5).
Since a set of path flow yariables {xw,p:P EPw, w E {I, "',
M}} determines uniquely the link flow variables pij [through
(3.3)], it is more convenient to express the cost function in terms
of the path flow variables. We are thus led to the cost function

D(x) = ~ Dii(x), (3.6)
(iJ)EE

where

Dij(x)=j)ij«(eij, x»

[compare to (3.4) and (3.5)J. Clearly, Dij inherits the convexity
and smoothness properties of j)ij.

Let us now consider the situation where the flows change with
time, due to rerouting decisions made by the nodes in the network.
Accordingly, the flows at time n are described by a vector x(n) =
(x.(n), ..., xM(n» E G. Let us assume that the routing decisions
for the flow corresponding to a particular aD pair w = (i, j) are
made by the origin node i. In an ideal situation, node i would have
access to the exact value of x(n) and could perform the gradient
projection update [3j, [15J

exist positive constants 0, d such that

O<fJI:5Mw(n):5~I, v n, W,2 (3.10)

where I is the identity matrix of suitable dimension.
The convergence of an algorithm described by (3.7) or (3.8)

follows from known results [14], [16]. However, in a practical
situation, iteration (3.7) or (3.8) is bound to be unrealistic for
several reasons.

I) It assumes perfect synchronization of the computation of all
origin nodes.

2) It assumes that x(n) (or, equivalently, the link flows Fij(n)
at time n) may be measured exactly at time n and that the
measured values are Instantly transmitted to every origin node
which needs these values. This, in turn presupposes a perfectly
synchronized exchange of messages carrying these values.

3) Even if the origin node i is able to compute xw(n + I)
exactly through (3.7) or (3.8), the actual flows through the
network, at time n + I, will be different from the computed ones,
unless the settling time is negligible.

The above necessitates the development of a more realistic
model, which is done below.

First, because of remark 3) we will differentiate between the
actual flows through the network (denoted by x(n), xw<n), etc.)
and the desired flows, as determined by the computations of some
node; the latter will be denoted by X(n) and xw(n). The routing
decisions of some node at time n are determined by the desired
flows xw<n). However, due to transients, each component xw,p(n)
of the actual flow x(n) will take some value between xw,p(n) and
xw,p(n -1). It is therefore natural to assume that for each time n
and for each path pEP w, there exists some (generally unknown)
ow,p(n) between 0 and I such that

(x(n»] 

+aD
xw(n+ 1)= I (3.7)

Here, 'Y is a positive scalar step-size, .ltw a positive scaling
constant, and [.] + denotes the projection on the simpl~x Ow with

respect to the Euclidean norm. The vector xw(n) can be used to
obtain the fraction of flow that should be directed on each path of
the OD pair w between times nand (n + I). These fractions can
form the basis for implementation of the routing algorithm.

For reasons related to the convergence rate of the algorithm, we
may also wish to consider the following generalization of (3.7):

[ aD ] + xw(n+ 1)= xw(n)--yM;:;I(n) -;- (x(n» .(3.8)

.UXw Mw(n)

Here, -y is again a positive scalar step-size ~nd Mw(n) is a
symmetric positive definite matrix (which is time varying in
general). Finally, [.]Mw<n) denotes the projection on Ow with
respect to the norm induced by Mw(n). More precisely, for a
given x, the projection [x] Mw<n) is the unique vector which
minimizes (z -x), Mw(n)(z -x») over all z E Ow. (In the
special case where MW<n) = I, [. ] Mw<n) coincides with the usual
projection with respect to the Euclidean norm.) An equivalent
formulation is to define xw(n + 1) as the (unique) solution of the
constrained optimization problem

{ aD }Min -;- (x(n», (xw-xw(n»
x.EG. .,xw

xw,p(n) =aw,p(n)xw,p(n) + (~-aw,p(n»xw,p(n -1).

