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6.231: DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

� Problem Formulation

� Examples

� The Basic Problem

� Signi�cance of Feedback



DP AS AN OPTIMIZATION METHODOLOGY

� Generic optimization problem:

min
u2 U

g(u)

whereu is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

� Categories of problems:

� Discrete (U is �nite) or continuous

� Linear (g is linear and U is polyhedral) or
nonlinear

� Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) = Ew
�

G(u; w)
	

where w is a random parameter.

� DP can deal with complex stochastic problems
where information about w becomes available in
stages, and the decisions are also made in stages
and make use of this information.



BASIC STRUCTURE OF STOCHASTIC DP

� Discrete-time system

xk+1 = f k (xk ; uk ; wk ); k = 0 ; 1; : : : ; N � 1

� k: Discrete time

� xk : State; summarizes past information that
is relevant for future optimization

� uk : Control; decision to be selected at time
k from a given set

� wk : Random parameter (also called distur-
bance or noise depending on the context)

� N : Horizon or number of times control is
applied

� Cost function that is additive over time

E

(

gN (xN ) +
N � 1X

k=0

gk (xk ; uk ; wk )

)

� Alternative system description: P(xk+1 j xk ; uk )

xk+1 = wk with P(wk j xk ; uk ) = P(xk+1 j xk ; uk )



INVENTORY CONTROL EXAMPLE

uk

Stock ordered at
Period k

Stock at Period k

xk
Stock at Period k + 1

Inventory System

Cost of Period k

r(xk) + cuk

xk + 1 = xk + uk - wk

Demand at Period kwk

� Discrete-time system

xk+1 = f k (xk ; uk ; wk ) = xk + uk � wk

� Cost function that is additive over time

E

(

gN (xN ) +
N � 1X

k=0

gk (xk ; uk ; wk )

)

= E

(
N � 1X

k=0

�
cuk + r (xk + uk � wk )

�
)

� Optimization over policies: Rules/functions uk =
� k (xk ) that map states to controls



ADDITIONAL ASSUMPTIONS

� The set of values that the control uk can take
depend at most onxk and not on prior x or u

� Probability distribution of wk does not depend
on past valueswk � 1; : : : ; w0, but may depend on
xk and uk

� Otherwise past values ofw or x would be
useful for future optimization

� Sequence of events envisioned in periodk:

� xk occurs according to

xk = f k � 1
�
xk � 1; uk � 1; wk � 1

�

� uk is selected with knowledge ofxk , i.e.,

uk 2 Uk (xk )

� wk is random and generated according to a
distribution

Pwk (xk ; uk )



DETERMINISTIC FINITE-STATE PROBLEMS

� Scheduling example: Find optimal sequence of
operations A, B, C, D

� A must precede B, and C must precede D

� Given startup cost SA and SC , and setup tran-
sition cost Cmn from operation m to operation n

A

SA

C

SC

AB

CAB

ACCAC

CDA

CAD

ABC

CA

CCD CD

ACD

ACB

CAB

CAD

CBC

CCB

CCD

CAB

CCA

CDA

CCD

CBD

CDB

CBD

CDB

CAB

Initial
State



STOCHASTIC FINITE-STATE PROBLEMS

� Example: Find two-game chess match strategy

� Timid play draws with prob. pd > 0 and loses
with prob. 1 � pd. Bold play wins with prob. pw <
1=2 and loses with prob. 1� pw

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play

0 - 0

0.5-0.5

0 - 1

pd

1 - pd

1st Game / Bold Play

0 - 0

1 -  0

0 - 1

1 - pw

pw

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

pd

pd

pd

1 - pd

1 - pd

1 - pd

1 - pw

pw

1 - pw

pw

1 - pw

pw



BASIC PROBLEM

� Systemxk+1 = f k (xk ; uk ; wk ), k = 0 ; : : : ; N � 1

� Control contraints uk 2 Uk (xk )

� Probability distribution Pk (� j xk ; uk ) of wk

� Policies � = f � 0; : : : ; � N � 1g; where � k maps
states xk into controls uk = � k (xk ) and is such
that � k (xk ) 2 Uk (xk ) for all xk

� Expected costof � starting at x0 is

J � (x0) = E

(

gN (xN ) +
N � 1X

k=0

gk (xk ; � k (xk ); wk )

)

� Optimal cost function

J � (x0) = min
�

J � (x0)

� Optimal policy � � satis�es

J � � (x0) = J � (x0)

When produced by DP, � � is independent ofx0.



SIGNIFICANCE OF FEEDBACK

� Open-loop versus closed-loop policies
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� In deterministic problems open loop is as good
as closed loop

� Value of information; chess match example

� Example of open-loop policy: Play always bold

� Consider the closed-loop policy: Play timid if
and only if you are ahead

Timid Play

1 - pd

pd

Bold Play

0 - 0

1 -  0

0 - 1

1 - pw

pw

1.5-0.5

1 - 1

1 -  1

0 - 2

1 - pw

pw
Bold Play



VARIANTS OF DP PROBLEMS

� Continuous-time problems

� Imperfect state information problems

� In�nite horizon problems

� Suboptimal control



LECTURE BREAKDOWN

� Finite Horizon Problems (Vol. 1, Ch. 1-6)

� Ch. 1: The DP algorithm (2 lectures)

� Ch. 2: Deterministic �nite-state problems (1
lecture)

� Ch. 4: Stochastic DP problems (2 lectures)

� Ch. 5: Imperfect state information problems
(2 lectures)

� Ch. 6: Suboptimal control (2 lectures)

� In�nite Horizon Problems - Simple (Vol. 1, Ch.
7, 3 lectures)

********************************************

� In�nite Horizon Problems - Advanced (Vol. 2)

� Chs. 1, 2: Discounted problems - Computa-
tional methods (3 lectures)

� Ch. 3: Stochastic shortest path problems (2
lectures)

� Chs. 6, 7: Approximate DP (6 lectures)



COURSE ADMINISTRATION

� Homework ... once a week or two weeks (30%
of grade)

� In class midterm, near end of October ... will
cover �nite horizon and simple in�nite horizon ma-
terial (30% of grade)

� Project (40% of grade)

� Collaboration in homework allowed but indi-
vidual solutions are expected

� Prerequisites: Introductory probability, good
gasp of advanced calculus (including convergence
concepts)

� Textbook: Vol. I of text is required. Vol. II
is strongly recommended, but you may be able to
get by without it using OCW material (including
videos)



A NOTE ON THESE SLIDES

� These slides are a teaching aid, not a text

� Don't expect a rigorous mathematical develop-
ment or precise mathematical statements

� Figures are meant to convey and enhance ideas,
not to express them precisely

� Omitted proofs and a much fuller discussion
can be found in the textbook, which these slides
follow



6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

� The basic problem

� Principle of optimality

� DP example: Deterministic problem

� DP example: Stochastic problem

� The general DP algorithm

� State augmentation



BASIC PROBLEM

� Systemxk+1 = f k (xk ; uk ; wk ), k = 0 ; : : : ; N � 1

� Control constraints uk 2 Uk (xk )

� Probability distribution Pk (� j xk ; uk ) of wk

� Policies � = f � 0; : : : ; � N � 1g; where � k maps
states xk into controls uk = � k (xk ) and is such
that � k (xk ) 2 Uk (xk ) for all xk

� Expected costof � starting at x0 is

J � (x0) = E

(

gN (xN ) +
N � 1X

k=0

gk (xk ; � k (xk ); wk )

)

� Optimal cost function

J � (x0) = min
�

J � (x0)

� Optimal policy � � is one that satis�es

J � � (x0) = J � (x0)



PRINCIPLE OF OPTIMALITY

� Let � � = f � �
0; � �

1; : : : ; � �
N � 1g be optimal policy

� Consider the \tail subproblem" whereby we are
at x i at time i and wish to minimize the \cost-to-
go" from time i to time N

E

(

gN (xN ) +
N � 1X

k= i

gk
�
xk ; � k (xk ); wk

�
)

and the \tail policy" f � �
i ; � �

i +1 ; : : : ; � �
N � 1g

0 Ni

xi Tail Subproblem

� Principle of optimality : The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

� DP �rst solves ALL tail subroblems of �nal
stage

� At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length



DETERMINISTIC SCHEDULING EXAMPLE

� Find optimal sequence of operations A, B, C,
D (A must precede B and C must precede D)

A

C

AB

AC

CDA

ABC

CA

CD

ACD

ACB

CAB

CAD

Initial
State1 0

7 6

2

8
6

6

2

2

9

3

3
3

3

3

3

5

1

5

4
4

3

1

5

4

� Start from the last tail subproblem and go back-
wards

� At each state-time pair, we record the optimal
cost-to-go and the optimal decision



STOCHASTIC INVENTORY EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk  + 1 = xk  + uk -  wk

uk
Cost of Period k

cuk + r (xk  + uk - wk)

� Tail Subproblems of Length 1:

JN � 1(xN � 1) = min
uN � 1 � 0

E
wN � 1

�
cuN � 1

+ r (xN � 1 + uN � 1 � wN � 1)
	

� Tail Subproblems of Length N � k:

Jk (xk ) = min
u k � 0

E
wk

�
cuk + r (xk + uk � wk )

+ Jk+1 (xk + uk � wk )
	

� J0(x0) is opt. cost of initial state x0



DP ALGORITHM

� Start with

JN (xN ) = gN (xN );

and go backwards using

Jk (xk ) = min
u k 2 Uk (x k )

E
wk

�
gk (xk ; uk ; wk )

+ Jk+1
�
f k (xk ; uk ; wk )

�	
; k = 0 ; 1; : : : ; N � 1:

� Then J0(x0), generated at the last step, is equal
to the optimal cost J � (x0). Also, the policy

� � = f � �
0; : : : ; � �

N � 1g

where� �
k (xk ) minimizes in the right side above for

eachxk and k, is optimal

� Justi�cation: Proof by induction that Jk (xk ) is
equal to J �

k (xk ), de�ned as the optimal cost of the
tail subproblem that starts at time k at state xk

� Note:

� ALL the tail subproblems are solved (in ad-
dition to the original problem)

� Intensive computational requirements



PROOF OF THE INDUCTION STEP

� Let � k =
�

� k ; � k+1 ; : : : ; � N � 1
	

denote a tail
policy from time k onward

� Assume that Jk+1 (xk+1 ) = J �
k+1 (xk+1 ). Then

J �
k (xk ) = min

( � k ;� k +1 )
E

w k ;:::;w N � 1

(

gk

�
xk ; � k (xk ); wk

�

+ gN (xN ) +

N � 1X

i = k +1

gi

�
x i ; � i (x i ); w i

�
)

= min
� k

E
w k

(

gk

�
xk ; � k (xk ); wk

�

+ min
� k +1

"

E
w k +1 ;:::;w N � 1

(

gN (xN ) +

N � 1X

i = k +1

gi

�
x i ; � i (x i ); w i

�
)# )

= min
� k

E
w k

�
gk

�
xk ; � k (xk ); wk

�
+ J �

k +1

�
f k

�
xk ; � k (xk ); wk

��	

= min
� k

E
w k

�
gk

�
xk ; � k (xk ); wk

�
+ Jk +1

�
f k

�
xk ; � k (xk ); wk

��	

= min
u k 2 Uk ( x k )

E
w k

�
gk (xk ; uk ; wk ) + Jk +1

�
f k (xk ; uk ; wk )

�	

= Jk (xk )



LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Temperature
         u0

Temperature
          u1

Final 
Temperature x2

Initial 
Temperature x0

Oven 1 Oven 2x1

� System

xk+1 = (1 � a)xk + auk ; k = 0 ; 1;

where a is given scalar from the interval (0; 1)

� Cost
r (x2 � T)2 + u2

0 + u2
1

where r is given positive scalar

� DP Algorithm:

J2(x2) = r (x2 � T)2

J1(x1) = min
u1

h
u2

1 + r
�
(1 � a)x1 + au1 � T

� 2
i

J0(x0) = min
u0

�
u2

0 + J1
�
(1 � a)x0 + au0

��



STATE AUGMENTATION

� When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state

� DP algorithm still applies, but the problem gets
BIGGER

� Example: Time lags

xk+1 = f k (xk ; xk � 1; uk ; wk )

� Introduce additional state variable yk = xk � 1.
New system takes the form

�
xk+1

yk+1

�
=

�
f k (xk ; yk ; uk ; wk )

xk

�

View ~xk = ( xk ; yk ) as the new state.

� DP algorithm for the reformulated problem:

Jk (xk ; xk � 1) = min
u k 2 Uk (x k )

E
wk

n
gk (xk ; uk ; wk )

+ Jk+1
�
f k (xk ; xk � 1; uk ; wk ); xk

� o



6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

� Deterministic �nite-state DP problems

� Backward shortest path algorithm

� Forward shortest path algorithm

� Shortest path examples

� Alternative shortest path algorithms



DETERMINISTIC FINITE-STATE PROBLEM

. . .

. . .

. . .

Stage 0 Stage 1 Stage 2 Stage N  - 1 Stage N

Initial State
               s

t
Artificial Terminal
Node

Terminal Arcs
with Cost Equal
to Terminal Cost

. . .

� States < == > Nodes

� Controls < == > Arcs

� Control sequences (open-loop)< == > paths
from initial state to terminal states

� ak
ij : Cost of transition from state i 2 Sk to state

j 2 Sk+1 at time k (view it as \length" of the arc )

� aN
it : Terminal cost of state i 2 SN

� Cost of control sequence< == > Cost of the cor-
responding path (view it as \length" of the path )



BACKWARD AND FORWARD DP ALGORITHMS

� DP algorithm:

JN (i ) = aN
it ; i 2 SN ;

Jk (i ) = min
j 2 Sk +1

�
ak

ij + Jk+1 (j )
�
; i 2 Sk ; k = 0 ; : : : ; N � 1

The optimal cost is J0(s) and is equal to the
length of the shortest path from s to t

� Observation: An optimal path s ! t is also an
optimal path t ! s in a \reverse" shortest path
problem where the direction of each arc is reversed
and its length is left unchanged

� Forward DP algorithm (= backward DP algo-
rithm for the reverse problem):

~JN (j ) = a0
sj ; j 2 S1;

~Jk (j ) = min
i 2 SN � k

�
aN � k

ij + ~Jk+1 (i )
�
; j 2 SN � k+1

The optimal cost is ~J0(t) = min i 2 SN

�
aN

it + ~J1(i )
�

� View ~Jk (j ) as optimal cost-to-arrive to state j
from initial state s



A NOTE ON FORWARD DP ALGORITHMS

� There is no forward DP algorithm for stochastic
problems

� Mathematically, for stochastic problems, we
cannot restrict ourselves to open-loop sequences,
so the shortest path viewpoint fails

� Conceptually, in the presence of uncertainty,
the concept of \optimal-cost-to-arrive" at a state
xk does not make sense. For example, it may be
impossible to guarantee (with prob. 1) that any
given state can be reached

� By contrast, even in stochastic problems, the
concept of \optimal cost-to-go" from any state xk

makes clear sense



GENERIC SHORTEST PATH PROBLEMS

� f 1; 2; : : : ; N; t g: nodes of a graph (t: the desti-
nation )

� aij : cost of moving from nodei to node j

� Find a shortest (minimum cost) path from each
node i to node t

� Assumption: All cycles have nonnegative length.
Then an optimal path need not take more thanN
moves

� We formulate the problem as one where we re-
quire exactly N moves butallow degenerate moves
from a node i to itself with cost aii = 0

Jk (i ) = opt. cost of getting from i to t in N � k moves

J0(i ): Cost of the optimal path from i to t.

� DP algorithm:

Jk (i ) = min
j =1 ;:::;N

�
aij + Jk+1 (j )

�
; k = 0 ; 1; : : : ; N � 2;

with JN � 1(i ) = ait , i = 1 ; 2; : : : ; N



EXAMPLE

2
7 5

2
5 5

6 1

3

0.5
3

1

2

4

0 1 2 3 4

1

2

3

4

5

State i

Stage k

3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

Destination 
     5

(a) (b)

JN � 1(i ) = ait ; i = 1 ; 2; : : : ; N;

Jk (i ) = min
j =1 ;:::;N

�
aij + Jk+1 (j )

�
; k = 0 ; 1; : : : ; N � 2:



ESTIMATION / HIDDEN MARKOV MODELS

� Markov chain with transition probabilities pij

� State transitions are hidden from view

� For each transition, we get an (independent)
observation

� r (z; i; j ): Prob. the observation takes valuez
when the state transition is from i to j

� Trajectory estimation problem: Given the ob-
servation sequenceZN = f z1; z2; : : : ; zN g, what is
the \most likely" state transition sequence X̂ N =
f x̂0; x̂1; : : : ; x̂N g [one that maximizesp(X N j ZN )
over all X N = f x0; x1; : : : ; xN g].

. . .

. . .

. . .

s x0 x1 x2 xN - 1 xN t



VITERBI ALGORITHM

� We have

p(X N j ZN ) =
p(X N ; ZN )

p(ZN )

wherep(X N ; ZN ) and p(ZN ) are the unconditional
probabilities of occurrence of (X N ; ZN ) and ZN

� Maximizing p(X N j ZN ) is equivalent with max-
imizing ln( p(X N ; ZN ))

� We have (using the \multiplication rule" for
cond. probs)

p(X N ; ZN ) = � x 0

NY

k=1

px k � 1 x k r (zk ; xk � 1; xk )

so the problem is equivalent to

minimize � ln( � x 0 ) �
NX

k=1

ln
�
px k � 1 x k r (zk ; xk � 1; xk )

�

over all possible sequencesf x0; x1; : : : ; xN g:

� This is a shortest path problem.



GENERAL SHORTEST PATH ALGORITHMS

� There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
�nite-state problems

� They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

� Essential for problems withHUGE state spaces.

� Combinatorial optimization is prime example
(e.g., scheduling/traveling salesman)

1
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ABDC ACBD ACDB ADBC ADCB
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LABEL CORRECTING METHODS

� Given: Origin s, destination t, lengths aij � 0.

� Idea is to progressively discover shorter paths
from the origin s to every other nodei

� Notation:

� di (label of i ): Length of the shortest path
found (initially ds = 0, di = 1 for i 6= s)

� UPPER: The label dt of the destination

� OPEN list: Contains nodes that are cur-
rently active in the sense that they are candi-
dates for further examination (initially OPEN= f sg)

Label Correcting Algorithm

Step 1 (Node Removal): Remove a nodei from
OPEN and for each child j of i , do step 2

Step 2 (Node Insertion Test): If di + aij <
minf dj ; UPPERg, set dj = di + aij and set i to
be the parent of j . In addition, if j 6= t, place j in
OPEN if it is not already in OPEN, while if j = t,
set UPPER to the new value di + ait of dt

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1



VISUALIZATION/EXPLANATION

� Given: Origin s, destination t, lengths aij � 0

� di (label of i ): Length of the shortest path found
thus far (initially ds = 0, di = 1 for i 6= s). The
label di is implicitly associated with an s ! i path

� UPPER: The label dt of the destination

� OPEN list: Contains \active" nodes (initially
OPEN= f sg)

i j

REMOVE

Is di + aij < dj  ?
(Is the path s --> i --> j 
better than the 
current path s --> j ?)

Is di + aij < UPPER  ?

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?)

YES

YES

INSERT

O P E N

Set  dj = di + aij



EXAMPLE

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15

1

2

3

4

5

6

7

8

9

1 0

Iter. No. Node Exiting OPEN OPEN after Iteration UPPER

0 - 1 1
1 1 2, 7,10 1
2 2 3, 5, 7, 10 1
3 3 4, 5, 7, 10 1
4 4 5, 7, 10 43

5 5 6, 7, 10 43

6 6 7, 10 13

7 7 8, 10 13

8 8 9, 10 13

9 9 10 13

10 10 Empty 13

� Note that some nodes never entered OPEN



VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina-
tion

Proof: (1) Each time a nodej enters OPEN, its
label is decreased and becomes equal to the length
of some path froms to j

(2) The number of possible distinct path lengths
is �nite, so the number of times a node can enter
OPEN is �nite, and the algorithm terminates

(3) Let ( s; j 1; j 2; : : : ; j k ; t) be a shortest path and
let d� be the shortest distance. If UPPER > d �

at termination, UPPER will also be larger than
the length of all the paths (s; j 1; : : : ; j m ), m =
1; : : : ; k, throughout the algorithm. Hence, node
j k will never enter the OPEN list with dj k equal
to the shortest distance from s to j k . Similarly
node j k � 1 will never enter the OPEN list with
dj k � 1 equal to the shortest distance froms to j k � 1.
Continue to j 1 to get a contradiction



6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

� Examples of stochastic DP problems

� Linear-quadratic problems

� Inventory control



LINEAR-QUADRATIC PROBLEMS

� System: xk+1 = Ak xk + Bk uk + wk

� Quadratic cost

E
w k

k =0 ;1;:::;N � 1

(

x0
N QN xN +

N � 1X

k=0

(x0
k Qk xk + u0

k Rk uk )

)

whereQk � 0 andRk > 0 [in the positive (semi)de�nite
sense].

� wk are independent and zero mean

� DP algorithm:
JN (xN ) = x0

N QN xN ;

Jk (xk ) = min
uk

E
�

x0
k Qk xk + u0

k Rk uk

+ Jk+1 (Ak xk + Bk uk + wk )
	

� Key facts:

� Jk (xk ) is quadratic

� Optimal policy f � �
0; : : : ; � �

N � 1g is linear:

� �
k (xk ) = L k xk

� Similar treatment of a number of variants



DERIVATION

� By induction verify that

� �
k (xk ) = L k xk ; Jk (xk ) = x0

k K k xk +constant ;

where L k are matrices given by

L k = � (B 0
k K k+1 Bk + Rk ) � 1B 0

k K k+1 Ak ;

and whereK k are symmetric positive semide�nite
matrices given by

K N = QN ;

K k = A0
k

�
K k+1 � K k+1 Bk (B 0

k K k+1 Bk

+ Rk ) � 1B 0
k K k+1

�
Ak + Qk

� This is called the discrete-time Riccati equation

� Just like DP, it starts at the terminal time N
and proceeds backwards.

� Certainty equivalence holds (optimal policy is
the same as whenwk is replaced by its expected
value E f wk g = 0).



ASYMPTOTIC BEHAVIOR OF RICCATI EQ.

� Assume stationary system and cost per stage,
and technical assumptions:controlability of ( A; B )
and observability of (A; C ) where Q = C0C

� The Riccati equation converges limk !�1 K k =
K , where K is pos. de�nite, and is the unique
(within the class of pos. semide�nite matrices) so-
lution of the algebraic Riccati equation

K = A0
�
K � KB (B 0KB + R) � 1B 0K

�
A + Q

� The optimal steady-state controller � � (x) = Lx

L = � (B 0KB + R) � 1B 0KA;

is stable in the sense that the matrix (A + BL ) of
the closed-loop system

xk+1 = ( A + BL )xk + wk

satis�es limk !1 (A + BL )k = 0.



GRAPHICAL PROOF FOR SCALAR SYSTEMS

A
2
R

B
2 + Q

P 0

Q

F(P)

450

PPk Pk + 1
P*

-
R

B
2

� Riccati equation (with Pk = K N � k ):

Pk+1 = A2

�
Pk �

B 2P2
k

B 2Pk + R

�
+ Q;

or Pk+1 = F (Pk ); where

F (P) = A2

�
P �

B 2P2

B 2P + R

�
+ Q =

A2RP
B 2P + R

+ Q

� Note the two steady-state solutions, satisfying
P = F (P), of which only one is positive.



RANDOM SYSTEM MATRICES

� Suppose that f A0; B0g; : : : ; f AN � 1; BN � 1g are
not known but rather are independent random
matrices that are also independent of thewk

� DP algorithm is

JN (xN ) = x0
N QN xN ;

Jk (xk ) = min
u k

E
w k ;A k ;B k

�
x0

k Qk xk

+ u0
k Rk uk + Jk +1 (A k xk + B k uk + wk )

	

� Optimal policy � �
k (xk ) = L k xk ; where

L k = �
�
Rk + Ef B 0

k K k+1 Bk g
� � 1

Ef B 0
k K k+1 Ak g;

and where the matricesK k are given by

K N = QN ;

K k = Ef A0
k K k+1 Ak g � E f A0

k K k+1 Bk g
�
Rk + Ef B 0

k K k+1 Bk g
� � 1

Ef B 0
k K k+1 Ak g + Qk



PROPERTIES

� Certainty equivalence may not hold

� Riccati equation may not converge to a steady-
state

Q

450

0 P

F(P)

-
R

E{B
2}

� We have Pk+1 = ~F (Pk ); where

~F (P) =
E f A2gRP

Ef B 2gP + R
+ Q +

TP2

Ef B 2gP + R
;

T = Ef A2gEf B 2g �
�
E f Ag

� 2�
E f B g

� 2



INVENTORY CONTROL

� xk : stock, uk : stock purchased,wk : demand

xk+1 = xk + uk � wk ; k = 0 ; 1; : : : ; N � 1

� Minimize

E

(
N � 1X

k=0

�
cuk + H (xk + uk )

�
)

where

H (x + u) = E f r (x + u � w)g

is the expected shortage/holding cost, withr de-
�ned e.g., for somep > 0 and h > 0, as

r (x) = pmax(0; � x) + h max(0; x)

� DP algorithm:

JN (xN ) = 0 ;

Jk (xk ) = min
u k � 0

�
cuk + H (xk + uk )+ E

�
Jk +1 (xk + uk � wk )

	�



OPTIMAL POLICY

� DP algorithm can be written as JN (xN ) = 0 ;

Jk (xk ) = min
u k � 0

�
cuk + H (xk + uk ) + E

�
Jk +1 (xk + uk � wk )

	�

= min
u k � 0

Gk (xk + uk ) � cxk = min
y � x k

Gk (y) � cxk ;

where

Gk (y) = cy + H (y) + E
�

Jk +1 (y � w)
	

� If Gk is convex and lim j x j!1 Gk (x) ! 1 , we
have

� �
k (xk ) =

n
Sk � xk if xk < S k ,
0 if xk � Sk ,

where Sk minimizes Gk (y).

