LECTURE SLIDES - DYNAMIC PROGRAMMING
BASED ON LECTURES GIVEN AT THE

MASSACHUSETTS INST. OF TECHNOLOGY
CAMBRIDGE, MASS

FALL 2015
DIMITRI P. BERTSEKAS

These lecture slides are based on the two-
volume book: \Dynamic Programming and
Optimal Control" Athena Scienti c, by D.

P. Bertsekas (Vol. |, 3rd Edition, 2005; Vol.
I1, 4th Edition, 2012); see

http://www.athenasc.com/dpbook.html
Two related reference books:

(1) \Abstract Dynamic Programming," by
D. P. Bertsekas, Athena Scienti ¢, 2013

(2) \Neuro-Dynamic Programming," Athena

Scienti c, by D. P. Bertsekas and J. N.
Tsitsiklis, 1996

6.231: DYNAMIC PROGRAMMING
LECTURE 1
LECTURE OUTLINE

Problem Formulation
Examples
The Basic Problem

Signi cance of Feedback

DP AS AN OPTIMIZATION METHODOLOGY

Generic optimization problem:

min g(u)

whereu is the optimization/decision variable, g(u)
IS the cost function, and U is the constraint set

Categories of problems:
Discrete (U is nite) or continuous
Linear (g is linear and U is polyhedral) or
nonlinear

Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) = Ew G(u;w)

where w is a random parameter.

DP can deal with complex stochastic problems
where information about w becomes available in
stages, and the decisions are also made in stages
and make use of this information.

BASIC STRUCTURE OF STOCHASTIC DP

Discrete-time system
Xk+1 = Fr(Xk; Uk;Wi); k=0;1::5;N 1

k: Discrete time

Xk . State; summarizes past information that
IS relevant for future optimization

Uk: Control; decision to be selected at time
k from a given set

Wk: Random parameter (also called distur-
bance or noise depending on the context)

N: Horizon or number of times control is
applied

Cost function that is additive over time

(¥ 1)
E ov(Xn)+t Ok (Xk; Uk ; W)
k=0

Alternative system description: P (Xk+1] Xk; Uk)

Xk+1 = Wk With P(wg | Xk;Uk) = P(Xk+1] Xk; Uk)

INVENTORY CONTROL EXAMPLE

Stock at Period k

Wk lDemand at Period k

Xk — = |nventory System

|

Stock at Period k + 1

Cost of Period k
r(xk) + cuk

Period k

| ———— Uk

Discrete-time system

—
Xk +1 = Xk + Uk - Wk

‘ Stock ordered at

Xk+1 = Fr(XkiUkiWk) = Xk + U W

Cost function that is additive over time

(

E ov(Xn)+

(
= E

W 1

k=0

W 1

)

Ok (X ; Uk ; Wk)

CUk + I'(Xk + Ux W)

k=0

Optimization over policies: Rules/functions uyx =
k(Xx) that map states to controls

ADDITIONAL ASSUMPTIONS

The set of values that the control ux can take
depend at most onxx and not on prior X or u

Probability distribution of wy does not depend

Xk and uy

Otherwise past values ofw or x would be
useful for future optimization

Seguence of events envisioned in periokl
Xk occurs according to

Xk = f 1 Xk 13Uk 1, Wk 1
Uk Is selected with knowledge of, I.e.,
Uk 2 Uk (Xk)

Wi IS random and generated according to a
distribution

Pw, (Xk; Uk)

DETERMINISTIC FINITE-STATE PROBLEMS

Scheduling example: Find optimal sequence of
operations A, B, C, D

A must precede B, and C must precede D

Given startup cost Sp and Sc, and setup tran-
sition cost C,n from operation m to operation n

Initial
State

STOCHASTIC FINITE-STATE PROBLEMS

Example: Find two-game chess match strategy

Timid play draws with prob. pgy > 0 and loses
with prob. 1 pgy. Bold play wins with prob. py <
1=2 and loses with prob. 1 pw

2nd Game / Timid Play 2nd Game / Bold Play

BASIC PROBLEM

Control contraints ux 2 Ug(Xk)
Probability distribution Py (| Xk; Uk) of w

Policies = f o;:::; N 10; where ¢ maps
states xx into controls ux = k(Xkx) and is such
that k(Xk) 2 Uk(Xxk) for all xg

Expected costof starting at Xo IS

J (Xo)= E on(Xn)H O (Xk; K (Xk); W)
k=0

)

Optimal cost function
J (Xo) =min J (Xo)
Optimal policy satis es
J (Xo)=J (xo)

When produced by DP, is independent ofXg.

SIGNIFICANCE OF FEEDBACK

Open-loop versus closed-loop policies

|

uk = pr (k) - I 4$%8,
> ()I*I+|1")()/O)/1)2

—~
~

Y

A

A

In deterministic problems open loop is as good
as closed loop

Value of information; chess match example
Example of open-loop policy: Play always bold

Consider the closed-loop policy: Play timid if
and only if you are ahead

VARIANTS OF DP PROBLEMS

Continuous-time problems
Imperfect state information problems
In nite horizon problems

Suboptimal control

LECTURE BREAKDOWN

Finite Horizon Problems (Vol. 1, Ch. 1-6)
Ch. 1. The DP algorithm (2 lectures)

Ch. 2: Deterministic nite-state problems (1
lecture)

Ch. 4: Stochastic DP problems (2 lectures)

Ch. 5: Imperfect state information problems
(2 lectures)

Ch. 6: Suboptimal control (2 lectures)

In nite Horizon Problems - Simple (Vol. 1, Ch.
7, 3 lectures)

kkkkkkkkkkkkkkkkkkkkkkkkkkkkrkkkkkkkkkkkkkkkk

In nite Horizon Problems - Advanced (Vol. 2)

Chs. 1, 2: Discounted problems - Computa-
tional methods (3 lectures)

Ch. 3: Stochastic shortest path problems (2
lectures)

Chs. 6, 7: Approximate DP (6 lectures)

COURSE ADMINISTRATION

Homework ... once a week or two weeks (30%
of grade)

In class midterm, near end of October ... will
cover nite horizon and simple in nite horizon ma-
terial (30% of grade)

Project (40% of grade)

Collaboration in homework allowed but indi-
vidual solutions are expected

Prerequisites: Introductory probability, good
gasp of advanced calculus (including convergence
concepts)

Textbook: Vol. | of text is required. Vol. Il
IS strongly recommended, but you may be able to
get by without it using OCW material (including
videos)

A NOTE ON THESE SLIDES

These slides are a teaching aid, not a text

Don't expect a rigorous mathematical develop-
ment or precise mathematical statements

Figures are meant to convey and enhance ideas,
not to express them precisely

Omitted proofs and a much fuller discussion
can be found in the textbook, which these slides
follow

6.231 DYNAMIC PROGRAMMING
LECTURE 2
LECTURE OUTLINE

The basic problem

Principle of optimality

DP example: Deterministic problem
DP example: Stochastic problem
The general DP algorithm

State augmentation

BASIC PROBLEM

Control constraints ux 2 Uk (Xk)
Probability distribution Py (| Xk; Uk) of w

Policies = f o;:::; N 10; where ¢ maps
states xx into controls ux = k(Xkx) and is such
that k(Xk) 2 Uk(Xxk) for all xg

Expected costof starting at Xo IS

J (Xo)= E on(Xn)H O (Xk; K (Xk); W)
k=0

)

Optimal cost function
J (Xo) =min J (Xo)
Optimal policy IS one that satis es

J (Xo0)=J (Xo)

PRINCIPLE OF OPTIMALITY

Let =1 4 4;::5; n 19 be optimal policy

Consider the\tail subproblem™ whereby we are
at x; at time i and wish to minimize the \cost-to-
go" from time i to time N

(" 1)
E ouv(Xn)+ Ok Xk; k(Xk); Wk
k=i
and the \tail policy” f ,; .4::70 n 19
Xj Tail Subproblem
.
0 [N

Principle of optimality : The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

DP rst solves ALL tail subroblems of nal
stage

At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length

DETERMINISTIC SCHEDULING EXAMPLE

Find optimal sequence of operations A, B, C,
D (A must precede B and C must precede D)

Start from the last tail subproblem and go back-
wards

At each state-time pair, we record the optimal
cost-to-go and the optimal decision

STOCHASTIC INVENTORY EXAMPLE

Wy l Demand at Period k

Stock at Period k Inventory Stock at Period k+ 1
Xk > System .
Y Xg +1= X + U - Wy

l T Stock Ordered at

Cost of Period k u Period k
l—— Yk
CU + 1 (X, +Ug-w,)

Tail Subproblems of Length 1.
JN 1(X|\| 1) = min E Cun 1
Un 1 OWN 1

+r(Xy 1+tUN 1 WN 1)

Tail Subproblems of LengthN k:

Jk(Xk) =min E Cug+ I‘(Xk + Uk Wk)
Uk OWk

+ Jk+1 (Xk + Ug Wk)

Jo(Xo) Is opt. cost of initial state Xg

DP ALGORITHM

Start with

IN(XN) = On (XN);
and go backwards using

Jk(Xk) = min E k(Xk; Uk; W)
Uk 2 Ug (Xk) Wk

+ Jk+1 Fe(XksUkswg) 3 k=0;1:::;N 1L

Then Jo(Xo), generated at the last step, Is equal
to the optimal cost J (Xp). Also, the policy

where | (Xx) minimizes in the right side above for
eachxy and k, is optimal

Justi cation: Proof by induction that Jy(Xk) Is
equal to J, (Xx), de ned as the optimal cost of the
tail subproblem that starts at time k at state Xy

Note:

ALL the tail subproblems are solved (in ad-
dition to the original problem)

Intensive computational requirements

PROOF OF THE INDUCTION STEP

Let x = ki k+1,...; N 1 denote a talil
policy from time k onward

Assume that Jx+1 (Xk+1) = Jy4q (Xk+1). Then

Jy (Xk) = min E Ok Xk k(Xk); Wk
(ks k+1) Wiiw N 1

+ On (XN)+ g Xi; i(Xi);w;
i= k+1

=min E Ok Xk; k(Xk);Wk
k Wk

: (. #)
+ min E On (XN)+ g Xi; i(Xi);w

k +1 Wik +1 155 W N 1)
I=k+1

=min E gk Xk; k(Xk)iWk + Jpq fro Xis k(Xk);wi
k Wk

=min E Ok Xk, k(Xk)iwk + ks Fr Xkr k(Xk):wg
k Wk

= min E Ok(XksUkswi) + Jper Fre(Xis Uk W)
Uk 2Up (XK) wy

= Jk (Xk)

LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Initial Final
Temperature X, Oven 1 X, Oven 2 Temperature X,
—_— Temperature —_— Temperature T ——
Yo Uy
System
Xk+1 = (1 @)Xk + auk; k=0;1;

where a is given scalar from the interval (G 1)

Cost
r(xa T)2+ ug+ ug

wherer Is given positive scalar
DP Algorithm:

Jz(Xz) = I’(Xz T)2

h i
Ji(x1)=min u?+r (1 axi+aus T ’
Uz

Jo(Xo) =min u3+ J1 (1 a)xo+ aup
Uo

STATE AUGMENTATION

When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state

DP algorithm still applies, but the problem gets
BIGGER

Example: Time lags

Xk+1 = Fr(Xk; Xk 1;Uk;Wk)

Introduce additional state variable yx = Xy 1.
New system takes the form

Xk+1 _ Fr(Xk; Yk Uk Wk)

Yk+1 Xk

View »x¢ = (Xk;Yx) as the new state.

DP algorithm for the reformulated problem:

n

Jk(Xk; Xk 1) = min E Ok(Xk; Uk;Wk)
Uk 2 Uk (Xk) Wy o

+ Jk+1 F(Xk; Xk 15 Uk W) Xk

6.231 DYNAMIC PROGRAMMING
LECTURE 3
LECTURE OUTLINE

Deterministic nite-state DP problems
Backward shortest path algorithm
Forward shortest path algorithm
Shortest path examples

Alternative shortest path algorithms

DETERMINISTIC FINITE-STATE PROBLEM

Terminal Arcs
with Cost Equal
to Terminal Cost

Avrtificial Terminal

Initial State Node

Stage O Stage 1 Stage 2 ... StageN -1 Stage N

States < == > Nodes
Controls <== > Arcs

Control sequences (open-loopkx == > paths
from initial state to terminal states

a}j : Cost of transition from state | 2 Sy to state
] 2 Sk+1 attime k (view it as \length" of the arc)

all : Terminal cost of state i 2 Sy

Cost of control sequence< == > Cost of the cor-
responding path (view it as\length" of the path)

BACKWARD AND FORWARD DP ALGORITHMS

DP algorithm:
In(i)=all; i2Sy;

Je(i)= min af+Jka(j); i2S; k=0;:10N 1
] 2Sk+1

The optimal cost is Jo(s) and is equal to the

length of the shortest path from s to t

Observation: An optimal path s! t is also an
optimal path t ! s in a \reverse" shortest path
problem where the direction of each arc is reversed
and its length is left unchanged

Forward DP algorithm (= backward DP algo-

rithm for the reverse problem):
InG)=ag:]2 S;

S !

J()= min - af f+ Ja (D)5] 28 ka

The optimal cost is Jo(t) = min j2s, af + Ji(i)

View Jik(J) as optimal cost-to-arrive to state |
from initial state s

A NOTE ON FORWARD DP ALGORITHMS

There is no forward DP algorithm for stochastic
problems

Mathematically, for stochastic problems, we
cannot restrict ourselves to open-loop sequences,
so the shortest path viewpoint fails

Conceptually, in the presence of uncertainty,
the concept of \optimal-cost-to-arrive" at a state
Xx does not make sense. For example, it may be
Impossible to guarantee (with prob. 1) that any
given state can be reached

By contrast, even in stochastic problems, the
concept of \optimal cost-to-go" from any state xy
makes clear sense

GENERIC SHORTEST PATH PROBLEMS

f 1,2;:::;N;tg: nodes of a graph (. the desti-
nation)

ajj : cost of moving from nodei to node |

Find a shortest (minimum cost) path from each
nodei to nodet

Assumption: All cycles have nonnegative length.
Then an optimal path need not take more thanN
moves

We formulate the problem as one where we re-
quire exactly N moves butallow degenerate moves
from a nodei to itself with cost a; =0

Ji (1) = opt. cost of getting from itotin N Kk moves

Jo(1): Cost of the optimal path from i to t.

DP algorithm:

Jk(i):_r{]inl\I aj +Jk+1 () ; k=0:1:::::N 2
J:

with Iy 1(1) = ait, 1=1;2;:::;N

EXAMPLE

State i A

Destination

N w S ol
I

ESTIMATION / HIDDEN MARKOV MODELS

Markov chain with transition probabilities pj
State transitions are hidden from view

For each transition, we get an (independent)
observation

r(z;i;]): Prob. the observation takes valuez
when the state transition is from i to |

Trajectory estimation problem: Given the ob-

VITERBI ALGORITHM

We have

P(XN | ZN) = PIXn:Zn)

P(ZN)

wherep(Xn ;Zn) and p(Zy) are the unconditional
probabilities of occurrence of X ;Zn) and Zy

Maximizing p(Xn | Zn) Is equivalent with max-
Imizing In(p(Xn ;ZnN))

We have (using the \multiplication rule" for
cond. probs)

W
P(XN;ZN) = x, Px, 1x M (Zk; Xk 13 Xk)
k=1

so the problem is equivalent to

X

minimize In(«,) IN pPx, x. M(Zk; Xk 15 Xk)
k=1

over all possible sequenceXg; X1;:::; XN

This is a shortest path problem.

GENERAL SHORTEST PATH ALGORITHMS

There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
nite-state problems

They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

Essential for problems with HUGE state spaces.

Combinatorial optimization is prime example
(e.g., scheduling/traveling salesmar)

A Origin Node s

5 1 15
AB AC AD
20 4 20 3 4 3
ABC ABD ACB ACD ADB ADC
3 3 4 4 20 20
ABCD ABDC ACBD ACDB ADBC ADCB
1 15 5 1
15 5
Artificial Terminal Node t
511115
5 20| 4
1 (20 3

1514 (3

LABEL CORRECTING METHODS

Given: Origin s, destination t, lengthsa; 0.

ldea is to progressively discover shorter paths
from the origin s to every other nodei

Notation:
di (label of i): Length of the shortest path
found (initially ds =0, di =1 fori 6 s)
UPPER: The label d; of the destination
OPEN list: Contains nodes that are cur-

rently active in the sense that they are candi-
dates for further examination (initially OPEN= f sg)

Label Correcting Algorithm

Step 1 (Node Removal): Remove a nodd from
OPEN and for each childj of i, do step 2

Step 2 (Node Insertion Test): If di + a; <
minfd;; UPPERgQ, setd; = di + a; and seti to
be the parent ofj. In addition, if j 6 t, placej In
OPEN if it is not already in OPEN, while if | = t,
set UPPER to the new valued; + a;; of d;

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1

VISUALIZATION/EXPLANATION

Given: Origin s, destination t, lengthsa; O

di (label ofi): Length of the shortest path found
thus far (initially ds =0, di = 1 fori 6 s). The
label d; is implicitly associated withan s! | path

UPPER: The label d: of the destination

OPEN list: Contains \active" nodes (initially
OPEN=fsQ)

Is dj + aj; < UPPER ?
(Does the path s --> i -->j

have a chance to be part
of a shorter s --> t path ?)
Set dJ = dl + aij
INSERT YES
Is di + aij < dj ?

.OO O i /g (Is the path s --> i > |
~0

YES

better than the
OPEN current path s -->j ?)

REMOVE

EXAMPLE

11 A Origin Node s

5 1 15
2| AB 71 AC 10| ab

20 4 20 3 4 3
3| ABC 5| ABD ACB 8| ACD ADB ADC

3 3 4 4 20 20
4. 1|ABCD 6 | ABDC ACBD 9 ACDB ADBC ADCB

1 15 5 1
15 5

Artificial Terminal Node t

Iter. No. Node Exiting OPEN OPEN after Iteration UPPER
0 - 1 1
1 1 2, 7,10 1
2 2 3,5 7, 10 1
3 3 4, 5, 7, 10 1
4 4 5, 7, 10 43
5 5 6, 7, 10 43
6 6 7, 10 13
7 7 8, 10 13
8 8 9, 10 13
9 9 10 13
10 10 Empty 13

Note that some nodes never entered OPEN

VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina-
tion

Proof: (1) Each time a nodej enters OPEN, its
label is decreased and becomes equal to the length
of some path froms to |

(2) The number of possible distinct path lengths
IS nite, so the number of times a node can enter
OPEN is nite, and the algorithm terminates

let d be the shortest distance. If UPPER > d
at termination, UPPER will also be larger than
the length of all the paths (s;j1;:::;jm), M =

Jk will never enter the OPEN list with d;, equal
to the shortest distance froms to jx. Similarly
node jk 1 will never enter the OPEN list with
di, , equalto the shortest distance fromsto jx 1.
Continue to j; to get a contradiction

6.231 DYNAMIC PROGRAMMING
LECTURE 4
LECTURE OUTLINE

Examples of stochastic DP problems
Linear-quadratic problems

Inventory control

LINEAR-QUADRATIC PROBLEMS

System: Xk+1 = AxXk + Brug + wy
Quadratic cost
(¥ 1

E XRQNXN + (X QuXk + URRkUK)
k=0 :1;::N 1 k=0

)

whereQx 0andRyg > 0[inthe positive (semi)de nite
sense].

Wy are independent and zero mean

DP algorithm:
IN(XN) = X} ONXN;

Jk (Xk) = muT E xPQkXk + U)Rk Uk

+ Jik+1 (AkXk + Bgug + wy)

Key facts:
Jk (Xx) Is quadratic
Optimal policy f 4;:::; 19 1S linear:

«(Xk) = LkXk
Similar treatment of a number of variants

DERIVATION

By induction verify that
«(Xk) = LXk; Jk(Xk) = XpK Xk +constant;
where Ly are matrices given by
Lk = (BIKk+1 Bk + Rk) 1BKk+1 Ax;

and whereK are symmetric positive semide nite
matrices given by

Kn = QN

Kk = A(k) Kk+1 Kk+1 Bk(BEKk+1 Bk
+ Ri) 1BKks1 Ak + Qx

This is called the discrete-time Riccati equation

Just like DP, it starts at the terminal time N
and proceeds backwards.

Certainty equivalence holds (optimal policy is
the same as whenwy is replaced by its expected
value Efwygg = 0).

ASYMPTOTIC BEHAVIOR OF RICCATI EQ.

Assume stationary system and cost per stage,
and technical assumptions:controlability of (A; B)
and observability of (A;C) where Q = CC

The Riccati equation converges lim. 1 Kk =
K, where K is pos. de nite, and is the unique
(within the class of pos. semide nite matrices) so-
lution of the algebraic Riccati equation

K=A0K KB(BXB +R) IBK A+ Q

The optimal steady-state controller (x) = Lx
L= (BKB + R) 1IBXA;

IS stable in the sense that the matrix (A + BL) of
the closed-loop system

Xk+1 = (A + BL)Xk + wi

satises limgin (A + BL)k =0.

GRAPHICAL PROOF FOR SCALAR SYSTEMS

E P Prsa ;
Riccati equation (with Py = Ky k):
B2P2
Pc+s1 = A2 P k — +Q;
1 < Bap +R O
or Px+1 = F(Px); where
B2p?2 A2RP
F(P)= A2 P +Q = +
(P) B2P + R Q B2P + R <

Note the two steady-state solutions, satisfying
P = F(P), of which only one is positive.

RANDOM SYSTEM MATRICES

not known but rather are independent random
matrices that are also independent of thewy

DP algorithm is
IN(XN) = XR QN XN
J(xk)=min E XQQuXx

Uk WA KBk

+ Uck)RkUk + Jy+1 (Aka + BrUk + Wk)

Optimal policy | (Xk) = LkXk; where

Lk = Ry+ EfB%Kyu1Bkg ‘EfBIK a1 Acg;

and where the matricesK ¢ are given by
Kn = Qn;
Kk = EfAPKy+1 Akg EfADKy+1 Byg
Rk + EfB%K k41 Bkg "EfBPK a1 Akg+ Qi

PROPERTIES

Certainty equivalence may not hold

Riccati equation may not converge to a steady-

State A

F(P)

\

/Q
459 -

0 P

We have Px+1 = F(Px); where

EfA2gRP TP?
+ Q+ :
EfB2gP + R EfB2gP + R

F(P) =

T = EfA2gEfB2g EfAg° EfBg°

INVENTORY CONTROL

Xk: stock, ug: stock purchased,wy: demand

Xk+1 = Xk + U Wk k=0:1::::N 1
Minimize
(g 1)
E Cux + H (X + ug)
k=0
where

H(x+ u)= Efr(x+u w)g

IS the expected shortage/holding cost, withr de-
ned e.g., for somep > 0andh > 0, as

r(x) = pmax(0; x)+ hmax(0;x)
DP algorithm:
JN (X|\|) =0;

Jk(Xk): mino cuk+H(xk+uk)+E Jk+1 (xk+uk Wk)
Uk

OPTIMAL POLICY

DP algorithm can be written as Jy (Xn) =0

Jk(Xk) = minO Cuk + H(Xk + ux) + E Jk+1 (Xk + Uk
Uk

= min Gg(Xx + Ux) cxk = min Gg(y) CXk;
UK 0 Yy Xk

where
Gk(y)=cy+ H(y)+ E Jkaa (Y W)

If Gk Is convex andlimj; Gk(x) !'1
have N _
Sk Xk I x¢ < Sk,
0 If xx Sk,

where Sy minimizes Gk (y).