We will also assume that for some a > 0,

(3.11)

ow,p(n)~a, V W, p, n. (3.12)

The above assumptions are motivated from a consideration of
the way that routing strategies are implemented in actual data
networks and is mainly applicable to the case of virtual circuit
routing. If a certain path has more virtual circuits (xw,p(n» then
desired (xw,p(n», then no new virtual circuits will be assigned to
it, whereas some of the existing virtual circuits will be deleted
when the corresponding conversation terminates. A similar
situation prevails if xw,p(n) < xw,p(n). Thus, xw,p(n + I) is
expected to take values in the range postulated by (3.11), (3.12).
In the more realistic case, however, where arrivals and departures
of virtual circuits are random, (3.11), (3.12) will only hold with
some probability which converges to one as the violation of the
quasi-static assumption becomes smaller and smaller.

From (3.11) and the requirement that Xw belongs to the simplex
Gw, we conclude that the coefficients ow,p(n) have to satisfy for
every w, n the condition

~ ow,p(n)(xw,p(n)-xw,p(n-I»=O. (3.13)
p

We next introduce an algorithm for updating desired flows, and
try to model the effects of asynchronism. We postulate an update
rule of the form [cf. (3.8)]I+-2 (xw-xw(n), Mw(n)(xw-xw(n»). (3.9)

'Y

Typically, MW<n) is taken to ~ some estimate of the Hessian
matrix iJ2D/iJx~. With such a choice (3.8) becomes an approxi-
mation to a projected Newton method. Such methods usually have
faster convergence, when compared to (3.7), for roughly the same
reasons that Newton methods for unconstrained optimization are
better than the ordinary gradient algorithm. Nevertheless, since
convergence rates are not studied in this paper, we do not need to
be specific on the choice of MW<n). We will only assume that there

xw(n+ 1)= [xw(n)--yM;;;l(n)Aw(n)];'w(n). (3.14)

Here Aw(n) is some estimate of iJD/iJxw(x(n» which is, in general,
inexact due to asynchronism and delays in obtaining measure-
ments. However, it would be unnatural to assume that the
computation (3.14) is carried out at each time instance for each

2 The notation A :s B, for matricesA, B, means that B -A is nonnegative

definite.
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function (3.5), over all link flow vectors of the form (3.3) with the
path flow vector x ranging over the set G.

Let us point out here that Theorem 3.1 and Corollary 3.1
remain valid even if our assumption (3.11) is replaced by the
following weaker assumption: there exist nonnegative coefficients
ow,p(n; k) and some scalars B ~ 0, (3 E [0, I) such that

n

~ ow,p(n; k)=l, Vn, W, p E Pw,
k=l

n

xw,p(n) = ~ aw,p(n; k)xw,p(k), v n, W, p E Pw,
k=1

OD pair. We therefore define a set T w of times for which (3.14) is
used. For all n E£ T w, we simply let xW<n + 1) = xw(n). We only
assume that the time between consecutive updates (equivalently,
the difference of consecutive elements of T w) is bounded, for each
w. In particular, we allow the possibility that iteration (3.14) is
executed for some OD pairs w several times before being
executed even once for some other OD pairs. This captures the
uncoordinated character of a realistic distributed environment
where the origin nodes of OD pairs carry out a routing update
whenever some new information becomes available without
regard as to whether this information has reached other nodes. We
now describe the process by which > (n) is formed.

For each link (i, j), node i estimates from time to time the
amount of traffic through that link. Practically, these estimates do
not correspond to instantaneous measurements but to an average
of a set of measurements obtained over some period of time.
Accordingly, at each time n, node i has available an estimate

n
fij(n) = L cij(n, m)Fij(m). (3.15)

Q

Here, cii(n, m) are (generally unknown) nonnegative scalars
summing to one (for fixed n), and Q is a bound on the time over
which measurements are averaged. These estimates are broadcast
from time to time (asynchronously and possibly with some
variable delay). Let us assume that the time between consecutive
broadcasts plus the communication delay until the broadcasted
messages reach all nodes is bounded by some T. It follows that at
time n each node k knows the value of pii(mk)' for some mk with
n -T s mk S n. Combining this observation with (3.15) we
conclude that at time n, each node k knows an estimate Ff(n)
satisfying

ow.p(n; k)sB{J"-k, V n, k, W, P E Pw.