� This is shown, assuming thatH is convex and
c < p , by showing that Jk is convex for all k, and

lim
j x j!1

Jk (x) ! 1



JUSTIFICATION

� Graphical inductive proof that Jk is convex.

- cy

- cy

y

H(y)

cy + H(y)

SN - 1

cSN - 1

JN - 1(xN - 1)

xN - 1SN - 1
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LECTURE OUTLINE

� Stopping problems

� Scheduling problems

� Minimax Control



PURE STOPPING PROBLEMS

� Two possible controls:
� Stop (incur a one-time stopping cost, and

move to cost-free and absorbing stop state)
� Continue [using xk +1 = f k (xk ; wk ) and incur-

ring the cost-per-stage]

� Each policy consists of apartition of the set of
states xk into two regions:

� Stop region, where we stop
� Continue region, where we continue

STOP
REGION

CONTINUE 
REGION

Stop State



EXAMPLE: ASSET SELLING

� A person has an asset, and atk = 0 ; 1; : : : ; N � 1
receives a random o�erwk

� May accept wk and invest the money at �xed
rate of interest r , or reject wk and wait for wk +1 .
Must accept the last o�er wN � 1

� DP algorithm ( xk : current o�er, T : stop state):

JN (xN ) =
n

xN if xN 6= T ,
0 if xN = T ,

Jk (xk ) =
n

max
�
(1 + r )N � k xk ; E

�
Jk +1 (wk )

	�
if xk 6= T ,

0 if xk = T .

� Optimal policy;

accept the o�er xk if xk > � k ;

reject the o�er xk if xk < � k ;

where

� k =
E

�
Jk +1 (wk )

	

(1 + r )N � k
:



FURTHER ANALYSIS

0 1 2 N - 1 N k

ACCEPT

REJECT

a1

aN - 1

a2

� Can show that � k � � k +1 for all k

� Proof: Let Vk (xk ) = Jk (xk )=(1 + r )N � k for xk 6=
T: Then the DP algorithm is

VN (xN ) = xN ; Vk (xk ) = max

�
xk ; (1 + r ) � 1 E

w

�
Vk +1 (w)

	
�

We have� k = Ew

�
Vk +1 (w)

	
=(1 + r ), so it is enough

to show that Vk (x) � Vk +1 (x) for all x and k. Start
with VN � 1(x) � VN (x) and use the monotonicity
property of DP. Q.E.D.

� We can also show that ifw is bounded, � k ! a
as k ! �1 . Suggests that for an in�nite horizon
the optimal policy is stationary.



GENERAL STOPPING PROBLEMS

� At time k, we may stop at cost t (xk ) or choose
a control uk 2 U(xk ) and continue

JN (xN ) = t(xN );

Jk (xk ) = min
�
t (xk ); min

u k 2 U ( x k )
E

�
g(xk ; uk ; wk )

+ Jk +1

�
f (xk ; uk ; wk )

�	�

� Optimal to stop at time k for x in the set

Tk =

�
x

�
�
� t (x) � min

u 2 U ( x )
E

�
g(x; u; w ) + Jk +1

�
f (x; u; w )

�	
�

� SinceJN � 1(x) � JN (x), we haveJk (x) � Jk +1 (x)
for all k, so

T0 � � � � � Tk � Tk +1 � � � � � TN � 1 :

� Interesting case is when all theTk are equal (to
TN � 1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

f (x; u; w ) 2 TN � 1 ; for all x 2 TN � 1 ; u 2 U(x); w:



SCHEDULING PROBLEMS

� We have a set of tasks to perform, the ordering
is subject to optimal choice.

� Costs depend on the order

� There may be stochastic uncertainty, and prece-
dence and resource availability constraints

� Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

� Some special problems admit a simple quasi-
analytical solution method

� Optimal policy has an \index form" , i.e.,
each task has an easily calculable \cost in-
dex", and it is optimal to select the task
that has the minimum value of index (multi-
armed bandit problems - to be discussed later)

� Some problems can be solved by an\inter-
change argument"(start with some schedule,
interchange two adjacent tasks, and see what
happens). They require existence of an op-
timal policy which is open-loop.



EXAMPLE: THE QUIZ PROBLEM

� Given a list of N questions. If question i is an-
swered correctly (given probability pi ), we receive
reward R i ; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

� Let i and j be the kth and (k + 1) st questions
in an optimally ordered list

L = ( i 0 ; : : : ; i k � 1 ; i; j; i k +2 ; : : : ; i N � 1)

E f reward of L g = E
�

reward of f i 0 ; : : : ; i k � 1g
	

+ pi 0 � � � pi k � 1 (pi R i + pi pj R j )

+ pi 0 � � � pi k � 1 pi pj E
�

reward of f i k +2 ; : : : ; i N � 1g
	

Consider the list with i and j interchanged

L 0 = ( i 0 ; : : : ; i k � 1 ; j; i; i k +2 ; : : : ; i N � 1)

SinceL is optimal, E f reward of L g � E f reward of L 0g;
so it follows that pi R i + pi pj R j � pj R j + pj pi R i or

pi R i =(1 � pi ) � pj R j =(1 � pj ):



MINIMAX CONTROL

� Consider basic problem with the di�erence that
the disturbance wk instead of being random, it is
just known to belong to a given setWk (xk ; uk ).

� Find policy � that minimizes the cost

J � (x0) = max
w k 2 W k ( x k ;� k ( x k ))

k =0 ;1;:::;N � 1

h
gN (xN )

+
N � 1X

k =0

gk

�
xk ; � k (xk ); wk

� i

� The DP algorithm takes the form

JN (xN ) = gN (xN );

Jk (xk ) = min
u k 2 U ( x k )

max
w k 2 W k ( x k ;u k )

�
gk (xk ; uk ; wk )

+ Jk +1

�
f k (xk ; uk ; wk )

��

(Section 1.6 in the text).



DERIVATION OF MINIMAX DP ALGORITHM

� Similar to the DP algorithm for stochastic prob-
lems. The optimal cost J � (x0) is

J � (x0 ) = min
� 0

� � � min
� N � 1

max
w 0 2 W [x 0 ;� 0 ( x 0 )]

� � � max
w N � 1 2 W [x N � 1 ;� N � 1 ( x N � 1 )]

"
N � 1X

k =0

gk

�
xk ; � k (xk ); wk

�
+ gN (xN )

#

= min
� 0

� � � min
� N � 2

"

min
� N � 1

max
w 0 2 W [x 0 ;� 0 ( x 0 )]

� � � max
w N � 2 2 W [x N � 2 ;� N � 2 ( x N � 2 )]

"
N � 2X

k =0

gk

�
xk ; � k (xk ); wk

�
+ max

w N � 1 2 W [x N � 1 ;� N � 1 ( x N � 1 )]

h
gN � 1

�
xN � 1 ; � N � 1(xN � 1 ); wN � 1

�
+ JN (xN )

i
##

� Interchange the min over� N � 1 and the max over
w0 ; : : : ; wN � 2, and similarly continue backwards,
with N � 1 in place of N , etc. After N steps we
obtain J � (x0) = J0(x0).

� Construct optimal policy by minimizing in the
RHS of the DP algorithm.



UNKNOWN-BUT-BOUNDED CONTROL

� For eachk, keep thexk of the controlled system

xk +1 = f k

�
xk ; � k (xk ); wk

�

inside a given setX k , the target set at time k.

� This is a minimax control problem, where the
cost at stagek is

gk (xk ) =
n

0 if xk 2 X k ,
1 if xk =2 X k .

� We must reach at time k the set

X k =
�

xk j Jk (xk ) = 0
	

in order to be able to maintain the state within
the subsequent target sets.

� Start with X N = X N , and for k = 0 ; 1; : : : ; N � 1,

X k =
�

xk 2 X k j there exists uk 2 Uk (xk ) such that

f k (xk ; uk ; wk ) 2 X k +1 ; for all wk 2 Wk (xk ; uk )
	



6.231 DYNAMIC PROGRAMMING
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LECTURE OUTLINE

� Problems with imperfect state info

� Reduction to the perfect state info case

� Linear quadratic problems

� Separation of estimation and control



BASIC PROBL. W/ IMPERFECT STATE INFO

� Same as basic problem of Chapter 1 with one
di�erence: the controller, instead of knowing xk ,
receives at each timek an observation of the form

z0 = h0(x0 ; v0); zk = hk (xk ; uk � 1 ; vk ); k � 1

� The observation zk belongs to some spaceZk .

� The random observation disturbancevk is char-
acterized by a probability distribution

Pvk (� j xk ; : : : ; x 0 ; uk � 1 ; : : : ; u 0 ; wk � 1 ; : : : ; w 0 ; vk � 1 ; : : : ; v0)

� The initial state x0 is also random and charac-
terized by a probability distribution Px 0 .

� The probability distribution Pw k (� j xk ; uk ) of wk

is given, and it may depend explicitly on xk and
uk but not on w0 ; : : : ; wk � 1 ; v0 ; : : : ; vk � 1.

� The control uk is constrained to a given subset
Uk (this subset does not depend onxk , which is
not assumed known).



INFORMATION VECTOR AND POLICIES

� Denote by I k the information vector , i.e., the
information available at time k:

I k = ( z0 ; z1 ; : : : ; zk ; u0 ; u1 ; : : : ; uk � 1); k � 1;

I 0 = z0

� We consider policies� = f � 0 ; � 1 ; : : : ; � N � 1g, where
each � k maps I k into a uk and

� k (I k ) 2 Uk ; for all I k ; k � 0

� We want to �nd a policy � that minimizes

J � = E
x 0 ;w k ;v k

k =0 ;:::;N � 1

(

gN (xN ) +
N � 1X

k =0

gk

�
xk ; � k (I k ); wk

�
)

subject to the equations

xk +1 = f k

�
xk ; � k (I k ); wk

�
; k � 0;

z0 = h0(x0 ; v0); zk = hk

�
xk ; � k � 1(I k � 1); vk

�
; k � 1



REFORMULATION AS PERFECT INFO PROBL.

� System: We have

I k +1 = ( I k ; zk +1 ; uk ); k = 0 ; 1; : : : ; N � 2; I 0 = z0

View this as a dynamic system with state I k , con-
trol uk , and random disturbancezk +1

� Disturbance: We have

P(zk +1 j I k ; uk ) = P(zk +1 j I k ; uk ; z0 ; z1 ; : : : ; zk );

sincez0 ; z1 ; : : : ; zk are part of the information vec-
tor I k . Thus the probability distribution of zk +1

depends explicitly only on the stateI k and control
uk and not on the prior \disturbances" zk ; : : : ; z0

� Cost Function: Write

E
�

gk (xk ; uk ; wk )
	

= E

�

E
x k ;w k

�
gk (xk ; uk ; wk ) j I k ; uk

	
�

so the cost per stage of the new system is

~gk (I k ; uk ) = E
x k ;w k

�
gk (xk ; uk ; wk ) j I k ; uk

	



DP ALGORITHM

� Writing the DP algorithm for the (reformulated)
perfect state info problem:

Jk (I k ) = min
u k 2 Uk

h
E

x k ; w k ; z k +1

�
gk (xk ; uk ; wk )

+ Jk +1 (I k ; zk +1 ; uk ) j I k ; uk

	 i

for k = 0 ; 1; : : : ; N � 2, and for k = N � 1,

JN � 1 (I N � 1 ) = min
u N � 1 2 UN � 1

"

E
x N � 1 ; w N � 1

�
gN � 1(xN � 1 ; uN � 1 ; wN � 1)

+ gN

�
f N � 1(xN � 1 ; uN � 1 ; wN � 1 )

�
j I N � 1 ; uN � 1

	
#

� The optimal cost J � is given by

J � = E
z0

�
J0(z0)

	



LINEAR-QUADRATIC PROBLEMS

� System: xk +1 = A k xk + B k uk + wk

� Quadratic cost

E
w k

k =0 ;1;:::;N � 1

(

x0
N QN xN +

N � 1X

k =0

(x0
k Qk xk + u0

k Rk uk )

)

where Qk � 0 and Rk > 0

� Observations

zk = Ck xk + vk ; k = 0 ; 1; : : : ; N � 1

� w0 ; : : : ; wN � 1, v0 ; : : : ; vN � 1 indep. zero mean

� Key fact to show:
� Optimal policy f � �

0 ; : : : ; � �
N � 1g is of the form:

� �
k (I k ) = L k E f xk j I k g

L k : same as for the perfect state info case
� Estimation problem and control problem can

be solved separately



DP ALGORITHM I

� Last stage N � 1 (supressing indexN � 1):

JN � 1(I N � 1 ) = min
u N � 1

h
E x N � 1 ;w N � 1

�
x0

N � 1Qx N � 1

+ u0
N � 1Ru N � 1 + ( Ax N � 1 + Bu N � 1 + wN � 1)0

� Q(Ax N � 1 + Bu N � 1 + wN � 1 ) j I N � 1 ; uN � 1

	 i

� Since E f wN � 1 j I N � 1 ; uN � 1g = E f wN � 1g = 0 ,
the minimization involves

min
u N � 1

�
u0

N � 1(B 0QB + R)uN � 1

+ 2 E f xN � 1 j I N � 1g0A0QBu N � 1

�

The minimization yields the optimal � �
N � 1:

u�
N � 1 = � �

N � 1(I N � 1) = L N � 1E f xN � 1 j I N � 1g

where

L N � 1 = � (B 0QB + R) � 1B 0QA



DP ALGORITHM II

� Substituting in the DP algorithm

JN � 1(I N � 1) = E
x N � 1

�
x0

N � 1K N � 1xN � 1 j I N � 1

	

+ E
x N � 1

��
xN � 1 � E f xN � 1 j I N � 1g

� 0

� PN � 1

�
xN � 1 � E f xN � 1 j I N � 1g

�
j I N � 1

	

+ E
w N � 1

f w0
N � 1QN wN � 1g;

where the matricesK N � 1 and PN � 1 are given by

PN � 1 = A0
N � 1QN BN � 1(RN � 1 + B 0

N � 1QN BN � 1) � 1

� B 0
N � 1QN AN � 1 ;

K N � 1 = A0
N � 1QN AN � 1 � PN � 1 + QN � 1

� Note the structure of JN � 1: in addition to the
quadratic and constant terms, it involves a (� 0)
quadratic in the estimation error

xN � 1 � E f xN � 1 j I N � 1g



DP ALGORITHM III

� DP equation for period N � 2:

JN � 2(I N � 2 ) = min
u N � 2

h
E

x N � 2 ;w N � 2 ;z N � 1

f x0
N � 2Qx N � 2

+ u0
N � 2Ru N � 2 + JN � 1(I N � 1 ) j I N � 2 ; uN � 2g

i

= E
�

x0
N � 2Qx N � 2 j I N � 2

	

+ min
u N � 2

h
u0

N � 2Ru N � 2

+ E
�

x0
N � 1K N � 1xN � 1 j I N � 2 ; uN � 2

	 i

+ E
��

xN � 1 � E f xN � 1 j I N � 1g
� 0

� PN � 1

�
xN � 1 � E f xN � 1 j I N � 1g

�
j I N � 2 ; uN � 2

	

+ Ew N � 1 f w0
N � 1QN wN � 1g

� Key point: We have excluded the estimation
error term from the minimization over uN � 2

� This term turns out to be independent of uN � 2



QUALITY OF ESTIMATION LEMMA

� Current estimation error is una�ected by past
controls: For every k, there is a function M k s.t.

xk � E f xk j I k g = M k (x0 ; w0 ; : : : ; wk � 1 ; v0 ; : : : ; vk );

independently of the policy being used

� Consequence: Using the lemma,

xN � 1 � E f xN � 1 j I N � 1g = � N � 1 ;
where

� N � 1: function of x0 ; w0 ; : : : ; wN � 2 ; v0 ; : : : ; vN � 1

� Since � N � 1 is independent of uN � 2, the condi-
tional expectation of � 0

N � 1PN � 1 � N � 1 satis�es

E f � 0
N � 1PN � 1 � N � 1 j I N � 2 ; uN � 2g

= E f � 0
N � 1PN � 1 � N � 1 j I N � 2g

and is independent ofuN � 2.

� So minimization in the DP algorithm yields

u�
N � 2 = � �

N � 2(I N � 2) = L N � 2 E f xN � 2 j I N � 2g



FINAL RESULT

� Continuing similarly (using also the quality of
estimation lemma)

� �
k (I k ) = L k E f xk j I k g;

where L k is the same as for perfect state info:

L k = � (Rk + B 0
k K k +1 B k ) � 1B 0

k K k +1 A k ;

with K k generated using the Riccati equation:

K N = QN ; K k = A0
k K k +1 A k � Pk + Qk ;

Pk = A0
k K k +1 B k (Rk + B 0

k K k +1 B k ) � 1B 0
k K k +1 A k

xk + 1 = Akxk + Bkuk + wk

Lk

uk

wk

xk
zk = Ckxk + vk

Delay

Estimator
E{xk | Ik}

uk  - 1

zk

vk

zkuk



SEPARATION INTERPRETATION

� The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E f xk j I k g.

(b) An actuator, which multiplies E f xk j I k g by
the gain matrix L k and applies the control
input uk = L k E f xk j I k g.

� Generically the estimate x̂ of a random vectorx
given some information (random vector) I , which
minimizes the mean squared error

Ex fk x � x̂k2 j I g = kxk2 � 2E f x j I gx̂ + kx̂k2

is E f x j I g (set to zero the derivative with respect
to x̂ of the above quadratic form).

� The estimator portion of the optimal controller
is optimal for the problem of estimating the state
xk assuming the control is not subject to choice.

� The actuator portion is optimal for the control
problem assuming perfect state information.



STEADY STATE/IMPLEMENTATION ASPECTS

� As N ! 1 , the solution of the Riccati equation
converges to a steady state andL k ! L .

� If x0, wk , and vk are Gaussian,E f xk j I k g is
a linear function of I k and is generated by a nice
recursive algorithm, the Kalman �lter.

� The Kalman �lter involves also a Riccati equa-
tion, so for N ! 1 , and a stationary system, it
also has a steady-state structure.

� Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

� For nonGaussian uncertainty, computingE f xk j I k g
maybe very di�cult, so a suboptimal solution is
typically used.

� Most common suboptimal controller: Replace
E f xk j I k g by the estimate produced by the Kalman
�lter (act as if x0, wk , and vk are Gaussian).

� It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of I k .
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� DP for imperfect state info

� Su�cient statistics

� Conditional state distribution as a su�cient
statistic

� Finite-state systems

� Examples



REVIEW: IMPERFECT STATE INFO PROBLEM

� Instead of knowing xk , we receive observations

z0 = h0(x0 ; v0); zk = hk (xk ; uk � 1 ; vk ); k � 0

� I k : information vector available at time k:

I 0 = z0 ; I k = ( z0 ; z1 ; : : : ; zk ; u0 ; u1 ; : : : ; uk � 1); k � 1

� Optimization over policies � = f � 0 ; � 1 ; : : : ; � N � 1g,
where � k (I k ) 2 Uk , for all I k and k.

� Find a policy � that minimizes

J � = E
x 0 ;w k ;v k

k =0 ;:::;N � 1

(

gN (xN ) +
N � 1X

k =0

gk

�
xk ; � k (I k ); wk

�
)

subject to the equations

xk +1 = f k

�
xk ; � k (I k ); wk

�
; k � 0;

z0 = h0(x0 ; v0); zk = hk

�
xk ; � k � 1(I k � 1); vk

�
; k � 1



DP ALGORITHM

� DP algorithm:

Jk (I k ) = min
u k 2 Uk

h
E

x k ; w k ; z k +1

�
gk (xk ; uk ; wk )

+ Jk +1 (I k ; zk +1 ; uk ) j I k ; uk

	 i

for k = 0 ; 1; : : : ; N � 2, and for k = N � 1,

JN � 1 (I N � 1 ) = min
u N � 1 2 UN � 1

"

E
x N � 1 ; w N � 1

�
gN � 1(xN � 1 ; uN � 1 ; wN � 1)

+ gN

�
f N � 1(xN � 1 ; uN � 1 ; wN � 1 )

�
j I N � 1 ; uN � 1

	
#

� The optimal cost J � is given by

J � = E
z0

�
J0(z0)

	
:



SUFFICIENT STATISTICS

� Suppose there is a functionSk (I k ) such that the
min in the right-hand side of the DP algorithm can
be written in terms of some function H k as

min
u k 2 Uk

H k

�
Sk (I k ); uk

�

� Such a functionSk is called asu�cient statistic .

� An optimal policy obtained by the preceding
minimization can be written as

� �
k (I k ) = � k

�
Sk (I k )

�
;

where � k is an appropriate function.

� Example of a su�cient statistic: Sk (I k ) = I k

� Another important su�cient statistic

Sk (I k ) = Px k j I k
;

assuming that vk is characterized by a probability
distribution Pvk (� j xk � 1 ; uk � 1 ; wk � 1)



DP ALGORITHM IN TERMS OF PX K j I K

� Filtering Equation : Px k j I k is generated recur-
sively by a dynamic system (estimator) of the form

Px k +1 j I k +1
= � k

�
Px k j I k

; uk ; zk +1

�

for a suitable function � k

� DP algorithm can be written as

J k (Px k j I k
) = min

u k 2 Uk

h
E

x k ;w k ;z k +1

�
gk (xk ; uk ; wk )

+ J k +1

�
� k (Px k j I k

; uk ; zk +1 )
�

j I k ; uk

	 i

� It is the DP algorithm for a new problemwhose
state is Px k j I k

(also calledbelief state)
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EXAMPLE: A SEARCH PROBLEM

� At each period, decide to search or not search
a site that may contain a treasure.

� If we search and a treasure is present, we �nd
it with prob. � and remove it from the site.

� Treasure's worth: V . Cost of search:C

� States: treasure present & treasure not present

� Each search can be viewed as an observation of
the state

� Denote

pk : prob. of treasure present at the start of time k

with p0 given.

� pk evolves at time k according to the equation

pk +1 =

8
<

:

pk if not search,
0 if search and �nd treasure,

pk (1 � � )
pk (1 � � )+1 � pk

if search and no treasure.

This is the �ltering equation .



SEARCH PROBLEM (CONTINUED)

� DP algorithm

J k (pk ) = max
h
0; � C + pk �V

+ (1 � pk � )J k +1

�
pk (1 � � )

pk (1 � � ) + 1 � pk

� i
;

with J N (pN ) = 0 .

� Can be shown by induction that the functions
J k satisfy

J k (pk )

8
<

:

= 0 if pk � C
�V ,

> 0 if pk > C
�V .

� Furthermore, it is optimal to search at period
k if and only if

pk �V � C

(expected reward from the next search� the cost
of the search - amyopic rule)



FINITE-STATE SYSTEMS - POMDP

� Suppose the system is a �nite-state Markov
chain, with states 1; : : : ; n .

� Then the conditional probability distribution
Px k j I k

is an n-vector

�
P(xk = 1 j I k ); : : : ; P (xk = n j I k )

�

� The DP algorithm can be executed over then-
dimensional simplex(state space is not expanding
with increasing k)

� When the control and observation spaces are
also �nite sets the problem is called a POMDP
(Partially Observed Markov Decision Problem).

� For POMDP it turns out that the cost-to-go
functions J k in the DP algorithm are piecewise
linear and concave (Exercise 5.7)

� Useful in practice both for exact and approxi-
mate computation.



INSTRUCTION EXAMPLE I

� Teaching a student some item. Possible states
are L : Item learned, or L : Item not learned.

� Possible decisions: T : Terminate the instruc-
tion, or T : Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

� Possible test outcomes: R: Student gives a cor-
rect answer, or R: Student gives an incorrect an-
swer.

� Probabilistic structure

L L R

rt

1 1

1 - r1 - t
L RL

� Cost of instruction: I per period

� Cost of terminating instruction : 0 if student
has learned the item, andC > 0 if not.