, We

< (Xk) =

This is shown, assuming thatH is convex and
c < p, by showing that J« is convex for all k, and

im Je(x)!1

Ixji

Wk)

JUSTIFICATION

Graphical inductive proof that Jx Is convex.

6.231 DYNAMIC PROGRAMMING
LECTURE 5
LECTURE OUTLINE

Stopping problems
Scheduling problems
Minimax Control

PURE STOPPING PROBLEMS

Two possible controls:

Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

Continue [using xk+1 = fk(xk;wk) and incur-
ring the cost-per-stage]
Each policy consists of apartition of the set of
states xx Into two regions:
Stop region, where we stop
Continue region, where we continue

CONTINUE STOP
REGION REGION

Stop State

EXAMPLE: ASSET SELLING

A person has an asset, and ak =0;1;:::;N 1
receives a random o0 erwy

May accept wy and invest the money at xed
rate of interest r, or reject wy and wait for wy.; .
Must accept the last o er wy

DP algorithm (xx: current o er, T: stop state):

nXN ifXNﬁT,

WON= 07 ik = T
n Gk .
Je(x)= max L+ NN G B i (wi) It Xk ? T,
0 If X, = T.
Optimal policy;
accept the o er x If xk > «;
reject the o er xy If Xk < «;

where
E Jk+1 (Wk)

<7 T@+)Nk

FURTHER ANALYSIS

ACCEPT

1
: REJECT

0 1 2 N-1 N k
Can show that «+1 for all k

Proof: Let Vi(xk) = Je(xk)=(1+ r)N * for x, 6
T: Then the DP algorithm is

W (Xn) = XnG V(X)) =max xe; (L+ 1) 'E Vi (W)
W

We have ¢ = Eyw Vk+«1 (W) =(1+ r), soitis enough
to show that Vi (x) Vk+1 (x) for all x and k. Start

with W 1(x) Wn(X) and use the monotonicity
property of DP. Q.E.D.

We can also show that ifw is bounded, (! a
ask! 1 . Suggests that for an in nite horizon
the optimal policy is stationary.

GENERAL STOPPING PROBLEMS

At time k, we may stop at costt(xx) or choose
a control ux 2 U(xx) and continue

JN (X|\|) = t(XN);

Jk(Xk) =min t(Xx); min E g(Xk;Uk;Wg)
uk2U(xk)

+ Jiar T (X Uk wWk)

Optimal to stop at time k for x in the set

Tk = x t(x) min E g(x;u;w)+ Jes1 F(Xu;w)
u2U(x)

Sincedy 1(X) JIn(X), we havedi(x) Jk+1 (X)
for all k, so
To Tk Tk TN 1

Interesting case is when all theT, are equal (to
Tn 1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

fxuw)2 Th 1] forall x 2 Ty 1; u2 U(x); w:

SCHEDULING PROBLEMS

We have a set of tasks to perform, the ordering
IS subject to optimal choice.

Costs depend on the order

There may be stochastic uncertainty, and prece-
dence and resource availability constraints

Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

Some special problems admit a simple quasi-
analytical solution method

Optimal policy has an \index form", l.e.,
each task has an easily calculable \cost in-
dex", and it is optimal to select the task
that has the minimum value of index (multi-
armed bandit problems - to be discussed later)

Some problems can be solved by aiinter-
change argument'(start with some schedule,
Interchange two adjacent tasks, and see what
happens). They require existence of an op-
timal policy which is open-loop.

EXAMPLE: THE QUIZ PROBLEM

Given a list of N questions. If questioni is an-
swered correctly (given probability pi), we receive
reward R;; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

Let i and j be the kth and (k + 1) st questions
In an optimally ordered list

L =C(io;:iislk bl ke2siiin 1)
E freward ofLg= E reward of fig;:::;ik 10
+ Py Py (PRI + pipR;)
+ Py P, ;PP E reward of fig«2 ;1 in 10

L®=(io;:itik 1ifiisi ke2siiisin 1)

SinceL is optimal, Efreward of Lg Efreward of L%
so it follows that piR;i + pi P R; PpR; + pjpiRi Or

piRi=(1 p) pR=1 p):

MINIMAX CONTROL

Consider basic problem with the di erence that
the disturbance wg instead of being random, it is
just known to belong to a given setW (xk; uk).

Find policy that minimizes the cost

h
J (Xo) = max On (XN)
WkZWk(Xk; k(Xk))
k=0 ;1;::N 1
K 1 |
+ Ok Xk k(Xk); Wk
k=0

The DP algorithm takes the form
In (XN) = On (XN);

Jk(Xk) = min max Ok (Xk; Uk ; Wk)
UKZU(Xk) WkZWk(Xk;U k)

+ Jk+1 Fu(Xk; Uk W)

(Section 1.6 in the text).

DERIVATION OF MINIMAX DP ALGORITHM

Similar to the DP algorithm for stochastic prob-
lems. The optimal costJ (xo) IS

J (Xo) =min min max max
0, N 1 Wo2W(xo; o(x0)] wn 12WI[Xn 13 N 1(Xn 1)
K 1
Ok Xk; k(Xk)iwk + On(XN)
k=0 ,,
= min min min max max
0 N 2 N 1Wo2W [Xg; o(Xo)] wWn 22WI[XN 25 N 2(Xn 2)]
K 2
Ok Xk; k(Xk);wg + max
=0 Wy 12WIXN 15 N 1(XN 1)
n HH

|
ON 1 XN 1; N 1(Xn 1);wn 1+ IN(XN)

Interchange the min over : and the max over

with N 1 in place of N, etc. After N steps we
obtain J (X0) = Jo(Xo).

Construct optimal policy by minimizing in the
RHS of the DP algorithm.

UNKNOWN-BUT-BOUNDED CONTROL

For eachk, keep thex, of the controlled system
Xk+1 = T Xk k(Xk); Wk

Inside a given setXy, the target set at time k.

This Is a minimax control problem, where the
cost at stagek is

N i
0o |f Xk 2 Xk,
1 if Xk 2Xk.

We must reach at time k the set

Ok (Xk) =

Yk = Xk j Jk(Xk) =0

In order to be able to maintain the state within
the subsequent target sets.

Start with Xy = Xny,andfork=0:1:::::N 1,

Xk = Xk 2 Xgj there existsux 2 Ux(xx) such that
fk(Xk;Uk;Wk) 2 Yk+1 : for all Wk 2 Wk(Xk;Uk)

6.231 DYNAMIC PROGRAMMING
LECTURE 6
LECTURE OUTLINE

Problems with imperfect state info
Reduction to the perfect state info case
Linear quadratic problems

Separation of estimation and control

BASIC PROBL. W/ IMPERFECT STATE INFO

Same as basic problem of Chapter 1 with one
di erence: the controller, instead of knowing xy,
receives at each timek an observation of the form

Zo = ho(Xo;Vo); zk = hk(Xk;Uk 1;Vvk); k 1

The observation zx belongs to some spacéy.

The random observation disturbancevy is char-
acterized by a probability distribution

The initial state xg is also random and charac-
terized by a probability distribution Py,.

The probability distribution Py, (' j Xk; ux) Of wy
IS given, and it may depend explicitly on xx and
ux but not on wo;:::;wWk 1:Vo;iiiVk 1.

The control uy IS constrained to a given subset
Uk (this subset does not depend orxyx, which is
not assumed known).

INFORMATION VECTOR AND POLICIES

Denote by I the information vector, I.e., the
Information available at time k:

l« =(Z0;21;::0;Zk; Uos U; it Uk 1); ko 1
lo = Zo
We consider policies = f o; 1;:::; ~ 10, Where

each x mapsly into a ux and

k(|k)2Uk; for all l: K 0
We want to nd a policy that minimizes
(. i)
J = XO;WI%(;Vk On (XN) + Ok Xk k(lk);wk
k=0 ;N 1 k=0

subject to the equations

X1 = f Xy k(lk); Wk ; k O

Zo = ho(Xo;Vo); zk = hk Xk; k 1(lk 1);vk ; kK 1

REFORMULATION AS PERFECT INFO PROBL.

System: We have

lk+1 = (lk;zk+1;Uk); k=0;1::0N 2, lo= 2o

View this as a dynamic system with statel, con-
trol uy, and random disturbance z+1

Disturbance: We have

tor Ix. Thus the probability distribution of 2z,
depends explicitly only on the statel, and control

Cost Function: Write

E ok(Xk;uk;wx) = E E Oc(Xk;Uk;Wk) | lk; Uk
Xk;Wk

so the cost per stage of the new system is

k(lk;uk) = E Ok(Xk;Uk;Wk) | lk; Uk
Xl Wk

DP ALGORITHM

Writing the DP algorithm for the (reformulated)
perfect state info problem:

h
Jk(lk) = min = Ok (XK ; Uk ; Wk)
Uk2Ugk Xy ;wWyiZgyg
+ Ji+1 (Tk; Zk+1 s Uk)] Tk Uk

fork=0:1;::::N 2, andfork=N 1,

In 1IN 1) = min E Ov 1(XN 1;UN 1;WN 1)
un 12UN 1 XN 10WN 1
#

+ov fn 1(Xn 13UN 13WN 1) JIN 13UN 1

The optimal cost J is given by

J = E Jo(z0)
29

LINEAR-QUADRATIC PROBLEMS

System: Xk+1 = AkXk + Brux + Wy
Quadratic cost

(.)

0 0 0
E XN Qn XN+ (Xk QuXk + UgRkUk)
k=0 ;1;::N 1 k=0

whereQy OandRyx >0
Observations

Zk = CkXk + Vi k=0:1:::::N 1

k(lk) = LxEfXxg j g

L. same as for the perfect state info case

Estimation problem and control problem can
be solved separately

DP ALGORITHM |

Last stageN 1 (supressing indexN 1):
h

B 0
In 1(In 1)= min Exy ;wy 1 Xy 1QXN 1
UN 1

+uy (Runy 1+(Axy 1+Buy 1+ wy 1)°

i
Q(AXN 1+ Buny 1+wn 1)]IN 13UN 1

SinceEfWN 1 j IN 1;UN 10 = Efwy 10 = 0,
the minimization involves

min uy ((B°QB + R)un 1
UN 1
+ 2EfXxpn 1j||\| 1g0AOQBU|\| 1
The minimization yields the optimal | ;:
Uy 1= N 1(In 12)=Ln 1EfxXn 1] 1IN 10

where

Ly 1= (BOB +R) 'B°QA

DP ALGORITHM Il

Substituting in the DP algorithm

Jv 1(In 1)= E X|c\)1 1Kn aXn 1] 1IN 1
XN 1
. 0
+ E XN 1 EfxXn 1) 1IN 10
XN 1
Pv 1 Xn 1 EfxXn 1] 1IN 10 JIN 1

0]
+ E fwy 1QnWn 10;
WN 1

where the matricesky 1 and Py 1 are given by

Pv 1= AR 1Qn By 1(Rn 1+ By 10On By 1) !
By 1ONAN 1
KN 1:A|c\)1 1O8vAN 1 PN 1+ On 1

Note the structure of Jy :: In addition to the
guadratic and constant terms, it involves a (0)
guadratic in the estimation error

XN 1 EfXN 1j|N 10

DP ALGORITHM IlI

DP equation for period N 2:
h

o 0
IJn 2(In 2) = min E fxy 2QXN 2
UN 2 XN 2WN 2:ZN 1)
|
0 - .
+ Uy oRuny 2+ Iy 1(INn 1)]IN 2;UN 20

= E xp ﬁQXN 2 IN 2

+ min uy LRuy >
UN 2

0 : .
+ E Xy (KN 1XN 1) IN 2;UN 2

_ 0
+E Xy 1 Efxy 1IN 10

Pv 1 Xn 1 EfxXy 1IN 19 JIN 25UN 2

0
+ Ewy fWwy 1QOnWwn 10

Key point: We have excluded the estimation
error term from the minimization over uy

This term turns out to be independent of uy >

QUALITY OF ESTIMATION LEMMA

Current estimation error is una ected by past
controls: For every k, there is a function M s.t.

Xk EfXxk] 1kg= Myx(Xo;Wo;:::;Wk 1;Vo,:::;Vk);

iIndependently of the policy being used
Conseqguence Using the lemma,

XN 1 EfxXn 1) 1IN 10= N 1;
where

v 1. function of xo:wo:::iiiWN 2:VolIliIVN 1

Since y : Is independent ofuy 2, the condi-
tional expectation of § ;Pn 1 n 1 Satises

Ef v 1Pn 1 N 1] In 2;UN 20

= Ef v iPn 1N 1) In 20

and is independent ofuy ».
So minimization in the DP algorithm yields

Uy 2= N 2(IN 2)=Ln 2EfXn 2] 1IN 20

FINAL RESULT

Continuing similarly (using also the quality of
estimation lemma)

(k) = LkEfxk j 1kg;
where L, is the same as for perfect state info:
L = (Rk + BYKx+1 Bk) "BRKya Ax;
with Ky generated using the Riccati equation:
Kn = Qn; Kk = ARKis1 Ak Py + Q;
P = ARKis1 Bi(Ri + BrKis1 Bi) "BRKis1 Ak
| 5

> X+ 1= AX t Buy +wy > 2 =Cxt v

Y

Delay

Y

Uk -1

E{x 1.}) z
-t kK Estimator K

Uy

A

A
r
1

SEPARATION INTERPRETATION

The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation Ef xx j l«g.

(b) An actuator, which multiplies Efxx j lkg by
the gain matrix Ly and applies the control
input U = LKEf Xk j Ikg.

Generically the estimate# of a random vectorx
given some information (random vector) |, which
minimizes the mean squared error

Exfkx Rk%jlg= kxk® 2Efx|IgR+ k&k®

ISEfx j 1 g (setto zero the derivative with respect
to ® of the above quadratic form).

The estimator portion of the optimal controller
IS optimal for the problem of estimating the state
Xk assuming the control is not subject to choice.

The actuator portion is optimal for the control
problem assuming perfect state information.

STEADY STATE/IMPLEMENTATION ASPECTS

As N !'1 | the solution of the Riccati equation
converges to a steady state and., ! L.

If xo, Wk, and vx are Gaussian,Efxx j Ixg IS
a linear function of 1, and is generated by a nice
recursive algorithm, the Kalman lter.

The Kalman lIter involves also a Riccati equa-
tion, so for N ' 1 , and a stationary system, it
also has a steady-state structure.

Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

For nonGaussian uncertainty, computingEf xy j I«g
maybe very di cult, so a suboptimal solution is
typically used.

Most common suboptimal controller: Replace
Efxk j lkg by the estimate produced by the Kalman
lter (act as if xo, wk, and vy are Gaussian).

It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of Iy.

6.231 DYNAMIC PROGRAMMING
LECTURE 7
LECTURE OUTLINE

DP for imperfect state info
Su cient statistics

Conditional state distribution as a su cient
statistic

Finite-state systems
Examples

REVIEW: IMPERFECT STATE INFO PROBLEM

Instead of knowing xx, we receive observations
Zo = ho(Xo;Vo); Zk = hk(Xk;Uk 1;Vvk); k 0
|« . Information vector available at time k:

lo = Zo; Ik =(Z0;21;::7;2Zk;Uo;U; il Uk 1); k1
Optimization over policies =f o; 1;:::7; N 10,

where «(lk) 2 Uy, for all 1, and k.
Find a policy that minimizes

(¥ 1)
J = E On (Xn)+ Ok Xk; k(lTk);wk
k:(?’;:::;lf\l’ X 1 k=0

subject to the equations

Xker = Fr Xi; k(lk);wWk ; k 0O

Zo = ho(Xo;Vo); zx = hx Xk; « 1(lk 1);vk 7 k 1

DP ALGORITHM

DP algorithm:
h

Jk(lk) = min E Ok (XK ; Uk ; Wk)
Uk2Uk Xpiwgizga
+ Jik+1 (Tk;Zk+1 ;Uk) J Tk Uk

fork=0:1;::::N 2, andfork=N 1,

In 10N 1) = min E o 1(XN 1;UN 1;WN 1)
un 12UN 1 XN 10WN 1
#

+ov fn 1(Xn 13UN 13WN 1) JIN 13UN 1

The optimal cost J is given by

J = E Jo(Zo) :
20

SUFFICIENT STATISTICS

Suppose there is a functiors, (1) such that the
min in the right-hand side of the DP algorithm can
be written in terms of some function Hy as

min H Sk(lk);uk
Uk2Uk

Such a function Sy is called asu cient statistic .

An optimal policy obtained by the preceding
minimization can be written as

k() = 7 Sk(lk) 3

where —, is an appropriate function.
Example of a su cient statistic: Sk (Ix) = I«
Another important su cient statistic

Sk(lk) = Pxpjiys

assuming that vy is characterized by a probability
distribution Py, (j Xk 1;Uk 1;Wk 1)

DP ALGORITHM IN TERMS OF Px « ilg

Filtering Equation: Py, j, IS generated recur-
sively by a dynamic system (estimator) of the form

P K kaj|k;Uk;Zk+l

Xk+1 1Tk+1 -

for a suitable function
DP algorithm can be written as

h

Jk(Pxji,) = min E Ok (XK ; Uk ; Wk)
U 2Ul oW giZgeen

+ Jk+r k(Pxpji Uk Ze+a)] Lk Uk

It is the DP algorithm for a new problemwhose
state iIs P, ;i (also calledbelief state)

| i

L 8%'("* . 9312, (
theg 458 .6 .7 T | &-49).5.8 .- 667

Y

B
-

= I"#$%

A hﬁs
Qo

A
A

01(2%$(+, i &0*$(+,
I, Tog.

EXAMPLE: A SEARCH PROBLEM

At each period, decide to search or not search
a site that may contain a treasure.

If we search and a treasure is present, we nd
It with prob. and remove it from the site.

Treasure's worth: V. Cost of search:C
States: treasure present & treasure not present

Each search can be viewed as an observation of
the state

Denote
Pk . prob. of treasure present at the start of time k

with po given.
px evolves at time k according to the equation

8 .
< Pk If not search,

0 If search and nd treasure,

Pk (1) .
@) b If search and no treasure.

Pk+1 = |

This is the lItering equation .

SEARCH PROBLEM (CONTINUED)

DP algorithm

h
Jk(pk)=max 0; C+ pcV

k(@)
el)+l p«

+(1 px Ikt

with Jy (pn) =0.

Can be shown by induction that the functions
Jk satisfy

8
. < = If Pk VL
Jk(pk) . _
>0 if pc> +—

Furthermore, it is optimal to search at period
k if and only if

Pk V C

(expected reward from the next search the cost
of the search - amyopic rule)

FINITE-STATE SYSTEMS - POMDP

Suppose the system is a nite-state Markov
chain, with states 1;::::n.

Then the conditional probability distribution

P IS an n-vector

ij|k

P(xk =1 jlk);::;P(Xk = nijly)

The DP algorithm can be executed over then-
dimensional simplex(state space is not expanding
with increasing k)

When the control and observation spaces are
also nite sets the problem is called a POMDP
(Partially Observed Markov Decision Problem).

For POMDRP it turns out that the cost-to-go
functions J« in the DP algorithm are piecewise
linear and concave (Exercise 5.7)

Useful in practice both for exact and approxi-
mate computation.

INSTRUCTION EXAMPLE |

Teaching a student some item. Possible states
areL: Item learned, orL: Item not learned.

Possible decisions T: Terminate the instruc-
tion, or T: Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

Possible test outcomes R: Student gives a cor-
rect answer, orR: Student gives an incorrect an-
swer.

Probabilistic structure

Cost of instruction: | per period

Cost of terminating instruction : O if student
has learned the item, andC > 0 if not.

INSTRUCTION EXAMPLE I

Let p«: prob. student has learned the item given
the test results so far

Pk = P(Xxk = L jzo;2z1;::07;2¢):

Filtering equation: Using Bayes' rule

Pk+1 = E pk;Zk+1)
1 1)L py) - _
_ taor naey Taa =R,
0 If Zk+1 = ﬁ
DP algorithm:

Jk(pk)=min (1 p)C; I+ E Jksr (Pr;Zk+1)

Zk +1

starting with

J_N 1(pN 1):min (1 PN 1)C;|+(1 t)(l PN 1)C:

INSTRUCTION EXAMPLE IlI

Write the DP algorithm as

Jk(p) =min (1 p)C; | + Ax(p«)
where

Ak(pk) = P(zk+1 = Rj1k)Ik+1 (px;R)
+ P(zk+1 = Rjlk)Jk+1 (px;R)

Can show by induction that Ay (p) are piecewise
linear, concave, monotonically decreasing, with

Ak 1(p) Ax(p) Ax+ (p); for all p 2 [0; 1]

(The cost-to-go at knowledge prob.p increases as
we come closer to the end of horizon.)

cl I+AN-1(p)

6.231 DYNAMIC PROGRAMMING
LECTURE 8
LECTURE OUTLINE

Suboptimal control

Cost approximation methods: Classi cation
Certainty equivalent control: An example
Limited lookahead policies

Performance bounds

Problem approximation approach
Parametric cost-to-go approximation

PRACTICAL DIFFICULTIES OF DP

The curse of dimensionality

Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

Quick explosion of the number of states in
combinatorial problems

Intractability of imperfect state information
problems

The curse of modeling
Mathematical models
Computer/simulation models

There may bereal-time solution constraints

A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

The problem data may change as the system
Is controlled { need for on-line replanning

COST-TO-GO FUNCTION APPROXIMATION

Use a policy computed from the DP equation
where the optimal cost-to-go function Jy.;, IS re-
placed by an approximation Ji.; . (SometimesE g

IS also replaced by an approximation.)
Apply —, (xx), which attains the minimum in

n o)
min E g«(Xk;Uk;Wk)+ JTk+1 Fr(Xk; Uk Wk)
Uk2Uk(Xk)

There are several ways to computeli.; :

O -line approximation: The entire function
Jk+1 IS computed for everyk, before the con-
trol process begins.

On-line approximation: Only the values Ji+1 (Xk+1)
at the relevant next states xx.1 are com-
puted and used to computeuy just after the
current state x, becomes known

Simulation-based methods: These are o -
line and on-line methods that share the com-
mon characteristic that they are based on
Monte-Carlo simulation. Some of these meth-
ods are suitable for are suitable for very large
problems.