This assumption basically requires that if ~k) is held constant, say
equal to X, then the actual flows x(n) converge to x with at least a
geometric rate.

Our proof of Theorem 3.1 indicates that convergence is
guaranteed if the step size 'Y is chosen proportional to a where a is
the constant of inequality (3.12). Thus, if the settling time of the
network is small (a large), the step size can be also relatively
large. However, if the network settles slowly, a small step size is
used. This is quite reasonable because there is no point in using a
rapidly changing routing strategy on a network which can only
change slowly.

We close this section with a remark. A distributed asynchron-
ous version of the Bellman algorithm for shortest paths has been
shown to converge appropriately [8J, [9J even if the time between
consecutive broadcasts is unbounded. In our model however, we
have assumed a finite bound T. The reason is that otherwise
convergence is not guaranteed, as will be shown below. Of
course, a boundedness assumption is always observed in practice.

A simple example which demonstrates that without such a
bound the algorithm need not converge is the following. Consider
the network of Fig. 1. There are three origin nodes (nodes 1, 2,
and 3), with input arrival rate equal to I at each one of them, and a
single destination node (node 6). For each OD pair there are two
paths. For each origin node i, let Xi denote the flow routed through
the path containing node 4. Let Jjij(Fii) = (Fii)2 for (i,j) = (4,
6) or (5, 6) and Dij(Fii) = 0 for all other links. In terms of the
variables XI, X2, X3, the cost becomes

n

F~(n)= ~ d~(n, m)Fij(m) (3.16)
m=n-C

where C = T + Q and d~(n, m) are (generally unknown)
nonnegative coefficients summing toone, for fixed n.

For each OD pair w, the corres~ndiitg origin node (let us
denote it by k) uses the values of F~(nj to form an estimate Aw(n)
of 8DI8xw(x(n» as follows. Note that

afjij
cJDij

cJxw,p

cJFij (Fij(n»,

0 otherwise.

if (i, j) E p
(x(n»= (3.17)

D(XI' X2, X3)=(X.+X2+X3)2+(3-x.-X2-X3)2. (3.19)

We assume that the settling time is zero, so that we do not need to
distinguish between actual and desired flows! and that each node i
(i = I, 2, 3) knows X; exactly and is able to transmit its value
instantaneously to the remaining origin nodes. Suppose that
initially XI = X2 = X3 = I and that each origin node executes a
large number of gradient projection iterations with a small step
size before communicating the current value of X to the other
nodes. Then, effectively, node i solves the problem

min {(x;+2)2+(I-x;)2}
Osx,sl

thereby obtaining the value Xi = O. At that point the processors
broadcast their current values of Xi. If this sequence of events is
repeated, each Xi will become again equal to 1. SO, (XI, Xl' X3)
oscillates between (0, 0, 0) and (I, 1, 1) without ever converging
to an optimal routing. The same behavior is also observed if the
cost function (3.19) is modified by adding a term E(xi + x~ +
x~), which makes it strictly convex (consistently with the
assumptions of this paper), as long as 0 < E ~ 1. Clearly, the
reason for divergence in this example is that the spirit of the
"second approach" for proving convergence, discussed in
Section II, is violated.

The development of our model is now complete. To summa-
rize, the basic equation is (3.14), where x(n) is determined by
(3.11), Aw(n) is determined by (3.18), Ff(n) is given by (3.16),
and pij is related to x by (3.3).

Our main result states that the above described algorithm
converges to an optimal routing.

Theorem 3.1: With the algorithm and the assumptions intro-
duc.ed above and provided that the step-size 'Y is chosen small
enough, D(x(n» converges to minxEG D(x) and any lilDit point of
{x(n)} is' a minimizing point. Moreover, x".(n) -xw(n)
converges to zero for all OD pairs w.