INSTRUCTION EXAMPLE II

� Let pk : prob. student has learned the item given
the test results so far

pk = P(xk = L j z0 ; z1 ; : : : ; zk ):

� Filtering equation: Using Bayes' rule

pk +1 = �( pk ; zk +1 )

=

(
1� (1 � t )(1 � pk )

1� (1 � t )(1 � r )(1 � pk ) if zk +1 = R,

0 if zk +1 = R.

� DP algorithm:

J k (pk ) = min

�
(1 � pk )C; I + E

zk +1

�
J k +1

�
�( pk ; zk +1 )

�	
�

starting with

J N � 1(pN � 1) = min
�
(1� pN � 1)C; I +(1 � t)(1� pN � 1)C

�
:



INSTRUCTION EXAMPLE III

� Write the DP algorithm as

J k (pk ) = min
�
(1 � pk )C; I + A k (pk )

�
;

where

A k (pk ) = P(zk +1 = R j I k )J k +1

�
�( pk ; R)

�

+ P(zk +1 = R j I k )J k +1

�
�( pk ; R)

�

� Can show by induction that A k (p) are piecewise
linear, concave, monotonically decreasing, with

A k � 1(p) � A k (p) � A k +1 (p); for all p 2 [0; 1]:

(The cost-to-go at knowledge prob.p increases as
we come closer to the end of horizon.)

0 p

C

I

I + AN - 1(p)

I + AN - 2(p)

I + AN - 3(p)

1aN - 1 aN - 3aN - 2 1 -
I

C
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� Suboptimal control

� Cost approximation methods: Classi�cation

� Certainty equivalent control: An example

� Limited lookahead policies

� Performance bounds

� Problem approximation approach

� Parametric cost-to-go approximation



PRACTICAL DIFFICULTIES OF DP

� The curse of dimensionality
� Exponential growth of the computational and

storage requirements as the number of state
variables and control variables increases

� Quick explosion of the number of states in
combinatorial problems

� Intractability of imperfect state information
problems

� The curse of modeling
� Mathematical models
� Computer/simulation models

� There may be real-time solution constraints
� A family of problems may be addressed. The

data of the problem to be solved is given with
little advance notice

� The problem data may change as the system
is controlled { need for on-line replanning



COST-TO-GO FUNCTION APPROXIMATION

� Use a policy computed from the DP equation
where the optimal cost-to-go function Jk +1 is re-
placed by an approximation ~J k +1 . (SometimesE

�
gk

	

is also replaced by an approximation.)

� Apply � k (xk ), which attains the minimum in

min
u k 2 Uk ( x k )

E
n

gk (xk ; uk ; wk ) + ~J k +1

�
f k (xk ; uk ; wk )

� o

� There are several ways to compute~J k +1 :
� O�-line approximation: The entire function

~J k +1 is computed for everyk, before the con-
trol process begins.

� On-line approximation: Only the values ~J k +1 (xk +1 )
at the relevant next states xk +1 are com-
puted and used to computeuk just after the
current state xk becomes known.

� Simulation-based methods:These are o�-
line and on-line methods that share the com-
mon characteristic that they are based on
Monte-Carlo simulation. Some of these meth-
ods are suitable for are suitable for very large
problems.



CERTAINTY EQUIVALENT CONTROL (CEC)

� Idea: Replace the stochastic problem with a
deterministic problem

� At each time k, the future uncertain quantities
are �xed at some \typical" values

� On-line implementation for a perfect state info
problem. At each time k:

(1) Fix the wi , i � k, at some w i . Solve the
deterministic problem:

minimize gN (xN ) +
N � 1X

i = k

gi

�
x i ; ui ; w i

�

where xk is known, and

ui 2 Ui ; x i +1 = f i

�
x i ; ui ; wi

�
:

(2) Use the �rst control in the optimal control
sequence found.

� Equivalently, we apply �� k (xk ) that minimizes

gk

�
xk ; uk ; wk

�
+ ~J k +1

�
f k (xk ; uk ; wk )

�

where ~J k +1 is the optimal cost of the correspond-
ing deterministic problem.



EQUIVALENT OFF-LINE IMPLEMENTATION

� Let
�

� d
0 (x0); : : : ; � d

N � 1(xN � 1)
	

be an optimal con-
troller obtained from the DP algorithm for the de-
terministic problem

minimize gN (xN ) +

N � 1X

k =0

gk

�
xk ; � k (xk ); wk

�

subject to xk +1 = f k

�
xk ; � k (xk ); wk

�
; � k (xk ) 2 Uk

� The CEC applies at time k the control input
� d

k (xk ).

� In an imperfect info version, xk is replaced by
an estimate xk (I k ).



PARTIALLY STOCHASTIC CEC

� Instead of �xing all future disturbances to their
typical values, �x only some, and treat the rest as
stochastic.

� Important special case:Treat an imperfect state
information problem as one of perfect state infor-
mation, using an estimatexk (I k ) of xk as if it were
exact.

� Multiaccess communication example:Consider
controlling the slotted Aloha system (Example 5.1.1
in the text) by optimally choosing the probabil-
ity of transmission of waiting packets. This is a
hard problem of imperfect state info, whose per-
fect state info version is easy.

� Natural partially stochastic CEC:

~� k (I k ) = min

�
1;

1
xk (I k )

�
;

where xk (I k ) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which isI k ).



GENERAL COST-TO-GO APPROXIMATION

� One-step lookahead (1SL) policy:At each k
and state xk , use the control � k (xk ) that

min
u k 2 Uk ( x k )

E
�

gk (xk ; uk ; wk ) + ~J k +1

�
f k (xk ; uk ; wk )

�	
;

where
� ~J N = gN .
� ~J k +1 : approximation to true cost-to-go Jk +1

� Two-step lookahead policy: At each k and
xk , use the control ~� k (xk ) attaining the minimum
above, where the function ~J k +1 is obtained using a
1SL approximation (solve a 2-step DP problem).

� If ~J k +1 is readily available and the minimiza-
tion above is not too hard, the 1SL policy is im-
plementable on-line.

� Sometimes one also replacesUk (xk ) above with
a subset of \most promising controls" Uk (xk ).

� As the length of lookahead increases, the re-
quired computation quickly explodes.



PERFORMANCE BOUNDS FOR 1SL

� Let J k (xk ) be the cost-to-go from(xk ; k) of the
1SL policy, based on functions~J k .

� Assume that for all (xk ; k), we have

Ĵ k (xk ) � ~J k (xk ); (* )

where Ĵ N = gN and for all k,

Ĵ k (xk ) = min
u k 2 Uk ( x k )

E
�

gk (xk ; uk ; wk )

+ ~J k +1

�
f k (xk ; uk ; wk )

�	
;

[so Ĵ k (xk ) is computed along with � k (xk )]. Then

J k (xk ) � Ĵ k (xk ); for all (xk ; k):

� Important application: When ~J k is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

� The bound can be extended to the case where
there is a � k in the RHS of (*). Then

J k (xk ) � ~J k (xk ) + � k + � � � + � N � 1



COMPUTATIONAL ASPECTS

� Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Uk (xk ) is not a discrete set]. Con-
nection with stochastic programming(2-stage DP)
methods (see text).

� The choice of the approximating functions ~J k

is critical, and is calculated in a variety of ways.

� Some approaches:

(a) Problem Approximation : Approximate the
optimal cost-to-go with some cost derived
from a related but simpler problem

(b) Parametric Cost-to-Go Approximation : Ap-
proximate the optimal cost-to-go with a func-
tion of a suitable parametric form, whose pa-
rameters are tuned by some heuristic or sys-
tematic scheme (Neuro-Dynamic Program-
ming)

(c) Rollout Approach: Approximate the opti-
mal cost-to-go with the cost of some subop-
timal policy, which is calculated either ana-
lytically or by simulation



PROBLEM APPROXIMATION

� Many (problem-dependent) possibilities
� Replace uncertain quantities by nominal val-

ues, or simplify the calculation of expected
values by limited simulation

� Simplify di�cult constraints or dynamics

� Enforced decomposition example:Route m ve-
hicles that move over a graph. Each node has a
\value." First vehicle that passes through the node
collects its value. Want to max the total collected
value, subject to initial and �nal time constraints
(plus time windows and other constraints).

� Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

� 1SL scheme: At time k and state xk (position
of vehicles and \collected value nodes"), consider
all possiblekth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time



PARAMETRIC COST-TO-GO APPROXIMATION

� Use a cost-to-go approximation from a para-
metric class ~J (x; r ) where x is the current state
and r = ( r 1 ; : : : ; r m ) is a vector of \tunable" scalars
(weights).

� By adjusting the weights, one can change the
\shape" of the approximation ~J so that it is rea-
sonably close to the true optimal cost-to-go func-
tion.

� Two key issues:
� The choice of parametric class ~J (x; r ) (the

approximation architecture).
� Method for tuning the weights (\training"

the architecture).

� Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

� Sometimes a simulation-based algorithm is used,
particularly when there is no mathematical model
of the system.

� We will look in detail at these issues after a few
lectures.



APPROXIMATION ARCHITECTURES

� Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of~J (x; r ) on r ]

� Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

� Linear feature-based architecture: � = ( � 1 ; : : : ; � m )

~J (x; r ) = � (x)0r =
mX

j =1

� j (x)r j

! !"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+&
1..&+(*2#$+& 3 4!"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+&!"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+&

!! "#$%&' ()*+
!! "#$%&' ()*+

!"#"$ ! ! !"#$%&" '"($)& ! *! + ! "##$%&'()*%$ ! +! ! !"

� Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture

� Anything sensible can be used as features. Some-
times the state space is partitioned, and \local"
features are introduced for each subset of the par-
tition (they are 0 outside the subset)



AN EXAMPLE - COMPUTER CHESS

� Chess programs use a feature-based position
evaluator that assigns a score to each move/position

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

� Many context-dependent special features.

� Most often the weighting of features is linear
but multistep lookahead is involved.

� Most often the training is done \manually," by
trial and error.



ANOTHER EXAMPLE - AGGREGATION

� Main elements (in a �nite-state context):
� Introduce \aggregate" statesS1 ; : : : ; Sm , viewed

as the states of an \aggregate" system
� De�ne transition probabilities and costs of

the aggregate system,by relating original
system states with aggregate states (using so
called \aggregation and disaggregation prob-
abilities")

� Solve (exactly or approximately) the \ag-
gregate" problemby any kind of method (in-
cluding simulation-based) ... more on this
later.

� Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of each
original problem state as a linear combina-
tion of the optimal aggregate state costs

� This is a linear feature-based architecture(the
optimal aggregate state costs are the features)

� Hard aggregation example: Aggregate states
Sj are a partition of original system states (each
original state belongs to one and only oneSj ).



AN EXAMPLE: REPRESENTATIVE SUBSETS

� The aggregate statesSj are disjoint \represen-
tative" subsets of original system states

! ! !"#$#%&' ()&)* (+&,*

!""#$"%&$ '&%&$()'*+($&(
, - . /0

! "

! ! !

! ! ! "

! " ! ! ! "

! ! "
!

! !
!

! ! "

! ! "

! ! " ! ! "

! ! ! "

� Common case:Each Sj is a group of states with
\similar characteristics"

� Compute a \cost" r j for each aggregate state
Sj (using some method)

� Approximate the optimal cost of each original
system statex with

P m
j =1 � xj r j

� For each x, the � xj , j = 1 ; : : : ; m , are the \ag-
gregation probabilities" ... roughly the degrees of
membership of statex in the aggregate statesSj

� Each � xj is prespeci�ed and can be viewed as
the j th feature of state x
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� Rollout algorithms

� Policy improvement property

� Discrete deterministic problems

� Approximations of rollout algorithms

� Model Predictive Control (MPC)

� Discretization of continuous time

� Discretization of continuous space

� Other suboptimal approaches



ROLLOUT ALGORITHMS

� One-step lookahead policy:At each k and state
xk , use the control � k (xk ) that

min
u k 2 Uk ( x k )

E
�

gk (xk ; uk ; wk ) + ~J k +1

�
f k (xk ; uk ; wk )

�	
;

where
� ~J N = gN .
� ~J k +1 : approximation to true cost-to-go Jk +1

� Rollout algorithm: When ~J k is the cost-to-go of
some heuristic policy (called thebase policy)

� Policy improvement property (to be shown):
The rollout algorithm achieves no worse (and usu-
ally much better) cost than the base heuristic start-
ing from the same state.

� Main di�culty: Calculating ~J k (xk ) may be com-
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

� May involve Monte Carlo simulation if the
problem is stochastic.

� Things improve in the deterministic case.



EXAMPLE: THE QUIZ PROBLEM

� A person is givenN questions; answering cor-
rectly question i has probability pi , reward vi .
Quiz terminates at the �rst incorrect answer.

� Problem: Choose the ordering of questions so
as to maximize the total expected reward.

� Assuming no other constraints, it is optimal to
use theindex policy: Answer questions in decreas-
ing order of pi vi =(1 � pi ).

� With minor changes in the problem, the index
policy need not be optimal. Examples:

� A limit ( < N ) on the maximum number of
questions that can be answered.

� Time windows, sequence-dependent rewards,
precedence constraints.

� Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.

� Very e�ective for solving the quiz problem and
important generalizations in scheduling (see Bert-
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).



COST IMPROVEMENT PROPERTY

� Let

J k (xk ): Cost-to-go of the rollout policy

H k (xk ): Cost-to-go of the base policy

� We claim that J k (xk ) � H k (xk ) for all xk , k

� Proof by induction: We haveJ N (xN ) = H N (xN )
for all xN . Assume that

J k +1 (xk +1 ) � H k +1 (xk +1 ); 8 xk +1 :

Let � k (xk ) and � k (xk ) be the controls applied by
rollout and heuristic at xk . Then, for all xk

J k (xk ) = E
�

gk

�
xk ; � k (xk ); wk

�
+ J k +1

�
f k

�
xk ; � k (xk ); wk

��	

� E
�

gk

�
xk ; � k (xk ); wk

�
+ H k +1

�
f k

�
xk ; � k (xk ); wk

��	

� E
�

gk

�
xk ; � k (xk ); wk

�
+ H k +1

�
f k

�
xk ; � k (xk ); wk

��	

= H k (xk )

� Induction hypothesis == > 1st inequality
� Min selection of � k (xk ) == > 2nd inequality
� De�nition of H k ; � k == > last equality



DISCRETE DETERMINISTIC PROBLEMS

� Any discrete optimization problem can be repre-
sented sequentially by breaking down the decision
process into stages.

� A tree/shortest path representation. The leaves
of the tree correspond to the feasible solutions.

� Example: Traveling salesman problem. Find a
minimum cost tour through N cities.

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Origin Node sA

Traveling salesman problem with four cities A, B, C, D

� Complete partial solutions, one stage at a time

� May apply rollout with any heuristic that can
complete a partial solution

� No costly stochastic simulation needed



EXAMPLE: THE BREAKTHROUGH PROBLEM

root

� Given a binary tree with N stages.

� Each arc is free or is blocked (crossed out)

� Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

� Base heuristic (greedy):Follow the right branch
if free; else follow the left branch if free.

� This is a rare rollout instance that admits a
detailed analysis.

� For large N and given prob. of free branch:
the rollout algorithm requires O(N ) times more
computation, but has O(N ) times larger prob. of
�nding a free path than the greedy algorithm.



DET. EXAMPLE: ONE-DIMENSIONAL WALK

� A person takes either a unit step to the left or
a unit step to the right. Minimize the cost g(i ) of
the point i where he will end up after N steps.

g(i)

iNN - 2-N 0

(N,0)

(0,0)

(N,-N) (N,N)

i
_

i
_

� Base heuristic: Always go to the right. Rollout
�nds the rightmost local minimum.

� Alternative base heuristic: Compare always go
to the right and always go the left. Choose the
best of the two. Rollout �nds a global minimum.



A ROLLOUT ISSUE FOR DISCRETE PROBLEMS

� The base heuristic need not constitute a policy
in the DP sense.

� Reason: Depending on its starting point, the
base heuristic may not apply the same control at
the same state.

� As a result the cost improvement property may
be lost (except if the base heuristic has a property
called sequential consistency; see the text for a
formal de�nition).

� The cost improvement property is restored in
two ways:

� The base heuristic has a property calledse-
quential improvement which guarantees cost
reduction at each step (see the text for a for-
mal de�nition).

� A variant of the rollout algorithm, called for-
ti�ed rollout , is used, which enforces cost
improvement. Roughly speaking the \best"
solution found so far is maintained, and it
is followed whenever at any time the stan-
dard version of the algorithm tries to follow
a \worse" solution (see the text).



ROLLING HORIZON WITH ROLLOUT

� We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

� Because the heuristic is suboptimal, the ratio-
nale for a long rolling horizon becomes weaker.

� Example: N -stage stopping problem where the
stopping cost is 0, the continuation cost is either
� � or 1, where 0 < � << 1, and the �rst state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is � m� .

� Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of ` � m steps.

� It will continue up to the �rst m � ` + 1 stages,
thus compiling a cost of � (m � ` +1) � . The rollout
performance improves asl becomes shorter!

� Limited vision may work to our advantage!



MODEL PREDICTIVE CONTROL (MPC)

� Special case of rollout for linear deterministic
systems (similar extensions to nonlinear/stochastic)

� System: xk +1 = Ax k + Bu k

� Quadratic cost per stage:x0
k Qx k + u0

k Ruk

� Constraints: xk 2 X , uk 2 U(xk )

� Assumption: For any x0 2 X there is a feasible
state-control sequence that brings the system to 0
in m steps, i.e.,xm = 0

� MPC at state xk solves anm-step optimal con-
trol problem with constraint xk + m = 0 , i.e., �nds
a sequence�uk ; : : : ; �uk + m � 1 that minimizes

m � 1X

` =0

�
x0

k + ` Qx k + ` + u0
k + ` Ruk + `

�

subject to xk + m = 0

� Then applies the �rst control �uk (and repeats
at the next state xk +1 )

� MPC is rollout with heuristic derived from the
correspondingm � 1-step optimal control problem

� Key Property of MPC: Since the heuristic is sta-
ble, the rollout is also stable (suggested by policy
improvement property; see the text).



DISCRETIZATION

� If the time, and/or state space, and/or control
space are continuous, they must be discretized.

� Consistency issue, i.e., as the discretization be-
comes �ner, the cost-to-go functions of the dis-
cretized problem should converge to those of the
original problem.

� Pitfall with discretizing continuous time: The
control constraint set may change a lot as we pass
to the discrete-time approximation.

� Example: Consider the system_x(t) = u(t); with
control constraint u(t) 2 f� 1; 1g. The reachable
states after time � are x(t + � ) = x(t) + u, with
u 2 [� �; � ].

� Compare it with the reachable states after we
discretize the system naively:x(t+ � ) = x(t)+ �u (t);
with u(t) 2 f� 1; 1g.

� \Convexi�cation e�ect" of continuous time : a
discrete control constraint set in continuous-time
di�erential systems, is equivalent to a continuous
control constraint set when the system is looked
at discrete times.



SPACE DISCRETIZATION

� Given a discrete-time system with state space
S, consider a �nite subset S; for example S could
be a �nite grid within a continuous state space S.

� Di�culty: f (x; u; w ) =2 S for x 2 S.

� We de�ne an approximation to the original
problem, with state spaceS, as follows:

� Express eachx 2 S as a convex combination of
states in S, i.e.,

x =
X

x i 2 S

� i (x)x i where � i (x) � 0;
X

i

� i (x) = 1

� De�ne a \reduced" dynamic system with state
spaceS, whereby from eachx i 2 S we move to
x = f (x i ; u; w) according to the system equation
of the original problem, and then move to x j 2 S
with probabilities � j (x).

� De�ne similarly the corresponding cost per stage
of the transitions of the reduced system.

� Note application to �nite-state POMDP (dis-
cretization of the simplex of the belief states).



SPACE DISCRETIZATION/AGGREGATION

� Let J k (x i ) be the optimal cost-to-go of the \re-
duced" problem from each statex i 2 S and time
k onward.

� Approximate the optimal cost-to-go of any x 2 S
for the original problem by

~J k (x) =
X

x i 2 S

� i (x)J k (x i );

and use one-step-lookahead based on~J k .

� The coe�cients � i (x) can be viewed asfeatures
in an aggregation scheme.

� Important question: Consistency, i.e., as the
number of states inS increases,~J k (x) should con-
verge to the optimal cost-to-go of the original prob.

� Interesting observation:While the original prob-
lem may be deterministic, the reduced problem is
always stochastic.

� Generalization: The set S may be any �nite set
(not a subset ofS) as long as the coe�cients � i (x)
admit a meaningful interpretation that quanti�es
the degree of association ofx with x i (a form of
aggregation).



OTHER SUBOPTIMAL APPROACHES

� Minimize the DP equation error (Fitted Value
Iteration): Approximate Jk (xk ) with ~J k (xk ; r k ), where
r k is a parameter vector, chosen to minimize some
form of error in the DP equations

� Can be done sequentially going backwards
in time (approximate Jk using an approxi-
mation of Jk +1 , starting with ~J N = gN ).

� Direct approximation of control policies: For a
subset of statesx i , i = 1 ; : : : ; m , �nd

�̂ k (x i ) = arg min
u k 2 Uk ( x i )

E
�

g(x i ; uk ; wk )

+ ~J k +1

�
f k (x i ; uk ; wk ); r k +1

�	

Then �nd ~� k (xk ; sk ); where sk is a vector of pa-
rameters obtained by solving the problem

min
s

mX

i =1

k�̂ k (x i ) � ~� k (x i ; s)k2

� Approximation in policy space: Do not bother
with cost-to-go approximations. Parametrize the
policies as~� k (xk ; sk ); and minimize the cost func-
tion of the problem over the parameterssk (ran-
dom searchis a possibility).
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� In�nite horizon problems

� Stochastic shortest path (SSP) problems

� Bellman's equation

� Dynamic programming { value iteration

� Discounted problems as special case of SSP



TYPES OF INFINITE HORIZON PROBLEMS

� Same as the basic problem, but:
� The number of stages is in�nite.
� Stationary system and cost (except for dis-

counting).

� Total cost problems: Minimize

J � (x0) = lim
N !1

E
w k

k =0 ;1;:::

(
N � 1X

k =0

� k g
�
xk ; � k (xk ); wk

�
)

(if the lim exists - otherwiselim sup).
� Stochastic shortest path (SSP) problems (� =

1, and a termination state)
� Discounted problems (� < 1, bounded g)
� Undiscounted, and discounted problems with

unbounded g

� Average cost problems

lim
N !1

1
N

E
w k

k =0 ;1;:::

(
N � 1X

k =0

g
�
xk ; � k (xk ); wk

�
)

� In�nite horizon characteristics: Challenging anal-
ysis, elegance of solutions and algorithms (station-
ary optimal policies are likely)



PREVIEW OF INFINITE HORIZON RESULTS

� Key issue:The relation between the in�nite and
�nite horizon optimal cost-to-go functions.

� For example, let � = 1 and JN (x) denote the
optimal cost of the N -stage problem, generated
after N DP iterations, starting from some J0

Jk +1 (x) = min
u 2 U ( x )

E
w

�
g(x; u; w ) + Jk

�
f (x; u; w )

�	
; 8 x

� Typical results for total cost problems:
� Convergence of value iteration toJ � :

J � (x) = min
�

J � (x) = lim
N !1

JN (x); 8 x

� Bellman's equation holds for all x:

J � (x) = min
u 2 U ( x )

E
w

�
g(x; u; w ) + J �

�
f (x; u; w )

�	

� Optimality condition: If � (x) minimizes in
Bellman's Eq., f �; �; : : : g is optimal.

� Bellman's Eq. holds for all deterministic prob-
lems and \almost all" stochastic problems.

� Other results: True for SSP and discounted;
exceptions for other problems.



\EASY" AND \DIFFICULT" PROBLEMS

� Easy problems (Chapter 7, Vol. I of text)
� All of them are �nite-state, �nite-control
� Bellman's equation has unique solution
� Optimal policies obtained from Bellman Eq.
� Value and policy iteration algorithms apply

� Somewhat complicated problems
� In�nite state, discounted, bounded g (con-

tractive structure)
� Finite-state SSP with \nearly" contractive

structure
� Bellman's equation has unique solution, value

and policy iteration work

� Di�cult problems (w/ additional structure)
� In�nite state, g � 0 or g � 0 (for all x; u; w )
� In�nite state deterministic problems
� SSP without contractive structure

� Hugely large and/or model-free problems
� Big state space and/or simulation model
� Approximate DP methods

� Measure theoretic formulations (not in this course)



STOCHASTIC SHORTEST PATH PROBLEMS

� Assume �nite-state system: States1; : : : ; n and
specialcost-free termination state t

� Transition probabilities pij (u)

� Control constraints u 2 U(i ) (�nite set)
� Cost of policy � = f � 0 ; � 1 ; : : :g is

J � (i ) = lim
N !1

E

(
N � 1X

k =0

g
�
xk ; � k (xk )

� �
�
� x0 = i

)

� Optimal policy if J � (i ) = J � (i ) for all i .
� Special notation: For stationary policies � =

f �; �; : : : g, we useJ � (i ) in place of J � (i ).