CERTAINTY EQUIVALENT CONTROL (CEC)

ldea: Replace the stochastic problem with a
deterministic problem

At each time k, the future uncertain quantities
are xed at some \typical" values

On-line implementation for a perfect state info
problem. At each time k:

(1) Fix the w;, i k, at some w;. Solve the
deterministic problem:
IX 1
minimize gy (Xn) + g Xi;Uj;Wi

1=k
where xi IS known, and
Ui 2 Ui; Xier = Fi XU Wi e
(2) Use the rst control in the optimal control
sequence found.
Equivalently, we apply «(xx) that minimizes

Ok Xk Uk, Wk + Jk+1 Fr(Xk; Uk;Wk)

where Ji.1 Is the optimal cost of the correspond-
Ing deterministic problem.

EQUIVALENT OFF-LINE IMPLEMENTATION

Let 9(xo);:::; § 1(xn 1) be an optimal con-
troller obtained from the DP algorithm for the de-
terministic problem

minimize gy (XN) +

subject to Xg+1 = fx Xg;

K 1
Ok Xk
k=0

k(XK) Wi ;

k (XK); Wi

Kk (Xk) 2 Uy

The CEC applies at time k the control input

R (Xi).

In an imperfect info version, xi Is replaced by
an estimate Xy (1«).

lwk

lw

U k= pf (X System X Measurement Zjc
Xie+ 1= TelXpea Uy, W) Zp = hydXc Uy - 1,Vy)

-

TP
A Y
— Delay -

xi(l) . 5l

Kk %
= Actuator - Estimator | —e— % |

Mk

PARTIALLY STOCHASTIC CEC

Instead of xing all future disturbances to their
typical values, x only some, and treat the rest as
stochastic.

Important special case:Treat an imperfect state
Information problem as one of perfect state infor-
mation, using an estimatexy (I1«) of xx as if it were
exact.

Multiaccess communication example:Consider
controlling the slotted Aloha system (Example 5.1.1
In the text) by optimally choosing the probabil-
ity of transmission of waiting packets. This is a
hard problem of imperfect state info, whose per-
fect state info version is easy.

Natural partially stochastic CEC.:

1

"‘k(l k) = min 1; Yk(| k)

where Xk (1) IS an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which ig).

GENERAL COST-TO-GO APPROXIMATION

One-step lookahead (1SL) policy:At each k
and state xi, use the control =, (xx) that

min - E gk(Xk;Uk;Wk)+ Jk+1 Fr(Xk;Uk;Wk)
UkZUk(Xk)

where
Jn = ON .
Jk+1 : approximation to true cost-to-go Ji+1

Two-step lookahead policy: At each k and
Xk, use the control — (xx) attaining the minimum
above, where the functionJi., is obtained using a
1SL approximation (solve a 2-step DP problem).

If Jk+1 IS readily available and the minimiza-
tion above is not too hard, the 1SL policy is im-
plementable on-line.

Sometimes one also replacesq (xx) above with
a subset of \most promising controls" Uy (xk).

As the length of lookahead increases, the re-
quired computation quickly explodes.

PERFORMANCE BOUNDS FOR 1SL

Let Jx(xk) be the cost-to-go from(xy;k) of the
1SL policy, based on functionsJy.

Assume that for all (xx;k), we have

Fexk) Tu(xk); (*)
where Jy = gv and for all k,
\j\k(Xk) = min E gk(Xk;Uk;Wk)

Uk2Uk(Xk)

+ Jk+1 T (Xk; Uk Wk)

[so J% (xk) is computed along with =, (xx)]. Then

T (X)) Je(xi); for all (xx:;k):

Important application: When Ji is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

The bound can be extended to the case where
there is a « in the RHS of (*). Then

J(xk) JTk(Xk)+ «+ + N 1

COMPUTATIONAL ASPECTS

Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Uy (xx) IS not a discrete set]. Con-
nection with stochastic programming(2-stage DP)
methods (see text).

The choice of the approximating functions Jx
IS critical, and is calculated in a variety of ways.

Some approaches:

(a) Problem Approximation: Approximate the
optimal cost-to-go with some cost derived
from a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Ap-
proximate the optimal cost-to-go with a func-
tion of a suitable parametric form, whose pa-
rameters are tuned by some heuristic or sys-
tematic scheme (Neuro-Dynamic Program-
ming)

(c) Rollout Approach: Approximate the opti-
mal cost-to-go with the cost of some subop-
timal policy, which is calculated either ana-
lytically or by simulation

PROBLEM APPROXIMATION

Many (problem-dependent) possibilities

Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

Simplify di cult constraints or dynamics

Enforced decomposition exampleRoute m ve-
hicles that move over a graph. Each node has a
\value." First vehicle that passes through the node
collects its value. Want to max the total collected
value, subject to initial and nal time constraints
(plus time windows and other constraints).

Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

1SL scheme: At timek and state xx (position
of vehicles and \collected value nodes"), consider
all possiblekth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time

PARAMETRIC COST-TO-GO APPROXIMATION

Use a cost-to-go approximation from a para-
metric class J(x;r) where x Is the current state
andr =(rqg;:::;rm) IS avector of \tunable" scalars
(weights).

By adjusting the weights, one can change the
\shape" of the approximation J so that it is rea-
sonably close to the true optimal cost-to-go func-
tion.

Two key issues:

The choice of parametric classJ(x;r) (the
approximation architecture).

Method for tuning the weights (\training"
the architecture).

Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

Sometimes a simulation-based algorithm is used,
particularly when there is no mathematical model
of the system.

We will look In detalil at these issues after a few
lectures.

APPROXIMATION ARCHITECTURES

Divided in linear and nonlinear [i.e., linear or
nonlinear dependence ofi(x;r) on r]

Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

Linear feature-based architecture =(1;:::; m)

X
Jxr)y= (x)% = i ()T

j=1

"H$%&' ()*+
HS | rases” ($&#)$H+, | MHEN& (B)& I+ wugope ['HHS%E'()%$ | H 1M
- A g N R >

|deally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture

Anything sensible can be used as features. Some-
times the state space is partitioned, and \local"
features are introduced for each subset of the par-
tition (they are O outside the subset)

AN EXAMPLE - COMPUTER CHESS

Chess programs use a feature-based position
evaluator that assigns a score to each move/position

1
Features: :
Material balance, ;
1
1

Mobility,
gggggg Safety, etc L S
....... ’ ' Score
3 Feature .| Weighting
2a®e at Extraction of Features |

Position Evaluator

Many context-dependent special features.

Most often the weighting of features is linear
but multistep lookahead is involved.

Most often the training is done \manually," by
trial and error.

ANOTHER EXAMPLE - AGGREGATION

Main elements (in a nite-state context):

Introduce \aggregate" statesS;;:::;Sn, viewed
as the states of an \aggregate" system

De ne transition probabilities and costs of
the aggregate system,by relating original
system states with aggregate states (using so
called \aggregation and disaggregation prob-
abilities")

Solve (exactly or approximately) the \ag-
gregate" problem by any kind of method (in-
cluding simulation-based) ... more on this
later.

Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of each
original problem state as a linear combina-
tion of the optimal aggregate state costs

This Is a linear feature-based architecture(the
optimal aggregate state costs are the features)

Hard aggregation example Aggregate states
S; are a partition of original system states (each
original state belongs to one and only ones;).

AN EXAMPLE: REPRESENTATIVE SUBSETS

The aggregate statesS; are disjoint \represen-
tative" subsets of original system states

IHBHNE (&) (+&,*

o 060
|

"'#$"%&$ '&%&$()*+($&

Common case:Each S; is a group of states with
\similar characteristics"

Compute a \cost" r; for each aggregate state
S; (using some method)

Approximate the gptimal cost of each original
system statex with ., 41

For eachx, the ,j =1;:::;m, are the \ag-
gregation probabilities" ... roughly the degrees of
membership of statex in the aggregate statesS;

Each , Is prespecied and can be viewed as
the jth feature of state x

6.231 DYNAMIC PROGRAMMING
LECTURE 9
LECTURE OUTLINE

Rollout algorithms

Policy improvement property
Discrete deterministic problems
Approximations of rollout algorithms
Model Predictive Control (MPC)
Discretization of continuous time
Discretization of continuous space
Other suboptimal approaches

ROLLOUT ALGORITHMS

One-step lookahead policyAt each k and state
Xk, use the control — (xx) that

min E ok(Xk;Uk;Wk)+ Jk+1 Fu(Xk;Uk;Wk)
UkZUk(Xk)

where
Jn = ON .
Jk+1 : approximation to true cost-to-go Jx+1

Rollout algorithm: When Ji Is the cost-to-go of
some heuristic policy (called thebase policy)

Policy improvement property (to be shown):
The rollout algorithm achieves no worse (and usu-
ally much better) cost than the base heuristic start-
Ing from the same state.

Main di culty: Calculating Jk (xx) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

May involve Monte Carlo simulation if the
problem is stochastic.

Things improve in the deterministic case.

EXAMPLE: THE QUIZ PROBLEM

A person is givenN questions; answering cor-
rectly question i has probability pi, reward v;.
Quiz terminates at the rst incorrect answer.

Problem: Choose the ordering of questions so
as to maximize the total expected reward.

Assuming no other constraints, it is optimal to
use theindex policy: Answer questions in decreas-
Ing order of pivi=(1 pi).

With minor changes in the problem, the index
policy need not be optimal. Examples:

A limit (< N) on the maximum number of
guestions that can be answered.

Time windows, sequence-dependent rewards,
precedence constraints.

Rollout with the index policy as base policy:
Convenient because at a given state (subset of
guestions already answered), the index policy and
Its expected reward can be easily calculated.

Very e ective for solving the quiz problem and
Important generalizations in scheduling (see Bert-
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).

COST IMPROVEMENT PROPERTY

Let
Jk(xk): Cost-to-go of the rollout policy

Hi (xx): Cost-to-go of the base policy

We claim that J_k(Xk) Hk(Xk) for all Xk, K

Proof by induction: We haveJy (Xn) = Hn (Xn)
for all xn . Assume that

J_k+1 (Xk+1) Hy+1 (Xk+1); 8 Xk+1 -

Let =, (xk) and «(xx) be the controls applied by
rollout and heuristic at x,. Then, for all x

Jk(Xk) = E o Xi; k(X)W + s Fie X T (Xi)5 Wi
E Ok Xki k(Xk)iWk + Hisr Fo Xes T (Xk) 5 wi
E Ok Xk; k(Xk)iWk + Hiar freo Xis k(Xk):s Wi

= Hy (Xk)

Induction hypothesis == > 1st inequality
Min selection of =, (xk) == > 2nd inequality
De nition of Hy; ¢ == > last equality

DISCRETE DETERMINISTIC PROBLEMS

Any discrete optimization problem can be repre-
sented sequentially by breaking down the decision
process into stages.

A tree/shortest path representation. The leaves
of the tree correspond to the feasible solutions.

Example: Traveling salesman problem. Find a
minimum cost tour through N cities.

A Origin Node s

AB AC AD

ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Traveling salesman problem with four cities A, B, C, D
Complete partial solutions, one stage at a time

May apply rollout with any heuristic that can
complete a partial solution

No costly stochastic simulation needed

EXAMPLE: THE BREAKTHROUGH PROBLEM

root

Given a binary tree with N stages.
Each arc is free or is blocked (crossed out)

Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

Base heuristic (greedy): Follow the right branch
If free: else follow the left branch if free.

This is a rare rollout instance that admits a
detailed analysis.

For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
nding a free path than the greedy algorithm.

DET. EXAMPLE: ONE-DIMENSIONAL WALK

A person takes either a unit step to the left or
a unit step to the right. Minimize the cost g(i) of
the point i where he will end up afterN steps.

(0,0)

Base heuristic: Always go to the right. Rollout
nds the rightmost local minimum.

Alternative base heuristic: Compare always go
to the right and always go the left. Choose the
best of the two. Rollout nds a global minimum.

A ROLLOUT ISSUE FOR DISCRETE PROBLEMS

The base heuristic need not constitute a policy
In the DP sense.

Reason: Depending on its starting point, the
base heuristic may not apply the same control at
the same state.

As a result the cost improvement property may
be lost (except if the base heuristic has a property
called sequential consistency see the text for a
formal de nition).

The cost improvement property is restored in
two ways:

The base heuristic has a property calledse-
guential improvement which guarantees cost
reduction at each step (see the text for a for-
mal de nition).

A variant of the rollout algorithm, called for-
tied rollout , i1s used, which enforces cost
Improvement. Roughly speaking the \best"
solution found so far is maintained, and it
Is followed whenever at any time the stan-
dard version of the algorithm tries to follow
a \worse" solution (see the text).

ROLLING HORIZON WITH ROLLOUT

We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

Example: N -stage stopping problem where the
stopping cost is 0, the continuation cost is either

or 1, where0 < << 1, and the rst state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal costis m .

Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of © m steps.

It will continue uptothe rst m °+1 stages,
thus compiling a cost of (m ~+1) . The rollout
performance improves ad becomes shorter!

Limited vision may work to our advantage!

MODEL PREDICTIVE CONTROL (MPC)

Special case of rollout for linear deterministic
systems (similar extensions to nonlinear/stochastic)

System: xx+1 = Axk + Bug

Quadratic cost per stage: xp Qxx + up Ruy

Constraints: xx 2 X, ux 2 U(xk)
Assumption: For any xo 2 X there is a feasible

state-control sequence that brings the system to O
In m steps, i.e.,xm =0

MPC at state xx solves anm-step optimal con-
trol problem with constraint xx.m =0, I.e., nds

IX 1
Xps QXks + Ups Rugs -
.
subject to xk+m =0

Then applies the rst control ux (and repeats
at the next state xy+1)

MPC is rollout with heuristic derived from the
correspondingm 1-step optimal control problem

Key Property of MPC: Since the heuristic is sta-
ble, the rollout is also stable (suggested by policy
Improvement property; see the text).

DISCRETIZATION

If the time, and/or state space, and/or control
space are continuous, they must be discretized.

Consistency issuegi.e., as the discretization be-
comes ner, the cost-to-go functions of the dis-
cretized problem should converge to those of the
original problem.

Pitfall with discretizing continuous time: The
control constraint set may change a lot as we pass
to the discrete-time approximation.

Example: Consider the systemx(t) = u(t); with
control constraint u(t) 2 f 1;1g. The reachable
states after time are x(t +) = x(t) + u, with
uz[; [

Compare it with the reachable states after we
discretize the system naively:x(t+)= x(t)+ u(t);
with u(t) 2f 1;1g9.

\Convexi cation e ect" of continuous time : a
discrete control constraint set in continuous-time
di erential systems, is equivalent to a continuous
control constraint set when the system is looked
at discrete times.

SPACE DISCRETIZATION

Given a discrete-time system with state space
S, consider a nite subset S; for example S could
be a nite grid within a continuous state space S.

Diculty: f(x;u;w) 2S for x 2 S.

We de ne an approximation to the original
problem, with state spaceS, as follows:

Express eachx 2 S as a convex combination of
states in S, I.e.,

X X
X = i(X)xi where (x) O; i(x)=1

Xi2§ i

De ne a \reduced" dynamic system with state
spaceS, whereby from eachx; 2 S we move to
X = f(xj;u;w) according to the system equation
of the original problem, and then move tox; 2 S
with probabilities (X).

De ne similarly the corresponding cost per stage
of the transitions of the reduced system.

Note application to nite-state POMDP (dis-
cretization of the simplex of the belief states).

SPACE DISCRETIZATION/AGGREGATION

Let J«(xi) be the optimal cost-to-go of the \re-
duced" problem from each statex; 2 S and time
k onward.

Approximate the optimal cost-to-go ofanyx 2 S
for the original probI%(m by

Jk(x) = (X) Ik (xi);
Xi2§
and use one-step-lookahead based arx.

The coe cients (x) can be viewed adeatures
In an aggregation scheme

Important question: Consistency, I.e., as the
number of states inS increases Jk (x) should con-
verge to the optimal cost-to-go of the original prob.

Interesting observation: While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

Generalization: The setS may be any nite set
(not a subset ofS) as long as the coe cients (x)
admit a meaningful interpretation that quanti es
the degree of association ok with x; (a form of

aggregation.

OTHER SUBOPTIMAL APPROACHES

Minimize the DP equation error (Fitted Value
Iteration): Approximate Jy (xx) with Ji (x«;r«), where
rx IS a parameter vector, chosen to minimize some
form of error in the DP equations

Can be done seqguentially going backwards
In time (approximate Jx using an approxi-
mation of Jy.; , starting with Jy = gn).

Direct approximation of control policies: For a
subset of statesx', i =1;:::;m, nd

AN(xY=arg mink E g(X';uk;wy)
UkZUk(XI)

+ Jk+1 fk(Xi;Uk;Wk);rk+1

Then nd ~«(xk;sk); where s, IS a vector of pa-
rameters obtained by solving the problem

min kM (X') ~(x':s)k?
S .

Approximation in policy space: Do not bother
with cost-to-go approximations. Parametrize the
policies as~ (xk;sk); and minimize the cost func-
tion of the problem over the parameterssy (ran-
dom searchis a possibility).

6.231 DYNAMIC PROGRAMMING
LECTURE 10
LECTURE OUTLINE

In nite horizon problems

Stochastic shortest path (SSP) problems
Bellman's equation

Dynamic programming { value iteration
Discounted problems as special case of SSP

TYPES OF INFINITE HORIZON PROBLEMS

Same as the basic problem, but:
The number of stages is in nite.

Stationary system and cost (except for dis-
counting).

Total cost problems, Minimize
(o)
J (Xo) = lim E K
N 11 Wk
k=0 ;1;:: k=0

g Xk; k(Xk);Wk

(if the lim exists - otherwiselimsup).

Stochastic shortest path (SSP) problems (=
1, and a termination state)

Discounted problems (< 1, bounded g)

Undiscounted, and discounted problems with
unbounded g

Average cost problems

Co s)

I' T . .

N!En N WEk g Xk; k(Xk);Wk
k=0 ;1::: k=0

In nite horizon characteristics: Challenging anal-
ysis, elegance of solutions and algorithms (station-
ary optimal policies are likely)

PREVIEW OF INFINITE HORIZON RESULTS

Key issue:The relation between the in nite and
nite horizon optimal cost-to-go functions.

For example, let =1 and Jy(x) denote the
optimal cost of the N-stage problem, generated
after N DP iterations, starting from some Jo

ka1 (X)= min E gx;u;w)+ Jg f(X;u;w) ; 8x
u2U(x) w

Typical results for total cost problems:
Convergence of value iteration toJ

J (X)=min J (X)= |\I|IT In(X); 8 X
Bellman's equation holds for all x:

J (X)= mn E gxuw)+J f(xiu,w)
u2U(x) w

Optimality condition: If (x) minimizes In
Bellman's Eq., f ; ;::: g is optimal.

Bellman's Eqg. holds for all deterministic prob-
lems and \almost all" stochastic problems.

Other results: True for SSP and discounted,;
exceptions for other problems.

\EASY" AND \DIFFICULT" PROBLEMS

Easy problems (Chapter 7, Vol. | of text)
All of them are nite-state, nite-control
Bellman's equation has unique solution
Optimal policies obtained from Bellman Eqg.
Value and policy iteration algorithms apply

Somewhat complicated problems

In nite state, discounted, bounded g (con-
tractive structure)

Finite-state SSP with \nearly" contractive
structure

Bellman's equation has unique solution, value
and policy iteration work
Di cult problems (w/ additional structure)
In nite state, g 0org O (for all x;u;w)
In nite state deterministic problems
SSP without contractive structure

Hugely large and/or model-free problems
Big state space and/or simulation model
Approximate DP methods

Measure theoretic formulations (not in this course)

STOCHASTIC SHORTEST PATH PROBLEMS

Assume nite-state system: States1;:::;n and
special cost-free termination state t

Transition probabilities p; (u)
Control constraints u 2 U(i) (nite set)
Cost of policy =f o; 1;:::91S

(y)
J (i) = |\|1|T E g Xk; k(Xk) Xo =

' k=0

Optimal policy if J (i)= J (i) for all i.
Special notation: For stationary policies =
f;;::: g, weused (i) In place ofJ (i).

Assumption (termination inevitable): There ex-
Ists integer m such that for all policies

= Tax Pfxm 6tjXo=1 g<1
=1 72N

Note: We have = max < 1, since de-
pends only on the rst m components of .

Shortest path examples Acyclic (assumption is
satis ed); nonacyclic (assumption is not satis ed)

FINITENESS OF POLICY COST FUNCTIONS

View
= max <1

as anupper bound on the non-termination prob.
during 1st m steps regardless of policy used

For any and any initial state i

PfXom 6 tjXo=1, g=Pfxon 6tjXnm 6 t;Xo=1;, ¢
Pfxm 6 tjxo=i g °
and similarly
PfXxum 6 tjXo=1 ¢ < 1=1;:::;n

SoEf Cost between timeskm and (k+1)m 1g

m © . max g(i; u)

and

J (i) m max g(iu) = M max g(i;u)

MAIN RESULT

Given any Initial conditions Jo(1);:::;Jo(n), the
sequencely (i) generated by value iterati%n,

X

Jk+1 (i) = min g(i;u) + pi (WJIk(j) ; 81
u2 U (i) =1

converges to the optimal cost) (i) for eachi.
Bellman's equation hasJ (i) as unigue solution:

mn #
X

J ()= min g(iu)+ pp(u)d () ; 8
u2 U (i) =1
J(t)=0

A stationary policy is optimal if and only
If for every state i, (i) attains the minimum in
Bellman's equation.

Key proof idea: The \tail" of the cost series,

X
E 9 Xk; k(Xk)
k= mK

vanishes asK increases to1l .

OUTLINE OF PROOF THAT In ! J

Assume for simplicity that Jo(i) = 0 for all i.
For any K 1, write the cost of any policy as

mg 1 s
J (Xo) = E g Xx; k(xk) + E g Xk; k(Xk)
k=0 k= mK
mx 1 X
E g Xk k(X)) + “m max jg(i; u)]
k=0 k=K "

Take the minimum of both sides over to obtain

K

J (Xo) Jmk (Xo)+ 1

Similarly, we have

m max jg(i; u)j:

K
Jmk (XO)

mmaxjg(i;u)] J (Xo):

It follows that Imk i1 Jmk (Xo) = J (Xo).

Jmk (Xo0) and Jmk +«k(Xo) converge to the same
limit for k < m (since k extra steps far into the
future don't matter), so Jn (xo) ! J (Xo):

Similarly, Jo 6 0 does not matter.