Corollary 3.1: Under the Assumptions of Theorem 3.1, if each
[)ij is strictly convex (as a function of pi1, then the vector of link

flows Pij(n) converges to the unique minimizing vector of the cost

Accordingly, a natural estimate is given (componentwise) by
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and

xw,r<n+ I)=rw- ~ xw,p(n+ I).
p*T

pEP.

By our choice of l; we have xw,p(n + 1) :5 xw,p(n), Vp * l;
which implies xw,~n + I) ~ xw,,{n) ~ O. Therefore, the vector
xW<n + I) computed by (4.4), (4.5) is feasible.

It can be easily checked that the vector xw(n + 1) is the solution
of the optimization problem

.IIDln (Xw(n), x-xw(n» +-2 (x-xw(n), Mw(n)(x-xw(n»).xEG. 'YFig. A simple routing problem.

IV. AN ALTERNATIVE ALGORITHM

In this section we consider the following variation of the basic
update equation (3.14):

(4.6)

The main difference with the gradient projection updates of the
last section is that now Mw(n) is not positive definite, due to the
lth diagonal entry which is zero. Nevertheless, the restriction of
MW<n) on the linear manifold containing Ow is positive definite, so
that (4.6) has a unique solution.

Theorem 4.1: The conclusions of Theorem 4.1 (convergence
to an optimal routing) remain valid if (3.14) is replaced by (4.4),
(4.5).

xw(n+ 1)=[xw(n)-'YM;;;I(n)Aw(n)]~w(n). (4.1)

The main difference is that xw(n + I), as obtained from (4.1), is a
small modification of the actual flow xw(n) rather than the desired
flow xw(n), as in (3.14). If the settling time in the network is very
small or if the step size 'Y is very small, then xw(n) ~ xw<n) and
(4.1) coincides with (3.14). It is therefore, somewhat surprising
that (4. I) does not lead to a convergent algorithm in general, as
we now explain.

Suppose that we were dealing with an unconstrained problem
and with perfect synchronization so that Aw(n) = iJDliJx(x(n». In
that case, (4.1) could be combined with (3.11) to yield

aD
xw(n+ 1)=xw(n)-yAw(n+ I)M;;;I(n)." (x(n»

"xw (4.2)

where Aw(n) = diag {aw,p(n)} is diagonal and positive definite.
However, AW<n + I)M;;; I(n) need not be positive definite and the
update (4.2) may be in a direction of cost increase. In the
unconstrained case this issue may be taken care of by letting
MW<n) be diagonal, so that Aw(n + I)M-,;;I(n) > O. Still, this
would not work for constrained problems because the projection
introduces a further "rotation" of the updates. This situation may
be remedied, however, by appropriately transforming the prob-
lem of projecting onto the simplex G w, to a problem of projecting
onto an orthant. More precisely, we consider the following
modification of (4.1).

At each time nET w, xw(n + I) is computed as follows.
I) Let lbe the index of a shortest path for OD pair w with

respect to link lengths iJjjij/iJF!j, i.e.,

Aw,,{n):SAw,p(n), v p E Pw.3

2) Let MW<n) be a diagonal matrix with 0 in the iili position.
The remaining diagonal entries are positive numbers ILw,p(n) ,
satisfying

(4.3)

V. CONCLUSIONS

Gradient projection algorithms for routing in a data network
converge appropriately even in the face of substantial asynchron-
ism and even if the time required for the network to adjust to a
change in the routing policies (settling time) is nonnegligible.
While convergence is proved under the assumption that the input
arrival rates r ware constant, it is expected that the algorithm will
be able to adjust appropriately in the face of small variations. If
input variations become substantial, however, and the quasi-static
assumption is violated, a more detailed analysis is required,
incorporating stochastic effects.

Another idealization in our model arises in the measurement
equation (3.13), which assumes that measurements are noiseless.
This is a reasonable assumption if the time average runs over a
sufficiently long period but may be unrealistic otherwise, necessi-
tating again a more elaborate stochastic model.