� Assumption (termination inevitable): There ex-
ists integer m such that for all policies � :

� � = max
i =1 ;:::;n

Pf xm 6= t j x0 = i; � g < 1

� Note: We have � = max � � � < 1, since � � de-
pends only on the �rst m components of� .

� Shortest path examples: Acyclic (assumption is
satis�ed); nonacyclic (assumption is not satis�ed)



FINITENESS OF POLICY COST FUNCTIONS

� View
� = max

�
� � < 1

as an upper bound on the non-termination prob.
during 1st m steps, regardless of policy used

� For any � and any initial state i

P f x2m 6= t j x0 = i; � g = P f x2m 6= t j xm 6= t; x 0 = i; � g

� P f xm 6= t j x0 = i; � g � � 2

and similarly

Pf xkm 6= t j x0 = i; � g � � k ; i = 1 ; : : : ; n

� SoE f Cost between timeskm and (k + 1) m � 1 g

� m� k max
i =1 ;:::;n
u 2 U ( i )

�
�g(i; u )

�
�

and

�
�J � (i )

�
� �

1X

k =0

m� k max
i =1 ;:::;n
u 2 U ( i )

�
�g(i; u )

�
� =

m
1 � �

max
i =1 ;:::;n
u 2 U ( i )

�
�g(i; u )

�
�



MAIN RESULT

� Given any initial conditions J0(1); : : : ; J0(n), the
sequenceJk (i ) generated by value iteration,

Jk +1 (i ) = min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)Jk (j )

#

; 8 i

converges to the optimal costJ � (i ) for each i .

� Bellman's equation hasJ � (i ) as unique solution:

J � (i ) = min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)J � (j )

#

; 8 i

J � (t) = 0

� A stationary policy � is optimal if and only
if for every state i , � (i ) attains the minimum in
Bellman's equation.

� Key proof idea: The \tail" of the cost series,

1X

k = mK

E
�

g
�
xk ; � k (xk )

�	

vanishes asK increases to1 .



OUTLINE OF PROOF THAT JN ! J �

� Assume for simplicity that J0(i ) = 0 for all i .
For any K � 1, write the cost of any policy � as

J � (x0 ) =

mK � 1X

k =0

E
�

g
�

xk ; � k (xk )
�	

+

1X

k = mK

E
�

g
�

xk ; � k (xk )
�	

�

mK � 1X

k =0

E
�

g
�

xk ; � k (xk )
�	

+

1X

k = K

� k m max
i;u

jg(i; u )j

Take the minimum of both sides over � to obtain

J � (x0) � JmK (x0) +
� K

1 � �
m max

i;u
jg(i; u )j:

Similarly, we have

JmK (x0) �
� K

1 � �
m max

i;u
jg(i; u )j � J � (x0):

It follows that lim K !1 JmK (x0) = J � (x0).

� JmK (x0) and JmK + k (x0) converge to the same
limit for k < m (since k extra steps far into the
future don't matter), so JN (x0) ! J � (x0):

� Similarly, J0 6= 0 does not matter.



EXAMPLE

� Minimizing the E f Time to Termination g: Let

g(i; u ) = 1 ; 8 i = 1 ; : : : ; n; u 2 U(i )

� Under our assumptions, the costsJ � (i ) uniquely
solve Bellman's equation, which has the form

J � (i ) = min
u 2 U ( i )

"

1 +
nX

j =1

pij (u)J � (j )

#

; i = 1 ; : : : ; n

� In the special case where there is only one con-
trol at each state, J � (i ) is the mean �rst passage
time from i to t . These times, denotedm i , are the
unique solution of the classical equations

m i = 1 +
nX

j =1

pij m j ; i = 1 ; : : : ; n;

which are seen to be a form of Bellman's equation
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� Review of stochastic shortest path problems

� Computational methods for SSP
� Value iteration
� Policy iteration
� Linear programming

� Computational methods for discounted prob-
lems



STOCHASTIC SHORTEST PATH PROBLEMS

� Assume �nite-state system: States1; : : : ; n and
specialcost-free termination state t

� Transition probabilities pij (u)

� Control constraints u 2 U(i ) (�nite set)
� Cost of policy � = f � 0 ; � 1 ; : : :g is

J � (i ) = lim
N !1

E

(
N � 1X

k =0

g
�
xk ; � k (xk )

� �
�
� x0 = i

)

� Optimal policy if J � (i ) = J � (i ) for all i .
� Special notation: For stationary policies � =

f �; �; : : : g, we useJ � (i ) in place of J � (i ).

� Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more thatm
stages; for all � , we have

� � = max
i =1 ;:::;n

Pf xm 6= t j x0 = i; � g < 1



MAIN RESULT

� Given any initial conditions J0(1); : : : ; J0(n), the
sequenceJk (i ) generated by value iteration

Jk +1 (i ) = min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)Jk (j )

#

; 8 i

converges to the optimal costJ � (i ) for each i .

� Bellman's equation hasJ � (i ) as unique solution:

J � (i ) = min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)J � (j )

#

; 8 i

� For a stationary policy � , J � (i ), i = 1 ; : : : ; n ,
are the unique solution of the linear system ofn
equations

J � (i ) = g
�
i; � (i )

�
+

nX

j =1

pij

�
� (i )

�
J � (j ); 8 i = 1 ; : : : ; n

� A stationary policy � is optimal if and only
if for every state i , � (i ) attains the minimum in
Bellman's equation.



BELLMAN'S EQ. FOR A SINGLE POLICY

� Consider a stationary policy �

� J � (i ), i = 1 ; : : : ; n , are the unique solution of the
linear system ofn equations

J � (i ) = g
�
i; � (i )

�
+

nX

j =1

pij

�
� (i )

�
J � (j ); 8 i = 1 ; : : : ; n

� The equation provides a way to computeJ � (i ),
i = 1 ; : : : ; n , but the computation is substantial for
large n [O(n3)]

� For large n, value iteration may be preferable.
(Typical case of a large linear system of equations,
where an iterative method may be better than a
direct solution method.)

� For VERY large n, exact methods cannot be
applied, and approximations are needed. (We will
discuss these later.)



POLICY ITERATION

� It generates a sequence� 1 ; � 2 ; : : : of stationary
policies, starting with any stationary policy � 0.

� At the typical iteration, given � k , we perform
a policy evaluation step, that computes the J � k (i )
as the solution of the (linear) system of equations

J (i ) = g
�
i; � k (i )

�
+

nX

j =1

pij

�
� k (i )

�
J (j ); i = 1 ; : : : ; n;

in the n unknowns J (1); : : : ; J (n). We then per-
form a policy improvement step,

� k +1 (i ) = arg min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)J � k (j )

#

; 8 i

� Terminate when J � k (i ) = J � k +1 (i ) 8 i . Then
J � k +1 = J � and � k +1 is optimal, since

J � k +1 (i ) = g(i; � k +1 (i )) +
nX

j =1

pij (� k +1 (i )) J � k +1 (j )

= min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)J � k +1 (j )

#



JUSTIFICATION OF POLICY ITERATION

� We can show that J � k (i ) � J � k +1 (i ) for all i; k

� Fix k and consider the sequence generated by

JN +1 (i ) = g
�
i; � k +1 (i )

�
+

nX

j =1

pij

�
� k +1 (i )

�
JN (j )

where J0(i ) = J � k (i ). We have

J0(i ) = g
�
i; � k (i )

�
+

nX

j =1

pij

�
� k (i )

�
J0(j )

� g
�
i; � k +1 (i )

�
+

nX

j =1

pij

�
� k +1 (i )

�
J0(j ) = J1(i )

� Using the monotonicity property of DP,

J0(i ) � J1(i ) � � � � � JN (i ) � JN +1 (i ) � � � � ; 8 i

SinceJN (i ) ! J � k +1 (i ) as N ! 1 , we obtain pol-
icy improvement, i.e.

J � k (i ) = J0(i ) � J � k +1 (i ) 8 i; k

� A policy cannot be repeated (there are �nitely
many stationary policies), so the algorithm termi-
nates with an optimal policy



LINEAR PROGRAMMING

� We claim that J � is the \largest" J that satis�es
the constraint

J (i ) � g(i; u ) +
nX

j =1

pij (u)J (j ); (1)

for all i = 1 ; : : : ; n and u 2 U(i ).

� Proof: If we use value iteration to generate a
sequence of vectorsJk =

�
Jk (1); : : : ; J k (n)

�
starting

with a J0 that satis�es the constraint, i.e.,

J0(i ) � min
u 2 U ( i )

"

g(i; u ) +
nX

j =1

pij (u)J0(j )

#

; 8 i

then, Jk (i ) � Jk +1 (i ) for all k and i (monotonicity
property of DP) and Jk ! J � , so that J0(i ) � J � (i )
for all i .

� So J � =
�
J � (1); : : : ; J � (n)

�
is the solution of the

linear program of maximizing
P n

i =1 J (i ) subject to
the constraint (1).



LINEAR PROGRAMMING (CONTINUED)

� Obtain J � by Max
P n

i =1 J (i ) subject to

J (i ) � g(i; u )+
nX

j =1

pij (u)J (j ); i = 1 ; : : : ; n; u 2 U(i )

! "

! !"# $

! !"# $

! ! !
!
! ! "#$" ! ! "%$

"

! !"# $ " !" # $! # %%!! !$! #! !"# % %!" !$! #! !&#

! !"# $ " !" # $! # %%"" !$! #! !"# % %"! !$! #! !&#

! !"# $ " !" # $! # %%"! !$! #! !&# %%"" !$! #! !"#

! !"# $ " !" # $! # %%!" !$! #! !&# %%!! !$! #! !"#

� Drawback: For large n the dimension of this pro-
gram is very large. Furthermore, the number of
constraints is equal to the number of state-control
pairs.



DISCOUNTED PROBLEMS

� Assume a discount factor� < 1.

� Conversion to an SSP problem.

� kth stage cost is the same for both problems

� Value iteration converges toJ � for all initial J0 :

Jk +1 (i ) = min
u 2 U ( i )

"

g(i; u ) + �
nX

j =1

pij (u)Jk (j )

#

; 8 i

� J � is the unique solution of Bellman's equation:

J � (i ) = min
u 2 U ( i )

"

g(i; u ) + �
nX

j =1

pij (u)J � (j )

#

; 8 i

� Policy iteration terminates with an optimal pol-
icy, and linear programming works.



DISCOUNTED PROBLEM EXAMPLE

� A manufacturer at each time:
� Receives an order with prob.p and no order

with prob. 1 � p.
� May process all un�lled orders at cost K >

0, or process no order at all. The cost per
un�lled order at each time is c > 0.

� Maximum number of orders that can remain
un�lled is n.

� Find a processing policy that minimizes the
� -discounted cost per stage.

� State: Number of un�lled orders at the start
of a period (i = 0 ; 1; : : : ; n).

� Bellman's Eq.:

J � (i ) = min
�
K + � (1 � p)J � (0) + �pJ � (1);

ci + � (1 � p)J � (i ) + �pJ � (i + 1)
�
;

for the states i = 0 ; 1; : : : ; n � 1, and

J � (n) = K + � (1 � p)J � (0) + �pJ � (1)

for state n.

� Analysis: Argue that J � (i ) is mon. increasing in
i , to show that the optimal policy is a threshold
policy.
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� Average cost per stage problems

� Connection with stochastic shortest path prob-
lems

� Bellman's equation

� Value iteration

� Policy iteration



AVERAGE COST PER STAGE PROBLEM

� Assume a stationary system with �nite number
of states and controls.

� Minimize over policies � = f � 0 ; � 1 ; :::g

J � (x0) = lim
N !1

1
N

E
w k

k =0 ;1;:::

(
N � 1X

k =0

g
�
xk ; � k (xk ); wk

�
)

� Important characteristics (not shared by other
types of in�nite horizon problems).

� For any �xed T , the cost incurred up to time
T does not matter (only the state that we are
at time T matters)

� If all states \communicate" the optimal cost
is independent of initial state [if we can go
from i to j in �nite expected time, we must
have J � (i ) � J � (j )]. So J � (i ) � � � for all i .

� Because \communication" issues are so im-
portant, the methodology relies heavily on
Markov chain theory.

� The theory depends a lot on whether the
chains corresponding to policies have a single
or multiple recurrent classes. We will focus
on the simplest version, using SSP theory.



CONNECTION WITH SSP

� Assumption: State n is special, in that for all
initial states and all policies, n will be visited in-
�nitely often (with probability 1).

� Then we expect that J � (i ) � some� �

� Divide the sequence of generated states into
cycles marked by successive visits ton.

� Let's focus on a single cycle: It can be viewed
as a state trajectory of an SSP problem withn as
the termination state.

� Let the cost at i of the SSP beg(i; u ) � � �

� We will argue (informally) that

Av. Cost Probl. � A Min Cost Cycle Probl. � SSP Probl.



CONNECTION WITH SSP (CONTINUED)

� Consider aminimum cycle cost problem: Find
a stationary policy � that minimizes the expected
cost per transition within a cycle

Cnn (� )
Nnn (� )

;

where for a �xed � ,

Cnn (� ) : E f cost from n up to the �rst return to ng

Nnn (� ) : E f time from n up to the �rst return to ng

� Intuitively, Cnn (� )=Nnn (� ) = average cost of
� , and optimal cycle cost = � � , so

Cnn (� ) � Nnn (� )� � � 0;

with equality if � is optimal.

� ConsiderSSP with stage costsg(i; u ) � � � . The
cost of � starting from n is Cnn (� ) � Nnn (� )� � ,
so the optimal/min cycle � is also optimal for the
SSP.

� Also: Optimal SSP cost starting from n = 0 .



BELLMAN'S EQUATION

� Let h� (i ) the optimal cost of this SSP problem
when starting at the nontermination states i =
1; : : : ; n. Then h� (1); : : : ; h� (n) solve uniquely the
corresponding Bellman's equation

h� (i ) = min
u2 U ( i )

2

4g(i; u ) � � � +
n � 1X

j =1

pij (u)h� (j )

3

5 ; 8 i

� If � � is an optimal stationary policy for the SSP
problem, we have

h� (n) = Cnn (� � ) � Nnn (� � )� � = 0

� Combining these equations, we have

� � + h� (i ) = min
u2 U ( i )

2

4g(i; u ) +
nX

j =1

pij (u)h� (j )

3

5 ; 8 i

h� (n) = 0

� If � � (i ) attains the min for each i , � � is optimal.

� There is also Bellman Eq. for a single policy� .



MORE ON THE CONNECTION WITH SSP

� Interpretation of h� (i ) as a relative or di�eren-
tial cost: It is the minimum of

E f cost to reachn from i for the �rst time g

� E f cost if the stage cost were� � and not g(i; u )g

� Algorithms : We don't know � � , so we can't
solve the average cost problem as an SSP problem.
But similar value and policy iteration algorithms
are possible, and will be given shortly.

� Example: A manufacturer at each time

� Receives an order with prob.p and no order
with prob. 1 � p.

� May process all un�lled orders at cost K >
0, or process no order at all. The cost per
un�lled order at each time is c > 0.

� Maximum number of orders that can remain
un�lled is n.

� Find a processing policy that minimizes the
total expected cost per stage.



EXAMPLE (CONTINUED)

� State = number of un�lled orders. State 0 is
the special state for the SSP formulation.

� Bellman's equation: For states i = 0 ; 1; : : : ; n� 1

� � + h� (i ) = min
�
K + (1 � p)h� (0) + ph� (1);

ci + (1 � p)h� (i ) + ph� (i + 1)
�
;

and for state n

� � + h� (n) = K + (1 � p)h� (0) + ph� (1)

Also h� (0) = 0.

� Optimal policy : Processi un�lled orders if

K +(1 � p)h� (0)+ ph� (1) � ci+(1 � p)h� (i )+ ph� (i+1)

� Intuitively, h� (i ) is monotonically nondecreas-
ing with i (interpret h� (i ) as optimal costs-to-go
for the associate SSP problem). So athreshold
policy is optimal: process the orders if their num-
ber exceeds some threshold integerm� .



VALUE ITERATION

� Natural VI method: Generate optimal k-stage
costs by DP algorithm starting with any J0:

Jk+1 (i ) = min
u2 U ( i )

2

4g(i; u ) +
nX

j =1

pij (u)Jk (j )

3

5 ; 8 i

� Convergence:lim k !1 Jk (i )=k = � � for all i .

� Proof outline: Let J �
k be so generated start-

ing from the opt. di�erential cost, i.e., the initial
condition J �

0 = h� . Then, by induction,

J �
k (i ) = k� � + h� (i ); 8i; 8 k:

On the other hand,

�
�Jk (i ) � J �

k (i )
�
� � max

j =1 ;:::;n

�
�J0(j ) � h� (j )

�
� ; 8 i

since Jk (i ) and J �
k (i ) are optimal costs for two

k-stage problems that di�er only in the terminal
cost functions, which areJ0 and h� .



RELATIVE VALUE ITERATION

� The VI method just described has two draw-
backs:

� Since typically some components ofJk di-
verge to1 or �1 , calculating limk !1 Jk (i )=k
is numerically cumbersome.

� The method will not compute a correspond-
ing di�erential cost vector h� .

� We can bypass both di�culties by subtracting
a constant from all components of the vectorJk ,
so that the di�erence, call it hk , remains bounded.

� Relative VI algorithm: Pick any state s, and
iterate according to

hk+1 (i ) = min
u2 U ( i )

2

4g(i; u ) +
nX

j =1

pij (u)hk (j )

3

5

� min
u2 U (s)

2

4g(s; u) +
nX

j =1

psj (u)hk (j )

3

5 ; 8 i

� Convergence: We can showhk ! h� (under an
extra assumption; see Vol. II).



POLICY ITERATION

� At iteration k, we have a stationary � k .

� Policy evaluation: Compute � k and hk (i ) of � k ,
using the n + 1 equations hk (n) = 0 and

� k + hk (i ) = g
�
i; � k (i )

�
+

nX

j =1

pij
�
� k (i )

�
hk (j ); 8 i

� Policy improvement: (For the � k -SSP) Find

� k+1 (i ) = arg min
u2 U ( i )

2

4g(i; u ) +
nX

j =1

pij (u)hk (j )

3

5 ; 8 i

� If � k+1 = � k and hk+1 (i ) = hk (i ) for all i , stop;
otherwise, repeat with � k+1 replacing � k .

� Result: For each k, we either have� k+1 < � k

or we have policy improvement for the� k -SSP:

� k+1 = � k ; hk+1 (i ) � hk (i ); i = 1 ; : : : ; n:

The algorithm terminates with an optimal policy.
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LECTURE OUTLINE

� Control of continuous-time Markov chains {
Semi-Markov problems

� Problem formulation { Equivalence to discrete-
time problems

� Discounted problems

� Average cost problems



CONTINUOUS-TIME MARKOV CHAINS

� Stationary system with �nite number of states
and controls

� State transitions occur at discrete times

� Control applied at these discrete times and stays
constant between transitions

� Time between transitions is random

� Cost accumulates in continuous time(may also
be incurred at the time of transition)

� Example: Admission control in a system with
restricted capacity (e.g., a communication link)

� Customer arrivals: a Poisson process

� Customers entering the system, depart after
exponentially distributed time

� Upon arrival we must decide whether to ad-
mit or to block a customer

� There is a cost for blocking a customer

� For each customer that is in the system, there
is a customer-dependent reward per unit time

� Minimize time-discounted or average cost



PROBLEM FORMULATION

� x(t) and u(t): State and control at time t

� tk : Time of kth transition ( t0 = 0)

� xk = x(tk ); x(t) = xk for tk � t < t k+1 .

� uk = u(tk ); u(t) = uk for tk � t < t k+1 .

� No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij (�; u ) = P f tk +1 � tk � �; x k +1 = j j xk = i; u k = ug

� Two important formulas:

(1) Transition probabilities are speci�ed by

pij (u) = P f xk +1 = j j xk = i; u k = ug = lim
� !1

Qij (�; u )

(2) The Cumulative Distribution Function (CDF)
of � given i; j; u is (assumingpij (u) > 0)

Pf tk+1 � tk � � j xk = i; x k+1 = j; u k = ug =
Qij (�; u )

pij (u)

Thus, Qij (�; u ) can be viewed as a \scaled CDF"



EXPONENTIAL TRANSITION DISTRIBUTIONS

� Important example of transition distributions:

Qij (�; u ) = pij (u)
�
1 � e� � i (u ) �

�
;

wherepij (u) are transition probabilities, and � i (u)
is called the transition rate at state i .

� Interpretation: If the system is in state i and
control u is applied

� the next state will be j with probability pij (u)

� the time between the transition to state i
and the transition to the next state j is ex-
ponentially distributed with parameter � i (u)
(independently of j ):

Pf transition time interval > � j i; u g = e� � i (u ) �

� The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the current state).

� Without the memoryless property, the Markov
property holds only at the times of transition.



COST STRUCTURES

� There is costg(i; u ) per unit time, i.e.

g(i; u )dt = the cost incurred in time dt

� There may be an extra \instantaneous" cost
ĝ(i; u ) at the time of a transition (let's ignore this
for the moment)

� Total discounted cost of � = f � 0; � 1; : : :g start-
ing from state i (with discount factor � > 0)

lim
N !1

E

(
N � 1X

k =0

Z t k +1

t k

e� �t g
�
xk ; � k (xk )

�
dt

�
�
� x0 = i

)

� Average cost per unit time

lim
N !1

1
E f tN g

E

(
N � 1X

k =0

Z t k +1

t k

g
�
xk ; � k (xk )

�
dt

�
�
� x0 = i

)

� We will see that both problems have equivalent
discrete-time versions.



DISCOUNTED CASE - COST CALCULATION

� For a policy � = f � 0; � 1; : : :g, write

J � (i ) = E f 1st transition cost g+ E f e� �� J � 1 (j ) j i; � 0(i )g

whereE f 1st transition costg = E
� R�

0 e� �t g(i; � 0(i ))dt
	

and J � 1 (j ) is the cost-to-go of � 1 = f � 1; � 2; : : :g

� We calculate the two costs in the RHS. The
Ef 1st transition costg, if u is applied at state i , is

G(i; u ) = E j

�
E � f 1st transition cost j j g

	

=

nX

j =1

pij (u)

Z 1

0

� Z �

0

e� �t g(i; u )dt

�
dQij (�; u )

pij (u)

= g(i; u )

nX

j =1

Z 1

0

1 � e� ��

�
dQij (�; u )

� Thus the E f 1st transition costg is

G
�
i; � 0(i )

�
= g

�
i; � 0(i )

� nX

j =1

Z 1

0

1 � e� ��

�
dQij

�
�; � 0(i )

�

(The summation term can be viewed as a \dis-
counted length of the transition interval t1 � t0".)



COST CALCULATION (CONTINUED)

� Also the expected (discounted) cost from the
next state j is

E
�

e� �� J � 1 (j ) j i; � 0(i )
	

= E j
�

E f e� �� j i; � 0(i ); j gJ � 1 (j ) j i; � 0(i )
	

=
nX

j =1

pij (� 0(i ))
� Z 1

0
e� ��

dQij (�; � 0(i ))
pij (� 0(i ))

�
J � 1 (j )

=
nX

j =1

mij
�
� 0(i )

�
J � 1 (j )

where mij (u) is given by

m ij (u) =

Z 1

0

e� �� dQij (�; u )

�
<

Z 1

0

dQij (�; u ) = pij (u)

�

and can be viewed as the \e�ective discount fac-
tor" [the analog of �p ij (u) in discrete-time case].

� So J � (i ) can be written as

J � (i ) = G
�
i; � 0(i )

�
+

nX

j =1

mij
�
� 0(i )

�
J � 1 (j )

i.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.



COST CALCULATION (CONTINUED)

� Also the expected (discounted) cost from the
next state j is

E
�

e� �� J � 1 (j ) j i; � 0(i )
	

= E j
�

E f e� �� j i; � 0(i ); j gJ � 1 (j ) j i; � 0(i )
	

=
nX

j =1

pij (� 0(i ))
� Z 1

0
e� ��

dQij (�; � 0(i ))
pij (� 0(i ))

�
J � 1 (j )

=
nX

j =1

mij
�
� 0(i )

�
J � 1 (j )

where mij (u) is given by

m ij (u) =

Z 1

0

e� �� dQij (�; u )

�
<

Z 1

0

dQij (�; u ) = pij (u)

�

and can be viewed as the\e�ective discount fac-
tor" [the analog of �p ij (u) in discrete-time case].

� So J � (i ) can be written as

J � (i ) = G
�
i; � 0(i )

�
+

nX

j =1

mij
�
� 0(i )

�
J � 1 (j )

i.e., the (continuous-time discounted) cost of 1st
period, plus the (continuous-time discounted) cost-
to-go from the next state.



EQUIVALENCE TO AN SSP

� Similar to the discrete-time case, introduce an
\equivalent" stochastic shortest path problem with
an arti�cial termination state t

� Under control u, from state i the system moves
to state j with probability mij (u) and to the ter-
mination state t with probability 1 �

P n
j =1 mij (u)

� Bellman's equation: For i = 1 ; : : : ; n,

J � (i ) = min
u2 U ( i )

2

4G(i; u ) +
nX

j =1

mij (u)J � (j )

3

5

� Analogs of value iteration, policy iteration, and
linear programming.