EXAMPLE

Minimizing the EfTime to Termination g: Let

g(i;u)=1; 8i=1;:::;n; u2U()

Under our assumptions, the costs) (i) uniquely
solve Bellman's equation, which has the form
1 #
X

J (i)= mn 1+ pi (WJ () ; 1=1;:::;n
u2U(i) _

In the special case where there is only one con-
trol at each state, J (i) is the mean rst passage
time from i to t. These times, denotedm;, are the
unique solution of the classical equations

which are seen to be a form of Bellman's equation

6.231 DYNAMIC PROGRAMMING
LECTURE 11
LECTURE OUTLINE

Review of stochastic shortest path problems

Computational methods for SSP
Value iteration
Policy iteration
Linear programming

Computational methods for discounted prob-
lems

STOCHASTIC SHORTEST PATH PROBLEMS

Assume nite-state system: States1;:::;n and
special cost-free termination state t

Transition probabilities p; (u)
Control constraints u 2 U(i) (nite set)
Cost of policy =f o; 1;:::91S

(y)

J (i) = |\|1|T E g Xk; k(Xk) Xo =
' k=0

Optimal policy if J (i)=J (i) for all i.
Special notation: For stationary policies =
f;;::: g, weused (i) In place ofJ (i).

Assumption (Termination inevitable): There ex-
ISts integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more thatm
stages; for all , we have

:_Tax Pfxm 6tjXo=1 g<1
=1 725N

MAIN RESULT

Given any Initial conditions Jo(1);:::;Jo(n), the
sequencely (i) generated by value iterati%n

X

Jk+1 (i) = min g(i;u) + pi (WJIk(j) ; 81
u2 U (i) =1

converges to the optimal cost) (i) for eachi.
Bellman's equation hasJ (i) as unigue solution:

) #
X
J ()= min g(i;u)+ pi (W)J () ; 81
u2 U (i) =1
For a stationary policy , J (i), i =1;:::;n,

are the unique solution of the linear system ofn
equations

. . . X] . . .
J@M=9gi)+ pj ()J () 8i=1;::55n
j=1
A stationary policy Is optimal if and only

If for every state i, (i) attains the minimum in
Bellman's equation.

BELLMAN'S EQ. FOR A SINGLE POLICY

Consider a stationary policy

J (i),i=1;:::;n, are the unique solution of the
linear system ofn equations

X
JM=9gn M)+ pp ()J () 81=1:0n

j=1

The equation provides a way to computed (i),
i =1;:::;n, but the computation is substantial for
large n [O(n?)]

For large n, value iteration may be preferable.
(Typical case of a large linear system of equations,
where an iterative method may be better than a
direct solution method.)

For VERY large n, exact methods cannot be
applied, and approximations are needed. (We will
discuss these later.)

POLICY ITERATION

It generates a sequence?; ?;::: of stationary
policies, starting with any stationary policy °.

At the typical iteration, given ¥, we perform
a policy evaluation step, that computes the J (i)

as the solution of the (linear) system of equations

X
J@)=gi; “() + p () IG) i=1iminm
j=1
In the n unknowns J(1);:::;J(n). We then per-
form a policy improvement step,
) #
X
“(i)y=arg min g(i;u)+ pi (W) k() ;81

u2 U (i) -
J:

Terminate when J (i) = J «+1 (i) 8 i. Then
J ks =J and **' is optimal, since

X
I ()= oG @+ e NI w1 ()
]| j:l #
X
= min g(iju)+ Pi (U)J k1 (j)

u2 U (i) -
J:

JUSTIFICATION OF POLICY ITERATION

We can show thatJ (i) J k+ (i) for all i;k

Fix k and consider the sequence generated by

X
Ina (=90 TG+ o TG InG)
where Jo(i) = J «(i). We hgvle

k X1 k
Jo(i)=gi; “G) + P () Jo(j)
j=1
xXo
gi; @)+ p *TH() Jo(G) = (i)

j=1
Using the monotonicity property of DP,
Jo(1) Ja(l) In() In+a (i) : 8 i

SinceJy(i)! J ks (i) asN 1 |, we obtain pol-
ICYy improvement, i.e.

J k()= Jo(i) I ka (i) 8ik

A policy cannot be repeated (there are nitely
many stationary policies), so the algorithm termi-
nates with an optimal policy

LINEAR PROGRAMMING

We claim that J Is the \largest" J that satis es
the constraint

X0
J() g(;u)+ i (U)J(); (1)

j=1

foralli=1;:::;nandu 2 U(i).

Proof: If we use value iteration to generate a
sequence of vectorsy = J«(1);:::;J«(n) starting
with a Jo that satis es the constraint, i.e.,

) #
X
Jo(1) min g(iju)+ pi (u)Jo(J) ; 8

u2 U (i) -
J:

then, Ji (i) Jk+1 (i) for all k and i (monotonicity
property of DP) and Jx ! J ,sothatJo(i) J (i)
for all i.

SoJ = J (1);:::;3 (n) i%,the solution of the

linear program of maximizing _, J(i) subject to
the constraint (1).

LINEAR PROGRAMMING (CONTINUED)

P
Obtain J by Max ., J(i) subject to

X
J) glu)y+ py (WI(G); T=15:nu2U(3)

j=1

A
L1 PI#S "1"#E#%% !$'# 1&%# %N 1$'# I"#

PSS "1"#3H %% 1S # 1&% %% 1$'# I"# \

N

R SRR

LIS "I"#3# %% 1S # "% % 1$'# 1&4

N

PI#S "1"#3#%% I$'H "#% % !$'# 1&#

—
|

L 1"

Drawback: For large n the dimension of this pro-
gram is very large. Furthermore, the number of
constraints is equal to the number of state-control
pairs.

DISCOUNTED PROBLEMS

Assume a discount factor < 1.
Conversion to an SSP problem.

kth stage cost is the same for both problems

Value iteration converges toJ for all initial Jo:

1 #
X

Jk+1 (1) = ur?iun(i) g(i;u) + . Pi (W)Jk(j) ; 81
j=

J Is the unique solution of Bellman's equation
[1] #
X
J ()= min g(i;u)+ pi (U)J (J) ; 81
u2 U (i) _
| =1
Policy iteration terminates with an optimal pol-
icy, and linear programming works.

DISCOUNTED PROBLEM EXAMPLE

A manufacturer at each time:

Receives an order with prob.p and no order
with prob. 1 p.

May process all un lled orders at costKk >
0, or process no order at all. The cost per
un lled order at each time is ¢ > 0.

Maximum number of orders that can remain
un lled is n.

Find a processing policy that minimizes the
-discounted cost per stage.

State: Number of un lled orders at the start
of a period (1=0;1;:::;n).

Bellman's Eq.:
J (i)=min K+ (1 pJ 0+ pJ (1);
ci+ (1 pJ ()+ pJ (i+1) ;

for the statesi =0:1;::::n 1, and

J M=K+ @1 pJ O+ pJ (1)
for state n.

Analysis: Argue that J (i) iIs mon. increasing in
i, to show that the optimal policy is a threshold

policy.

6.231 DYNAMIC PROGRAMMING
LECTURE 12
LECTURE OUTLINE

Average cost per stage problems

Connection with stochastic shortest path prob-
lems

Bellman's equation
Value iteration
Policy iteration

AVERAGE COST PER STAGE PROBLEM

Assume a stationary system with nite number
of states and controls.

Minimize over policies =f o; 1;::0
()

IX 1
g Xk; k(Xk);Wk
k=0

J = Iim —
(o) Nl!l N W
k:O ;1....

Important characteristics (not shared by other
types of in nite horizon problems).

For any xed T, the cost incurred up to time
T does not matter (only the state that we are
at time T matters)

If all states \communicate" the optimal cost
IS Independent of initial state [if we can go
from i to j in nite expected time, we must
havedJ (i) J (j)]. SoJd (i) for all i.
Because \communication" issues are so im-

portant, the methodology relies heavily on
Markov chain theory.

The theory depends a lot on whether the
chains corresponding to policies have a single
or multiple recurrent classes We will focus
on the simplest version, using SSP theory.

CONNECTION WITH SSP

Assumption: State n is special, in that for all
Initial states and all policies, n will be visited In-
nitely often (with probability 1).

Then we expect thatJ (i) some

Divide the sequence of generated states into
cycles marked by successive Vvisits ta.

Let's focus on a single cycle It can be viewed
as a state trajectory of an SSP problem withn as
the termination state.

Let the cost at i of the SSP beg(i;u)
We will argue (informally) that

Av. Cost Probl. A Min Cost Cycle Probl. SSP Probl.

CONNECTION WITH SSP (CONTINUED)

Consider aminimum cycle cost problent Find
a stationary policy that minimizes the expected
cost per transition within a cycle
Cnn () .
Non ()

where for a xed

Cnhn () : Efcost fromn up to the rst return to ng
Nnon () @ Eftime from n up to the rst return to ng

Intuitively, Cnn()=Nnn () = average cost of
, and optimal cycle cost = | so

Cin() Nn() 0;

with equality if is optimal.

Consider SSP with stage costgy(i; u) . The
cost of starting from nisCpn() Np()

sothe optimal/min cycle is also optimal for the
SSP.

Also: Optimal SSP cost starting from n = 0.

BELLMAN'S EQUATION

Let h (i) the optimal cost of this SSP problem
when starting at the nontermination states | =

corresponding Bellman's equation

2 3
K 1
h (i)= min 4g(i;u) + pi (Wh (j)°; 8i
u2U(i) =1

If Is an optimal stationary policy for the SSP
problem, we have

h()=Cmnm() Nm(C) =0

Combining these equations, we have

2 3
X
+h (i)= min 4g(;u)+ pj(uh (j)2; 8i
u2 U (i) =1
h(n)=0
If (i) attains the min for eachi, is optimal.

There is also Bellman Eg. for a single policy .

MORE ON THE CONNECTION WITH SSP

Interpretation of h (i) as arelative or di eren-
tial cost: It is the minimum of

Efcost to reachn from i for the rst time g
Ef cost if the stage cost were and not g(i;u)g

Algorithms: We don't know , so we can't
solve the average cost problem as an SSP problem.
But similar value and policy iteration algorithms
are possible, and will be given shortly.

Example: A manufacturer at each time
Receives an order with prob.p and no order
with prob. 1 p.

May process all un lled orders at costK >
0, or process no order at all. The cost per
un lled order at each time is ¢ > 0.

Maximum number of orders that can remain
un lled is n.

Find a processing policy that minimizes the
total expected cost per stage.

EXAMPLE (CONTINUED)

State = number of un lled orders. State O is
the special state for the SSP formulation.

Bellman's equation: For statesi =0;1;:::;n 1
+h (i)=min K+(1 p)h (0)+ ph (1);
ci+(1 ph()+ph(i+l) ;
and for state n

+h(n)=K+(@ ph (0)+ ph (1)

Also h (0) =0.

Optimal policy : Processi un lled orders if

K+ p)h (0O)+ph (1) ci+(1 p)h (i)+ph (i+1)

Intuitively, h (i) is monotonically nondecreas-
iIng with 1 (interpret h (i) as optimal costs-to-go
for the associate SSP problem). So dhreshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integen .

VALUE ITERATION

Natural VI method: Generate optimal k-stage
costs by DP algorithm starting with any Jo:

2 3
- . - X] - -
Jesr (i) = min 4g(i;u)+ pj (U)J()°; 8
u2U(i) =1
Convergence:limgi1 Jk(i)=k = for all 1.

Proof outline: Let J, be so generated start-
Ing from the opt. di erential cost, i.e., the initial
condition J, = h . Then, by induction,

J (i)=k +h (i) 8i; 8 k:
On the other hand,

K@) 3 () max JoG) h(): 81

since Ji (1) and J, (1) are optimal costs for two
k-stage problems that di er only in the terminal
cost functions, which areJo and h .

RELATIVE VALUE ITERATION

The VI method just described has two draw-
backs:

Since typically some components oflx di-
vergetol or 1 ,calculatinglimygi; Jk(i)=k
IS numerically cumbersome.

The method will not compute a correspond-
Ing di erential cost vector h .

We can bypass both di culties by subtracting
a constant from all components of the vectorJy,
so that the di erence, call it hy, remains bounded.

Relative VI algorithm: Pick any state s, and
iterate accordingzto 3

hd
he+1 () = min 4g(i;u) + pi (U)hi(j)°
u2U(i) i=1
2 3
hd
min 4g(s;u) + Psj (u)he(j)°; 8
u2U(s) i=1

Convergence We can showhy ! h (under an
extra assumption; see Vol. Il).

POLICY ITERATION

At iteration k, we have a stationary k.
Policy evaluation: Compute k and hk(i) of k,
using the n + 1 equations hk(n) = 0 and

X
“+hk(i)=g i k(@) + pp K1) h*(j); 81

=1

Policy improvement: (For the k-SSP) Find

2 3
X
k+1 (i) =arg min 4g(i;u)+ pj (Uhk(j)2; 8i
u2U (i) -
If k+1 = k andhk+1 (i) = hk(i) for all i, stop;

otherwise, repeat with k+1 replacing X.

Result: For eachk, we either have k+1 < Kk
or we have policy improvement for the k-SSP:

k+l = k: hk+1 (i) hk(i); i=1;:::;n:

The algorithm terminates with an optimal policy.

6.231 DYNAMIC PROGRAMMING
LECTURE 13
LECTURE OUTLINE

Control of continuous-time Markov chains {
Semi-Markov problems

Problem formulation { Equivalence to discrete-
time problems

Discounted problems

Average cost problems

CONTINUOUS-TIME MARKOV CHAINS

Stationary system with nite number of states
and controls

State transitions occur at discrete times

Control applied at these discrete times and stays
constant between transitions

Time between transitions I1s random

Cost accumulates in continuous time(may also
be incurred at the time of transition)

Example: Admission control in a system with
restricted capacity (e.g., a communication link)
Customer arrivals: a Poisson process

Customers entering the system, depart after
exponentially distributed time

Upon arrival we must decide whether to ad-
mit or to block a customer

There is a cost for blocking a customer

For each customer that is in the system, there
IS a customer-dependent reward per unit time

Minimize time-discounted or average cost

PROBLEM FORMULATION

X(t) and u(t): State and control at time t

tx: Time of kth transition (to = 0)

Xk = X(tk); X(t) = xk fortxy t<t 1.

Uk = U(tk); u(t)= ug forty t<tygs+.

No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qi (;u)= Pftksr tx ' Xk+1 =] J Xk = I, Uk = Ug

Two important formulas:

(1) Transition probabilities are speci ed by

Pij (U): Pka+1 = j ij = i; Uk = Ug = |illin Qij(;U)

(2) The Cumulative Distribution Function (CDF)
of giveni;j;u Is (assumingpj (u) > 0)

Qi (;u)

Pftesr tx] Xk = I; Xk+1 = J; U = ug= o1 (U)

Thus, Qj (;u) can be viewed as a \scaled CDF"

EXPONENTIAL TRANSITION DISTRIBUTIONS

Important example of transition distributions:
Qi (;uW)=pj(u)1 e W ;

wherepj (u) are transition probabilities, and i (u)
Is called the transition rate at state I.

Interpretation: If the system is in statei and
control u is applied

the next state will be j with probability pj (u)

the time between the transition to state |
and the transition to the next state | Is ex-

ponentially distributed with parameter ;(u)
(independently of |):

Pftransition time interval > ji;ug=e i

The exponential distribution is memoryless.
This implies that for a given policy, the system
IS a continuous-time Markov chain (the future de-
pends on the past through the current state).

Without the memoryless property, the Markov
property holds only at the times of transition.

COST STRUCTURES

There is costg(i; u) per unit time, I.e.

g(i;u)dt = the cost incurred in time dt

There may be an extra \instantaneous" cost
Q(i; u) at the time of a transition (let's ignore this
for the moment)

Total discounted costof = f ¢o; 1;:::gstart-
Ing from state | (with discount factor > 0)

('X 1Z Tk+1)
im E e 'gxk: k(xk) dt Xo =1
N 11
k=0 lk
Average cost per unit time
f 1 (X 1 e d .)
W Efty g o3 () dt Xo =1
k=0 k

We will see that both problems have equivalent
discrete-time versions.

DISCOUNTED CASE - COST CALCULATION

For a policy =1 o; 1;:::0, write
J (1) = Eflst transition costg+Efe J ,(J)]1; o(l)g

R
whereEf 1st transition costg=E , e ' g(I; o(i))dt
and J ,(]) is the cost-to-go of 1 =f 1; 2;:::0

We calculate the two costs in the RHS. The
Ef 1st transition costg, if u is applied at statel, is

G(i;u)= E; E f1sttransition cost jjg

Z Z
X 1 e
= pij (u) e ' g(iu)dt 4Qy (1)
- 0 0 pij (u)
Z
xh 1
. 1
= g(i;u) © dQ; (;u)
j=1 O
Thus the Ef 1st transition costg is
Z
: : : : X Y1 e :
G o) =91 ofi) dQj ; o(l)
=1 O

(The summation term can be viewed as a \dis-
counted length of the transition interval t; tg".)

COST CALCULATION (CONTINUED)

Also the expected (discounted) cost from the
next state j is

E e J,0)J5 ofl)
= Ej Efe | iiZO(i)ing L) ofi)
X . dQi (; ofi))

R 0

J40)

[S

mi o(l) J 1()
j=1
where mj; (u) is given by
Z 1 Z 1
mj; (u) = e dQj(;u) < dQj (;u) = pj (u)
and can lge viewed as the \e e%tive discount fac-
tor" [the analog of p jj (u) in discrete-time case].

SoJ (i) can be written as

X
JM)=G1E o) + my ofl) I ()
j=1
l.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.

COST CALCULATION (CONTINUED)

Also the expected (discounted) cost from the
next state j is

E e J,0)J5 ofl)
= E; Efe | iizo(i);ng)i (i)
X ' dQj (; ofi))

A A T 0)

J ()

[S

mi o(i) J ,()
j=1
where mj; (u) is given by
Z 1 Z 1
mj (u) = e dQj (;u) < dQj (;u)= pj (u)
0 0
and can be viewed as theée ective discount fac-
tor" [the analog of p jj (u) in discrete-time case].

SoJ (i) can be written as

X
JM=G1E o) + my ol) I ()
j=1
l.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-

to-go from the next state.

EQUIVALENCE TO AN SSP

Similar to the discrete-time case, introduce an
\equivalent" stochastic shortest path problem with
an arti cial termination state t

Under control u, from state i the system moves
to state J with probability mj (u) anlg to the ter-

mination state t with probability 1 anl mij (U)
Bellman's equation: Fori =1;:::;n,
2 3
X
J ()= min 4G(;u)+ mj(u)Jd (j)°
u2U (i)

j=1

Analogs of value iteration, policy iteration, and
linear programming.

If in addition to the cost per unit time g, there
IS an extra (instantaneous) one-stage cosg(t; u),
Bellman's equation becomes

2 3
X

J ()= nQLIFI(_)A'Q(i;U)Jf G@i;u)+ my (u)J (j)°
u I j:].

MANUFACTURER'S EXAMPLE REVISITED

A manufacturer receives orders with interarrival

times uniformly distributed in [0 ; max].

He may process all un lled orders at cosK > 0,

or process none. The cost per unit time of an

un lled order is ¢. Max number of un lled orders
IS N.

The nonzero transition distributions are

Qi1(; Fill) = Qj¢+n (; Not Fill) =min 1

max

The one-stage expected cost Is

G(1; Fill) =0 ; G(l; Not Fil) = c;
where
Z /
xn 1 1 e max 1 @
= dQj (;u)=
i=1 0 0 max

There is an \instantaneous" cost

aG: Fill) = K; (i; Not Fill) = 0

d

MANUFACTURER'S EXAMPLE CONTINUED

The \e ective discount factors" mj; (u) in Bell-
man's Equation are

m; 1 (Fill) = M (i +1) (Not Fill) =

where
Z . Z
= e dQj(;u)=

0 0 max max

max e 1 e max

Bellman's equation has the form

J @)=mn K+J (1); ci+J (i+1) ; 1=1;2;:::

As In the discrete-time case, we can conclude
that there exists an optimal threshold i :

l| the orders <== > their number | exceeds

AVERAGE COST
Minimize limyi g 5E o O X(t);u(t) dt
assuming there is a special state that is \recurrent
under all policies"

Total expected cost of a transition
G(;u) = g(iu)7i(u);
where 7 (u): Expected transition time.
We apply the SSP argument used for the discrete-

time case.

Divide trajectory into cycles marked by suc-

cessive visits ton.

The cost at (I;u) i1s G(i; u) —i(u), where
IS the optimal expected cost per unit time.

Each cycle is viewed as a state trajectory of

a corresponding SSP problem with the ter-
mination state being essentiallyn.

So Bellman'zs Eq. for the average cost problem:3

X
h ()= min 4G(i;u) —i(w+ pj(Wh ()
u2U (i) =1

MANUFACTURER EXAMPLE/AVERAGE COST

The expected transition times are

—(Fill) = —i(Not Fill) = mza‘x

the expected transition cost is

G(i;Fil)=0: G(i Not Fil)= = o

and there is also the \instantaneous" cost

aG: Fill) = K; §(i; Not Fill) = 0

Bellman's equation:

h
h (i)=min K mz""x +h (1);
i
ci mzax mzax +h (i +1)

Again it can be shown that a threshold policy
IS optimal.

6.231 DYNAMIC PROGRAMMING
LECTURE 14
LECTURE OUTLINE

We start a ten-lecture sequence on advanced
In nite horizon DP and approximation methods

We allow in nite state space, so the stochastic
shortest path framework cannot be used any more

Results are rigorous assuming a nite or count-
able disturbance space

This includes deterministic problems with

arbitrary state space, and countable state
Markov chains

Otherwise the mathematics of measure the-
ory make analysis di cult, although the -
nal results are essentially the same as for -
nite disturbance space

We use Vol. Il of the textbook, starting with
discounted problems (Ch. 1)

The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state)

DISCOUNTED PROBLEMS/BOUNDED COST
Stationary system with arbitrary state space
Xk+1 = f(Xk;Uk; Wg); k=0;1;:::

Costofapolicy =f o, 1;:::0

J (Xo) = Ilim Kg Xk: k(Xk); Wk

N 11 Wk
k=0 :1::: k=0

with < 1, and for someM , we have

jgx;u;w)j M, 8 (X;u;w)
We have
M
J (X0) M+ M + 2M+ :1—; 8 Xo

The \tail" of the cost J (Xo) diminishes to O

The limit de ning J (Xp) exists

WE ADOPT \SHORTHAND" NOTATION

Compact pointwise notation for functions:

If for two functions J and JOwe haveJ (x) =
J(x) for all x, we write J = JO

If for two functions J and J%we haveJ (x)
JYx) for all x, we write J JO

For a sequence Jxg with Jg(x) ! J(x) for
all x, we write Jy ! J; alsod =min J

Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJI)(X)= ryjp()E gx;usw)+ 3 f(xuw) ; 8X

TJ is the optimal cost function for the one-stage
problem with stage costg and terminal cost J .