Let Us mention an important related class of distributed
algorithms. In the present model the nodes measure and broadcast
messages with their estimates of the link flows pij. Other nodes
receive the broadcasted messages and use them to compute
estimates of the expression afJijlapij(piJ) which is required in
the algorithm. An alternative possibility would be to let, say node
j, measure directly or compute the value of aijijlapij(pij) and
broadcast that value to the other nodes. For certain special choices
of the cost function fJij and under certain assumptions, the partial
derivative afJijlapij equals the average delay of a packet
traveling through link (i, j). In that case, it is very natural to
assume that this derivative may be measured directly, without first
measuring the flow pij. Our result may be easily shown to be
valid for this class of algorithms as well.

We have not presented any numerical results on the perform-
ance of our algorithms, but a simulation of an actual data network,
operating in a realistic environment should be the next step in
future research.

O<OS/Lw,p(n)SI1

where 0, 11 are fixed throughout the algorithm.
3). Let

xw,p(n+l)

=max [°, xw,p(n)-:~(hw.p(n)-hW.r<n»J, p*[
ApPENDIX

Proof of Theorem 3.1.. Let ( -, -), II-II denote the Euclidean
inner product on Rn and the associated nonn, respectively. Let M
be a symmetric positive definite matrix and define a new inner
product(., .)Mby

(4.4)

3 A more precise not11tion would be l.,(n), but this would be unnecessarily
cumbersome. {x, y~= {x, My}.
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This inner product induces the norm II'IIM given by II xII it = (x,
X)M' With the notation introduced in Section ill, [0];;' is the
projection of 0 on the closed convex set G C Rn, with respect to
the inner product (', .)M' Therefore, the projection theorem [13,
p. 69] implies that

(a-[a]~, M(x-[aJZt»sO, v x E G, v a. (A. I)

(independent of'Y or n)

II~ (x(n»->-'w(n)11
sAz max I Ff(n)-Fii(n)1

i,j.k

sA3 m':IX max I Fii(m)-Fii(n)1
'.J n-Csmsn

sA4 Max Ilx(m)-x(n)1I
n-Csmsn

Replacing a with x + a in (A. I) we obtain

(x+a-[x+aJIt. M(x-[x+aJ.:i.,»sO. v x E G, Va
sA4 max i

n-Csmsn

+ IIx(m)-x(n)1I + IIx(n)-x(n)lI}

[lIx(m)-x(m)1I

and

(Ma, [x+a];'-x) ~ IIx-" [x+a];'lIlt, v x E G, Va. (A.2)
n-l n-l

sAs ~ .an-kl/s(k)1/ +A6 ~
k=l m=n-C

IIs(m)11We define s(n) to be the vector with components

[xw(n),- 'Y M;;; l(n)AW(n)]':'w -xw(n),

0,
n E Two
n Ef: Two

sw(n) = n-J

sA7 ~ ,Bn-klls(k)lI.
k=J

(A. to)

(A.3) [The second inequality follows from (3.16), the third from (3.3),
the fourth is the tri;tngle inequality, the fifth uses (A.9).] Using
Lipschitz continuity once more, (A.9) and (A.I0) we finally
obtain, for some As ~ 0 (independent of n, 'Y),

Hence,

xw(n + 1) =xw(n) +sw(n),

Vn.

(A.4)

(A.II)
Using (A.2) with a = -'YM,;l(n)Aw(n), we obtain, for nET w:

-('YAw(n), sw(n» ~ II sw(n)1I ~w<n)~ ollsw(n)112.

Clearly, this inequality remains valid for n Et: Twas well and may
be written as

(A.5)

Using a first-order series expansion for D, we have

. ( aD )D(x(n+ l»:SD(X(n»+~ a-x: (x(n», sw(n) +A9I1s(n)112

:sD(x(n» + ~ (Aw(n), sw(n»
w

~
<Xw(n), sw(n»:s --Ilsw(n)112, v n.