� If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost ^g(i; u ),
Bellman's equation becomes

J � (i ) = min
u2 U ( i )

2

4ĝ(i; u ) + G(i; u ) +
nX

j =1

mij (u)J � (j )

3

5



MANUFACTURER'S EXAMPLE REVISITED

� A manufacturer receives orders with interarrival
times uniformly distributed in [0 ; � max ].

� He may process all un�lled orders at costK > 0,
or process none. The cost per unit time of an
un�lled order is c. Max number of un�lled orders
is n.

� The nonzero transition distributions are

Qi 1(�; Fill) = Qi ( i +1) (�; Not Fill) = min
�
1;

�
� max

�

� The one-stage expected costG is

G(i; Fill) = 0 ; G(i; Not Fill) = 
 c i;

where


 =
nX

j =1

Z 1

0

1 � e� ��

�
dQij (�; u ) =

Z � max

0

1 � e� ��

�� max
d�

� There is an \instantaneous" cost

ĝ(i; Fill) = K; ĝ(i; Not Fill) = 0



MANUFACTURER'S EXAMPLE CONTINUED

� The \e�ective discount factors" mij (u) in Bell-
man's Equation are

mi 1(Fill) = mi ( i +1) (Not Fill) = �;

where

� =

Z 1

0

e� �� dQij (�; u ) =

Z � max

0

e� ��

� max
d� =

1 � e� �� max

�� max

� Bellman's equation has the form

J � (i ) = min
�
K + �J � (1); 
ci + �J � (i+1)

�
; i = 1 ; 2; : : :

� As in the discrete-time case, we can conclude
that there exists an optimal threshold i � :

�ll the orders < == > their number i exceedsi �



AVERAGE COST

� Minimize limN !1
1

E f t N g E
nRt N

0 g
�
x(t); u(t)

�
dt

o

assuming there is a special state that is \recurrent
under all policies"

� Total expected cost of a transition

G(i; u ) = g(i; u )� i (u);

where � i (u): Expected transition time.

� We apply the SSP argument used for the discrete-
time case.

� Divide trajectory into cycles marked by suc-
cessive visits ton.

� The cost at (i; u ) is G(i; u ) � � � � i (u), where
� � is the optimal expected cost per unit time.

� Each cycle is viewed as a state trajectory of
a corresponding SSP problem with the ter-
mination state being essentiallyn.

� So Bellman's Eq. for the average cost problem:

h� (i ) = min
u2 U ( i )

2

4G(i; u ) � � � � i (u) +
nX

j =1

pij (u)h� (j )

3

5



MANUFACTURER EXAMPLE/AVERAGE COST

� The expected transition times are

� i (Fill) = � i (Not Fill) =
� max

2

the expected transition cost is

G(i; Fill) = 0 ; G(i; Not Fill) =
c i � max

2

and there is also the \instantaneous" cost

ĝ(i; Fill) = K; ĝ(i; Not Fill) = 0

� Bellman's equation:

h� (i ) = min
h
K � � �

� max

2
+ h� (1);

ci
� max

2
� � �

� max

2
+ h� (i + 1)

i

� Again it can be shown that a threshold policy
is optimal.
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LECTURE OUTLINE

� We start a ten-lecture sequence on advanced
in�nite horizon DP and approximation methods

� We allow in�nite state space, so the stochastic
shortest path framework cannot be used any more

� Results are rigorous assuming a �nite or count-
able disturbance space

� This includes deterministic problems with
arbitrary state space, and countable state
Markov chains

� Otherwise the mathematics of measure the-
ory make analysis di�cult, although the �-
nal results are essentially the same as for �-
nite disturbance space

� We use Vol. II of the textbook, starting with
discounted problems (Ch. 1)

� The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state)



DISCOUNTED PROBLEMS/BOUNDED COST

� Stationary system with arbitrary state space

xk+1 = f (xk ; uk ; wk ); k = 0 ; 1; : : :

� Cost of a policy � = f � 0; � 1; : : :g

J � (x0) = lim
N !1

E
w k

k =0 ;1;:::

(
N � 1X

k=0

� k g
�
xk ; � k (xk ); wk

�
)

with � < 1, and for someM , we have

jg(x; u; w)j � M; 8 (x; u; w)

� We have

�
�J � (x0)

�
� � M + �M + � 2M + � � � =

M
1 � �

; 8 x0

� The \tail" of the cost J � (x0) diminishes to 0

� The limit de�ning J � (x0) exists



WE ADOPT \SHORTHAND" NOTATION

� Compact pointwise notation for functions:

� If for two functions J and J 0 we haveJ (x) =
J 0(x) for all x, we write J = J 0

� If for two functions J and J 0 we haveJ (x) �
J 0(x) for all x, we write J � J 0

� For a sequencef Jk g with Jk (x) ! J (x) for
all x, we write Jk ! J ; also J � = min � J �

� Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(T J )( x) = min
u 2 U ( x )

E
w

�
g(x; u; w ) + �J

�
f (x; u; w )

�	
; 8 x

TJ is the optimal cost function for the one-stage
problem with stage costg and terminal cost �J .

� For any stationary policy �

(T� J )( x) = E
w

�
g
�
x; � (x); w

�
+ �J

�
f (x; � (x); w)

�	
; 8 x

� For �nite-state problems:

T� J = g� + �P � J; TJ = min
�

T� J



\SHORTHAND" COMPOSITION NOTATION

� Composition notation: T2J is de�ned by (T2J )(x) =
(T(TJ))( x) for all x (similar for T k J )

� For any policy � = f � 0; � 1; : : :g and function J :

� T� 0 J is the cost function of � for the one-
stage problem with terminal cost function
�J

� T� 0 T� 1 J (i.e., T� 0 applied to T� 1 J ) is the
cost function of � for the two-stage problem
with terminal cost � 2J

� T� 0 T� 1 � � � T� N � 1 J is the cost function of �
for the N -stage problem with terminal cost
� N J

� For any function J :

� TJ is the optimal cost function of the one-
stage problem with terminal cost function
�J

� T2J (i.e., T applied to TJ) is the optimal
cost function of the two-stage problem with
terminal cost � 2J

� TN J is the optimal cost function of the N -
stage problem with terminal cost � N J



\SHORTHAND" THEORY { A SUMMARY

� Cost function expressions[with J0(x) � 0]

J � (x) = lim
k !1

(T� 0 T� 1 � � � T� k J0 )( x); J � (x) = lim
k !1

(T k
� J0 )( x)

� Bellman's equation: J � = TJ � , J � = T� J �

� Optimality condition:

� : optimal < == > T � J � = TJ �

� Value iteration: For any (bounded) J and all
x,

J � (x) = lim
k !1

(T k J )(x)

� Policy iteration: Given � k :

� Policy evaluation: Find J � k by solving

J � k = T� k J � k

� Policy improvement: Find � k+1 such that

T� k +1 J � k = TJ� k



SOME KEY PROPERTIES

� Monotonicity property: For any functions J and
J 0 such that J (x) � J 0(x) for all x, and any �

(TJ )(x) � (TJ 0)(x); 8 x;

(T� J )(x) � (T� J 0)(x); 8 x:

Also

J � TJ ) T k J � T k+1 J; 8 k

� Constant Shift property: For any J , any scalar
r , and any �

�
T(J + re)

�
(x) = ( TJ)(x) + �r; 8 x;

�
T� (J + re)

�
(x) = ( T� J )(x) + �r; 8 x;

where e is the unit function [ e(x) � 1] (holds for
most DP models).

� A third important property that holds for some
(but not all) DP models is that T and T� are con-
traction mappings (more on this later).



CONVERGENCE OF VALUE ITERATION

� If J0 � 0,

J � (x) = lim
N !1

(TN J0)(x); for all x

Proof: For any initial state x0, and policy � =
f � 0; � 1; : : :g,

J � (x0) = E

(
1X

k=0

� k g
�
xk ; � k (xk ); wk

�
)

= E

(
N � 1X

k=0

� k g
�
xk ; � k (xk ); wk

�
)

+ E

(
1X

k= N

� k g
�
xk ; � k (xk ); wk

�
)

from which

J � (x0)�
� N M
1 � �

� (T� 0 � � � T� N � 1 J0)( x0) � J � (x0)+
� N M
1 � �

;

where M � j g(x; u; w)j. Take the min over � of
both sides. Q.E.D.



BELLMAN'S EQUATION

� The optimal cost function J � satis�es Bellman's
Eq., i.e. J � = TJ � .

Proof: For all x and N ,

J � (x) �
� N M
1 � �

� (TN J0)(x) � J � (x) +
� N M
1 � �

;

where J0(x) � 0 and M � j g(x; u; w)j.

� Apply T to this relation and use Monotonicity
and Constant Shift,

(TJ � )(x) �
� N +1 M

1 � �
� (TN +1 J0)(x)

� (TJ � )(x) +
� N +1 M

1 � �

� Take limit as N ! 1 and use the fact

lim
N !1

(TN +1 J0)(x) = J � (x)

to obtain J � = TJ � . Q.E.D.



THE CONTRACTION PROPERTY

� Contraction property: For any bounded func-
tions J and J 0, and any � ,

max
x

�
�(TJ )(x) � (TJ 0)(x)

�
� � � max

x

�
�J (x) � J 0(x)

�
� ;

max
x

�
�(T� J )(x) � (T� J 0)(x)

�
� � � max

x

�
�J (x) � J 0(x)

�
� :

Proof: Denote c = max x 2 S
�
�J (x) � J 0(x)

�
� : Then

J (x) � c � J 0(x) � J (x) + c; 8 x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ )(x) � �c � (TJ 0)(x) � (TJ )(x) + �c; 8 x

Hence

�
�(TJ )(x) � (TJ 0)(x)

�
� � �c; 8 x:

Similar for T� . Q.E.D.



IMPLICATIONS OF CONTRACTION PROPERTY

� We can strengthen our earlier result:

� Bellman's equation J = TJ has a unique solu-
tion, namely J � , and for any boundedJ , we have

lim
k !1

(T k J )(x) = J � (x); 8 x

Proof: Use

max
x

�
�(T k J )(x) � J � (x)

�
� = max

x

�
�(T k J )(x) � (T k J � )(x)

�
�

� � k max
x

�
�J (x) � J � (x)

�
�

� Special Case:For each stationary � , J � is the
unique solution of J = T� J and

lim
k !1

(T k
� J )(x) = J � (x); 8 x;

for any bounded J .

� Convergence rate:For all k,

max
x

�
�(T k J )(x) � J � (x)

�
� � � k max

x

�
�J (x) � J � (x)

�
�



NEC. AND SUFFICIENT OPT. CONDITION

� A stationary policy � is optimal if and only if
� (x) attains the minimum in Bellman's equation
for each x; i.e.,

TJ � = T� J � :

Proof: If TJ � = T� J � , then using Bellman's equa-
tion ( J � = TJ � ), we have

J � = T� J � ;

so by uniqueness of the �xed point ofT� , we obtain
J � = J � ; i.e., � is optimal.

� Conversely, if the stationary policy � is optimal,
we haveJ � = J � , so

J � = T� J � :

Combining this with Bellman's equation ( J � =
TJ � ), we obtain TJ � = T� J � . Q.E.D.



COMPUTATIONAL METHODS - AN OVERVIEW

� Typically must work with a �nite-state system.
Possibly an approximation of the original system.

� Value iteration and variants

� Gauss-Seidel and asynchronous versions

� Policy iteration and variants

� Combination with (possibly asynchronous)
value iteration

� \Optimistic" policy iteration

� Linear programming

maximize
nX

i =1

J (i )

subject to J (i ) � g(i; u ) + �
nX

j =1

pij (u)J (j ); 8 (i; u )

� Versions with subspace approximation:Use in
place ofJ (i ) a low-dim. basis function representa-
tion, with state features � m (i ), m = 1 ; : : : ; s

~J (i; r ) =
sX

m =1

rm � m (i )

and modify the basic methods appropriately.



USING Q-FACTORS I

� Let the states be i = 1 ; : : : ; n. We can write
Bellman's equation as

J � (i ) = min
u2 U ( i )

Q� (i; u ) i = 1 ; : : : ; n;

where

Q� (i; u ) =
nX

j =1

pij (u)
�
g(i; u; j ) + �J � (j )

�

for all ( i; u )

� Q� (i; u ) is called the optimal Q-factor of (i; u )

� Q-factors have optimal cost interpretation in
an \augmented" problem whose states arei and
(i; u ), u 2 U(i ) - the optimal cost vector is (J � ; Q� )

� The Bellman Eq. is J � = TJ � , Q� = FQ� where

(FQ� )( i; u ) =
nX

j =1

pij (u)
�

g(i; u; j ) + � min
v2 U ( j )

Q� (j; v )
�

� It has a unique solution.



USING Q-FACTORS II

� We can equivalently write the VI method as

Jk+1 (i ) = min
u2 U ( i )

Qk+1 (i; u ); i = 1 ; : : : ; n;

where Qk+1 is generated for alli and u 2 U(i ) by

Qk+1 (i; u ) =
nX

j =1

pij (u)
�

g(i; u; j ) + � min
v2 U ( j )

Qk (j; v )
�

or Jk+1 = TJk , Qk+1 = FQk .

� Equal amount of computation ... just more
storage.

� Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

� � (i ) = min
u2 U ( i )

Q� (i; u )

� Once Q� (i; u ) are known, the model [g and
pij (u)] is not needed. Model-free operation.

� Stochastic/sampling methods can be used to
calculate (approximations of) Q� (i; u ) [not J � (i )]
with a simulator of the system.



6.231 DYNAMIC PROGRAMMING

LECTURE 15

LECTURE OUTLINE

� Review of basic theory of discounted problems

� Monotonicity and contraction properties

� Contraction mappings in DP

� Discounted problems: Countable state space
with unbounded costs

� Generalized discounted DP

� An introduction to abstract DP



DISCOUNTED PROBLEMS/BOUNDED COST

� Stationary system with arbitrary state space

xk+1 = f (xk ; uk ; wk ); k = 0 ; 1; : : :

� Cost of a policy � = f � 0; � 1; : : :g

J � (x0) = lim
N !1

E
w k

k =0 ;1;:::

(
N � 1X

k=0

� k g
�
xk ; � k (xk ); wk

�
)

with � < 1, and for someM , we havejg(x; u; w)j �
M for all ( x; u; w)

� Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(T J )( x) = min
u 2 U ( x )

E
w

�
g(x; u; w ) + �J

�
f (x; u; w )

�	
; 8 x

TJ is the optimal cost function for the one-stage
problem with stage costg and terminal cost �J .

� For any stationary policy �

(T� J )( x) = E
w

�
g
�
x; � (x); w

�
+ �J

�
f (x; � (x); w)

�	
; 8 x



\SHORTHAND" THEORY { A SUMMARY

� Cost function expressions[with J0(x) � 0]

J � (x) = lim
k !1

(T� 0 T� 1 � � � T� k J0 )( x); J � (x) = lim
k !1

(T k
� J0 )( x)

� Bellman's equation: J � = TJ � , J � = T� J �

� Optimality condition:

� : optimal < == > T � J � = TJ �

� Value iteration: For any (bounded) J and all
x:

J � (x) = lim
k !1

(T k J )(x)

� Policy iteration: Given � k ,

� Policy evaluation: Find J � k by solving

J � k = T� k J � k

� Policy improvement: Find � k+1 such that

T� k +1 J � k = TJ� k



MAJOR PROPERTIES

� Monotonicity property: For any functions J and
J 0 on the state spaceX such that J (x) � J 0(x)
for all x 2 X , and any �

(TJ )(x) � (TJ 0)(x); 8 x 2 X;

(T� J )(x) � (T� J 0)(x); 8 x 2 X:

� Contraction property: For any bounded func-
tions J and J 0, and any � ,

max
x

�
�(TJ )(x) � (TJ 0)(x)

�
� � � max

x

�
�J (x) � J 0(x)

�
� ;

max
x

�
�(T� J )(x) � (T� J 0)(x)

�
� � � max

x

�
�J (x) � J 0(x)

�
� :

� Shorthand writing of the contraction property

kTJ � TJ 0k � � kJ � J 0k; kT� J � T� J 0k � � kJ � J 0k;

where for any bounded functionJ , we denote by
kJ k the sup-norm

kJ k = max
x 2 X

�
�J (x)

�
�:



CONTRACTION MAPPINGS

� Given a real vector spaceY with a norm k � k
(see text for de�nitions).

� A function F : Y 7! Y is said to be acontraction
mapping if for some � 2 (0; 1), we have

kFy � Fzk � � ky � zk; for all y; z 2 Y:

� is called the modulus of contraction of F .

� Linear case,Y = < n : Fy = Ay + b is a con-
traction (for some norm k � k) if and only if all
eigenvalues ofA are strictly within the unit circle.

� For m > 1, we say that F is an m-stage con-
traction if F m is a contraction.

� Important example: Let X be a set (e.g., state
space in DP), v : X 7! < be a positive-valued
function. Let B (X ) be the set of all functions
J : X 7! < such that J (s)=v(s) is bounded overs.

� The weighted sup-normon B (X ):

kJ k = max
s2 X

jJ (s)j
v(s)

:

� Important special case:The discounted prob-
lem mappingsT and T� [for v(s) � 1, � = � ].



A DP-LIKE CONTRACTION MAPPING

� Let X = f 1; 2; : : :g, and let F : B (X ) 7! B (X )
be a linear mapping of the form

(FJ )( i ) = b(i ) +
X

j 2 X

a(i; j ) J (j ); 8 i

where b(i ) and a(i; j ) are some scalars. ThenF is
a contraction with modulus � if

P
j 2 X ja(i; j )j v(j )

v(i )
� �; 8 i

[Think of the special case wherea(i; j ) are the
transition probs. of a policy].

� Let F : B (X ) 7! B (X ) be the mapping

(FJ )( i ) = min
� 2 M

(F� J )( i ); 8 i

whereM is parameter set, and for each� 2 M , F�

is a contraction from B (X ) to B (X ) with modulus
� . Then F is a contraction with modulus � .



CONTRACTION MAPPING FIXED-POINT TH.

� Contraction Mapping Fixed-Point Theorem: If
F : B (X ) 7! B (X ) is a contraction with modulus
� 2 (0; 1), then there exists a uniqueJ � 2 B (X )
such that

J � = FJ � :

Furthermore, if J is any function in B (X ), then
f F k J g converges toJ � and we have

kF k J � J � k � � k kJ � J � k; k = 1 ; 2; : : : :

� Similar result if F is an m-stage contraction
mapping.

� This is a special case of a general result for
contraction mappings F : Y 7! Y over normed
vector spacesY that are complete: every sequence
f yk g that is Cauchy (satis�es kym � yn k ! 0 as
m; n ! 1 ) converges.

� The spaceB (X ) is complete [see the text (Sec-
tion 1.5) for a proof].



GENERAL FORMS OF DISCOUNTED DP

� Monotonicity assumption: If J; J 0 2 R(X ) and
J � J 0, then

H (x; u; J ) � H (x; u; J 0); 8 x 2 X; u 2 U(x)

� Contraction assumption:

� For every J 2 B (X ), the functions T� J and
TJ belong to B (X ).

� For some� 2 (0; 1) and all J; J 0 2 B (X ), H
satis�es

�
�H (x; u; J )� H (x; u; J 0)

�
� � � max

y2 X

�
�J (y)� J 0(y)

�
�

for all x 2 X and u 2 U(x).

� We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions(with identical proofs!)

� With just the monotonicity assumption (as in
shortest path problem) we can still show various
forms of the basic results under appropriate as-
sumptions (like in the SSP problem)



EXAMPLES

� Discounted problems

H (x; u; J ) = E
�

g(x; u; w) + �J
�
f (x; u; w)

�	

� Discounted Semi-Markov Problems

H (x; u; J ) = G(x; u) +
nX

y=1

mxy (u)J (y)

where mxy are \discounted" transition probabili-
ties, de�ned by the transition distributions

� Deterministic Shortest Path Problems

H (x; u; J ) =
�

axu + J (u) if u 6= t,
axt if u = t

where t is the destination

� Minimax Problems

H (x; u; J ) = max
w2 W (x;u )

�
g(x; u; w)+ �J

�
f (x; u; w)

��



RESULTS USING CONTRACTION

� The mappings T� and T are sup-norm contrac-
tion mappings with modulus � over B (X ), and
have unique �xed points in B (X ), denoted J � and
J � , respectively (cf. Bellman's equation). Proof :
From contraction assumption and �xed point Th.

� For any J 2 B (X ) and � 2 M ,

lim
k !1

T k
� J = J � ; lim

k !1
T k J = J �

(cf. convergence of value iteration). Proof : From
contraction property of T� and T.

� We have T� J � = TJ � if and only if J � = J �

(cf. optimality condition ). Proof : T� J � = TJ � ,
then T� J � = J � , implying J � = J � . Conversely,
if J � = J � , then T� J � = T� J � = J � = J � = TJ � .

� Useful bound for J � : For all J 2 B (X ), � 2 M

kJ � � J k �
kT� J � J k

1 � �

Proof: Take limit as k ! 1 in the relation

kT k
� J � J k �

kX

` =1

kT `
� J � T ` � 1

� J k � k T� J � J k
kX

` =1

� ` � 1



RESULTS USING MON. AND CONTRACTION I

� Existence of a nearly optimal policy: For every
� > 0, there exists� � 2 M such that

J � (x) � J � � (x) � J � (x) + �v (x); 8 x 2 X

Proof: For all � 2 M , we haveJ � = TJ � � T� J � .
By monotonicity, J � � T k+1

� J � � T k
� J � for all k.

Taking limit as k ! 1 , we obtain J � � J � .
Also, choose� � 2 M such that for all x 2 X ,

kT� � J � � J � k =



 (T� � J � )(x)� (TJ � )(x)




 � � (1� � )

From the earlier error bound, we have

kJ � � J � k �
kT� J � � J � k

1 � �
; 8 � 2 M

Combining the preceding two relations,

�
�J � � (x) � J � (x)

�
�

v(x)
�

� (1 � � )
1 � �

= �; 8 x 2 X

� Optimality of J � over stationary policies:

J � (x) = min
� 2M

J � (x); 8 x 2 X

Proof: Take � # 0 in the preceding result.



RESULTS USING MON. AND CONTRACTION II

� Nonstationary policies: Consider the set � of
all sequences� = f � 0; � 1; : : :g with � k 2 M for
all k, and de�ne for any J 2 B (X )

J � (x) = lim sup
k !1

(T� 0 T� 1 � � � T� k J )(x); 8 x 2 X;

(the choice of J does not matter because of the
contraction property).

� Optimality of J � over nonstationary policies:

J � (x) = min
� 2 �

J � (x); 8 x 2 X

Proof: Use our earlier existence result to show
that for any � > 0, there is � � such that kJ � � �
J � k � � (1 � � ). We have

J � (x) = min
� 2M

J � (x) � min
� 2 �

J � (x)

Also
T k J � T� 0 � � � T� k � 1 J

Take limit as k ! 1 to obtain J � J � for all
� 2 �.
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� Review of computational theory of discounted
problems

� Value iteration (VI), policy iteration (PI)

� Optimistic PI

� Computational methods for generalized dis-
counted DP

� Asynchronous algorithms



DISCOUNTED PROBLEMS

� Stationary system with arbitrary state space

xk+1 = f (xk ; uk ; wk ); k = 0 ; 1; : : :

� Bounded g. Cost of a policy � = f � 0; � 1; : : :g

J � (x0) = lim
N !1

E
w k

k =0 ;1;:::

(
N � 1X

k=0

� k g
�
xk ; � k (xk ); wk

�
)

� Shorthand notation for DP mappings (n-state
Markov chain case)

(TJ)(x) = min
u2 U (x )

E
�

g(x; u; w)+ �J
�
f (x; u; w)

�	
; 8 x

TJ is the optimal cost function for the one-stage
problem with stage costg and terminal cost �J .

� For any stationary policy �

(T� J )(x) = E
�

g(x; � (x); w)+ �J
�
f (x; � (x); w)

�	
; 8 x

Note: T� is linear [in short T� J = P� (g� + �J )].



\SHORTHAND" THEORY { A SUMMARY

� Cost function expressions(with J0 � 0)

J � = lim
k !1

T� 0 T� 1 � � � T� k J0 ; J � = lim
k !1

T k
� J0

� Bellman's equation: J � = TJ � , J � = T� J �

� Optimality condition:

� : optimal < == > T � J � = TJ �

� Contraction: kTJ1 � TJ2k � � kJ1 � J2k

� Value iteration: For any (bounded) J

J � = lim
k !1

T k J

� Policy iteration: Given � k ,

� Policy evaluation: Find J � k by solving

J � k = T� k J � k

� Policy improvement: Find � k+1 such that

T� k +1 J � k = TJ� k



INTERPRETATION OF VI AND PI
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VI AND PI METHODS FOR Q-LEARNING

� We can write Bellman's equation as

J � (i ) = min
u2 U ( i )

Q� (i; u ) i = 1 ; : : : ; n;

where Q� is the vector of optimal Q-factors

Q� (i; u ) =
nX

j =1

pij (u)
�
g(i; u; j ) + �J � (j )

�

� VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs.