For any stationary policy
(TIHX)=E gx (X)w +J 1(x (x);w) ;8X
For nite-state problems:

TJ=g + P J TIJ=minTJ

\SHORTHAND" COMPOSITION NOTATION

Composition notation: T2J isde ned by (T2J)(x) =
(T(TJ))(x) for all x (similar for TkJ)

For any policy =f o; 1;:::gand function J:
T ,J Is the cost function of for the one-

stage problem with terminal cost function
J

T,T.,J (e.,, T, applied to T ;J) Is the
cost function of for the two-stage problem
with terminal cost 2J

T,T, T, ,J isthe cost function of
for the N -stage problem with terminal cost
NJ

For any function J:

TJ is the optimal cost function of the one-
stage problem with terminal cost function
J

T2J (i.e., T applied to TJ) is the optimal
cost function of the two-stage problem with
terminal cost 2J

TN J is the optimal cost function of the N -
stage problem with terminal cost NJ

\SHORTHAND" THEORY { A SUMMARY

Cost function expressionsfwith Jo(x) 0]

3= dim (ToT, T30 3 (0= lIm (T“30)(x)

Bellman's equation:J =TJ , J =T J
Optimality condition:

> optimal <==> T J =TJ
Value iteration: For any (bounded) J and all

X,

J ()= lim (TkI)(x)

Policy iteration: Given Kk:
Policy evaluation: Find J ¢ by solving

J k=T kJ «

Policy improvement: Find k+1 such that

Tkaad k=TJ «

SOME KEY PROPERTIES

Monotonicity property: For any functions J and
JOsuch that J(x) JYx) for all x, and any

(TIH(x) (TIx); 88X

(T I)(x) (T I9Y(x); 8 X:
Also

J TJ) Tk Tk+1g; 8 k

Constant Shift property: For any J, any scalar
r, and any

T(J+re) (X)=(TI)(x)+ r, 8 X;

TA+re) X)=(T J)(X)+ 8 X;

where e is the unit function [e(x) 1] (holds for
most DP models).

A third important property that holds for some
(but not all) DP models isthat T and T are con-
traction mappings (more on this later).

CONVERGENCE OF VALUE ITERATION

If Jo O,
J (X) = I\IIHT (TN Jo)(X); for all x

Proof: For any initial state xo, and policy =
f o, 1,010

()
J (Xo)= E KO Xik; k(Xk); Wk
k=0
(1)
= E g Xk k(Xk); Wik
=0
%)
+ E g Xk k(Xk); Wi
k=N
from which
N M N M
J (x0) 7 (To Ty 1Jo)(X0) I (Xo)t ——

where M | g(x;u;w)j. Take the min over of
both sides. Q.E.D.

BELLMAN'S EQUATION

The optimal cost function J satis es Bellman's
Eqg.,i.e.J =TJ .

Proof: For all x and N,

N'M N'M

J () (TNI)(X) I () + 7

1

whereJo(x) OandM | g(Xx;u;w)j.
Apply T to this relation and use Monotonicity
and Constant Shift,

N +1 M
1

(TJ)(x) (TN*1Jo)(x)

N +1 M
1

(TJ)(x)+

Take limitas N !'1 and use the fact

Jim (TN*130)(x) = 3 ()

toobtainJ =TJ . Q.E.D.

THE CONTRACTION PROPERTY

Contraction property: For any bounded func-
tions J and JO, and any

m)gx(TJ)(x) (TJI9(x) m)ng(x) JAX) ;

max (T I)(x) (T J9Y(x) mXaxJ(x) Jqox) :
Proof: Denote c=maxyxss J(X) JYXx) : Then
J(X) ¢ J9qx) J(X)+ c; 8 X

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TI)(x) c (TIYx) (TI)(x)+ c; 8 X
Hence
(TI)(x) (TI9Y(x) C: 8 X:

Similar for T . Q.E.D.

IMPLICATIONS OF CONTRACTION PROPERTY

We can strengthen our earlier result:

Bellman's equation J = TJ has a unique solu-
tion, namely J , and for any boundedJ, we have

Iim (T)(x) =3 (x); 8x

Proof: Use
max (TKkI)(X) J (X) = max (TkI)X) (TkJ)X)
k max J(xX) J (x)

Special Case:For each stationary , J Is the
unique solution ofJ = T J and

kI!ilm (TKI)(x) = J (X); 8 X;

for any bounded J.

Convergence rate:For all k,

max (TkI)(x) I (X) I<m)§';1x\](x) J (x)

NEC. AND SUFFICIENT OPT. CONDITION

A stationary policy is optimal if and only if
(x) attains the minimum in Bellman's equation
for eachx; l.e.,

T =T J:

Proof: If Td = T J , then using Bellman's equa-
tion (J = TJ), we have

J =TJ;

so by unigueness of the xed point ofT , we obtain
J =J ;le. Isoptimal

Conversely, if the stationary policy is optimal,
we haved =J , so

J =T J :

Combining this with Bellman's equation (J =
TJ),weobtanTJ =T J . Q.E.D.

COMPUTATIONAL METHODS - AN OVERVIEW

Typically must work with a nite-state system.
Possibly an approximation of the original system.
Value iteration and variants
Gauss-Seidel and asynchronous versions

Policy iteration and variants

Combination with (possibly asynchronous)
value iteration

\Optimistic" policy iteration

Linear programming

X
maximize J(1)
i=1
X
subjectto J(i) g(i;u)+ pij (U)J(); 8(isu)
i=1
Versions with subspace approximation:Use In
place ofJ (i) a low-dim. basis function representa-

tion, with state features (i), m=1;:::;s
. ﬁ .
J(;r) = m m(l)
m=1

and modify the basic methods appropriately.

USING Q-FACTORS |

Bellman's equation as

J (i):unzﬂiun(i)Q(i;u) 1 =1;:::;n;
where
Q (hu)= pj(u) glsu;j)+ J ()
j=1
for all (i;u)

Q (i;u) is called the optimal Q-factor of (i;u)

Q-factors have optimal cost interpretation in
an \augmented" problem whose states ara and
(I;u), u 2 U(i) - the optimal cost vectoris (J ;Q)

The BellmanEq.isJ =TJ ,Q = FQ where
(FQIH(wy = pj(u) gbwj)+ mn Q (jv)

=1 v2U(j)

It has a unique solution.

USING Q-FACTORS I
We can equivalently write the VI method as
Jrk+1 (1) = min 1 (hu); l=21:::::n;
k+1 (1) u2U(i)Qk 1 (1hu)

where Qx+1 IS generated for alli and u 2 U(i) by

X
Qea (bu) = pj(u) g@i;u;j)+ min Qu(j;v)
=1 v2U(j)
or Jy+1 = TJk, Qk+1 = FQx.
Equal amount of computation ... just more

storage.

Having optimal Q-factors is convenient when
Implementing an optimal policy on-line by

(1) = U”Q'un(i)Q (i;u)
Once Q (i;u) are known, the model g and
pij (u)] Is not needed. Model-free operation

Stochastic/sampling methods can be used to
calculate (approximations of) Q (i;u) [not J (i)]
with a simulator of the system.

6.231 DYNAMIC PROGRAMMING
LECTURE 15
LECTURE OUTLINE

Review of basic theory of discounted problems
Monotonicity and contraction properties
Contraction mappings in DP

Discounted problems: Countable state space
with unbounded costs

Generalized discounted DP

An introduction to abstract DP

DISCOUNTED PROBLEMS/BOUNDED COST

Stationary system with arbitrary state space
Xk+1 = f(Xk;Uk; Wg); k=0;1;:::
Costofapolicy =f o, 1;:::0

J (Xo) = lim KO Xk; k(Xk); Wk
N 11 WK
k=0 ;1:: k=0

with < 1, and for someM , we havejg(x; u; w)j
M for all (x;u;w)

Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TI)(x)= min E gxuuw)+ J f(x;u;w) ; 8Xx

u2U(x) w

TJ is the optimal cost function for the one-stage
problem with stage costg and terminal cost J .

For any stationary policy

(TI)X)=E gx; (X);w + I f(x; (X);w) ;8Xx

\SHORTHAND" THEORY { A SUMMARY

Cost function expressionsfwith Jo(x) 0]
J xX)= lim (T ,T, T ,Jo)x); J x)= lim (T*Jo)(x)
k!l k!l

Bellman's equation:J =TJ , J =T J
Optimality condition:

> optimal <==> T J =TJ

Value iteration: For any (bounded) J and all

J ()= lim (TkI)(x)

Policy iteration: Given Kk,
Policy evaluation: Find J ¢ by solving

Jk=T«kJ «

Policy improvement: Find k+1 such that

Tkaad k=TJ «

MAJOR PROPERTIES

Monotonicity property: For any functions J and
JO0 on the state spaceX such that J(x) JYx)
for all x 2 X, and any

(TI)(x) (TIY(x); 8 x 2 X;

(T I)(x) (T JI9(x); 8 x 2 X:

Contraction property: For any bounded func-
tions J and JO, and any

max (TI)(x) (TJI9Y(x) max J(x) JYX);
max (T I)(x) (T I9(x) max J(x) Jqx):
Shorthand writing of the contraction property

kTJ TJX k] J%; kT J T J% kJ J%;

where for any bounded functionJ, we denote by
kJ k the sup-norm

kJk =max J(x) :
X2 X

CONTRACTION MAPPINGS

Given a real vector spaceY with a norm k k
(see text for de nitions).

A function F : Y 7! Y Is said to be acontraction
mapping if for some 2 (0;1), we have

KFy Fzk Ky zk; forally;z2Y:

IS called the modulus of contraction of F.

Linear case,Y = <h: Fy = Ay + bis a con-
traction (for some norm k K) if and only if all
eigenvalues ofA are strictly within the unit circle.

For m > 1, we say that F is an m-stage con-
traction if F™ is a contraction.

Important example: Let X be a set (e.g., state
space in DP),v : X 7! < be a positive-valued
function. Let B(X) be the set of all functions
J . X 7!'< such that J(s)=v(s) is bounded overs.

The weighted sup-normon B (X):

kJ k = max 1(s) ;
s2X V(S)

Important special case:The discounted prob-
lem mappingsT and T [forv(s) 1, = |].

A DP-LIKE CONTRACTION MAPPING

Let X = f1;2;:::g,andletF : B(X) 7! B(X)
be a linear mapping of the form

X
(FI)()= Db+ a@;))Jqg);, 8l

j2X

where (i) and a(i;j) are some scalars. Therk is
a contraction with modulus if

P e
ia2x Japv@g) .
: ; 8 1
v(i)
[Think of the special case wherea(i;]) are the
transition probs. of a policy].

Let F : B(X) 7! B(X) be the mapping

(FI)(@)=min (F J)(1); 81

whereM is parameter set, and foreach 2 M, F
IS a contraction from B (X) to B (X) with modulus
. Then F is a contraction with modulus

CONTRACTION MAPPING FIXED-POINT TH.

Contraction Mapping Fixed-Point Theorem: If
F :.B(X) 7! B(X) is a contraction with modulus
2 (0;1), then there exists a uniqued 2 B(X)
such that
J =FJ

Furthermore, if J Is any function in B(X), then
f FkJg converges toJ and we have

kFkJ J k kkd J k; k=1:2:::::

Similar result if F is an m-stage contraction
mapping.

This Is a special case of a general result for
contraction mappings F : Y 7! Y over normed
vector spacesy that are complete every sequence

fykg that is Cauchy (satises kyy, ynk! 0 as
m;n!1) converges.

The spaceB (X) is complete [see the text (Sec-
tion 1.5) for a proof].

GENERAL FORMS OF DISCOUNTED DP

Monotonicity assumption: If J;J0%2 R(X) and
J JO then

H(x;u;J) H(Xu;J9; 8x2X; u2U(x)

Contraction assumption:

For every J 2 B(X), the functions T J and
TJ belong to B(X).

For some 2 (0;1)andall J;J92 B(X), H
satis es

H(x;u;J) H(x;u;J9 max J(y) JYy)
y2 X

forall x 2 X and u 2 U(x).

We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions(with identical proofs!)

With just the monotonicity assumption (as in
shortest path problem) we can still show various
forms of the basic results under appropriate as-
sumptions (like in the SSP problem)

EXAMPLES

Discounted problems

Hx;u;J)=E gx;u;w)+ J f(xu;w)

Discounted Semi-Markov Problems

hd
H(x;u;J)= G(x;u)+ Myy (U)J (Y)

y=1
where myy are \discounted" transition probabili-
ties, de ned by the transition distributions
Deterministic Shortest Path Problems

axy +J(u) fuét,

H(xu;J) = .
(x;u;J) Ayt ifu=t

wheret is the destination

Minimax Problems

H(x;u;J) = wzn\]/va()f(;u) glx;u;w)+ J (X u;w)

RESULTS USING CONTRACTION

The mappingsT and T are sup-norm contrac-
tion mappings with modulus over B(X), and
have unigue xed pointsin B(X), denotedJ and
J , respectively (cf. Bellman's equation). Proof :
From contraction assumption and xed point Th.

ForanyJ 2 B(X)and 2M,

im Tkl =J ; im TkJ = J
k!l k!l

(cf. convergence of value iteration. Proof: From
contraction property of T and T.

We have T J = TJ ifandonlyif J =J
(cf. optimality condition). Proof: T J = TJ ,
then T J =J ,implying J = J . Conversely,
fJ =J ,thenTJ =TJ =J =J =TJ.

Useful bound forJ : Forall J 2 B(X), 2M

] Ik kT J Jk
1
Proof: Take limitas k!1 In the relation
X : XK
kTkJ Jk kTJ T YJk kTJ Jk

‘=1 ‘=1

1

RESULTS USING MON. AND CONTRACTION |

Existence of a nearly optimal policy. For every
> 0, there exists 2 M such that

J X J (x) J X))+ v(x); 8x2X

Proof: Forall 2M ,wehaved = TJ TJ.

By monotonicity, J TK*J TkJ for all k.

Taking limitas k!1 , we obtain J J .
Also, choose 2 M suchthatforall x 2 X,

KT J J k= (T J)(x) (TJI)X) 1)

From the earlier error bound, we have

kTJ Jk
1)

kJ J Kk 8 2M

Combining the preceding two relations,

J x) J (X) 1) _
V() 1 = 8x2 X

Optimality of J over stationary policies

J(x):mzll\r/l\J(x); 8x2X

Proof. Take #0 in the preceding result.

RESULTS USING MON. AND CONTRACTION Il

Nonstationary policies: Consider the set of
all sequences = f o; 1;:::.gwith ¢ 2 M for
all k, and de ne forany J 2 B(X)

J (X)=limsup (T ,T, T, J)X); 8Xx 2 X,
ki1

(the choice of J does not matter because of the
contraction property).

Optimality of J over nonstationary policies

J(x):mén\](x); 8x2X

Proof: Use our earlier existence result to show
that for any > 0, there is such that kJ
Jk (1). We have

J (X) = mzll\r/l\ J (X) rr12inJ (X)

Also

T3 T, T,,

k 1

Take Imit as k' 1 to obtain J J for all
2 .

6.231 DYNAMIC PROGRAMMING
LECTURE 16
LECTURE OUTLINE

Review of computational theory of discounted
problems

Value iteration (VI), policy iteration (PI)
Optimistic Pl

Computational methods for generalized dis-
counted DP

Asynchronous algorithms

DISCOUNTED PROBLEMS

Stationary system with arbitrary state space
Xk+1 = T (X Uk; W), k=0;1:::
Boundedg. Costof apolicy =1 o; 1;:::0

J (Xo) = lim g Xk; k(Xk); Wk
N 11 WK
k=0 ;1:: k=0

Shorthand notation for DP mappings (n-state
Markov chain case)

(TI)(X)= min E gx;u;w)+ J f(x;u;w) ; 8X
u2 U (x)

TJ is the optimal cost function for the one-stage
problem with stage costg and terminal cost J .

For any stationary policy
(T J)(x)=E g(x; (xX);w)+ J f(x; (X);w) ; 8X

Note: T islinear[inshort T J =P (g + J).

\SHORTHAND" THEORY { A SUMMARY

Cost function expressions(with Jo 0)
J =1lm T,T, T,/ Jo; J =lm T"Jo
k!l k11l

Bellman's equation:J =TJ , J =T J
Optimality condition:

coptmal <==> T J =TJ

Contraction: kTJ1 TJ2k klJ; Jok

Value iteration: For any (bounded) J

J = lim TkJ
k11

Policy iteration: Given Kk,
Policy evaluation: Find J « by solving

J k=T «J «

Policy improvement: Find k+1 such that

T kaad k= TJ «

INTERPRETATION OF VI AND PI

A " #$%&33$ '()$
7 P
"45% &'Yo(")*+,
Y _\\ _____ /
PO A N |
\ L
"y L ! (I
| | : :
I | N
| | .
| | .
| | .
|
oL o SRS
D >
¥ 7 / |
' I e

A
|
|
- 1
! |
! |
|
" T : |
/ | | rHS%E (F (- JO:
| |
| |
| I| |
! |
| I| |
' |
| I| |
! — — |"!!|I |:!!!"!!!!!
! |
® \ob o/
hy 5%8& /+1#21.$"- 3/

VI AND PI METHODS FOR Q-LEARNING

We can write Bellman's equation as

J (i):urgiun(i)Q(i;u) l=1:::::N;

where Q is the vector of optimal Q-factors

X
Q (hu)= pj(u) gbu;j)+ J ()
j=1
VI and Pl for Q-factors are mathematically
equivalent to VI and PI for costs.

They require equal amount of computation ...
they just need more storage.

For example, we can write the VI method as

Jk+1 (i) = ur?Ln(i)Qkﬂ (i;u); =100

where Qk+1 IS generated for alli and u 2 U(i) by

X

Qua (i) = B (W) guI)* M Quliv)

APPROXIMATE PI

Suppose that the policy evaluation is approxi-
mate, according to,

m)ngJk(x) J (X)) k =0;1,;:::

and policy improvement is approximate, according
to,

m)ng(T +1 Jk)(X) (TI)X)] k =0;1;:::

where and are some positive scalars.

Error Bound: The sequence kg generated by
approximate policy iteration satis es

P OO (I €

Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J « oscillate within a neighborhood of J .

OPTIMISTIC PI

This is PI, where policy evaluation is carried
out by a nite number of VI

Shorthand de nition: For some integersmy

T «Jk = T Jisr = TR I k=0;1;:::

If my¢ 11t becomes VI
If m, =1 it becomes PI

For intermediate values ofmy, it is generally
more e cient than either VI or PI

A

A
—
S
!"! od | : :
A | :: USRI
	:: :
	0
: o :	
l——	N l: !
R
¢ _ e \06 ® g/ >
¥ e \ N
KIS Lol

%8 S0+ -.(1.0)$1

EXTENSIONS TO GENERALIZED DISC. DP

All the preceding VI and Pl methods extend to
generalized/abstract discounted DP.

Summary. ForamappingH : X U R(X) 7!
<, consider

(TI)(X)= min H(Xu;Jd); 8 x 2 X:
u2U(x)

(T H)(X)=H x; (x);J ; 8 x2 X:
We wantto nd J such that

J (X)= mn H(Xud); 8x2 X
(X) AT ()

anda suchthatT J =TJ .

Discounted, Discounted Semi-Markov, Minimax
Hx;u;J)=E glx;u;w)+ J f(xu;w)

hd
H(x;u;J)= G(x;u)+ Myy (U)J (Y)

y=1

H(x;u;J) = wznv]vaé;u) glx;u,w)+ J (X u;w)

ASSUMPTIONS AND RESULTS

Monotonicity assumption: If J;J0%2 R(X) and
J JO then
H(x;u;J) H(Xu;J9; 8x2X;u2U(x)
Contraction assumption:

For every J 2 B(X), the functions T J and
TJ belong to B(X).

For some 2 (0;1)andall J;J°%2 B(X), H
satis es

H(x;u;J) H(x;u;J9 max J(y) JYy)
y2 X

forall x 2 X and u 2 U(x).

Standard algorithmic results extend:

Generalized VI converges toJ , the unique
xed point of T

Generalized Pl and optimistic Pl generate
f kg such that

im kJ « J k=0; im kJ, J k=0
k!l k!l

Analytical Approach: Start with a problem,
match it with an H, invoke the general results.

ASYNCHRONOUS ALGORITHMS

Motivation for asynchronous algorithms
Faster convergence
Parallel and distributed computation
Simulation-based implementations

General framework: Partition X into disjoint

J- iIs the restriction of J on the setX-.

Synchronous algorithm: Processor updates J
for the statesx 2 X+ at all times t,

Asynchronous algorithm: Processor updates
J for the states x 2 X- only at a subset of times
R-,

JEHL (3 = .
= i) ft2R-

wheret 5 (t) are communication \delays"

ONE-STATE-AT-A-TIME ITERATIONS

Important special case:Assumen \states", a
separate processor for each state, and no delays

Generate a sequence of statdx?; x1;:::g, gen-
erated in some way, possibly by simulation (each
state Is generated in nitely often)

Asynchronous VI: Change any one component
of Jt at time t, the one that corresponds toxt:

T JY2);:::;Jd%(n) () if = xt,

t+1 () =
IO 50 8 xt,

The special case where
fxO;xl;:::g=11:::;n; 1200 1000

IS the Gauss-Seidel method

More generally, the components used at timed
are delayed byt (1)

Flexible in terms of timing and \location" of
the iterations

We can show thatJt! J under assumptions
typically satis ed in DP

ASYNCHRONOUS CONV. THEOREM |

times R- isinnite and lim ¢z ()= 1

Proposition: Let T have a unique xed pointJ
and assume that there is a sequence of honempty
subsets S(k) R(X) with S(k+1) S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition:Ev-
ery sequencef Jkg with Jk 2 S(k) for each
K, converges pointwise toJ . Moreover, we
have

TJ 2 S(k+1); 8J2S(k); k=0;1;::::

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k) Sm (K);

where S (k) is a set of real-valued functions

Then for every J 2 S(0), the sequencef Jtg gen-
erated by the asynchronous algorithm converges
pointwise to J .

ASYNCHRONOUS CONV. THEOREM I

Interpretation of assumptions:

I 14

A synchronous iteration from any J in S(k) moves
Into S(k + 1) (component-by-component)

Convergence mechanism:

Ly I"HS%"&(

\ T

1"

Ly 1"#$%"&'

Key: \Independent" component-wise improvement
An asynchronous component iteration from anyJ
In S(k) moves into the corresponding component
portion of S(k +1) permanently!

PRINCIPAL DP APPLICATIONS

The assumptions of the asynchronous conver-
gence theorem are satis ed in two principal cases:

When T is a (weighted) sup-norm contrac-
tion.

When T is monotone and the Bellman equa-
tion J = TJ has a unigue solution.
The theorem can be applied also to convergence
of asynchronous optimistic PI for:

Discounted problems (Section 2.6.2 of the
text).

SSP problems (Section 3.5 of the text).

There are variants of the theorem that can be
applied in the presence of special structure.