'Y

Using (A.4) and (3.11) we obtain, for any w, p E Pw,

xw,p(n)-xw,p(n)=(l-aw,p(n»(xw,p(n-l)-xw,p(n»
n-1

+As ~ fJn-kl/s(k)l/lls(n)1/
k=1

+ A91Is(n)1I2~D(x(n»-:

= (I-aw,p(n»[(xw,p(n -I)-xw,p(n-I»-sw(n-I)}.

(A.6)
n

+A11 ~ {3n-k II s(k) II 2.
k=1

(A. 12)
Using (3.12),

Ixw,p(n) -xw,p(n)1

s(l-a)lxw,p(n-l)-xw,p(n-I)1 + Isw,p(n-I)1

which yields, for.B = 1 -a < 1

(A.7) [Here, the second inequality was obtained from (A. II); the third
from (A.5).] Summing (A.12) for different values of n and
rearranging terms, we obtain

D(x(n+ 1»sD(x(I»
n-l

Ixw,p(n)-xw,p(n)1 s ~ ,Bn-k-llsw,p(k)l.
k=l

(A.S)

(A. 

13)(For convenience we are assuming that the routing algorithm is
initialized withx(l) = X(l). The proof is easily modified if this is
not the case.) Inequality (A.8) shows that for some AI ~ 0
(independent of'Y or n) Suppose that -y is small enough so that A1O/-Y -A11/(1 -(J) >

O. Note that D is continuous and that X(n) takes values in a
compact set. Hence, D(X(n + 1» is bounded below. Let n -+ Q)
in (A.13) to obtain

n-1

IIx(n)-x(n)1I :sA! }; ,Bn-klls(k)lI. (A.9)
k=1

Compare now (3.17) to (3.18) and use the Lipschitz continuity of
aDij/apij to conclude that for some constants A2' ..', A7

'"

~ IIs(k)1I2<CX!.
k=l

(A. 14)



TSITSIKLIS AND BERTSEKAS: DISTRIBUTED ASYNCHRONOUS OPTIMAL ROUTING 331

(The first equality follows from (A.18), the second from (3.13);
the first inequality follows from (4.4) and a little algebra; the last
from (3.12).) Also notice that (4.5) implies

In particular, s(k) converges to zero, as k -+ 00, and using (A.9)
we obtain limk_~ lI.x(k) -.t(k)1I = O. It also follows from
(A.13), (A. 14) that D(.t(n» converges, as k -+ 00.

Let us define for any wand for any positive definite symmetric
matrix Mw

sw,;-(n) = -~ sw,p(n)
pEP.
p..i-fw(x, Mw) =

which finally yields, for some AI ~ 0,

Is".,.(n)12sA. ~ Isw,p(n)12.
pEP.
p*i-

(A.20)

Combining (A.19) and (A.20) we conclude that, for some A2 ~ 0
independent of'Y or n, we have

(A.21)aD aD
axw

lim Aw(nk) = lim" (x(nk»=
k-~ k-~ UXw

Putting everything together, and comparing (A. 15) to (A.3), we
conclude that

An argument similar to (A. 10) yields

ItaD II n-1 ax: (x(n»-~w(n) ~A3 ~I fJn-nlllsw(m)II.

We then obtain, similarly with (A.12),

fw(x*, M:)= lim sw(nk) =0.
k~oo

.aD } I
mm -x, -;-:- (x) +-2 (y-x, Mw(Y-x».

y UXw 'Y

Second, when we choose a convergent subsequence x(nk), weshould 
take a further subsequence so that i-is the same at all times

nk 0

(This step uses the fact that [a]:, is jointly continuous as a function
of a, M.) Consequently, for each w there is a matrix M~ A2 n
satisfying (3.10) and such thatfw(x*, M:> = 0, Vw. Using the D(x(n+ I».sD(x(n»--lls(n)112+A4 ~ {j'n-mlls(m)112.
projection theorem [13] and (A.I5), we obtain ('Y(M~)-liJD/ 'Y ",=1
iJxw,(X*), M~(xw -x~») ?: 0, Vxw E Gw, Vw. Summing over all .
w's we obtain (iJD/iJx(x*) x -x*) ?: 0 Vx E G and since D is From here on, the proof follows the lmes of the proof of Theorem
convex, we have D(x) ?: D(x*) + (iJDiiJx(x*), x -:X*), Vx E 3.1 and .is, therefore, omitted. We only poi~t out some differ-
G. Therefore, x* minimizes D over the set G, thus proving part of enc~s. Flrst,f~(x, Mw) should not be defined vIa (A.I5) but as the
the theorem. (urnque) solutIon of