� They require equal amount of computation ...
they just need more storage.

� For example, we can write the VI method as

Jk+1 (i ) = min
u2 U ( i )

Qk+1 (i; u ); i = 1 ; : : : ; n;

where Qk+1 is generated for alli and u 2 U(i ) by

Qk+1 (i; u ) =
nX

j =1

pij (u)
�

g(i; u; j ) + � min
v2 U ( j )

Qk (j; v )
�



APPROXIMATE PI

� Suppose that the policy evaluation is approxi-
mate, according to,

max
x

jJk (x) � J � k (x)j � �; k = 0 ; 1; : : :

and policy improvement is approximate, according
to,

max
x

j(T� k +1 Jk )(x)� (TJk )(x)j � �; k = 0 ; 1; : : :

where � and � are some positive scalars.

� Error Bound: The sequencef � k g generated by
approximate policy iteration satis�es

lim sup
k !1

max
x 2 S

�
J � k (x) � J � (x)

�
�

� + 2 ��
(1 � � )2

� Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J � k oscillate within a neighborhood of J � .



OPTIMISTIC PI

� This is PI, where policy evaluation is carried
out by a �nite number of VI

� Shorthand de�nition: For some integersmk

T� k Jk = TJk ; Jk+1 = Tm k
� k Jk ; k = 0 ; 1; : : :

� If mk � 1 it becomes VI

� If mk = 1 it becomes PI

� For intermediate values ofmk , it is generally
more e�cient than either VI or PI
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EXTENSIONS TO GENERALIZED DISC. DP

� All the preceding VI and PI methods extend to
generalized/abstract discounted DP.

� Summary: For a mapping H : X � U � R(X ) 7!
< , consider

(TJ )(x) = min
u2 U (x )

H (x; u; J ); 8 x 2 X:

(T� J )(x) = H
�
x; � (x); J

�
; 8 x 2 X:

� We want to �nd J � such that

J � (x) = min
u2 U (x )

H (x; u; J � ); 8 x 2 X

and a � � such that T� � J � = TJ � .

� Discounted, Discounted Semi-Markov, Minimax

H (x; u; J ) = E
�

g(x; u; w) + �J
�
f (x; u; w)

�	

H (x; u; J ) = G(x; u) +
nX

y=1

mxy (u)J (y)

H (x; u; J ) = max
w2 W (x;u )

�
g(x; u; w)+ �J

�
f (x; u; w)

��



ASSUMPTIONS AND RESULTS

� Monotonicity assumption: If J; J 0 2 R(X ) and
J � J 0, then

H (x; u; J ) � H (x; u; J 0); 8 x 2 X; u 2 U(x)

� Contraction assumption:

� For every J 2 B (X ), the functions T� J and
TJ belong to B (X ).

� For some� 2 (0; 1) and all J; J 0 2 B (X ), H
satis�es

�
�H (x; u; J )� H (x; u; J 0)

�
� � � max

y2 X

�
�J (y)� J 0(y)

�
�

for all x 2 X and u 2 U(x).

� Standard algorithmic results extend:

� Generalized VI converges toJ � , the unique
�xed point of T

� Generalized PI and optimistic PI generate
f � k g such that

lim
k !1

kJ � k � J � k = 0 ; lim
k !1

kJk � J � k = 0

� Analytical Approach : Start with a problem,
match it with an H , invoke the general results.



ASYNCHRONOUS ALGORITHMS

� Motivation for asynchronous algorithms

� Faster convergence

� Parallel and distributed computation

� Simulation-based implementations

� General framework: Partition X into disjoint
nonempty subsetsX 1; : : : ; X m , and use separate
processor` updating J (x) for x 2 X ` .

� Let J be partitioned as J = ( J1; : : : ; Jm ); where
J` is the restriction of J on the set X ` .

� Synchronous algorithm: Processor` updates J
for the states x 2 X ` at all times t,

J t +1
` (x) = T(J t

1; : : : ; J t
m )(x); x 2 X ` ; ` = 1 ; : : : ; m

� Asynchronous algorithm: Processor` updates
J for the states x 2 X ` only at a subset of times
R ` ,

J t +1
` (x) =

�
T

�
J � ` 1 ( t )

1 ; : : : ; J � `m ( t )
m

�
(x) if t 2 R ` ,

J t
` (x) if t =2 R `

where t � � `j (t) are communication \delays"



ONE-STATE-AT-A-TIME ITERATIONS

� Important special case:Assume n \states", a
separate processor for each state, and no delays

� Generate a sequence of statesf x0; x1; : : :g, gen-
erated in some way, possibly by simulation (each
state is generated in�nitely often)

� Asynchronous VI: Change any one component
of J t at time t, the one that corresponds tox t :

J t +1 (`) =
�

T
�
J t (1); : : : ; J t (n)

�
(`) if ` = x t ,

J t (`) if ` 6= x t ,

� The special case where

f x0; x1; : : :g = f 1; : : : ; n; 1; : : : ; n; 1; : : :g

is the Gauss-Seidel method

� More generally, the components used at timet
are delayed byt � � `j (t)

� Flexible in terms of timing and \location" of
the iterations

� We can show that J t ! J � under assumptions
typically satis�ed in DP



ASYNCHRONOUS CONV. THEOREM I

� Assume that for all `; j = 1 ; : : : ; m, the set of
times R ` is in�nite and lim t !1 � `j (t) = 1

� Proposition: Let T have a unique �xed point J � ,
and assume that there is a sequence of nonempty
subsets

�
S(k)

	
� R(X ) with S(k + 1) � S(k) for

all k, and with the following properties:

(1) Synchronous Convergence Condition:Ev-
ery sequencef J k g with J k 2 S(k) for each
k, converges pointwise toJ � . Moreover, we
have

TJ 2 S(k+1) ; 8 J 2 S(k); k = 0 ; 1; : : : :

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k) � � � � � Sm (k);

where S` (k) is a set of real-valued functions
on X ` , ` = 1 ; : : : ; m.

Then for every J 2 S(0), the sequencef J t g gen-
erated by the asynchronous algorithm converges
pointwise to J � .



ASYNCHRONOUS CONV. THEOREM II

� Interpretation of assumptions:

! !"#
!"# ! ! " #

! ! "" # $! ! "# ! !

! ! ! " ! ! " ! " #

! ! !"#

!"# ! ! !"# ! "

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

� Convergence mechanism:

! !"#
!"# ! ! " #

! ! "" # $! ! "# ! !

! ! ! " ! ! " ! " #

! ! !"#$%"&'()

!"#$%"&'()! ! !"#$%"&'(

Key: \Independent" component-wise improvement.
An asynchronous component iteration from anyJ
in S(k) moves into the corresponding component
portion of S(k + 1) permanently!



PRINCIPAL DP APPLICATIONS

� The assumptions of the asynchronous conver-
gence theorem are satis�ed in two principal cases:

� When T is a (weighted) sup-norm contrac-
tion.

� When T is monotone and the Bellman equa-
tion J = TJ has a unique solution.

� The theorem can be applied also to convergence
of asynchronous optimistic PI for:

� Discounted problems (Section 2.6.2 of the
text).

� SSP problems (Section 3.5 of the text).

� There are variants of the theorem that can be
applied in the presence of special structure.

� Asynchronous convergence ideas also underlie
stochastic VI algorithms like Q-learning.
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� Undiscounted problems

� Stochastic shortest path problems (SSP)

� Proper and improper policies

� Analysis and computational methods for SSP

� Pathologies of SSP

� SSP under weak conditions



UNDISCOUNTED PROBLEMS

� System: xk+1 = f (xk ; uk ; wk )

� Cost of a policy � = f � 0; � 1; : : :g

J � (x0) = lim sup
N !1

E
w k

k =0 ;1;:::

(
N � 1X

k=0

g
�
xk ; � k (xk ); wk

�
)

Note that J � (x0) and J � (x0) can be +1 or �1

� Shorthand notation for DP mappings

(T J )( x) = min
u 2 U ( x )

E
w

�
g(x; u; w ) + J

�
f (x; u; w )

�	
; 8 x

(T� J )( x) = E
w

�
g
�
x; � (x); w

�
+ J

�
f (x; � (x); w)

�	
; 8 x

� T and T� need not be contractions in general,
but their monotonicity is helpful (see Ch. 4, Vol.
II of text for an analysis).

� SSP problems provide a \soft boundary" be-
tween the easy �nite-state discounted problems
and the hard undiscounted problems.

� They share features of both.

� Some nice theory is recovered thanks to the
termination state, and special conditions.



SSP THEORY SUMMARY I

� As before, we have a cost-free term. statet, a
�nite number of states 1; : : : ; n, and �nite number
of controls.

� Mappings T and T� (modi�ed to account for
termination state t). For all i = 1 ; : : : ; n:

(T� J )( i ) = g
�
i; � (i )

�
+

nX

j =1

pij
�
� (i )

�
J (j );

(TJ )( i ) = min
u2 U ( i )

2

4g(i; u ) +
nX

j =1

pij (u)J (j )

3

5 ;

or T� J = g� + P� J and TJ = min � [g� + P� J ].

� De�nition: A stationary policy � is calledproper,
if under � , from every state i , there is a positive
probability path that leads to t.

� Important fact: (To be shown) If � is proper,
T� is contraction w. r. t. some weighted sup-norm

max
i

1
vi

j(T� J )( i )� (T� J 0)( i )j � � � max
i

1
vi

jJ (i )� J 0(i )j

� T is similarly a contraction if all � are proper
(the case discussed in the text, Ch. 7, Vol. I).



SSP THEORY SUMMARY II

� The theory can be pushed one step further.
Instead of all policies being proper, assume that:

(a) There exists at least one proper policy

(b) For each improper � , J � (i ) = 1 for somei

� Example: Deterministic shortest path problem
with a single destination t.

� States < = > nodes; Controls < = > arcs

� Termination state < = > the destination

� Assumption (a) < = > every node is con-
nected to the destination

� Assumption (b) < = > all cycle costs> 0

� Note that T is not necessarily a contraction.

� The theory in summary is as follows:

� J � is the unique solution of Bellman's Eq.

� � � is optimal if and only if T� � J � = TJ �

� VI converges: T k J ! J � for all J 2 < n

� PI terminates with an optimal policy, if started
with a proper policy



SSP ANALYSIS I

� For a proper policy � , J � is the unique �xed
point of T� , and T k

� J ! J � for all J (holds by the
theory of Vol. I, Section 7.2)

� Key Fact: A � satisfying J � T� J for some
J 2 < n must be proper - true because

J � T k
� J = P k

� J +
k � 1X

m =0

Pm
� g�

since J � =
P 1

m =0 Pm
� g� and some component of

the term on the right blows up as k ! 1 if � is
improper (by our assumptions).

� Consequence:T can have at most one �xed
point within < n .

Proof: If J and J 0 are two �xed points, select �
and � 0 such that J = TJ = T� J and J 0 = TJ 0 =
T� 0J 0. By preceding assertion,� and � 0 must be
proper, and J = J � and J 0 = J � 0. Also

J = T k J � T k
� 0J ! J � 0 = J 0

Similarly, J 0 � J , so J = J 0.



SSP ANALYSIS II

� We �rst show that T has a �xed point, and also
that PI converges to it.

� Use PI. Generate a sequence of proper policies
f � k g starting from a proper policy � 0.

� � 1 is proper and J � 0 � J � 1 since

J � 0 = T� 0 J � 0 � TJ� 0 = T� 1 J � 0 � T k
� 1 J � 0 � J � 1

� Thus f J � k g is nonincreasing, some policy �� is
repeated andJ �� = TJ �� . SoJ �� is �xed point of T.

� Next show that T k J ! J �� for all J , i.e., VI
converges to the same limit as PI. (Sketch: True
if J = J �� , argue using the properness of �� to show
that the terminal cost di�erence J � J �� does not
matter.)

� To show J �� = J � , for any � = f � 0; � 1; : : :g

T� 0 � � � T� k � 1 J0 � T k J0;

where J0 � 0. Take lim sup ask ! 1 , to obtain
J � � J �� ; so �� is optimal and J �� = J � .



SSP ANALYSIS III

� Contraction Property: If all policies are proper
(cf. Section 7.1, Vol. I), T� and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to � 1.
Let Ĵ be the corresponding optimal cost vector.
For all � ,

Ĵ (i ) = � 1+ min
u 2 U ( i )

nX

j =1

pij (u)Ĵ (j ) � � 1+
nX

j =1

pij

�
� (i )

�
Ĵ (j )

For vi = � Ĵ (i ); we havevi � 1, and for all � ,

nX

j =1

pij
�
� (i )

�
vj � vi � 1 � � v i ; i = 1 ; : : : ; n;

where
� = max

i =1 ;:::;n

vi � 1
vi

< 1:

This implies T� and T are contractions of modu-
lus � for norm kJ k = max i =1 ;:::;n jJ (i )j=vi (by the
results of earlier lectures).



SSP ALGORITHMS

� All the basic algorithms have counterparts un-
der our assumptions; see the text (Ch. 3, Vol. II)

� \Easy" case: All policies proper, in which case
the mappings T and T� are contractions

� Even with improper (in�nite cost) policies all
basic algorithms have satisfactory counterparts

� VI and PI

� Optimistic PI

� Asynchronous VI

� Asynchronous PI

� Q-learning analogs

� ** THE BOUNDARY OF NICE THEORY **

� Serious complications arise under any one of the
following:

� There is no proper policy

� There is improper policy with �nite cost 8 i

� The state space is in�nite and/or the control
space is in�nite [in�nite but compact U(i )
can be dealt with]



PATHOLOGIES I: DETERM. SHORTEST PATHS

! ! " ! " ! "

! " !"#$%&'$%(&

! " # $! ! "#$% &

! ! "#$%"

� Two policies, one proper (apply u), one im-
proper (apply u0)

� Bellman's equation is

J (1) = min
�
J (1); b]

Set of solutions is (�1 ; b].

� Caseb > 0, J � = 0: VI does not converge to
J � except if started from J � . PI may get stuck
starting from the inferior proper policy

� Case b < 0, J � = b: VI converges to J � if
started above J � , but not if started below J � . PI
can oscillate(if started with u0 it generatesu, and
if started with u it can generateu0)



PATHOLOGIES II: BLACKMAILER'S DILEMMA

� Two states, state 1 and the termination state t.

� At state 1, choose u 2 (0; 1] (the blackmail
amount demanded) at a cost� u, and move to t
with prob. u2, or stay in 1 with prob. 1 � u2.

� Every stationary policy is proper, but the con-
trol set in not �nite (also not compact).

� For any stationary � with � (1) = u, we have

J � (1) = � u + (1 � u2)J � (1)

from which J � (1) = � 1
u

� Thus J � (1) = �1 , and there is no optimal
stationary policy.

� A nonstationary policy is optimal: demand
� k (1) = 
= (k + 1) at time k, with 
 2 (0; 1=2).

� Blackmailer requests diminishing amounts over
time, which add to 1 .

� The probability of the victim's refusal dimin-
ishes at a much faster rate, so the probabil-
ity that the victim stays forever compliant is
strictly positive.



SSP UNDER WEAK CONDITIONS I

� Assume there exists a proper policy, andJ � is
real-valued. Let

Ĵ (i ) = min
� : proper

J � (i ); i = 1 ; : : : ; n

Note that we may have Ĵ 6= J � [i.e., Ĵ (i ) 6= J � (i )
for somei ].

� It can be shown that Ĵ is the unique solution
of Bellman's equation within the set f J j J � Ĵ g

� Also VI converges toĴ starting from any J � Ĵ

� The analysis is based on the� -perturbed prob-
lem: adding a small � > 0 to g. Then:

� All improper policies have in�nite cost for
some states in the� -perturbed problem

� All proper policies have an additional O(� )
cost for all states

� The optimal cost J �
� of the � -perturbed prob-

lem converges toĴ as � # 0

� There is also a PI method that generates a
sequencef � k g with J � k ! Ĵ . Uses sequence� k #
0, and policy evaluation based on the� k -perturbed
problems with � k # 0.



SSP UNDER WEAK CONDITIONS II

� J � need not be a solution of Bellman's equation!
Also J � for an improper policy � .

! "#$% &

! " !"#$%&'$%(&

! " # $ % &

! " # $ % &

! " # $ % &

! " # $ % &

! " # $ % &

! !"#$ % !"#$

! "#$% !

! "#$% ! ! !"#$ ! % !"#$ %

! !"#$ ! % !"#$ %!"#$ % !"#$ & !"#$!"#$ % !"#$ & !"#$ ! & !"#$

! " # $ % & ' (

! " # $ % & ' (

!"#$%! ! !"#$% &! !

! " ! "

� For p = 1=2, we have

J � (1) = 0 ; J � (2) = J � (5) = 1 ; J � (3) = J � (7) = 0 ; J � (4) = J � (6) = 2 ;

Bellman Eq. at state 1, J � (1) = 1
2

�
J � (2)+ J � (5)

�
;

is violated.

� References: Bertsekas, D. P., and Yu, H., 2015.
\Stochastic Shortest Path Problems Under Weak
Conditions," Report LIDS-2909; Math. of OR, to
appear. Also the on-line updated Ch. 4 of the
text.



6.231 DYNAMIC PROGRAMMING

LECTURE 18

LECTURE OUTLINE

� Undiscounted total cost problems

� Positive and negative cost problems

� Deterministic optimal cost problems

� Adaptive (linear quadratic) DP

� A�ne monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. II of the text:

Noncontractive Total Cost Problems

On-line at:

http://web.mit.edu/dimitrib/www/dpchapter.html

Check for most recent version



CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

� In�nite horizon total cost DP theory divides in

� \Easy" problems where the results one ex-
pects hold (uniqueness of solution of Bell-
man Eq., convergence of PI and VI, etc)

� \Di�cult" problems where one of more of
these results do not hold

� \Easy" problems are characterized by the pres-
ence of strong contraction properties in the asso-
ciated algorithmic maps T and T�

� A typical example of an \easy" problem is dis-
counted problems with bounded cost per stage
(Chs. 1 and 2 of Voll. II) and some with unbounded
cost per stage (Section 1.5 of Voll. II)

� Another is semicontractive problems, where T�

is a contraction for some � but is not for other
� , and assumptions are imposed that exclude the
\ill-behaved" � from optimality

� A typical example is SSP where the improper
policies are assumed to have in�nite cost for some
initial states (Chapter 3 of Vol. II)

� In this lecture we go into \di�cult" problems



UNDISCOUNTED TOTAL COST PROBLEMS

� Beyond problems with strong contraction prop-
erties. One or more of the following hold:

� No termination state assumed

� In�nite state and control spaces

� Either no discounting, or discounting and
unbounded costper stage

� Risk-sensitivity /exotic cost functions (e.g.,
SSP problems with exponentiated cost)

� Important classes of problems

� SSP under weak conditions(e.g., the previ-
ous lecture)

� Positive cost problems (control/regulation,
robotics, inventory control)

� Negative costproblems (maximization of pos-
itive rewards - investment, gambling, �nance)

� Deterministic positive cost problems - Adap-
tive DP

� A variety of in�nite-state problems in queue-
ing, optimal stopping, etc

� A�ne monotonic and risk-sensitive problems
(a generalization of SSP)



POS. AND NEG. COST - FORMULATION

� System xk+1 = f (xk ; uk ; wk ) and cost

J � (x0) = lim
N !1

E
w k

k =0 ;1;:::

(
N � 1X

k=0

� k g
�
xk ; � k (xk ); wk

�
)

Discount factor � 2 (0; 1], but g may be unbounded

� Case P: g(x; u; w) � 0 for all (x; u; w)

� Case N: g(x; u; w) � 0 for all (x; u; w)

� Summary of analytical results:

� Many of the strong results for discounted
and SSP problems fail

� Analysis more complex; need to allow forJ �

and J * to take values +1 (under P) or �1
(under N)

� However, J * is a solution of Bellman's Eq.
(typically nonunique)

� Opt. conditions: � is optimal if and only if
T� J * = TJ * (P) or if T� J � = TJ� (N)



SUMMARY OF ALGORITHMIC RESULTS

� Neither VI nor PI are guaranteed to work

� Behavior of VI

� P: T k J ! J * for all J with 0 � J � J * , if
U(x) is �nite (or compact plus more condi-
tions - see the text)

� N: T k J ! J * for all J with J * � J � 0

� Behavior of PI

� P: J � k is monotonically nonincreasing but
may get stuck at a nonoptimal policy

� N: J � k may oscillate (but an optimistic form
of PI converges toJ * - see the text)

� These anomalies may bemitigated to a greater
or lesser extent by exploiting special structure, e.g.

� Presence of a termination state

� Proper/improper policy structure in SSP

� Finite-state problems under P can be trans-
formed to equivalent SSP problemsby merging
(with a simple algorithm) all states x with J * (x) =
0 into a termination state. They can then be
solved using the powerful SSP methodology (see
updated Ch. 4, Section 4.1.4)



EXAMPLE FROM THE PREVIOUS LECTURE

� This is essentially a shortest path example with
termination state t

! ! " ! " ! "

! " # $! ! "#$% &

! ! "#$%"

! "#$% &

!! "#$% & "#$% ' ! "#$% & "#$% '

!"##$%& '() *+#,-.+&/
!"##$%& '() *+#,-.+&/

!"##$%& '() *+#,-.+&/
!"##$%& '() *+#,-.+&/

! ! ! ! "# "#$!" ! ! ! # ! ! # $! "!"

!" ! ! # $"#!" !" ! ! # ! ! # $"#!"!" ! #$" !" ! #$"

!"# ! ! "# $%&' ( $%&' ) !"# ! ! "# $%&' ( $%&' )

!" #$%&# '$! ! !" #$%&'''()*$ +*),**- ! (-. ! !

!" #$%&' '($)(%*+ #),- !" #$%&' '($)(%*+ #),-
! !"# !$ %" ! !## $ % ! !"# " ! ! !"## !!$# $ %

� Bellman Equation:

J (1) = min
�
J (1); b+ J (t)]; J (t) = J (t)



DETERM. OPT. CONTROL - FORMULATION

� System: xk+1 = f (xk ; uk ), arbitrary state and
control spacesX and U

� Cost positivity: 0 � g(x; u), 8 x 2 X; u 2 U(x)

� No discounting:

J � (x0) = lim
N !1

N � 1X

k=0

g
�
xk ; � k (xk )

�

� \Goal set of states" X 0

� All x 2 X 0 are cost-free and absorbing

� A shortest path-type problem, but with possibly
in�nite number of states

� A common formulation of control/regulation
and planning/robotics problems

� Example: Linear system, quadratic cost (possi-
bly with state and control constraints), X 0 = f 0g
or X 0 is a small set around 0

� Strong analytical and computational results



DETERM. OPT. CONTROL - ANALYSIS

� Bellman's Eq. holds (for not only this problem,
but also all deterministic total cost problems)

J * (x) = min
u2 U (x )

�
g(x; u)+ J *

�
f (x; u)

�	
; 8 x 2 X

� De�nition : A policy � terminates starting from
x if the state sequencef xk g generated starting
from x0 = x and using� reachesX 0 in �nite time,
i.e., satis�es x �k 2 X 0 for some index�k

� Assumptions: The cost structure is such that

� J * (x) > 0; 8 x =2 X 0 (termination incentive)

� For every x with J * (x) < 1 and every� > 0,
there exists a policy� that terminates start-
ing from x and satis�es J � (x) � J * (x) + � .

� Uniqueness of solution of Bellman's Eq.: J * is
the unique solution within the set

J =
�

J j 0 � J (x) � 1 ; 8 x 2 X; J (x) = 0 ; 8 x 2 X 0
	

� Counterexamples: Earlier SP problem. Also
linear quadratic problems where the Riccati equa-
tion has two solutions (observability not satis�ed).



DET. OPT. CONTROL - VI/PI CONVERGENCE

� The sequencef T k J g generated byVI starting
from a J 2 J with J � J * converges toJ *

� If in addition U(x) is �nite (or compact plus
more conditions - see the text), the sequencef T k J g
generated byVI starting from any function J 2 J
converges toJ *

� A sequencef J � k g generated by PI satis�es
J � k (x) # J * (x) for all x 2 X

� PI counterexample: The earlier SP example

� Optimistic PI algorithm : Generates pairsf Jk ; � k g
as follows: GivenJk , we generate� k according to

� k (x) = arg min
u2 U (x )

�
g(x; u)+ Jk

�
f (x; u)

�	
; x 2 X

and obtain Jk+1 with mk � 1 VIs using � k :

Jk+1 (x0) = Jk (xm k )+
m k � 1X

t =0

g
�
x t ; � k (x t )

�
; x0 2 X

If J0 2 J and J0 � TJ0, we haveJk # J * .

� Rollout with terminating heuristic (e.g., MPC).