Asynchronous convergence ideas also underlie
stochastic VI algorithms like Q-learning.

6.231 DYNAMIC PROGRAMMING
LECTURE 17
LECTURE OUTLINE

Undiscounted problems

Stochastic shortest path problems (SSP)
Proper and improper policies

Analysis and computational methods for SSP
Pathologies of SSP

SSP under weak conditions

UNDISCOUNTED PROBLEMS

System: Xx+1 = (Xk; Uk; Wk)

Costofapolicy =1 o, 1;:::0

J (Xo) =limsup E g Xk; k(Xk);wg
N1 k:O;E;: k=0

Note that J (Xp) and J (Xp) can be +1 or 1
Shorthand notation for DP mappings

(TI)(x)= min E g(x;uyw)+ J f(x;u;w) ; 8x

u2U(x) w

(TIXX)=E gx5 (xX)w +J f(x; (x);w) ;8X

T and T need not be contractions in general
but their monotonicity is helpful (see Ch. 4, Vol.
|l of text for an analysis).

SSP problems provide a \soft boundary" be-
tween the easy nite-state discounted problems
and the hard undiscounted problems.

They share features of both.

Some nice theory is recovered thanks to the
termination state, and special conditions.

SSP THEORY SUMMARY |

As before, we have a cost-free term. state, a

of controls.

Mappings T and T (modied to account for

. . . X1 . .
(TIH=91i @) + p (1) IG);
2 J=1 3
X0

(T = min, SoEu)+ P (D63

orTJ=g +PJandTJ=min [g + P J].

De nition: A stationary policy is calledproper,
If under , from every state i, there is a positive
probability path that leads to t.

Important fact: (To be shown) If Is proper,
T is contraction w. r. t. some weighted sup-norm

miaX%j(T J)(i) (T I9(i)j miaX%jJ(i) JYi)j

T Is similarly a contraction if all are proper
(the case discussed in the text, Ch. 7, Vol. I).

SSP THEORY SUMMARY Il

The theory can be pushed one step further.
Instead of all policies being proper, assume that:

(a) There exists at least one proper policy
(b) For each improper ,J (i) = 1 for somei
Example: Deterministic shortest path problem
with a single destination t.
States <=> nodes; Controls <=> arcs

Termination state <=> the destination

Assumption (a) <=> every node is con-
nected to the destination

Assumption (b) <=> all cycle costs> 0
Note that T is not necessarily a contraction.

The theory in summary is as follows:
J Is the unique solution of Bellman's Eq.
Isoptimal ifandonlyif T J =TJ
VI converges: TkJ I J forall J 2<n

Pl terminates with an optimal policy, if started
with a proper policy

SSP ANALYSIS |

For a proper policy , J Is the unique xed
pointof T ,and TkJ ! J forall J (holds by the
theory of Vol. I, Section 7.2)

Key Fact: A satisfying J T J for some
J 2 <" must be proper - true because
I 1
J TKJ=PkKI+ PMg
. P 1 m =0
sinced = __, PM"g and some component of
the term on the right blows upask!1 if is
Improper (by our assumptions).

Consequence:T can have at most one xed
point within <n,

Proof: If J and JO are two xed points, select
and OsuchthatJ =TJ=T JandJ0= TJO=
T oJO By preceding assertion, and © must be
proper,andJ =J andJ%= J o. Also

J=TkJ TkJ! Jo=JO

Similarly, J° J, soJ = JO

SSP ANALYSIS I

We rst show that T has a xed point, and also
that PI converges to it.

Use PI. Generate a sequence of proper policies
f kg starting from a proper policy 9.

lis properandJ o J 1 since
Jo=TolJo TJo=T1Jo TKIo Ji1

Thus fJ kg Is nonincreasing, some policy Is
repeated andd = TJ . SoJ is xed point of T.

Next show that TkJ I J for all J, i.e., VI
converges to the same limit as PI. (Sketch: True
if J = J , argue using the properness of to show
that the terminal cost dierence J J does not
matter.)

To showJ =J ,forany =1 ¢; 1;:::0

T 0 T Jo Tk.Jo;

k 1

whereJo 0. Take limsup ask!1 , to obtain
J J ;so0 isoptimalandJ =J .

SSP ANALYSIS Il

Contraction Property: If all policies are proper
(cf. Section 7.1, Vol. 1), T and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
Inal, but the transition costs are all equal to 1.

Let J' be the corresponding optimal cost vector.
For all |

. . X‘] . X] . .

Jiy=" 1+ min pi (u)J() 1+ p () JG)
u (1) i =1 i =1

For v = JY(i); we havev; 1, and for all

X

i ()vy, vi 1 vji; 1 =1;::0n;
j=1
where
vi 1
= max < 1
1=1;:5n Vi

lus for norm kJk = maxi=1::-n JJ(1)]=vi (by the
results of earlier lectures).

SSP ALGORITHMS

All the basic algorithms have counterparts un-
der our assumptions; see the text (Ch. 3, Vol. II)

\Easy" case: All policies proper, in which case
the mappings T and T are contractions

Even with improper (in nite cost) policies all
basic algorithms have satisfactory counterparts
VI and PI
Optimistic Pl
Asynchronous VI
Asynchronous Pl
Q-learning analogs
** THE BOUNDARY OF NICE THEORY **
Serious complications arise under any one of the
following:
There is no proper policy
There is improper policy with nite cost 8 |

The state space is in nite and/or the control
space is In nite [in nite but compact U(i)
can be dealt with]

PATHOLOGIES |: DETERM. SHORTEST PATHS
$'1 "HSY% ¢

1"#$%E&'$%0(

Two policies, one proper (apply u), one im-
proper (apply u9
Bellman's equation is

J(1) =min J(1):4

Set of solutions is (1 ;0.

Caseb > 0,J = 0: VI does not converge to
J except If started from J . Pl may get stuck
starting from the inferior proper policy

Caseb < 0,J = b VI converges toJ If
started aboveJ , but not if started below J . PI
can oscillate (if started with u®it generatesu, and
If started with u it can generate u9

PATHOLOGIES I|I: BLACKMAILER'S DILEMMA

Two states, state 1 and the termination statet.

At state 1, chooseu 2 (0;1] (the blackmall
amount demanded) at a cost u, and move tot
with prob. u?, or stay in 1 with prob. 1 uZ.

Every stationary policy is proper, but the con-
trol set in not nite (also not compact).

For any stationary with (1) = u, we have
J D= u+@ u3)d (1)

from which J (1)= 2

Thus J (1) = 1 , and there is no optimal
stationary policy.

A nonstationary policy is optimal: demand
k(1) = =(k+1) attime k, with 2 (0;1=2).
Blackmailer requests diminishing amounts over
time, which add to 1 .

The probability of the victim's refusal dimin-
Ishes at a much faster rate, so the probabil-
ity that the victim stays forever compliant is
strictly positive.

SSP UNDER WEAK CONDITIONS |

Assume there exists a proper policy, and] Is
real-valued. Let

J@H= min J (i) i=1:::::n

. proper

Note that we may have '6 J [i.e., J(i) 6 J (i)
for somei].

It can be shown that J' is the unique solution
of Bellman's equation within the setfJ jJ Jg

Also VI converges toJ' starting fromany J J'

The analysis is based on the -perturbed prob-
lem: adding a small > 0 to g. Then:

All improper policies have in nite cost for
some states in the -perturbed problem

All proper policies have an additional O()
cost for all states

The optimal costJ of the -perturbed prob-
lem converges toJ as #0

There Is also a Pl methodthat generates a
sequence kgwith J « | J. Uses sequencey #
0, and policy evaluation based on the ¢ -perturbed
problems with ¢ #O0.

SSP UNDER WEAK CONDITIONS I

J need not be a solution of Bellman's equation!
Also J for an improper policy

"#$ %

I"#$%! "#$% & |

1"4$ | "% | IHS 1 o
I"#$96&'$%6(

"#$% ! ' "#$ 1

"#$% &

For p=1=2, we have
JM=0:J 2=J 5)=1:3 B)=J (N=0:J 4=1J 6)=2:;

Bellman Eq. atstate 1,J (1)= 3 J (2)+J (5) ;
IS violated.

References: Bertsekas, D. P., and Yu, H., 2015.
\Stochastic Shortest Path Problems Under Weak
Conditions," Report LIDS-2909; Math. of OR, to

appear. Also the on-line updated Ch. 4 of the
text.

6.231 DYNAMIC PROGRAMMING
LECTURE 18
LECTURE OUTLINE

Undiscounted total cost problems
Positive and negative cost problems
Deterministic optimal cost problems
Adaptive (linear quadratic) DP

A ne monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. Il of the text:
Noncontractive Total Cost Problems

On-line at:
http://web.mit.edu/dimitrib/www/dpchapter.html

Check for most recent version

CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

In nite horizon total cost DP theory divides in

\Easy" problems where the results one ex-
pects hold (uniqueness of solution of Bell-
man Eg., convergence of Pl and VI, etc)

\Di cult" problems where one of more of
these results do not hold

\Easy" problems are characterized by the pres-
ence of strong contraction properties in the asso-
ciated algorithmic maps T and T

A typical example of an \easy" problem is dis-
counted problems with bounded cost per stage
(Chs. 1 and 2 of Voll. Il) and some with unbounded
cost per stage (Section 1.5 of Voll. 1)

Another is semicontractive problems where T
IS a contraction for some but is not for other

, and assumptions are imposed that exclude the
\ill-behaved" from optimality

A typical example is SSP where the improper
policies are assumed to have in nite cost for some
Initial states (Chapter 3 of Vol. 1)

In this lecture we go into \di cult" problems

UNDISCOUNTED TOTAL COST PROBLEMS

Beyond problems with strong contraction prop-
erties. One or more of the following hold:

No termination state assumed
In nite state and control spaces

Either no discounting, or discounting and
unbounded costper stage

Risk-sensitivity /exotic cost functions (e.g.,
SSP problems with exponentiated cost)
Important classes of problems

SSP under weak conditions(e.g., the previ-
ous lecture)

Positive cost problems (control/regulation,
robotics, inventory control)

Negative costproblems (maximization of pos-
itive rewards - investment, gambling, nance)

Deterministic positive cost problems - Adap-
tive DP

A variety of in nite-state problems in queue-
Ing, optimal stopping, etc

A ne monotonic and risk-sensitive problems
(a generalization of SSP)

POS. AND NEG. COST - FORMULATION

SystemxXxg+1 = f (Xk; Uk;Wx) and cost

J (Xo) = lim Kg Xk k(Xk); Wk
N 11 W

Discount factor 2 (0; 1], but g may be unbounded
Case P g(x;u;w) 0 for all (x;u;w)
Case N g(x;u;w) 0 for all (x;u;w)

Summary of analytical results.

Many of the strong results for discounted
and SSP problems fail

Analysis more complex; need to allow forJ
and J* to take values +1 (under P) or 1
(under N)

However, J* is a solution of Bellman's Eq.
(typically nonunique)

Opt. conditions: is optimal if and only if
TJI'=TI Porif TI =TI (N)

SUMMARY OF ALGORITHMIC RESULTS

Neither VI nor Pl are guaranteed to work

Behavior of VI

P:. TkJ ! J" forall J withOo J J7 if
U(x) iIs nite (or compact plus more condi-
tions - see the text)

N: TkJ ! J* forall J withJ" J O

Behavior of Pl

P: J « IS monotonically nonincreasing but
may get stuck at a nonoptimal policy

N:J « may oscillate (but an optimistic form
of Pl converges toJ” - see the text)

These anomalies may benitigated to a greater
or lesser extent by exploiting special structure e.g.

Presence of a termination state
Proper/improper policy structure in SSP

Finite-state problems under P can be trans-
formed to equivalent SSP problemsby merging
(with a simple algorithm) all states x with J*(x) =
O into a termination state. They can then be
solved using the powerful SSP methodology (see
updated Ch. 4, Section 4.1.4)

EXAMPLE FROM THE PREVIOUS LECTURE

This is essentially a shortest path example with
termination state t

$'1 "HE%% &
"#$% &
L1 4S5 %" @
K | 144
I"H#H$%8&. () I"H#$%8&. ()
+HH - +&/

+#,-.+&/ /
Lo # L gg Ly V% "HE
T A !#$7 Ly # 1! o !#g-l

"H$% & "H$% °
" #$%& "($)(%or+ #),- " #$%8& "($)(%or+ #),-
LI 98 | 1 S % LI IS RS %
" #$%&# ' " #9968 +¥) 7 1 (- 1!

Bellman Equation:

J)=min JA):b+J®]: J®)= I@)

DETERM. OPT. CONTROL - FORMULATION

System: xx+1 = f (Xg;Ugk), arbitrary state and
control spacesX and U

Cost positivity: 0 g(x;u),8x 2 X; u 2 U(x)
No discounting:

W 1

J (Xo) = |\|||,T g Xk; k(Xk)
' k=0

\Goal set of states" Xg
All x 2 Xo are cost-free and absorbing

A shortest path-type problem, but with possibly
In nite number of states

A common formulation of control/regulation
and planning/robotics problems

Example: Linear system, quadratic cost (possi-
bly with state and control constraints), Xo = f0g
or Xo is a small set around O

Strong analytical and computational results

DETERM. OPT. CONTROL - ANALYSIS

Bellman's Eqg. holds (for not only this problem,
but also all deterministic total cost problems)
J*°(X)= min gx;u)+J" f(x;u) ; 8x2X

u2 U (x)

De nition : A policy terminates starting from

x If the state sequencefXxyxg generated starting

from Xo = X and using reachesXg in nite time,
l.e., satis es X, 2 Xo for some indexk

Assumptions. The cost structure is such that
J*(x) > 0; 8 x 2 Xy (termination incentive)

For everyx with J*(x) < 1 and every > 0,
there exists a policy that terminates start-
iIng from x and satisesJ (x) J*(x)+

Uniqueness of solution of Bellman's Eqg. J* is
the unique solution within the set

J=Jj0 J(xX) 1 ;8x2X;J(x)=0;8x2 Xp

Counterexamples Earlier SP problem. Also
linear quadratic problems where the Riccati equa-
tion has two solutions (observability not satis ed).

DET. OPT. CONTROL - VI/PI CONVERGENCE

The sequence TkJg generated by VI starting
fromaJd 2J with J J* converges toJ”

If in addition U(x) is nite (or compact plus
more conditions - see the text), the sequencETkJg
generated byVI starting from any function J 2 J
converges toJ”

A sequencefJ kg generated by Pl satis es
J k(X)) #J"(x) for all x 2 X

Pl counterexample: The earlier SP example

Optimistic Pl algorithm : Generates paird Jk; kg
as follows: GivenJy, we generate k according to

K(x)=arg min g(x;u)+Jx f(x;u) ; x2X
u2 U(x)
and obtain Jyx+1 with my 1 VIs using X:
My 1
Jk+1 (X0) = Ik (Xmy)+ g Xt; K(Xt) 7 Xo2X
t=0

If Jo2J andJop TJo, we havedy #J".
Rollout with terminating heuristic (e.g., MPC).

LINEAR-QUADRATIC ADAPTIVE CONTROL

Systent Xk+1 = AXk+BuUg, Xk 2<N,ug2<m

Cost: i o (x0Qxy + UPRUK), Q 0,R> 0

Optimal policy is linear: (x) = LX

The Q-factor of each linear policy is quadratic:
X

Q (xu)=(Xx0 U)K ()

We will consider A and B unknown

We use as basis functions all the quadratic func-
tions involving state and control components

Xixi: uiu; Xiu; 8 1]
These form the \rows" (x;u)% of a matrix

The Q-factor Q of a linear policy can be
exactly representedwithin the subspace spanned
by the basis functions:

Q (x;u)= (x;u)%
wherer consists of the components oK In (*)

Key point: Compute r by simulation of (Q-
factor evaluation by simulation, in a Pl scheme)

Pl FOR LINEAR-QUADRATIC PROBLEM

Policy evaluation: r is found (exactly) by least
sguares minimization

X

; 0
min (X U)r XpOQXk + UpRUk + Xisr; (Xks1) F
r
(X Uk)

where (Xk; Uk; Xk+1) are \enough" samples gener-
ated by the system or a simulator of the system.

Policy improvement:

—(x) 2 arg nlin (x;u)o

Knowledge of A and B Is not required

If the policy evaluation is done exactly, this
becomes exact Pl, andconvergence to an optimal
policy can be shown

The basic idea of this example has been gener-
alized and forms the starting point of the eld of
adaptive DP

This eld deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time

2

FINITE-STATE AFFINE MONOTONIC PROBLEMS

Generalization of positive cost nite-state stochas-
tic total cost problems where:

In place of a transition prob. matrix P , we
have a general matrixA 0

In place of O terminal cost function, we have
a more general terminal cost functiond O

Mappings
TJ=Db +A J (TI)(1) = mzll\r/} (T J)(i)

Cost function of =1 o; 1;:::0
J ()=limsup (T, T, JI)); 1=1;:::5n
N 11

Special case: An SSP with arexponential risk-
sensitive cost where for alli and u 2 U(i)

Ai (u) = pj (W)esuid: b(i;u) = py (u)edtiut)
Interpretation :

J (i) = £ ellength of path of starting from i)g

AFFINE MONOTONIC PROBLEMS: ANALYSIS

The analysis follows the lines of analysis of SSP

Key notion (generalizes the notion of a proper
policy in SSP): A policy is stableif A ! 0; else
it is called unstable

We have
I’(1
TN = AN J+ Akb: 8J2<n N=1;2;:::;
k=0
For a stable policy , we have for allJ 2 <n

pS
J =limsup TNJ =limsup AKb =(1 A) b
N 11 NI g

Consider the following assumptions:
(1) There exists at least one stable policy

(2) Forevery Lf;;\stable policy , atleast one com-

ponent of _, Akb is equal to 1

Under (1) and (2) the strong SSP analytical
and algorithmic theory generalizes

Under just (1) the weak SSP theory generalizes.

6.231 DYNAMIC PROGRAMMING
LECTURE 19
LECTURE OUTLINE

We begin a lecture series on approximate DP.
Reading: Chapters 6 and 7, Vol. 2 of the text.

Today we discuss some general issues about
approximation and simulation

We classify/overview the main approaches:
Approximation in policy space (policy para-
metrization, gradient methods, random search)
Approximation in value space (approximate

Pl, approximate VI, Q-Learning, Bellman
error approach, approximate LP)

Rollout/Simulation-based single policy iter-
ation (will not discuss this further)

Approximation in value space using problem
approximation (simpli cation - forms of ag-

gregation - limited lookahead) - will not dis-
cuss much

GENERAL ORIENTATION TO ADP

ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or in nite number of states.

Other names for ADP are:

\reinforcement learning" (RL)
\neuro-dynamic programming” (NDP)

We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGEnN).

Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.

There are many approaches:

Problem approximation and 1-step lookahead
Simulation-based approaches (we will focus
on these)

Simulation-based methods are of three types:
Rollout (we will not discuss further)
Approximation in policy space
Approximation in value space

WHY DO WE USE SIMULATION?

One reason:Computational complexity advan-
tagein computing expected values and sums/inner
products involving a very large number oE)terms

Speeds up linear algebra Any sum in:1 a
can be written as an expected value

aj = —=E —' ;
i=1 i=1 ! !
where is any prob. distribution over f1;:::;ng
It is approximated by generating many sam-
plesfiq;:::;ixg from f1;:::;ng, according
to , and Monte Carlo averaging:
Cace 2w
i=1 ! t=1 't

Choice of makes a di erence. Importance
sampling methodology.

Simulation is also convenient wherman analytical
model of the system is unavailable but a simula-
tion/computer model is possible.

APPROXIMATION IN POLICY SPACE

A brief discussion; we will return to it later.

Use parametrization (i;r) of policies with a

Polynomial, e.g., (i;r)=r1+rs i+r3 i2
Multi-warehouse inventory system: (i;r)is

Optimize the cost overr. For example:

Each value ofr de nes a stationary policy,
with cost starting at state | denoted by JTi; r).

bution over the states, and minimize overr

X1 .
PiJTi;r)

i=1
Use a random search, gradient, or other method

A special case The parameterization of the
policies is indirect, through a cost approximation
architecture J', i.e.,

X

(i;r) 2 argugnJg)j:1 pi (u) g(;u;j)+ JG;r)

APPROXIMATION IN VALUE SPACE

Approximate J or J from a parametric class

IS a vector of \tunable" scalars weights

UseJ in place ofJ orJ in various algorithms
and computations (VI, PIl, LP)

Role of r: By adjusting r we can change the
\shape" of J" so that it is \close"to J or J
Two key Issues:

The choice of parametric classJ{(i;r) (the
approximation architecture)

Method for tuning the weights (\training"
the architecture)

Success depends strongly on how these issues
are handled ... also on insight about the problem

A simulator may be used, particularly when
there is no mathematical model of the system

We will focus on simulation, but this is not the
only possibility

We may also useparametric approximation for
Q-factors

APPROXIMATION ARCHITECTURES

Divided in linear and nonlinear [i.e., linear or
nonlinear dependence ofTi;r) on r]

Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

Computer chess example

Think of board position as stateand move
as control

Uses a feature-based position evaluator that
assigns a score (or approximaté&)-factor) to
each position/move

; Features: :

| Material balance, :

! Mobility, ;

: Safety, etc N | Score

| Feature -| Weighting | + =
Extraction of Features

Position Evaluator

Relatively few special features and weights, and
multistep lookahead

LINEAR APPROXIMATION ARCHITECTURES

Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

Then the approximation may be quite accurate
without a complicated architecture. (Extreme ex-
ample: The ideal feature is the true cost function)

With well-chosen features, we can use adinear
architecture:

JG;r)= ()%, 8i or J(r)= r= ifi

. the matrix whose rows are (i)%, 1 =1;:::;n,
j Is the jth column of
"H$%&' ()*+

S 1| IHS%&! ($&H)SH+, |BNE&" 0)8+& T2 | wugepe (MHSWE()EH ! K14
— ¥ Hx] g A >

This is approximation on the subspace

S=1f rjr2<sg
spanned by the columns of (basis functions)
Many examples of feature types:Polynomial

approximation, radial basis functions, domain spe-
cic, etc

ILLUSTRATIONS: POLYNOMIAL TYPE

Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be | =
(I1;:::51q) (1.e., have g \dimensions") and de ne

o(i)=1; «()=1ix; km(i)=ikim; Km=1;:::

Linear approximation architecture:

- %I N W W - -
J(@;r)=ro+ ik + lkm ikim
k=1 k=1 m=Kk

wherer has componentsrg, ry, and rgm .