The above imply that minxEG D(x) = D(x*) is a limit point of
{D(x(n» }. Since {D(x(n»} is a convergent sequence, it con- : I
verges to minxEG D(x), thus completing the proof. 0

Proof of Corollary 3.1: By Theorem 3.1, any limit point of ,. ' s
{x(n)} minimizes D. Hence, any limit point of {Fij(n)} ,
minimizes D over the convex set consisting of link flows given b~ :
(3.4) with x ranging over G. However, due to strict convexity, D ,.
has a unique minimum over this set which proves the corollary. 0 REFERENCES

Proof of Theorem 4.1: Let s(n) , S(n) be vectors with
components [I] R. G. Gallager, "A minimum delay routing algorithm using distributed

computation," IEEE Trans. Commun., vol. COM-25, pp. 73-85,
1977.

[2] M. Schwartz and T. E. Stem, "Routing techniques used in computer
communication networks," IEEE Trans. Commun., vol. COM-28,
pp. 539-559, 1980.

[3] D. P. Bertsekas, "Optimal routing and flow control methods for
communication networks," in Analysis and Optimization of Sys-
tems, A. Bensoussan and J. L. Lions, Eds. New York: Springer-
Verlag, 1982, pp. 615-643.

[4] J. M. McQuillan, I. Richer, and E. C. Rosen, "The new routing
algorithm for the ARPANET ," IEEE Trans. Commun., vol. COM-
28, pp. 711-719,1980.

[5] D. P. Bertsekas and E. M. Gafni, "Projected Newton methods and
optmization of multicommodity flows." IEEE Trans. Automat.
Contr., vol. AC-28, pp. 1090-1096, 1983.

[6] D. P. Bertsekas, E. M. Gafni, and R. G. Gallager, "Second derivative
algorithms for minimum delay distributed routing in networks," IEEE
Trans. Commun., vol. COM-32, pp. 911-919. 1984.

[7] E. M. Gafni and D. P. Bertsekas, "Asymptotic optimality of shortest
path routing," Mass. Inst. Technol., Cambridge, MA, LIDS Rep. P-
1307, July 1983; also in IEEE Trans. Inform. Theory, to be
published.

[8] D. P. Bertsekas, "Distributed dynamic programming," IEEE Trans.
Automat. Contr., vol. AC-27, pp. 610-615. 1982.

[9] D. P. Bertsekas. "Distributed asynchronous computation of fixed
points," in Mathematical Programming, vol. 27, pp. 107-120, 1983.

[10] J. N. Tsitsiklis, D. P. Bertse,kas, and M. Athans, "Distributed
asynchronous deterministic and stochastic gradient optimization al-
gorithms," in Proc. 1984 Amer. Contr. Con!, San Diego, CA,
1984.

(A. 16)s...(n)=xw(n+ I)-xw(n)

sw(n) =xw(n + I)-xw(n),

respectively. Using (3.11) we obtain

(A. I?)