LINEAR-QUADRATIC ADAPTIVE CONTROL

� System: xk+1 = Ax k + Bu k , xk 2 < n , uk 2 < m

� Cost:
P 1

k=0 (x0
k Qxk + u0

k Ruk ), Q � 0, R > 0

� Optimal policy is linear : � � (x) = Lx

� The Q-factor of each linear policy� is quadratic:

Q� (x; u) = ( x0 u0) K �

�
x
u

�
(� )

� We will consider A and B unknown

� We use as basis functions all the quadratic func-
tions involving state and control components

x i x j ; ui uj ; x i uj ; 8 i; j

These form the \rows" � (x; u)0 of a matrix �

� The Q-factor Q� of a linear policy � can be
exactly representedwithin the subspace spanned
by the basis functions:

Q� (x; u) = � (x; u)0r �

where r � consists of the components ofK � in (*)

� Key point: Compute r � by simulation of � (Q-
factor evaluation by simulation, in a PI scheme)



PI FOR LINEAR-QUADRATIC PROBLEM

� Policy evaluation: r � is found (exactly) by least
squares minimization

min
r

X

( x k ;u k )

�
�
� � (xk ; uk )0r �

�
x0

k Qx k + u0
k Ruk + �

�
xk +1 ; � (xk +1 )

� 0
r
� �
�
�

2

where (xk ; uk ; xk+1 ) are \enough" samples gener-
ated by the system or a simulator of the system.

� Policy improvement:

� (x) 2 arg min
u

�
� (x; u)0r �

�

� Knowledge ofA and B is not required

� If the policy evaluation is done exactly, this
becomes exact PI, andconvergence to an optimal
policy can be shown

� The basic idea of this example has been gener-
alized and forms the starting point of the �eld of
adaptive DP

� This �eld deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time



FINITE-STATE AFFINE MONOTONIC PROBLEMS

� Generalization of positive cost �nite-state stochas-
tic total cost problems where:

� In place of a transition prob. matrix P� , we
have a general matrixA � � 0

� In place of 0 terminal cost function, we have
a more general terminal cost function �J � 0

� Mappings

T� J = b� + A � J; (TJ )( i ) = min
� 2M

(T� J )( i )

� Cost function of � = f � 0; � 1; : : :g

J � (i ) = lim sup
N !1

(T� 0 � � � T� N � 1
�J )( i ); i = 1 ; : : : ; n

� Special case: An SSP with anexponential risk-
sensitive cost, where for all i and u 2 U(i )

A ij (u) = pij (u)eg( i;u;j ) ; b(i; u ) = pit (u)eg( i;u;t )

� Interpretation :

J � (i ) = E f e(length of path of � starting from i )g



AFFINE MONOTONIC PROBLEMS: ANALYSIS

� The analysis follows the lines of analysis of SSP

� Key notion (generalizes the notion of a proper
policy in SSP): A policy � is stable if Ak

� ! 0; else
it is called unstable

� We have

TN
� J = AN

� J +
N � 1X

k=0

Ak
� b� ; 8 J 2 < n ; N = 1 ; 2; : : : ;

� For a stable policy � , we have for all J 2 < n

J � = lim sup
N !1

TN
� J = lim sup

N !1

1X

k=0

Ak
� b� = ( I � A � ) � 1b�

� Consider the following assumptions:

(1) There exists at least one stable policy

(2) For every unstable policy � , at least one com-
ponent of

P 1
k=0 Ak

� b� is equal to 1

� Under (1) and (2) the strong SSP analytical
and algorithmic theory generalizes

� Under just (1) the weak SSP theory generalizes.
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LECTURE OUTLINE

� We begin a lecture series on approximate DP.

� Reading: Chapters 6 and 7, Vol. 2 of the text.

� Today we discuss some general issues about
approximation and simulation

� We classify/overview the main approaches:

� Approximation in policy space (policy para-
metrization, gradient methods, random search)

� Approximation in value space (approximate
PI, approximate VI, Q-Learning, Bellman
error approach, approximate LP)

� Rollout/Simulation-based single policy iter-
ation (will not discuss this further)

� Approximation in value space using problem
approximation (simpli�cation - forms of ag-
gregation - limited lookahead) - will not dis-
cuss much



GENERAL ORIENTATION TO ADP

� ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or in�nite number of states .

� Other names for ADP are:

� \reinforcement learning" (RL)

� \neuro-dynamic programming" (NDP)

� We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGEn).

� Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.

� There are many approaches:

� Problem approximation and 1-step lookahead

� Simulation-based approaches (we will focus
on these)

� Simulation-based methods are of three types:

� Rollout (we will not discuss further)

� Approximation in policy space

� Approximation in value space



WHY DO WE USE SIMULATION?

� One reason:Computational complexity advan-
tage in computing expected values and sums/inner
products involving a very large number of terms

� Speeds up linear algebra: Any sum
P n

i =1 ai

can be written as an expected value

nX

i =1

ai =
nX

i =1

� i
ai

� i
= E �

�
ai

� i

�
;

where� is any prob. distribution over f 1; : : : ; ng

� It is approximated by generating many sam-
ples f i 1; : : : ; i k g from f 1; : : : ; ng, according
to � , and Monte Carlo averaging:

nX

i =1

ai = E �

�
ai

� i

�
�

1
k

kX

t =1

ai t

� i t

� Choice of � makes a di�erence. Importance
sampling methodology.

� Simulation is also convenient whenan analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.



APPROXIMATION IN POLICY SPACE

� A brief discussion; we will return to it later.

� Use parametrization � (i ; r ) of policies with a
vector r = ( r1; : : : ; r s). Examples:

� Polynomial, e.g., � (i ; r ) = r1 + r2 � i + r3 � i 2

� Multi-warehouse inventory system: � (i ; r ) is
threshold policy with thresholds r = ( r1; : : : ; r s)

� Optimize the cost over r . For example:

� Each value of r de�nes a stationary policy,
with cost starting at state i denoted by ~J (i ; r ).

� Let (p1; : : : ; pn ) be some probability distri-
bution over the states, and minimize overr

nX

i =1

pi ~J (i ; r )

� Use a random search, gradient, or other method

� A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture Ĵ , i.e.,

� (i ; r ) 2 arg min
u2 U ( i )

nX

j =1

pij (u)
�
g(i; u; j ) + � Ĵ (j ; r )

�



APPROXIMATION IN VALUE SPACE

� Approximate J � or J � from a parametric class
~J (i ; r ) wherei is the current state andr = ( r1; : : : ; rm )
is a vector of \tunable" scalars weights

� Use ~J in place ofJ � or J � in various algorithms
and computations (VI, PI, LP)

� Role of r : By adjusting r we can change the
\shape" of ~J so that it is \close" to J � or J �

� Two key issues:

� The choice of parametric class~J (i ; r ) (the
approximation architecture)

� Method for tuning the weights (\training"
the architecture)

� Success depends strongly on how these issues
are handled ... also on insight about the problem

� A simulator may be used, particularly when
there is no mathematical model of the system

� We will focus on simulation, but this is not the
only possibility

� We may also useparametric approximation for
Q-factors



APPROXIMATION ARCHITECTURES

� Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of~J (i ; r ) on r ]

� Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

� Computer chess example:

� Think of board position as state and move
as control

� Uses a feature-based position evaluator that
assigns a score (or approximateQ-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

� Relatively few special features and weights, and
multistep lookahead



LINEAR APPROXIMATION ARCHITECTURES

� Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

� Then the approximation may be quite accurate
without a complicated architecture. (Extreme ex-
ample: The ideal feature is the true cost function)

� With well-chosen features, we can use alinear
architecture:

~J (i ; r ) = � (i )0r; 8 i or ~J (r ) = � r =
sX

j =1

� j r j

�: the matrix whose rows are � (i )0, i = 1 ; : : : ; n,
� j is the j th column of �

!"#"$ ! %$#"&'$ ()"'#*"+,- .#//+-0 %$#"&'$ 1$*",'
2//',)+3#",'

! !"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+&
1..&+(*2#$+& 3 4!"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+&!"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+&

!"#$%&" '($&#)$*+, -#..*,/ !"#$%&" 0")$+& ! 1!2 3*,"#& 4+5$!! "#$%&' ()*+
!! "#$%&' ()*+
!""#$%&'()$# ! *!+!"

� This is approximation on the subspace

S = f � r j r 2 < sg
spanned by the columns of � (basis functions)

� Many examples of feature types:Polynomial
approximation, radial basis functions, domain spe-
ci�c, etc



ILLUSTRATIONS: POLYNOMIAL TYPE

� Polynomial Approximation , e.g., a quadratic
approximating function. Let the state be i =
(i 1; : : : ; i q) (i.e., have q \dimensions") and de�ne

� 0(i ) = 1 ; � k (i ) = i k ; � km (i ) = i k i m ; k; m = 1 ; : : : ; q

Linear approximation architecture:

~J (i ; r ) = r0 +
qX

k=1

r k i k +
qX

k=1

qX

m = k

r km i k i m ;

where r has componentsr0, r k , and r km .

� Interpolation : A subsetI of special/representative
states is selected, and the parameter vectorr has
one componentr i per state i 2 I . The approxi-
mating function is

~J (i ; r ) = r i ; i 2 I;

~J (i ; r ) = interpolation using the values at i 2 I; i =2 I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.



A DOMAIN SPECIFIC EXAMPLE

� Tetris game (used as testbed in competitions)

!"#$%&'!%(&

))))))

� J � (i ): optimal score starting from position i

� Number of states> 2200 (for 10 � 20 board)

� Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)



APPROX. PI - OPTION TO APPROX. J � OR Q�

� Use simulation to approximate the cost J � of
the current policy �

� Generate \improved" policy � by minimizing in
(approx.) Bellman equation

!""#$%&'()* +$,&-.

/0(,1()&$2

+$,&-. 3'"#$0*'*2)

!"#$$ %&'(')* +,*'-.

/0)*")(# 1223,4'5)(# 6,$(

7! ! 8"9 : ! " ;$'&< ='5"*)(',&

!#&#3)(# >%523,0#?@ +,*'-. #

� Altenatively approximate the Q-factors of �

� A survey reference: D. P. Bertsekas, \Approx-
imate Policy Iteration: A Survey and Some New
Methods," J. of Control Theory and Appl., Vol.
9, 2011, pp. 310-335.



DIRECTLY APPROXIMATING J � OR Q�

� Approximation of the optimal cost function J �

directly (without PI)

� Q-Learning: Use a simulation algorithm to
approximate the Q-factors

Q� (i; u ) = g(i; u ) + �
nX

j =1

pij (u)J � (j );

and the optimal costs

J � (i ) = min
u2 U ( i )

Q� (i; u )

� Bellman Error approach: Find r to

min
r

E i

n� ~J (i ; r ) � (T ~J )( i ; r )
� 2

o

where E i f�g is taken with respect to some
distribution over the states

� Approximate Linear Programming (we will
not discuss here)

� Q-learning can also be used with approxima-
tions

� Q-learning and Bellman error approach can also
be used for policy evaluation



DIRECT POLICY EVALUATION

� Can be combined with regular and optimistic
policy iteration

� Find r that minimizes kJ � � ~J (�; r )k2
� , i.e.,

nX

i =1

� i
�
J � (i ) � ~J (i; r )

� 2
; � i : some pos. weights

� Nonlinear architectures may be used

� The linear architecture case: Amounts to pro-
jection of J � onto the approximation subspace

!"#$%&'( ! ) ! ! " " " ! " ! # !(*

! "

!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#! ! !

! ! ! !

!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#
2 3 2 3 2 3!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#! !

� Solution by linear least squares methods



POLICY EVALUATION BY SIMULATION

� Projection by Monte Carlo Simulation: Com-
pute the projection � J � of J � on subspaceS =
f � r j r 2 < sg, with respect to a weighted Eu-
clidean norm k � k�

� Equivalently, �nd � r � , where

r � = arg min
r 2< s

k� r � J � k2
� = arg min

r 2< s

nX

i =1

� i
�
J � (i )� � (i )0r

� 2

� Setting to 0 the gradient at r � ,

r � =

 
nX

i =1

� i � (i )� (i )0

! � 1 nX

i =1

� i � (i )J � (i )

� Generate samples
�

(i 1; J� (i 1)) ; : : : ; (i k ; J� (i k ))
	

using distribution �

� Approximate by Monte Carlo the two \expected
values" with low-dimensional calculations

r̂ k =

 
kX

t =1

� (i t )� (i t )0

! � 1 kX

t =1

� (i t )J � (i t )

� Equivalent least squares alternative calculation:

r̂ k = arg min
r 2< s

kX

t =1

�
� (i t )0r � J � (i t )

� 2



INDIRECT POLICY EVALUATION

� An example: Solve theprojected equation� r =
� T� (� r ) where � is projection w/ respect to a
suitable weighted Euclidean norm (Galerkin ap-
prox.

!"#$%&'( ! ) ! ! " " " ! " ! # !(*

! "

!"#$%&'( ! ) ! ! " " " ! " ! # !(*

! "

!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#! ! !

! ! ! !

! ! ! ! " "

! ! ! " " ! "! ! #

!"#$%&'( )&(*+#, -+./$"0 1 2%+3&'(&# 4+%5 +4 6&..51"78 &9:1($+"
;%+3&'($+" +"!"#$%&'( )&(*+#, -+./$"0 1 2%+3&'(&# 4+%5 +4 6&..51"78 &9:1($+"

!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#
2 3 2 3 2 3!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#! !

� Solution methods that use simulation (to man-
age the calculation of �)

� TD( � ): Stochastic iterative algorithm for solv-
ing � r = � T� (� r )

� LSTD( � ): Solves a simulation-based approx-
imation w/ a standard solver

� LSPE(� ): A simulation-based form of pro-
jected value iteration; essentially

� r k+1 = � T� (� r k ) + simulation noise



BELLMAN EQUATION ERROR METHODS

� Another example of indirect approximate policy
evaluation:

min
r

k� r � T� (� r )k2
� (� )

where k � k� is Euclidean norm, weighted with re-
spect to some distribution �

� It is closely related to the projected equation ap-
proach (with a special choice of projection norm)

� Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

� Generating many random samples of states
i k using the distribution �

� Generating many samples of transitions (i k ; j k )
using the policy �

� Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

� Solve the Monte-Carlo approximation of the
optimality condition

� Issues for indirect methods: How to generate
the samples? How to calculate r � e�ciently ?



ANOTHER INDIRECT METHOD: AGGREGATION

� An example: Group similar states together into
\aggregate states" x1; : : : ; xs; assign a common
cost r i to each group x i . A linear architecture
called hard aggregation.
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� Solve an \aggregate" DP problem to obtain
r = ( r1; : : : ; r s).

� More general/mathematical view: Solve

� r = � DT � (� r )

where the rows ofD and � are prob. distributions
(e.g., D and � \aggregate" rows and columns of
the linear system J = T� J )

� Compare with projected equation � r = � T� (� r ).
Note: � D is a projection in some interesting cases



AGGREGATION AS PROBLEM APPROXIMATION
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� Aggregation can be viewed as a systematic ap-
proach for problem approx. Main elements:

� Solve (exactly or approximately) the \ag-
gregate" problem by any kind of VI or PI
method (including simulation-based methods)

� Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

� Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach



THEORETICAL BASIS OF APPROXIMATE PI

� If policies are approximately evaluated using an
approximation architecture such that

max
i

j ~J (i; r k ) � J � k (i )j � �; k = 0 ; 1; : : :

� If policy improvement is also approximate,

max
i

j(T� k +1 ~J )( i; r k )� (T ~J )( i; r k )j � �; k = 0 ; 1; : : :

� Error bound: The sequencef � k g generated by
approximate policy iteration satis�es

lim sup
k !1

max
i

�
J � k (i ) � J � (i )

�
�

� + 2 ��
(1 � � )2

� Typical practical behavior: The method makes
steady progress up to a point and then the iterates
J � k oscillate within a neighborhood of J � .

� Oscillations are quite unpredictable.

� Bad examples of oscillations are known.

� In practice oscillations between policies is
probably not the major concern.

� In aggregation case, there are no oscillations



THE ISSUE OF EXPLORATION

� To evaluate a policy � , we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under �

� Cost-to-go estimates of underrepresented states
may be highly inaccurate

� This seriously impacts the improved policy �

� This is known as inadequate exploration - a
particularly acute di�culty when the randomness
embodied in the transition probabilities is \rela-
tively small" (e.g., a deterministic system)

� Some remedies:

� Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

� Occasionally generate transitions thatuse a
randomly selected control rather than the
one dictated by the policy �

� Other methods: Use two Markov chains(one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).



APPROXIMATING Q-FACTORS

� Given ~J (i ; r ), policy improvement requires a
model [knowledge ofpij (u) for all u 2 U(i )]

� Model-free alternative: Approximate Q-factors

~Q(i; u ; r ) �
nX

j =1

pij (u)
�
g(i; u; j ) + �J � (j )

�

and use for policy improvement the minimization

� (i ) 2 arg min
u2 U ( i )

~Q(i; u ; r )

� r is an adjustable parameter vector and~Q(i; u ; r )
is a parametric architecture, such as

~Q(i; u ; r ) =
sX

m =1

rm � m (i; u )

� We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

� Use the Markov chain with states (i; u ), so
pij (� (i )) is the transition prob. to ( j; � (i )), 0 to
other (j; u 0)

� Major concern: Acutely diminished exploration



STOCHASTIC ALGORITHMS: GENERALITIES

� Consider solution of a linear equationx = b+
Ax by using m simulation samples b + wk and
A + Wk , k = 1 ; : : : ; m, where wk ; Wk are random,
e.g., \simulation noise"

� Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

� Stoch. approx. (SA) approach: For k = 1 ; : : : ; m

xk+1 = (1 � 
 k )xk + 
 k
�
(b+ wk ) + ( A + Wk )xk

�

� Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates ofb and A

bm =
1
m

mX

k=1

(b+ wk ); Am =
1
m

mX

k=1

(A + Wk )

Then solvex = bm + Am x by matrix inversion

xm = (1 � Am ) � 1bm

or iteratively

� TD( � ) and Q-learning are SA methods

� LSTD( � ) and LSPE(� ) are MCE methods
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LECTURE OUTLINE

� Discounted problems - Approximation on sub-
spacef � r j r 2 < sg

� Approximate (�tted) VI

� Approximate PI

� The projected equation

� Contraction properties - Error bounds

� Matrix form of the projected equation

� Simulation-based implementation

� LSTD and LSPE methods



REVIEW: APPROXIMATION IN VALUE SPACE

� Finite-spaces discounted problems: De�ned by
mappings T� and T (TJ = min � T� J ).

� Exact methods:

� VI: Jk+1 = TJk

� PI: J � k = T� k J � k , T� k +1 J � k = TJ� k

� LP: min J c0J subject to J � TJ

� Approximate versions: Plug-in subspace ap-
proximation with � r in place of J

� VI: � r k+1 � T � r k

� PI: � r k � T� k � r k , T� k +1 � r k = T� r k

� LP: min r c0� r subject to � r � T � r

� Approx. onto subspace S = f � r j r 2 < sg
is often done by projection with respect to some
(weighted) Euclidean norm.

� Another possibility is aggregation. Here:

� The rows of � are probability distributions

� � r � J � or � r � J * , with r the solution of
an \aggregate Bellman equation"r = DT � (� r )
or r = DT (� r ), where the rows of D are
probability distributions



APPROXIMATE (FITTED) VI

� Approximates sequentially Jk (i ) = ( T k J0)( i ),
k = 1 ; 2; : : :, with ~Jk (i ; r k )

� The starting function J0 is given (e.g.,J0 � 0)

� Approximate (Fitted) Value Iteration: A se-
quential \�t" to produce ~Jk+1 from ~Jk , i.e., ~Jk+1 �
T ~Jk or (for a single policy � ) ~Jk+1 � T� ~Jk

� After a large enough numberN of steps, ~JN (i ; rN )
is used as approximation toJ � (i )

� Possibly use (approximate) projection � with
respect to some projection norm,

~Jk+1 � � T ~Jk



WEIGHTED EUCLIDEAN PROJECTIONS

� Consider a weighted Euclidean norm

kJ k� =

vu
u
t

nX

i =1

� i
�
J (i )

� 2
;

where � = ( � 1; : : : ; � n ) is a positive distribution
(� i > 0 for all i ).

� Let � denote the projection operation onto

S = f � r j r 2 < sg

with respect to this norm, i.e., for any J 2 < n ,

� J = � r �

where
r � = arg min

r 2< s
k� r � J k2

�

� Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J (i ) according to � and solving

min
r 2< s

kX

t =1

�
� (i t )0r � J (i t )

� 2



FITTED VI - NAIVE IMPLEMENTATION

� Select/sample a \small" subset I k of represen-
tative states

� For each i 2 I k , given ~Jk , compute

(T ~Jk )( i ) = min
u2 U ( i )

nX

j =1

pij (u)
�
g(i; u; j ) + � ~Jk (j ; r )

�

� \Fit" the function ~Jk+1 (i ; r k+1 ) to the \small"
set of values (T ~Jk )( i ), i 2 I k (for example use
some form of approximate projection)

� \Model-free" implementation by simulation

� Error Bound: If the �t is uniformly accurate
within � > 0, i.e.,

max
i

j ~Jk+1 (i ) � T ~Jk (i )j � �;

then

lim sup
k !1

max
i =1 ;:::;n

� ~Jk (i; r k ) � J � (i )
�

�
�

1 � �

� But there is a potential serious problem!



AN EXAMPLE OF FAILURE

� Consider two-state discounted MDP with states
1 and 2, and a single policy.

� Deterministic transitions: 1 ! 2 and 2 ! 2

� Transition costs � 0, soJ � (1) = J � (2) = 0.

� Consider (exact) �tted VI scheme that approx-
imates cost functions within S =

�
(r; 2r ) j r 2 <

	

with a weighted least squares �t; here � = ( 1 ; 2 )0

� Given ~Jk = ( r k ; 2r k ), we �nd ~Jk+1 = ( r k+1 ; 2r k+1 ),
where ~Jk+1 = � � (T ~Jk ), with weights � = ( � 1; � 2):

r k+1 = arg min
r

h
� 1

�
r � (T ~Jk )(1)

� 2
+ � 2

�
2r � (T ~Jk )(2)

� 2
i

� With straightforward calculation

r k+1 = ��r k ; where� = 2( � 1+2 � 2)=(� 1+4 � 2) > 1

� So if � > 1=� (e.g., � 1 = � 2 = 1), the sequence
f r k g diverges and so doesf ~Jk g.

� Di�culty is that T is a contraction, but � � T
(= least squares �t composed with T) is not.



NORM MISMATCH PROBLEM

� For �tted VI to converge, we need � � T to be a
contraction; T being a contraction is not enough

� We need a� such that T is a contraction w. r.
to the weighted Euclidean norm k � k�

� Then � � T is a contraction w. r. to k � k�

� We will come back to this issue, and show how
to choose � so that � � T� is a contraction for a
given �



APPROXIMATE PI
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� Evaluation of typical � : Linear cost function
approximation ~J � (r ) = � r , where � is full rank
n � s matrix with columns the basis functions, and
i th row denoted � (i )0.

� Policy \improvement" to generate � :

� (i ) = arg min
u2 U ( i )

nX

j =1

pij (u)
�
g(i; u; j ) + �� (j )0r

�

� Error Bound (same as approximate VI): If

max
i

j ~J � k (i; r k ) � J � k (i )j � �; k = 0 ; 1; : : :

the sequencef � k g satis�es

lim sup
k !1

max
i

�
J � k (i ) � J � (i )

�
�

2��
(1 � � )2



APPROXIMATE POLICY EVALUATION

� Consider approximate evaluation ofJ � , the cost
of the current policy � by using simulation.

� Direct policy evaluation - generate cost sam-
ples by simulation, and optimization by least
squares

� Indirect policy evaluation - solving the pro-
jected equation � r = � T� (� r ) where � is
projection w/ respect to a suitable weighted
Euclidean norm

!"#$%&'( ! ) ! ! " " " ! " ! # !(*

! "

!"#$%&'( ! ) ! ! " " " ! " ! # !(*

! "

!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#! ! !

! ! ! !

! ! ! ! " "

! ! ! " " ! "! ! #

!"#$%&'( )&(*+#, -+./$"0 1 2%+3&'(&# 4+%5 +4 6&..51"78 &9:1($+"
;%+3&'($+" +"!"#$%&'( )&(*+#, -+./$"0 1 2%+3&'(&# 4+%5 +4 6&..51"78 &9:1($+"

!"#$%& '$&()*+ ,#)-$%&"). )/ %)0& 1$%&)#
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� Recall that projection can be implemented by
simulation and least squares



PI WITH INDIRECT POLICY EVALUATION
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� Given the current policy � :

� We solve the projected Bellman's equation

� r = � T� (� r )

� We approximate the solution J � of Bellman's
equation

J = T� J

with the projected equation solution ~J � (r )



KEY QUESTIONS AND RESULTS

� Does the projected equation have a solution?

� Under what conditions is the mapping � T� a
contraction, so � T� has unique �xed point?

� Assumption: The Markov chain corresponding
to � has a single recurrent class and no transient
states, with steady-state prob. vector � , so that

� j = lim
N !1

1
N

NX

k=1

P(i k = j j i 0 = i ) > 0

Note that � j is the long-term frequency of statej .