Interpolation : A subsetl of special/representative

states Is selected, and the parameter vector has
one componentr; per statei 2 |I. The approxi-
mating function is

J(sr) = ri; 12 1;

JTi;r) = interpolation using the values at i 2 I; i 2 |

For example, piecewise constant, piecewise linear,

more general polynomial interpolations

A DOMAIN SPECIFIC EXAMPLE

Tetris game (used as testbed in competitions)

)

I"#$%&1%(&

J (i): optimal score starting from position |
Number of states> 2200 (for 10 20 board)

Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)

APPROX. PI - OPTION TO APPROX. J OR Q

Use simulation to approximate the costJ of
the current policy

Generate \improved" policy — by minimizing in
(approx.) Bellman equation

"HES %08 () +-.

l

/0)*")(# 1223,4|5)(# 6,$(!un#$%&'()* +$’&__
1789: 1" :$&< ='5")(,& 10(,10)&$2

l

| H&H3)(# >%523,0#7@ ++-. % | +$.&. 3"H#$0**2)

Altenatively approximate the Q-factors of

A survey reference: D. P. Bertsekas, \Approx-
Imate Policy lteration: A Survey and Some New
Methods," J. of Control Theory and Appl., Vol.
9, 2011, pp. 310-335.

DIRECTLY APPROXIMATING J OR Q

Approximation of the optimal cost function J
directly (without PI)

Q-Learning: Use a simulation algorithm to
approximate the Q-factors
. . X] .
Q (i;u)=g(i;u)+ pi (W)J (J);
j=1
and the optimal costs

J (1) = min ;U
()= min Q (i;u)
Bellman Error approach: Find r to
n 0

minE; - J(;r) (T °

where Eif g is taken with respect to some
distribution over the states

Approximate Linear Programming (we will
not discuss here)

Q-learning can also be used with approxima-
tions

Q-learning and Bellman error approach can also
be used for policy evaluation

DIRECT POLICY EVALUATION

Can be combined with regular and optimistic
policy iteration

Find r that minimizes k3 J(;r)k?, i.e.,

i J () J0;r) 2; i some pos. weights
i=1
Nonlinear architectures may be used

The linear architecture case Amounts to pro-
jection of J onto the approximation subspace

#

|1,

"#P%&'(1) rrrtt g

"H$%8 '$&()*+ #)-$%&").)/
9%)0& 1$%&)#

Solution by linear least squares methods

POLICY EVALUATION BY SIMULATION

Projection by Monte Carlo Simulation: Com-
pute the projection J of J on subspaceS =
f rjr 2 <sg, with respect to a weighted Eu-
clidean normk k

Equivalently, nd r , where

b
r =arg ngln k r J k®=arg mln 3 () () °
r2< s _
Setting to O the gradient at r , "
I
>@ . . 1>@ . .
r = i (I) (I)O i (l)‘] (I)
i=1 i=1

Generate samples (i1;Jd (i1));:::;(k;Jd (ik))
using distribution

Approximate by Monte Carlo the two \expected

values" with low-dimensional calculations
|

X(. . | 1X(. .
fx = (it) (it)° (i1)J (iv)
=1 t=1
Equivalent least squares alternative calculation:
X(2
fx = arg rr21in (i) I (ip)
r2< s

t=1

INDIRECT POLICY EVALUATION

An example: Solve theprojected equation r =
T (r) where Is projection w/ respect to a

suitable weighted Euclidean norm (Galerkin ap-
Prox.

by S
) 1 NN
MHSU6RI(1) LTt g MHS%R(1) 1L g
"H$%8 &)+ H#)-$%&").)/ "H$968!()&(HH, ~+./$"0 1 29%+3&'(&
%)08& 1$%&)# # 4+%5 +4 6&..51"78 &9:1(

Solution methods that use simulation (to man-
age the calculation of)

TD(). Stochastic iterative algorithm for solv-
ng r= T(r)

LSTD(): Solves a simulation-based approx-
Imation w/ a standard solver

LSPE(): A simulation-based form of pro-
jected value iteration; essentially

rk+1 = T (rg)+ simulation noise

BELLMAN EQUATION ERROR METHODS

Another example of indirect approximate policy
evaluation:

mrink r T (rk? ()

wherek k is Euclidean norm, weighted with re-
spect to some distribution

It is closely related to the projected equation ap-
proach (with a special choice of projection norm)

Several ways to implement projected equation
and Bellman error methods by simulation They
Involve:

Generating many random samples of states
Ik using the distribution

Generating many samples of transitions (k; k)
using the policy

Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

Solve the Monte-Carlo approximation of the
optimality condition
Issues for indirect methods: How to generate
the sample® How to calculater e ciently ?

ANOTHER INDIRECT METHOD: AGGREGATION

An example: Group similar states together into

cost ri to each group Xj. A linear architecture
called hard aggregation

SR ST
: CH H# #O
oo d f#"##?
0 :"###é
o$.Aj 08 ||:"###f
| ::#"##f

4 # #

More general/mathematical view:. Solve
r= DT (r)

where the rows ofD and are prob. distributions
(e.g.,, D and \aggregate" rows and columns of
the linear systemJ = T J)

Compare with projected equation r= T (r).
Note: D Is a projection in some interesting cases

AGGREGATION AS PROBLEM APPROXIMATION

I"H$HY&
DR (et
| > "
Q | G O
% HS & () 45 %&()
“#(+%+','&'S- “#(+%+','&'S-
I y

B, P&+, (+&+,*
S N .- !
oo -

! 2
1""#$H# $ Y- &s"SH "H# SH
e $!"

Aggregation can be viewed as a systematic ap-

proach for problem approx. Main elements:

Solve (exactly or approximately) the \ag-
gregate" problem by any kind of VI or PI
method (including simulation-based methods)

Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the

original problem

Because an exact Pl algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-

tion approach

THEORETICAL BASIS OF APPROXIMATE PI

If policies are approximately evaluated using an
approximation architecture such that

max|J(;rx) J «()] ; kK =0;1;:::
I

If policy improvement is also approximate,

miaxj(T e D) rk) (TH(re)] k =0:1;:::

Error bound: The sequenced kg generated by
approximate policy iteration satis es

imsupmax J «(i) J (i)
k11 |

1)2

Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J ¢ oscillate within a neighborhood of J .

Oscillations are gquite unpredictable.

Bad examples of oscillations are known.

In practice oscillations between policies is
probably not the major concern.

In aggregation case, there are no oscillations

THE ISSUE OF EXPLORATION

To evaluate a policy , we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under

Cost-to-go estimates of underrepresented states
may be highly inaccurate

This seriously impacts the improved policy —

This is known as inadequate exploration - a
particularly acute di culty when the randomness
embodied in the transition probabilities is \rela-
tively small" (e.g., a deterministic system)

Some remedies:

Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

Occasionally generate transitions thatuse a
randomly selected control rather than the
one dictated by the policy

Other methods: Use two Markov chains(one
IS the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).

APPROXIMATING Q-FACTORS

Given JT{i;r), policy improvement requires a
model [knowledge ofp;j (u) for all u 2 U(i)]

Model-free alternative: Approximate Q-factors

X0
Q(i;u;r) pij (u) g(i;u;j)+ J (j)

J=1
and use for policy improvement the minimization

—(1) 2 arg min Lu;r
(i) 2 arg min Qi u;r)
I is an adjustable parameter vector andQ(i;u;r)
IS a parametric architecture, such as

. ﬁ .
Qi;usr) = rm m(i;u)
m=1
We can adapt any of the cost approximation
approaches e.g., projected equations, aggregation

Use the Markov chain with states (;u), so
pi ((i) is the transition prob. to (j; (i)), O to
other (j;u9

Major concern: Acutely diminished exploration

STOCHASTIC ALGORITHMS: GENERALITIES

Consider solution of a linear equationx = b+
AX by using m simulation samples b+ wy and

e.g., \simulation noise"

Think of x = b+ Ax as approximate policy
evaluation (projected or aggregation equations)

Xke1 = (1)X+« (b+ wi) + (A + W)Xk

Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates ofb and A

XN

1 X
— (A + W)

1

= + . =
b p- (b+ wy); An po
k=1 k=1

Then solvex = by, + Am X by matrix inversion
Xm =1 Am) lbnm

or iteratively
TD() and Q-learning are SA methods
LSTD() and LSPE() are MCE methods

6.231 DYNAMIC PROGRAMMING
LECTURE 20
LECTURE OUTLINE

Discounted problems - Approximation on sub-
spacef rjr 2<sg

Approximate (tted) VI

Approximate Pl

The projected equation

Contraction properties - Error bounds
Matrix form of the projected equation
Simulation-based implementation
LSTD and LSPE methods

REVIEW: APPROXIMATION IN VALUE SPACE

Finite-spaces discounted problems: De ned by
mappingsT and T (TJ =min T J).
Exact methods:
VI: Jk+1 = Tk
Pl: J«x=T«kkd«k, Tkad«k=TJ«
LP: minj; c®) subjecttoJ TJ
Approximate versions. Plug-in subspace ap-
proximation with r in place of J
VI: rgsr T g
Pl: rx T« rk, Twker =T Trg
LP: min, c® r subjectto r T r
Approx. onto subspaceS = f r jr 2 <sg
IS often done by projection with respect to some
(weighted) Euclidean norm.
Another possibility is aggregation Here:
The rows of are probability distributions

r J or r J°, with r the solution of
an \aggregate Bellman equation"r = DT (r)
orr = DT(r), where the rows of D are
probability distributions

APPROXIMATE (FITTED) VI

Approximates sequentially Jx (i) = (TkJo)(i),
K=1;2;:::, with Jx(i;rg)
The starting function Jg is given (e.g.,Jo 0)

Approximate (Fitted) Value Iteration: A se-
guential \ t" to produce Jk+1 from Jy, i.e., Jk+1
TJx or (for a single policy) Jk+1 T Jxk

After a large enough numberN of steps,Jy (i;rn)
IS used as approximation toJ (i)

Possibly use (approximate) projection with
respect to some projection norm,

Jk+1 T Jk

WEIGHTED EUCLIDEAN PROJECTIONS

Consider a weighted Euclidean norm

U
X
Wk =t 30 2
i=1
where = (1;:::; n) IS a positive distribution

(i > 0foralli).
Let denote the projection operation onto
S=1f rjr2<sg
with respect to this norm, i.e., forany J 2 <n,
J=

where
r =argmin k r Jk?
r2< s
Recall that weighted Euclidean projection can
be implemented by simulation and least squares
l.e., sampling J (i) according to and solving

X< 2
min ()% JI(ir)

r2< s
t=1

FITTED VI - NAIVE IMPLEMENTATION

Select/sample a \small" subsetly of represen-
tative states

For eachi 2 Iy, given Jyx, compute

X

(TIM = min PO g+ G0

\Fit" the function Jk+1 (i;rk+1) to the \small”
set of values TJx)(i), 1 2 I (for example use
some form of approximate projectior)

\Model-free" implementation by simulation

Error Bound: If the t is uniformly accurate
within > 0, i.e,,

miaijT<+1 i)y TJI®)] ;
then
lim sup max Jx(i;rk) J (i) —
K11 1=1:::n 1

But there is a potential serious problemnd

AN EXAMPLE OF FAILURE

Consider two-state discounted MDP with states
1 and 2, and a single policy.

Deterministic transitions: 1! 2 and 2! 2
Transition costs 0,so0J (1)=J (2) =0.

Consider (exact) tted VI scheme that approx-
Imates cost functions within S = (r;2r) jr 2<

with a weighted least squares t; here =(1 ;2)O

Given Jx = (ry;2ry), we nd Jks1 = (k1 2k+1),
where Jx+1 = (TJk), with weights = (1; 2):

h i

N1 =argmin g 1 (TJ)(L) o2 (TH)Q °

With straightforward calculation

k+1 = I k; where =2(1+2 2)=(1+4 2) > 1

Soif > 1= (e.g., 1= 2=1), the sequence
frrg diverges and so doe$ Jx Q.

Diculty is that T Is a contraction, but T
(= least squares t composed with T) is not.

NORM MISMATCH PROBLEM

For tted VI to converge, we need T to be a
contraction; T being a contraction is not enough

We need a such that T Is a contraction w. r.
to the weighted Euclidean normk k

Then T is a contraction w. r.to k k

We will come back to this issue, and show how
to choose so that T IS a contraction for a
given

APPROXIMATE PI

4SS 968 ()* +*-.

l

10)*")(# 1223,4'5)(# 6,%(" 45968 ()% +$,&-.
1189: 1" :$8< =5")(,& 10(,1()&$2

|

| W&H3)(# >%523,087@ +*-.% | 18.&. 3"#$0**2)

Evaluation of typical : Linear cost function
approximation J (r) = r, where s full rank
n s matrix with columns the basis functions, and
ith row denoted (i)O.

Policy \improvement" to generate™

X
=g i, PO w8

Error Bound (same as approximate VI): If
max|jJ «(i;rx) J ()] k =0;1,;:::
I

the sequencd kg satis es
2

T)

imsupmax J «(i) J (i)
k11 |

APPROXIMATE POLICY EVALUATION

Consider approximate evaluation ofJ , the cost
of the current policy by using simulation.

Direct policy evaluation - generate cost sam-
ples by simulation, and optimization by least

squares
Indirect policy evaluation - solving the pro-
jected equation r = T (r) where Is

projection w/ respect to a suitable weighted
Euclidean norm

O#

T e g
HSY&(1) 11U iy HSY&(1) 11T iy
I"H$%& '$&()*+ #)-$%&").)/ I"H$9%8'()&(*+#, -+./$"0 1 2%+3&'(&
%)0& 1$%&)# # 4+9%5 +4 6&..51"78 &9:1(

Recall that projection can be implemented by
simulation and least squares

Pl WITH INDIRECT POLICY EVALUATION

I"H$S %6&'()* +,*-.

'

10)*")(# 1223,4'5)(# 6,%(HSYE ()F 4,8
178'9: | " :$&< ='5")(,& 10(,1()&$2

l

| 1#&H#3)(# >%523,087@ +*-.# | 1$,&. 3"#F02)

Given the current policy
We solve the projected Bellman's equation

r= T(r)

We approximate the solutionJ of Bellman's
equation
J=T1J

with the projected equation solution J (r)

KEY QUESTIONS AND RESULTS

Does the projected equation have a solution?

Under what conditions is the mapping T a
contraction, so T has unique xed point?

Assumption: The Markov chain corresponding
to has a single recurrent class and no transient

states, with steady-state prob. vector , so that

X
:I\|Il!ql —k_lp(lk:jjlo:|)>0

Note that Is the long-term frequency of state] .

Proposition: (Norm Matching Property) As-

sume that the projection is with respectto k k ,
where = (1;:::; n) IS the steady-state proba-

bility vector. Then:

(@) T is contraction of modulus with re-
specttok k.

(b) The unique xed point r of T satises

J

kJ r k

©

kJ J K
2

PRELIMINARIES: PROJECTION PROPERTIES

Important property of the projection on S
with weighted Euclidean normk k . For all J 2
<n: r 2 S, the Pythagorean Theoremholds:

kJ rk? = kJ JKk>+ k J rk?

The Pythagorean Theorem implies that the pro-
jection is nonexpansive i.e.,

k J Jk kJ Jk; forall J;J 2<n:

To see this, note that

(J J)° J) ° J

PROOF OF CONTRACTION PROPERTY

Lemma: If P iIs the transition matrix of |

kPzk k zk : zZ2<n:

where is the steady-state prob. vector.
Proof: Forall z2 <n

0) 1,
X X X X
kP zk? = @ Pij Z; A | Pij ij
=1 i=1 =1 j=1
X X X
= Py Z7 = jz? = kzk?:
j=1 i=1 j=1

The inequality follows from the convexity of the
quadratic function, and the next {9 last equality

follows from the de ning property le iPj = j

Using the lemma, the nonexpansiveness of
and the denition T J =g+ PJ , we have

k TJ TJk kTJ TJk = kP J)k kJ Jk

forall J;J 2 <M, Hence T Is a contraction of
modulus

PROOF OF ERROR BOUND

Let r bethe xed point of T. We have

1

kJ r k pl

kJ J Kk :
2

Proof: We have

kJ r k2 = kJ J K2+ g r°

= kJ JK+ T T(r)°
k J J K+ 2K r k2

where

The rst equality uses the Pythagorean The-
orem

The second equality holds becausd is the
xed point of T and r Is the xed point
of T

The inequality uses the contraction property
of T.

Q.E.D.

MATRIX FORM OF PROJECTED EQUATION

The solution r satis es the orthogonality con-
dition: The error

r (g+ P r)
IS \orthogonal" to the subspace spanned by the
columns of .

This Is written as

0 r (g+ P r) =0;

where is the diagonal matrix with the steady-

Equivalently, Cr = d; where

C= Oo(I P): d= 0g

but computing C and dis HARD (high-dimensional
Inner products).

SOLUTION OF PROJECTED EQUATION

SolveCr = d by matrix inversion: r = C 1d

Alternative: Projected Value Iteration (PVI)

+1 = T(r)=(9+ P ry)
Converges tor because T is a contraction.

Value Iterate
T(Frk) =g + aPFrg

[
Projection
onS

|
Fri+1

Fri
0
S: Subspace spanned by basis functions

PVI can be written as:

. 2
lk+1 = arg min r (g+ P ry)
ra2< s

By setting to O the gradient with respect to r,
O 1k (@t P ry) =0;

which yields
1 =nc (%) HCr d

SIMULATION-BASED IMPLEMENTATIONS

Key idea: Calculate simulation-based approxi-
mations based onk samples

Ck C; dk d

Approximate matrix inversion r = C 1d by
M = Ck 1dk
This is the LSTD (Least Squares Temporal Dif-

ferences) method.

PVImethod rs1 =1 (9) I(Crx d)is
approximated by

reer = e Gr(Cyrk dy)

where

G« (9) 1
This i1s the LSPE (Least Squares Policy Evalua-
tion) method.

Key fact: Cy, dx, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).

SIMULATION MECHANICS

We generate an in nitely long trajectory (io;11;:::)
of the Markov chain, so statesi and transitions
(I;]) appear with long-term frequencies ; and pj .

After generating each transition (i¢;it+1), we
compute the row (i;)%of and the cost compo-
nent g(i;it+1).

We form
L X X
dx = T 1 (i1)g(it;it+1) P (DgGij)= °g=d
t=0 |
1 X : : : 0 0 B
Cr = 1371 3 () () () (I P)= C

Also in the case of LSPE

1 X
Gk—mtzo (1t) (it)

Convergence based on law of large numbers.
Ck, dx, and G can be formed incrementally.

Also can be written using the formalism of tem-
poral di erences (this is just a matter of style)

OPTIMISTIC VERSIONS

Instead of calculating nearly exact approxima-
tions Ck, C anddy d, we do a less accurate
approximation, based on few simulation samples

Evaluate (coarsely) current policy , then do a
policy improvement

This often leads to faster computation (as op-
timistic methods often do)

Very complex behavior (see the subsequent dis-
cussion on oscillations)

The matrix inversion/LSTD method has serious
problems due to large simulation noisgbecause of
limited sampling) - particularly if the C matrix is
Ill-conditioned

LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

A stepsize 2 (0;1] in LSPE may be useful to
damp the e ect of simulation noise

rvse1 = e G (Cxrg dk)

6.231 DYNAMIC PROGRAMMING
LECTURE 21
LECTURE OUTLINE

Review of approximate policy iteration

Projected equation methods for policy evalua-
tion

Issues related to simulation-based implementa-
tion

Multistep projected equation methods
Bias-variance tradeo
Exploration-enhanced implementations

Oscillations

REVIEW: PROJECTED BELLMAN EQUATION

For a xed policy to be evaluated, consider
the corresponding mappingT:

X0
(TJ)(i)=. pi 9l)+ J () i=21;::0,m;

1=1

or more compactly, TJ = g+ PJ

Approximate Bellman's equation J = TJ by
r = T(r) or the matrix form/orthogonality
condition Cr = d; where

C= 0(lI P) ; d= 0 g:

23 4!

|
8419%)0.1-
1+#!

|
I A#TH#H23 4

6
I"H1$%& () H& (++* #Y0-HY0(&. &H/$+)0. 1+

o+, AN)O#F0<L, " HI1=> +2H(# 419%)0* #
114:#1#@*==;(+A&#*B$(0.1+

PROJECTED EQUATION METHODS

Matrix inversion: r = C 1d

lterative Projected Value Iteration (PVI) method

rker = T(C)= 9+ P ry)

Converges tor if T isacontraction. True if is
projection w.r.t. steady-state distribution norm.

Slmulatlon Based Implementatlons Generate

and approximationsCy, C anddyx d:

X
ck:kil) (i) (i) (1) %1 P)
1 X
dy = r 1 (i1)g(it;it+1) e

t=0

LSTD: fx = C, *dk
LSPE: rgs1 = rg Gk(Ckrk dk) where

Gk G=(%) 1

Converges tor if T is contraction.

ISSUES FOR PROJECTED EQUATIONS

Implementation of simulation-based solution of
projected equation r J , where Cxr = d¢ and

Ck ocr P dy 09

Low-dimensional linear algebraneeded for the
simulation-based approximations Cx and dx (of
order s; the number of basis functions).

Very large number of samplesneeded to solve
reliably nearly singular projected equations.

Special methods for nearly singular equations
by simulation exist; see Section 7.3 of the text.

Optimistic (few sample) methods are more vul-
nerable to simulation error

Norm mismatch/sampling distribution issue

The problem of bias Projected equation solu-
tion 6 J , the \closest" approximation of J

Everything said so far relates to policy evalua-
tion. How about the e ect of approximations on
policy improvement?

We will next address some of these issues

MULTISTEP METHODS

Introduce a multistep version of Bellman's equa-
tion J = T()J, where for 2 [0;1),
X N N
TO) =1) T +1
‘2o
Geometrically weighted sum of powers ofT .
T is a contraction with mod. , w. r. to
weighted Euclidean normk k , where s the
steady-state probability vector of the Markov chain.

HenceT() is a contraction with modulus

R @)
= (1 +1 —
€) :
=0
Note Il Oas ! 1-aects norm mismatch

T and T() have the same xed pointJ and

1

kJ r k pl >

kJ J K

where r is the xed point of T(),

r depends on .

BIAS-VARIANCE TRADEOFF

4. ($+" +4 2%+3&'(&# &9:1($
L1y

””. !ll#$%&lll() *++(+
’—;;; =~ ~ "g-
C —)

R N PHg06&() *++(+
PHES%&' () tr et g

From kJ r. k pﬁk\] J Kk

error bound

As " 1, we have #0, soerror bound (and
guality of approximation) improves:

im r. = J
"1

But the simulation noise in approximating

X N N
TO) =(1) T +1
.
Increases

Choice of is usually based on trial and error

MULTISTEP PROJECTED EQ. METHODS

The multistep projected Bellman equation is
r= TO)(r)

In matrix form: C()r = d(), where

cCl)= o | PO - d= 0g):
with
x x
POI=(1) P+ g) = P g
=0 =0

The LSTD() method is Clﬁ) 1d(k): where

Cf() and d(k) are simulation-based approximations
of C() and d().

The LSPE() method is
Nk+1 = Ik G CIE)I'k df()

whereGy is a simulation-based approx.to(©) 1

TD(): An important simpler/slower iteration
[similar to LSPE() with G¢ = | - see the text].