sw(n) =Aw(n + I)sw(n), (A. IS)

where A ~n) = diag {aw,p(n)}. We therefore have, for some A
~ 0,
(Aw(n), sw(n» = ~ aw,p(n + I)Aw,p(n)sw,p(n)

pEPw

= ~ aK.,p(n + I)sw,p(n)[Aw,p(n)- Aw,r(n)]
pEPw
p'i'i-

A
:S --~ aw,p(n+ 1)lsw,p(n)12

'Y pEPw

p'i'r

:S -~ ~ Isw,p(n)p. (A. 19)
'Y pEPw

p..r

Let x* be a limit point of {x(n) }. (At least one exists because G is
compact.) Since we have assumed that the difference between
consecutive elements of T w is bounded, for any w, we conclude
that x* is also a limit point of {x(n): nET w}' Notice also that the
set of matrices satisfying (3.10) is compact. It follows that there
exists a sequence {nk} C T w such that x(nk) converges to x* and
M w< nk) converges to some M.t satisfying (3.10). Finally, notice
that (due to (A.IO), the convergence of s(n) to zero and the
continuity of iJD/iJxw)

(x*)



332 IEEE TRANSACTIONS ON AUTOMAllC CONTROL, YOLo AC-31, NO.4, APRIL 1986

the Massachusetts Institute of Technology. His reserch interests are in
distributed computation, decentralized decision making, and estimation, as
well as stochastic control.

[11] 1. N. Tsitsiklis, "Problems in decentralized decision making and
computation," Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci.,
Mass. Inst. Technol., Cambridge, MA, 1984.

[12] L. Kleinrock, Communication Nets: Stochastic Message Flow and
Delay. New York: McGraw-Hili, 1964.

[13] D. G. Luenberger, Optimization by Vector Space Methods. New
York: Wiley, 1969.

[14] D. P. Bertsekas, "Algorithms for nonlinear multicomrnodity network
flow problems," in Proc. International Symposium on Systems
Optimization and Analysis, A. Bensoussan and 1. L. Lions, Eds.
New York: Springer-Verlag, 1979, pp. 210-224.

[15] D. P. Bertsekas, "A class of optimal routing algorithms for communi-
cation networks," in Proc. 5th Int. Coni. Comput. Commun.,
Atlanta, GA, Oct. 1980, pp. 71-76.

[16] D. P. Bertsekas and E. Gafni, "Projection methods for variational
inequalities with application to the traffic assignment problem," Math.
Progr. Study, Vol. 17, D. C. Sorensen and R. I.-B. Wets, Eds.
Amsterdam, The Netherlands: North-Holland, 1982, pp. 139-159.

[17] D. P. Bertsekas, 1. N. Tsitsiklis, and M. Athans, "Convergence
theories of distributed iterative processes: A survey," Mass. Inst.
Technol., LIDS Rep. P-1412, Oct. 1984.

[18] P. Humblet, Private communication, 19.85.

Dimitri P. Bertsekas (S'70-SM77-F.84) was
born in Athens, Greece, in 1942. He received the
Mechanical and Electrical Engineering Diploma
from the National Technical University of Athens,
Athens, Greece, in 1965, the M.S.E.E. degree from

George Washington University, Washington, DC,
in 1969, and the Ph.D. degree in system science
from the Massachusetts Institute of Technology,
Cambridge, in 1971.

He has held faculty positions with the Department
of Engineering-Economic Systems, Stanford

University, Stanford, CA, from 1971 to 1974, and in the Department of
Electrical Engineering, University of Illinois, Urbana, from 1974 to 1979. At
present he is Professor of Electrical Engineering and Computer Science at the
Massachusetts Institute of Technology. He is the author of Dynamic
Programming and Stochastic Control (New York: Academic, 1976),
Constrained Optimization and Lagrange Multiplier Methods (New York:
Academic, 1982); and coauthor of Stochastic Optimal Control: The
Discrete-Time Case (New York: Academic, 1978) and Data
Communication Networks, which will be published in 1986.

John N. Tsitsiklis (S'SO-M'81) was born in
Thessaloniki, Greece in 1958. He received the B.S.
degrees in electrical engineering and mathematics in
1980, the M.S. degree in electrical engineering in
1981, and the Ph.D. degree in electrical engineering
in 1984, all from the Massachusetts Institute of

Technology, Cambridge.
He spent the 1983-1984 academic year at

Stanford University, Stanford, CA, as an Assistant
Professor of Electrical Engineering. He is currently
an Assistant Professor of Electrical Engineering at