MORE ON MULTISTEP METHODS

The simulation process to obtain Clﬁ) and df()
IS similar to the case = 0 (single simulation tra-

jectory io;l11;:::, more complex formulas)
1 X . X . : 0
CIE = K+1 (It)) mtmt (im) (Im+1)
t=0 m=t
1 X X
d(k): vl (it) _ motm tg
t=0 m=t

In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

Many di erent versions (see the text).

Note the -tradeo s:

As "1, Cf() and d(k) contain more \sim-
ulation noise", so more samples are needed
for a close approximation ofr .

The error bound kJ r. k becomes smaller

As " 1, T() becomes a contraction for
arbitrary projection norm

APPROXIMATE Pl ISSUES - EXPLORATION

1st major issue: exploration. Common remedy
IS the o0 -policy approach: Replace P of current
policy with
P=(1 B)P+ BQ;

where B is a diagonal matrix with ; 2 [0; 1] on
the diagonal, and Q is another transition matrix.

Then LSTD and LSPE formulas must be modi-
ed ... otherwise the policy associated withP (not
P) is evaluated (see the textbook, Section 6.4).

Alternatives: Geometric and free-form sampling

Both of these use multiple short simulated tra-
jectories, with random restart state, chosen to en-
hance exploration (see the text)

Geometric sampling uses trajectories with geo-
metrically distributed number of transitions with
parameter 2 [0;1). It implements LSTD() and
LSPE() with exploration.

Free-form sampling uses trajectories with more
generally distributed number of transitions. It im-
plements method for approximation of the solu-
tion of a generalized multistep Bellman equation.

APPROXIMATE Pl ISSUES - OSCILLATIONS

De ne for each policy
R = r)T (r)=T(r)

These sets form thegreedy partition of the pa-
rameter r-space

! l ! ' 1] ! #| II! ll# ! #ll! |l#

MHE$ 9%"&() 1 *") '+ -+, " $&&H +O(- S,
I"H$0%& S+, -0 "+ 11 1("01%* "

Oscillations of nonoptimistic approx.: r IS gen-
erated by an evaluation method so that r J

MORE ON OSCILLATIONS/CHATTERING

For optimistic Pl a di erent picture holds

Oscillations are less violent, but the \limit"
point is meaningless!

Fundamentally, oscillations are due to thelack
of monotonicity of the projection operator, I.e.,
J JOdoes not imply J JO,

If approximate Pl uses policy evaluation

r=(WT)(r)

with W a monotone operator, the generated poli-
cies converge (to an approximately optimal limit).

The operator W used in the aggregation ap-
proach has this monotonicity property.

6.231 DYNAMIC PROGRAMMING
LECTURE 22
LECTURE OUTLINE

Aggregation as an approximation methodology
Aggregate problem

Examples of aggregation

Simulation-based aggregation

Q-Learning

PROBLEM APPROXIMATION - AGGREGATION

Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
pli cation is often ad-hoc/problem dependent.

Aggregation is a systematic approach for prob-
lem approximation. Main elements:

Introduce a few \aggregate" states, viewed
as the states of an \aggregate" system

De ne transition probabilities and costs of
the aggregate system,by relating original
system states with aggregate states

Solve (exactly or approximately) the \ag-
gregate" problemby any kind of value or pol-
Icy iteration method (including simulation-
based methods)

Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

Hard aggregation example Aggregate states
are subsets of original system states, treated as if
they all have the same cost.

AGGREGATION/DISAGGREGATION PROBS

The aggregate system transition probabilities
are de ned via two (somewhat arbitrary) choices

I"#$HY%E&
! ()*+,- (+&+,*

O—%

P * 4 " B4

L% HE Y& ()
H(+%+','&'S-
e 4

I #5968 () °
H+%+,'8'$-

| oy

IESHS U LS HSHE
o g

For each original system state] and aggregate
state y, the aggregation probability jy

The \degree of membership of] in the ag-
gregate statey."

In hard aggregation, j, = 1 if state | be-
longs to aggregate state/subsely.

For each aggregate statex and original system
state I, the disaggregation probability dy;
The \degree of i being representative ofx."

In hard aggregation, one possibility is all

statesi that belongs to aggregate state/subset
X have equaldy; .

AGGREGATE PROBLEM

The transition probability from aggregate state
X to aggregate statey under control u

X X
Pxy (U) = di pj(u) jy; orP(u)= DP(u)
i=1 j=1
where the rows of D and are the disaggr. and
aggr. probs.

The aggregate expected transition cosis

X X o
o(x;u)= dx py(u)g(isui)); org= DPg
i=1 j=1
The optimal cost function of the aggregate prob-
lem, denoted R, is }
X
R(x)=min g(x;u) + By (WR(Y) ; 8X
u

y

or R = miny [+ PR] - Bellman's equation for
the aggregate problem.

The optimal cost J of the original problem is
approximated usin)g Interpolation, J J=

JG) = iy R(Y); 8]

y

EXAMPLE |: HARD AGGREGATION

Group the original system states into subsets,
and view each subset as an aggregate state

Aggregation probs: jy = 1 if J belongs to
aggregate statey.

| 1 $
#
| " y N #H##HO
° ° ° TR #g
. p Y ## #(/)
o$./o ° rrr g # #C(o
_ H®H " # #(/)
° o(o) w R #%
#
"
#

Disaggregation probs: There are many possi-
bilities, e.qg., all statesi within aggregate state x
have equal prob.dy; .

If optimal cost vector J Is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with \roughly
equal" cost into aggregates.

Soft aggregation (provides \soft boundaries"
between aggregate states).

EXAMPLE II: FEATURE-BASED AGGREGATION

If we know good features, it makes sense to
group together states that have \similar features"

Essentially discretize the features and assign a
weight to each discretization point

(ﬁ RELS —
P ‘ ° ° °
FN&(H#) H#&(., 1) o #&(H 1(&(H)

A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

Hard aggregation architecture based on features
IS more powerful (honlinear/piecewise constant in
the features, rather than linear)

... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture

EXAMPLE IlI: REP. STATES/COARSE GRID

Choose a collection of \representative" original
system states, and associate each one of them with
an aggregate state. Then \interpolate"

I"HSHYE' ()&)* (+&*
I

!"#$"°/\o"&'(')*"+,--$"-('" }%

Disaggregation probs. aredy; = 1 if | is equal
to representative state x.

Aggregation probs. associate original system
states with convex combinations of rep. states

_ X
J iyY
y2A
Well-suited for Euclidean space discretization

Extends nicely to continuous state space, in-
cluding belief space of POMDP

EXAMPLE IV: REPRESENTATIVE FEATURES

Choose a collection of \representative"subsets
of original system states, and associate each one
of them with an aggregate state

I"HSHUE' (&) (+&*

"5 068 '&U&S() *+($&

Common case: Sy Is a group of states with
\similar features"

Aggregation with representative states is special
case: Sy consists of just one state

With rep. features, aggregation approach is a
special case of projected equation approachvith
\seminorm" projection. So the TD methods and
multistage Bellman Eqg. methodology apply

APPROXIMATE Pl BY AGGREGATION

"#$#%&
O+, (F&+F

@ |y JTI " Bt O

S UR) S8
“H(+%+','&'S- ‘H(+%+','&'$-
4 L
$$" $&+, (+&+,*
G ey
I# | #
o HS s el o
Y y

S B G SHHSHE
" g
Consider approximate PI for the original prob-
lem, with evaluation done using the aggregate prob-

lem (other possibilities exist - see the text)

Evaluation of policy :J = R, whereR =
DT (R) (R is the vector of costs of aggregate
states corresponding to). May use simulation.

Similar form to the projected equation R =
T (R)(D inplace of).
Advantages: It has no problem with exploration
or with oscillations.

Disadvantage: The rows of D and must be
probability distributions.

Q-LEARNING |

Q-learning has two motivations:
Dealing with multiple policies simultaneously

Using a model-free approactino need to know
pij (u), only be able to simulate them]

The Q-factors are de ned by

hd
Q (hu)y= py) g@iuj)+ I () 8(u)
j=1
SinceJ = TJ ,wehaveld (i)=min y2yi) Q (i;u)
so the Q factors solve the equation

hd
u) = i (U u;j)+ min ;U
Q (i;u) . pi (u) 9(iu;j) uO2U(j)Q (j;u
Q (i;u) can be shown to be the unique solu-
tion of this equation. Reason: This is Bellman's
equation for a system whose states are the original
states 1, :::;n; together with all the pairs (i;u).
Value iteration: For all (i;u)
X
Q(u) = pj(u) gi;uj)+ min Q(j;u9

=1 u®U(j)

Q-LEARNING Il

Use some randomization to generate sequence
of pairs (ix; uk) [all pairs (i; u) are chosen in nitely
often]. For eachk, selectj according to pi, j (Uk).

Q-learning algorithm: updates Q(ik; ux) by
Q(ik;uk) = 1 k(iksuk) Qik;uk) |

+ k(ik; Uk I Uk jk) + min Q(jk;u
(i uk) o jk) son | (1k;u9

Stepsize k(ik; Ux) must converge to O at proper
rate (e.g., like 1=Kk).

Important mathematical point : In the Q-factor
version of Bellman's equation the order of expec-
tation and minimization is reversed relative to the
ordinary cost version of Bellman's equation:

X
1 (= mi) CuiyE d (i
(1) ungbn(i)jzl pij (u) g(i;u;]) ()
Q-learning can be shown to converge to true/exact
Q-factors (sophisticated stoch. approximation proof).

Major drawback: Large number of pairs (; u) -
no function approximation is used.

Q-FACTOR APPROXIMATIONS

Basis function approximation for Q-factors:
Q(yu;r)=(u)x
We can use approximate policy iteration and

LSPE/LSTD/TD for policy evaluation (exploration
ISSue Is acute).

Optimistic policy iteration methods are fre-
guently used on a heuristic basis.

Example (very optimistic). Atiteration Kk, given
rx and state/control (ix; uk):

(1) Simulate next transition (ig;ix+1) using the
transition probabilities p;, j (uk).

(2) Generate control ux+; from

Uk+1 =arg min Q(ik+1;U;rk)
u2U(ik+y)

(3) Update the parameter vector via

rk+1 = rk (LSPE or TD-like correction)

Unclear validity. Solid basis for aggregation
case, and for case of optimal stopping (see text).

6.231 DYNAMIC PROGRAMMING
LECTURE 23
LECTURE OUTLINE

Additional topics in ADP

Stochastic shortest path problems

Average cost problems

Generalizations

Basis function adaptation

Gradient-based approximation in policy space

An overview

REVIEW: PROJECTED BELLMAN EQUATION

Policy Evaluation: Bellman's equationJ = TJ
IS approximated the projected equation

r= T(r)

which can be solved by a simulation-based meth-
ods, e.g., LSPE(), LSTD(), or TD(). Aggre-
gation is another approach - simpler in some ways.

23 4!

|
8419%)0.1-
1+#1

|
I A#7TH23 41

6
I"HIS%&' () FHE (++* #Yo-#Y0(&. &H/S+)0.1+¢

AR O X0<], "HI1=> + 2H(#' 419%) 0% #
114:#11#@%*==:(+A&#*B$(0.1+

These ideas apply to other (linear) Bellman
equations, e.g., for SSP and average cost.

Important Issue: Construct simulation frame-
work where T [or T()]is a contraction.

STOCHASTIC SHORTEST PATHS

Introduce approximation subspace
S=1f rjr2<sg

and for a given proper policy, Bellman's equation
and its projected version

J=TJ=g+ PJ, r= T(r)

Also its -version

pS
r= TO)I(r); TOO =@) tTt+1
t=0
Question: What should be the norm of projec-
tion? How to implement it by simulation?

Speculation based on discounted casdt should
be a weighted Euclidean norm with weight vector

=(1;::7; n), where ; should be some type of
long-term occupancy probability of statei (which
can be generated by simulation).

But what does \long-term occupancy probabil-
ity of a state" mean in the SSP context?

How do we generate in nite length trajectories
given that termination occurs with prob. 17?

SIMULATION FOR SSP

We envision simulation of trajectories up to
termination, followed by restart at state i with
some xed probabilities gp(i) > O.

Then the \long-term occupancy probability of
a state" of i is proportional to

. X . .
aii)= a(); i=21;n
t=0
where
(i) = P(it = 1); 1=1;:::;n;t=0;1;:::
We use the projection norm
U
X
SR

kJKq =

=1

[Note that O < g(i) < 1, but g is not a prob.
distribution.]

We can show that T() is a contraction with
respect tok kg (see the next slide).

LSTD(), LSPE(), and TD() are possible.

CONTRACTION PROPERTY FOR SSP

P 1
We haveq= [, ¢ SO
R R
P= qP= =0 4
t=0 t=1

or
hd
api =a() (), 8]
i=1
To verify that T is a contraction, we show
that there exists < 1 such thatkPzki kzk3
forall z2<n,

For all z2 <", we have

0 1,
X X X
kP zk3 = i) @ pj z A a(l) P ij
=1 j=1 ==
= zj2 q(i)pij = ald) () ij
j=1 =1 j=1
= kzk§ k zk3, kzk3
where _
()

=1 min ——-
ioqQ)

AVERAGE COST PROBLEMS

Consider a single policy to be evaluated, with
single recurrent class, no transient states, and steady-
state probability vector =(1;:::; n).

The average cost, denoted by , is

o Oy)

= |Iim —E X : X Xo=1 : 8I
N 11 N k_og k, Ak+1

Bellman's equation isJ = FJ with

FJ=9g e+PJ

The projected equation and its -version are

r= F(r); r= FO)(1)

A problem here is that F is not a contraction
with respect to any norm (sincee = Pe).

F() is a contraction w. r. to k k assuming
that e does not belong toS and > 0 (the case
= 0 is exceptional, but can be handled); see the
text. LSTD(), LSPE(), and TD() are possible.

GENERALIZATION/UNIFICATION

Consider approx. solution ofx = T(x), where
T(x) = AX + Db; Aisn n; b2<n

by solving the projected equationy = T(y),
where s projection on a subspace of basis func-
tions (with respect to some Euclidean norm).

We can generalize from DP to the case where
A is arbitrary, subject only to

I A : invertible

Also can deal with case wherd A is (nearly)
singular (iterative methods, see the text).
Bene ts of generalization:

Uni cation/higher perspective for projected
equation (and aggregation) methods in ap-
proximate DP

An extension to a broad new area of appli-

cations, based on an approx. DP perspective
Challenge: Dealing with less structure

Lack of contraction

Absence of a Markov chain

GENERALIZED PROJECTED EQUATION

Let be projection with respect to

X
kxk = t X2

where 2 <n is a probability distribution with
positive components.

If r Is the solution of the projected equation,
wehave r = (A r +Dbor

1,
X X
r =arg min @ (i) aj () bA
"< j=1
where (i)9 denotes theith row of the matrix .
Optimality condition/equivalent form:
0 1,
X] . . X] . X1 .
()@ (i) aj (A r = (Db
i=1 j=1 i=1

The two expected values can be approximated
by simulation

SIMULATION MECHANISM

>

"% $96&'()*+ ")*+ 0" |

9"(<&* $%&'()*+ -
)R 0" %

Row sampling: Generate sequencdio;i1;:::g
according to , I.e., relative frequency of each row
| 1S i

Column sampling: Generate (io;jo);(I1;]1);:::
according to some transition probability matrix P
with

pj >0 If aj 60;

l.e., for eachi, the relative frequency of (;]) Is pj
(connection to importance sampling)

Row sampling may be done using a Markov
chain with transition matrix Q (unrelated to P)

Row sampling may also be done without a
Markov chain - just sample rows according to some
known distribution (e.g., a uniform)

ROW AND COLUMN SAMPLING

>

"% $%&'()*+ " /)*+ 0" |
12%3 456 2%.7"8 9:%)* ! :

9"(<&* $%&'()*+ ,-

" L)%+ 0" 29

2%.7"8 9:%)*
"I

Row sampling State Sequence Generation In
DP. A ects:

The projection norm.
Whether A Is a contraction.
Column sampling Transition Sequence Gen-
eration in DP.

Can be totally unrelated to row sampling.
A ects the sampling/simulation error.

\Matching" P with jA] is bene cial (has an
e ect like in importance sampling).

Independent row and column sampling allows
exploration at will! Resolves the exploration prob-
lem that is critical in approximate policy iteration.

LSTD-LIKE METHOD

Optimality condition/equivalent form of pro-
jected equation

0 1,
X X X
()@ (i) aj ()A r = (Db
1=1] =1 i=1
The two expected values are approximated by
row and column sampling (batch 0! t).

We solve the linear equation

X : : Aij : ° X :
(i) (k) = (jk) re= (k)b
k=0 'kl k k=0
We havery ! r ,regardless of A being a con-
traction (by law of large numbers; see next slide).

Issues of singularity or near-singularity ofl A
may be important; see the text.

An LSPE-like method is also possible, but re-

quires that A is a contraction.

P
Under the assumption [, jajj 1 foralli,

there are conditions that guarantee contraction of
A; see the text.

JUSTIFICATION W/ LAW OF LARGE NUMBERS

We will match terms in the exact optimality
condition and the simulation-based version.

Let "t be the relative frequency ofi in row
sampling up to time t.

We have
X X0 0
t+11 (k) (1)?= | (i) (i) o (i) (i)°
k=0 1=1 i=1
k=0 =1 i=1

Let f; be the relative frequency of (;j) in
column sampling up to time t.

1 X a'ka
(i) (j«)°
t+1k_op'klk
£ XA
= A MG

J
i=1 j=1 Pi

&y (1) ()°

BASIS FUNCTION ADAPTATION |

An important issue in ADP is how to select
basis functions.

A possible approach is to introducebasis func-
tions parametrized by a vector , and optimize
over , l.e., solve a problem of the form

rrzlin F J()
where J{) approximates a cost vectorJ on the
subspace spanned by the basis functions.

One example is

X
FJC) = J3@) JO)W)IZ
121
where | is a subset of states, andJ (i), | 2 |; are
the costs of the policy at these states calculated

directly by simulation.
Another example is

2

FJ() = J0) TJ()

where J{) is the solution of a projected equation.

BASIS FUNCTION ADAPTATION Il

Some optimization algorithm may be used to
minimize F J() over .

A challenge here is that the algorithm should
use low-dimensional calculations.

One possibllity is to use a form ofrandom search
(the cross-entropy method); see the paper by Men-
ache, Mannor, and Shimkin (Annals of Oper. Res.,
Vol. 134, 2005)

Another possibility is to use agradient method.
For this it Is necessary to estimate the partial
derivatives of J{) with respect to the components
of

It turns out that by di erentiating the pro-
jected equation, these partial derivatives can be
calculated using low-dimensional operations. See
the references in the text.

APPROXIMATION IN POLICY SPACE |

Consider an average cost problem, where the
problem data are parametrized by a vectorr, i.e.,
a cost vector g(r), transition probability matrix
P(r). Let (r) be the (scalar) average cost per
stage, satisfying Bellman's equation

(r)e+ h(r) = g(r) + P(r)h(r)

where h(r) is the di erential cost vector.
Consider minimizing (r) over r. Other than

random search we can try to solve the problem
by a policy gradient method:

Nk+1 = Ik kI (rg)

Approximate calculation of r (ry): If , g,
P are the changesin; g; P due to asmall change
r from a givenr, we have

= Y g+ Ph);

where Is the steady-state probability distribu-
tion/vector corresponding to P (r), and all the quan-
tities above are evaluated atr.

APPROXIMATION IN POLICY SPACE Il

Proof of the gradient formula: We have, by \dif-
ferentiating" Bellman's equation,

(r)et h(r)=o9o(r)+ P()h(r)+P(r) h(r)
By left-multiplying with ©,
> e+ % h(r)= % g+ P()h(r) + P(r) h(r)

Since 0 (r) e= (r) and 9= OP(r), this
equation simpli es to

= A g+ Ph)

Since we don't know , we cannot implement a
gradient-like method for minimizing (r). An al-
ternative is to use \sampled gradients", i.e., gener-
ate a simulation trajectory (ip;i1;:::), and change
r once in a while, in the direction of a simulation-
based estimate of { g+ Ph).

Important Fact: can be viewed as an ex-
pected value!

Much research on this subject, see the text.

6.231 DYNAMIC PROGRAMMING

OVERVIEW-EPILOGUE

Finite horizon problems
Deterministic vs Stochastic
Perfect vs Imperfect State Info

In nite horizon problems
Stochastic shortest path problems
Discounted problems
Average cost problems

FINITE HORIZON PROBLEMS - ANALYSIS

Perfect state info

A general formulation - Basic problem, DP
algorithm

A few nice problems admit analytical solu-
tion
Imperfect state info

Reduction to perfect state info - Su cient
statistics

Very few nice problems admit analytical so-
lution

Finite-state problems admit reformulation as
perfect state info problems whose states are
prob. distributions (the belief vectors)

FINITE HORIZON PROBS - EXACT COMP. SOL.

Deterministic nite-state problems

Equivalent to shortest path

A wealth of fast algorithms

Hard combinatorial problems are a special

case (but # of states grows exponentially)
Stochastic perfect state info problems

The DP algorithm is the only choice

Curse of dimensionality is big bottleneck

Imperfect state info problems
Forget it!

Only small examples admit an exact compu-
tational solution

FINITE HORIZON PROBS - APPROX. SOL.

Many techniques (and combinations thereof) to
choose from

Simpli cation approaches
Certainty equivalence
Problem simpli cation
Rolling horizon
Aggregation - Coarse grid discretization

Limited lookahead combined with:
Rollout
MPC (an important special case)
Feature-based cost function approximation
Approximation in policy space
Gradient methods
Random search

INFINITE HORIZON PROBLEMS - ANALYSIS

A more extensive theory

Bellman's equation

Optimality conditions

Contraction mappings

A few nice problems admit analytical solution

ldiosynchracies of problems with no underlying
contraction

ldiosynchracies of average cost problems

Elegant analysis

INF. HORIZON PROBS - EXACT COMP. SOL.

Value iteration
Variations (Gauss-Seidel, asynchronous, etc)

Policy iteration

Variations (asynchronous, based on value it-
eration, optimistic, etc)

Linear programming
Elegant algorithmic analysis

Curse of dimensionality is major bottleneck

INFINITE HORIZON PROBS - ADP

Approximation in value space (over a subspace
of basis functions)
Approximate policy evaluation
Direct methods (tted VI)

Indirect methods (projected equation meth-
ods, complex implementation issues)

Aggregation methods (simpler implementa-
tion/many basis functions tradeo)
Q-Learning (model-free, simulation-based)
Exact Q-factor computation
Approximate Q-factor computation (tted VI)
Aggregation-based Q-learning
Projected equation methods for opt. stop-
ping
Approximate LP
Rollout
Approximation in policy space
Gradient methods
Random search