� Proposition: (Norm Matching Property) As-
sume that the projection � is with respect to k�k� ,
where � = ( � 1; : : : ; � n ) is the steady-state proba-
bility vector. Then:

(a) � T� is contraction of modulus � with re-
spect to k � k� .

(b) The unique �xed point � r � of � T� satis�es

kJ � � � r � k� �
1

p
1 � � 2

kJ � � � J � k�



PRELIMINARIES: PROJECTION PROPERTIES

� Important property of the projection � on S
with weighted Euclidean norm k � k� . For all J 2
< n ; � r 2 S, the Pythagorean Theoremholds:

kJ � � r k2
� = kJ � � J k2

� + k� J � � r k2
�

� The Pythagorean Theorem implies that thepro-
jection is nonexpansive, i.e.,

k� J � � �J k� � k J � �J k� ; for all J; �J 2 < n :

To see this, note that




 �( J � J )




 2

�
�




 �( J � J )




 2

�
+




 (I � �)( J � J )




 2

�

= kJ � J k2
�



PROOF OF CONTRACTION PROPERTY

� Lemma: If P is the transition matrix of � ,

kPzk� � k zk� ; z 2 < n ;

where � is the steady-state prob. vector.
Proof: For all z 2 < n

kPzk2
� =

nX

i =1

� i

0

@
nX

j =1

pij zj

1

A

2

�
nX

i =1

� i

nX

j =1

pij z2
j

=
nX

j =1

nX

i =1

� i pij z2
j =

nX

j =1

� j z2
j = kzk2

� :

The inequality follows from the convexity of the
quadratic function, and the next to last equality
follows from the de�ning property

P n
i =1 � i pij = � j

� Using the lemma, the nonexpansiveness of �,
and the de�nition T� J = g + �PJ , we have

k� T� J � � T� �J k� � k T� J � T� �J k� = � kP(J � �J )k� � � kJ � �J k�

for all J; �J 2 < n . Hence � T� is a contraction of
modulus � .



PROOF OF ERROR BOUND

� Let � r � be the �xed point of � T . We have

kJ � � � r � k� �
1

p
1 � � 2

kJ � � � J � k� :

Proof: We have

kJ � � � r � k2
� = kJ � � � J � k2

� +



 � J � � � r �




 2

�

= kJ � � � J � k2
� +




 � TJ� � � T(� r � )




 2

�

� k J � � � J � k2
� + � 2kJ � � � r � k2

� ;

where

� The �rst equality uses the Pythagorean The-
orem

� The second equality holds becauseJ � is the
�xed point of T and � r � is the �xed point
of � T

� The inequality uses the contraction property
of � T .

Q.E.D.



MATRIX FORM OF PROJECTED EQUATION

� The solution � r � satis�es the orthogonality con-
dition : The error

� r � � (g + �P � r � )
is \orthogonal" to the subspace spanned by the
columns of �.

� This is written as

� 0�
�
� r � � (g + �P � r � )

�
= 0 ;

where � is the diagonal matrix with the steady-
state probabilities � 1; : : : ; � n along the diagonal.

� Equivalently, Cr � = d; where

C = � 0�( I � �P )� ; d = � 0� g

but computing C and d is HARD (high-dimensional
inner products).



SOLUTION OF PROJECTED EQUATION

� SolveCr � = d by matrix inversion: r � = C � 1d

� Alternative: Projected Value Iteration (PVI)

� r k+1 = � T(� r k ) = �( g + �P � r k )

Converges tor � because �T is a contraction.

S: Subspace spanned by basis functions

F rk

T(F rk) = g + aPF rk

0

F rk+1

Value Iterate

Projection
on S

� PVI can be written as:

r k+1 = arg min
r 2< s




 � r � (g + �P � r k )




 2

�

By setting to 0 the gradient with respect to r ,

� 0�
�
� r k+1 � (g + �P � r k )

�
= 0 ;

which yields

r k+1 = r k � (� 0��) � 1(Cr k � d)



SIMULATION-BASED IMPLEMENTATIONS

� Key idea: Calculate simulation-based approxi-
mations based onk samples

Ck � C; dk � d

� Approximate matrix inversion r � = C � 1d by

r̂ k = C � 1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) method.

� PVI method r k+1 = r k � (� 0��) � 1(Cr k � d) is
approximated by

r k+1 = r k � Gk (Ck r k � dk )

where
Gk � (� 0��) � 1

This is the LSPE (Least Squares Policy Evalua-
tion) method.

� Key fact: Ck , dk , and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

� We generate an in�nitely long trajectory ( i 0; i 1; : : :)
of the Markov chain, so states i and transitions
(i; j ) appear with long-term frequencies� i and pij .

� After generating each transition (i t ; i t +1 ), we
compute the row � (i t )0 of � and the cost compo-
nent g(i t ; i t +1 ).

� We form

dk =
1

k + 1

kX

t =0

� ( i t )g(i t ; i t +1 ) �
X

i;j

� i pij � ( i )g(i; j ) = � 0� g = d

Ck =
1

k + 1

kX

t =0

� (i t )
�
� (i t )� �� (i t +1 )

� 0
� � 0�( I � �P )� = C

Also in the case of LSPE

Gk =
1

k + 1

kX

t =0

� (i t )� (i t )0 � � 0��

� Convergence based on law of large numbers.

� Ck , dk , and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral di�erences (this is just a matter of style)



OPTIMISTIC VERSIONS

� Instead of calculating nearly exact approxima-
tions Ck � C and dk � d, we do a less accurate
approximation, based on few simulation samples

� Evaluate (coarsely) current policy � , then do a
policy improvement

� This often leads to faster computation (as op-
timistic methods often do)

� Very complex behavior (see the subsequent dis-
cussion on oscillations)

� The matrix inversion/LSTD method has serious
problems due to large simulation noise(because of
limited sampling) - particularly if the C matrix is
ill-conditioned

� LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

� A stepsize
 2 (0; 1] in LSPE may be useful to
damp the e�ect of simulation noise

r k+1 = r k � 
G k (Ck r k � dk )
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LECTURE OUTLINE

� Review of approximate policy iteration

� Projected equation methods for policy evalua-
tion

� Issues related to simulation-based implementa-
tion

� Multistep projected equation methods

� Bias-variance tradeo�

� Exploration-enhanced implementations

� Oscillations



REVIEW: PROJECTED BELLMAN EQUATION

� For a �xed policy � to be evaluated, consider
the corresponding mappingT:

(TJ )( i ) =
nX

i =1

pij
�
g(i; j )+ �J (j )

�
; i = 1 ; : : : ; n;

or more compactly, TJ = g + �PJ

� Approximate Bellman's equation J = TJ by
� r = � T(� r ) or the matrix form/orthogonality
condition Cr � = d; where

C = � 0�( I � �P )� ; d = � 0� g:
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PROJECTED EQUATION METHODS

� Matrix inversion : r � = C � 1d

� Iterative Projected Value Iteration (PVI) method :

� r k+1 = � T(� r k ) = �( g + �P � r k )

Converges tor � if � T is a contraction. True if � is
projection w.r.t. steady-state distribution norm.

� Simulation-Based Implementations: Generate
k+1 simulated transitions sequencef i 0; i 1; : : : ; i k g
and approximations Ck � C and dk � d:

Ck =
1

k + 1

kX

t =0

� (i t )
�
� (i t )� �� (i t +1 )

� 0
� � 0�( I � �P )�

dk =
1

k + 1

kX

t =0

� (i t )g(i t ; i t +1 ) � � 0� g

� LSTD: r̂ k = C � 1
k dk

� LSPE: r k+1 = r k � Gk (Ck r k � dk ) where

Gk � G = (� 0��) � 1

Converges tor � if � T is contraction.



ISSUES FOR PROJECTED EQUATIONS

� Implementation of simulation-based solution of
projected equation � r � J � , where Ck r = dk and

Ck � � 0�( I � �P )� ; dk � � 0� g

� Low-dimensional linear algebraneeded for the
simulation-based approximations Ck and dk (of
order s; the number of basis functions).

� Very large number of samplesneeded to solve
reliably nearly singular projected equations.

� Special methods for nearly singular equations
by simulation exist; see Section 7.3 of the text.

� Optimistic (few sample) methods are more vul-
nerable to simulation error

� Norm mismatch/sampling distribution issue

� The problem of bias: Projected equation solu-
tion 6= � J � , the \closest" approximation of J �

� Everything said so far relates to policy evalua-
tion. How about the e�ect of approximations on
policy improvement?

� We will next address some of these issues



MULTISTEP METHODS

� Introduce a multistep version of Bellman's equa-
tion J = T ( � ) J , where for � 2 [0; 1),

T ( � ) = (1 � � )
1X

` =0

� ` T ` +1

Geometrically weighted sum of powers ofT.

� T ` is a contraction with mod. � ` , w. r. to
weighted Euclidean norm k � k� , where � is the
steady-state probability vector of the Markov chain.

� HenceT ( � ) is a contraction with modulus

� � = (1 � � )
1X

` =0

� ` +1 � ` =
� (1 � � )
1 � ��

Note � � ! 0 as � ! 1 - a�ects norm mismatch

� T ` and T ( � ) have the same �xed point J � and

kJ � � � r �
� k� �

1
p

1 � � 2
�

kJ � � � J � k�

where � r �
� is the �xed point of � T ( � ) .

� � r �
� depends on� .



BIAS-VARIANCE TRADEOFF
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� From kJ � � � r �;� k� � 1p
1� � 2

�

kJ � � � J � k�

error bound

� As � " 1, we have� � # 0, soerror bound (and
quality of approximation) improves :

lim
� " 1

� r �;� = � J �

� But the simulation noise in approximating

T ( � ) = (1 � � )
1X

` =0

� ` T ` +1

increases

� Choice of � is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

� The multistep projected Bellman equation is

� r = � T ( � ) (� r )

� In matrix form: C( � ) r = d( � ) , where

C( � ) = � 0�
�
I � �P ( � )

�
� ; d( � ) = � 0� g( � ) ;

with

P ( � ) = (1 � � )
1X

` =0

� ` � ` P ` +1 ; g( � ) =
1X

` =0

� ` � ` P ` g

� The LSTD( � ) method is
�
C( � )

k

� � 1
d( � )

k ; where

C( � )
k and d( � )

k are simulation-based approximations
of C( � ) and d( � ) .

� The LSPE(� ) method is

r k+1 = r k � 
G k
�
C( � )

k r k � d( � )
k

�

whereGk is a simulation-based approx. to (� 0��) � 1

� TD( � ): An important simpler/slower iteration
[similar to LSPE( � ) with Gk = I - see the text].



MORE ON MULTISTEP METHODS

� The simulation process to obtainC( � )
k and d( � )

k
is similar to the case� = 0 (single simulation tra-
jectory i 0; i 1; : : :, more complex formulas)

C( � )
k =

1
k + 1

kX

t =0

� (i t )
kX

m = t

� m � t � m � t
�
� (i m )� �� (i m +1 )

� 0

d( � )
k =

1
k + 1

kX

t =0

� (i t )
kX

m = t

� m � t � m � t gi m

� In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

� Many di�erent versions (see the text).

� Note the � -tradeo�s:

� As � " 1, C( � )
k and d( � )

k contain more \sim-
ulation noise", so more samples are needed
for a close approximation ofr �;�

� The error bound kJ � � � r �;� k� becomes smaller

� As � " 1, � T ( � ) becomes a contraction for
arbitrary projection norm



APPROXIMATE PI ISSUES - EXPLORATION

� 1st major issue: exploration. Common remedy
is the o�-policy approach: Replace P of current
policy with

P = ( I � B )P + BQ;

where B is a diagonal matrix with � i 2 [0; 1] on
the diagonal, and Q is another transition matrix.

� Then LSTD and LSPE formulas must be modi-
�ed ... otherwise the policy associated withP (not
P) is evaluated (see the textbook, Section 6.4).

� Alternatives: Geometric and free-form sampling

� Both of these use multiple short simulated tra-
jectories, with random restart state, chosen to en-
hance exploration (see the text)

� Geometric sampling uses trajectories with geo-
metrically distributed number of transitions with
parameter � 2 [0; 1). It implements LSTD( � ) and
LSPE(� ) with exploration.

� Free-form sampling uses trajectories with more
generally distributed number of transitions. It im-
plements method for approximation of the solu-
tion of a generalized multistep Bellman equation.



APPROXIMATE PI ISSUES - OSCILLATIONS

� De�ne for each policy �

R� =
�

r j T� (� r ) = T(� r )
	

� These sets form thegreedy partition of the pa-
rameter r -space
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� Oscillations of nonoptimistic approx.: r � is gen-
erated by an evaluation method so that � r � � J �
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MORE ON OSCILLATIONS/CHATTERING

� For optimistic PI a di�erent picture holds

! ! !

! ! ! "

! ! ! "

! ! !

! ! !

! ! ! "

� Oscillations are less violent, but the \limit"
point is meaningless!

� Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J � J 0 does not imply � J � � J 0.

� If approximate PI uses policy evaluation

� r = ( W T� )(� r )

with W a monotone operator, the generated poli-
cies converge (to an approximately optimal limit).

� The operator W used in the aggregation ap-
proach has this monotonicity property.
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� Aggregation as an approximation methodology

� Aggregate problem

� Examples of aggregation

� Simulation-based aggregation

� Q-Learning



PROBLEM APPROXIMATION - AGGREGATION

� Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
pli�cation is often ad-hoc/problem dependent.

� Aggregation is a systematic approach for prob-
lem approximation. Main elements:

� Introduce a few \aggregate" states,viewed
as the states of an \aggregate" system

� De�ne transition probabilities and costs of
the aggregate system,by relating original
system states with aggregate states

� Solve (exactly or approximately) the \ag-
gregate" problemby any kind of value or pol-
icy iteration method (including simulation-
based methods)

� Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

� Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.



AGGREGATION/DISAGGREGATION PROBS

� The aggregate system transition probabilities
are de�ned via two (somewhat arbitrary) choices
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� For each original system statej and aggregate
state y, the aggregation probability � jy

� The \degree of membership ofj in the ag-
gregate statey."

� In hard aggregation, � jy = 1 if state j be-
longs to aggregate state/subsety.

� For each aggregate statex and original system
state i , the disaggregation probability dxi

� The \degree of i being representative ofx."

� In hard aggregation, one possibility is all
statesi that belongs to aggregate state/subset
x have equaldxi .



AGGREGATE PROBLEM

� The transition probability from aggregate state
x to aggregate statey under control u

p̂xy (u) =
nX

i =1

dxi

nX

j =1

pij (u)� jy ; or P̂ (u) = DP (u)�

where the rows ofD and � are the disaggr. and
aggr. probs.

� The aggregate expected transition costis

ĝ(x; u) =
nX

i =1

dxi

nX

j =1

pij (u)g(i; u; j ); or ĝ = DPg

� The optimal cost function of the aggregate prob-
lem, denoted R̂, is

R̂(x) = min
u2 U

"

ĝ(x; u) + �
X

y

p̂xy (u)R̂(y)

#

; 8 x

or R̂ = min u [ĝ + � P̂ R̂] - Bellman's equation for
the aggregate problem.

� The optimal cost J � of the original problem is
approximated using interpolation, J � � ~J = � R̂:

~J (j ) =
X

y

� jy R̂(y); 8 j



EXAMPLE I: HARD AGGREGATION

� Group the original system states into subsets,
and view each subset as an aggregate state

� Aggregation probs: � jy = 1 if j belongs to
aggregate statey.
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� Disaggregation probs: There are many possi-
bilities, e.g., all states i within aggregate state x
have equal prob.dxi .

� If optimal cost vector J � is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with \roughly
equal" cost into aggregates.

� Soft aggregation (provides \soft boundaries"
between aggregate states).



EXAMPLE II: FEATURE-BASED AGGREGATION

� If we know good features, it makes sense to
group together states that have \similar features"

� Essentially discretize the features and assign a
weight to each discretization point
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� A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

� Hard aggregation architecture based on features
is more powerful (nonlinear/piecewise constant in
the features, rather than linear)

� ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture



EXAMPLE III: REP. STATES/COARSE GRID

� Choose a collection of \representative" original
system states, and associate each one of them with
an aggregate state. Then \interpolate"
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� Disaggregation probs. aredxi = 1 if i is equal
to representative state x.

� Aggregation probs. associate original system
states with convex combinations of rep. states

j �
X

y2A

� jy y

� Well-suited for Euclidean space discretization

� Extends nicely to continuous state space, in-
cluding belief space of POMDP



EXAMPLE IV: REPRESENTATIVE FEATURES

� Choose a collection of \representative"subsets
of original system states, and associate each one
of them with an aggregate state
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� Common case: Sx is a group of states with
\similar features"

� Hard aggregation is special case:[ x Sx = f 1; : : : ; ng

� Aggregation with representative states is special
case:Sx consists of just one state

� With rep. features, aggregation approach is a
special case of projected equation approachwith
\seminorm" projection. So the TD methods and
multistage Bellman Eq. methodology apply



APPROXIMATE PI BY AGGREGATION

!""#$%&'( )# ! !" *" +, -&). "#/)

! !"
!

! "# !

! " ! "!

!" ! !" !

!"#$#%&' ()*+,- (+&+,* .$$",$&+, (+&+,*

!

!"#$#%&' ()*+,- (+&+,* .$$",$&+, (+&+,*

!
!

!"#$#%&' ()*+,- (+&+,* .$$",$&+, (+&+,*

!! !" "" # $
#!

$!"

#!$

#!

%!"

! $%"" #! %"$

.'-%""#$"%&'() *#(+%+','&'$-

!

!""#$"%&'() *#(+%+','&'$-
.'-%""#$"%&'() *#(+%+','&'$-

!""#$"%&'() *#(+%+','&'$-
.'-%""#$"%&'() *#(+%+','&'$-

!

!""#$"%&'() *#(+%+','&'$-
.'-%""#$"%&'() *#(+%+','&'$-

!! ""# $# $
!!

"!"

%#"

!!

$!"

&"$"$#! "'# $# (#

! ! ""# $# %#
$%&'() $%&'()

� Consider approximate PI for the original prob-
lem, with evaluation done using the aggregate prob-
lem (other possibilities exist - see the text)

� Evaluation of policy � : ~J = � R, where R =
DT � (� R) (R is the vector of costs of aggregate
states corresponding to� ). May use simulation.

� Similar form to the projected equation � R =
� T� (� R) (� D in place of �).

� Advantages: It has no problem with exploration
or with oscillations.

� Disadvantage: The rows of D and � must be
probability distributions.



Q-LEARNING I

� Q-learning has two motivations:

� Dealing with multiple policies simultaneously

� Using a model-free approach[no need to know
pij (u), only be able to simulate them]

� The Q-factors are de�ned by

Q� (i; u ) =
nX

j =1

pij (u)
�
g(i; u; j ) + �J � (j )

�
; 8 (i; u )

� SinceJ � = TJ � , we haveJ � (i ) = min u2 U ( i ) Q� (i; u )
so the Q factors solve the equation

Q� (i; u ) =
nX

j =1

pij (u)
�

g(i; u; j ) + � min
u02 U ( j )

Q� (j; u 0)
�

� Q� (i; u ) can be shown to be the unique solu-
tion of this equation. Reason: This is Bellman's
equation for a system whose states are the original
states 1; : : : ; n; together with all the pairs ( i; u ).

� Value iteration : For all ( i; u )

Q(i; u ) :=
nX

j =1

pij (u)
�

g(i; u; j ) + � min
u02 U ( j )

Q(j; u 0)
�



Q-LEARNING II

� Use some randomization to generate sequence
of pairs (i k ; uk ) [all pairs ( i; u ) are chosen in�nitely
often]. For eachk, selectj k according to pi k j (uk ).

� Q-learning algorithm: updates Q(i k ; uk ) by

Q(i k ; uk ) :=
�
1 � 
 k (i k ; uk )

�
Q(i k ; uk )

+ 
 k (i k ; uk )

 

g(i k ; uk ; j k ) + � min
u02 U ( j k )

Q(j k ; u0)

!

� Stepsize
 k (i k ; uk ) must converge to 0 at proper
rate (e.g., like 1=k).

� Important mathematical point : In the Q-factor
version of Bellman's equation the order of expec-
tation and minimization is reversed relative to the
ordinary cost version of Bellman's equation:

J � (i ) = min
u2 U ( i )

nX

j =1

pij (u)
�
g(i; u; j ) + �J � (j )

�

� Q-learning can be shown to converge to true/exact
Q-factors (sophisticated stoch. approximation proof).

� Major drawback: Large number of pairs (i; u ) -
no function approximation is used.



Q-FACTOR APPROXIMATIONS

� Basis function approximation for Q-factors:

~Q(i; u; r ) = � (i; u )0r

� We can use approximate policy iteration and
LSPE/LSTD/TD for policy evaluation (exploration
issue is acute).

� Optimistic policy iteration methods are fre-
quently used on a heuristic basis.

� Example (very optimistic). At iteration k, given
r k and state/control ( i k ; uk ):

(1) Simulate next transition ( i k ; i k+1 ) using the
transition probabilities pi k j (uk ).

(2) Generate control uk+1 from

uk+1 = arg min
u2 U ( i k +1 )

~Q(i k+1 ; u; r k )

(3) Update the parameter vector via

r k+1 = r k � (LSPE or TD-like correction)

� Unclear validity . Solid basis for aggregation
case, and for case of optimal stopping (see text).
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LECTURE 23

LECTURE OUTLINE

� Additional topics in ADP

� Stochastic shortest path problems

� Average cost problems

� Generalizations

� Basis function adaptation

� Gradient-based approximation in policy space

� An overview



REVIEW: PROJECTED BELLMAN EQUATION

� Policy Evaluation : Bellman's equation J = TJ
is approximated the projected equation

� r = � T(� r )

which can be solved by a simulation-based meth-
ods, e.g., LSPE(� ), LSTD( � ), or TD( � ). Aggre-
gation is another approach - simpler in some ways.
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� These ideas apply to other (linear) Bellman
equations, e.g., for SSP and average cost.

� Important Issue: Construct simulation frame-
work where � T [or � T ( � ) ] is a contraction.



STOCHASTIC SHORTEST PATHS

� Introduce approximation subspace

S = f � r j r 2 < sg

and for a given proper policy, Bellman's equation
and its projected version

J = TJ = g + PJ; � r = � T(� r )

Also its � -version

� r = � T ( � ) (� r ); T ( � ) = (1 � � )
1X

t =0

� t T t +1

� Question: What should be the norm of projec-
tion? How to implement it by simulation?

� Speculation based on discounted case:It should
be a weighted Euclidean norm with weight vector
� = ( � 1; : : : ; � n ), where � i should be some type of
long-term occupancy probability of state i (which
can be generated by simulation).

� But what does \long-term occupancy probabil-
ity of a state" mean in the SSP context?

� How do we generate in�nite length trajectories
given that termination occurs with prob. 1?



SIMULATION FOR SSP

� We envision simulation of trajectories up to
termination, followed by restart at state i with
some �xed probabilities q0(i ) > 0.

� Then the \long-term occupancy probability of
a state" of i is proportional to

q(i ) =
1X

t =0

qt (i ); i = 1 ; : : : ; n;

where

qt (i ) = P(i t = i ); i = 1 ; : : : ; n; t = 0 ; 1; : : :

� We use the projection norm

kJ kq =

vu
u
t

nX

i =1

q(i )
�
J (i )

� 2

[Note that 0 < q(i ) < 1 , but q is not a prob.
distribution.]

� We can show that � T ( � ) is a contraction with
respect to k � kq (see the next slide).

� LSTD( � ), LSPE(� ), and TD( � ) are possible.



CONTRACTION PROPERTY FOR SSP

� We have q =
P 1

t =0 qt so

q0P =
1X

t =0

q0
t P =

1X

t =1

q0
t = q0 � q0

0

or
nX

i =1

q(i )pij = q(j ) � q0(j ); 8 j

� To verify that � T is a contraction, we show
that there exists � < 1 such that kPzk2

q � � kzk2
q

for all z 2 < n .

� For all z 2 < n , we have

kPzk2
q =

nX

i =1

q(i )

0

@
nX

j =1

pij zj

1

A

2

�
nX

i =1

q(i )
nX

j =1

pij z2
j

=
nX

j =1

z2
j

nX

i =1

q(i )pij =
nX

j =1

�
q(j ) � q0(j )

�
z2

j

= kzk2
q � k zk2

q0 � � kzk2
q

where

� = 1 � min
j

q0(j )
q(j )



AVERAGE COST PROBLEMS

� Consider a single policy to be evaluated, with
single recurrent class, no transient states, and steady-
state probability vector � = ( � 1; : : : ; � n ).

� The average cost, denoted by� , is

� = lim
N !1

1
N

E

(
N � 1X

k=0

g
�
xk ; xk+1

� �
�
� x0 = i

)

; 8 i

� Bellman's equation is J = FJ with

FJ = g � �e + PJ

where e is the unit vector e = (1 ; : : : ; 1).

� The projected equation and its � -version are

� r = � F (� r ); � r = � F ( � ) (� r )

� A problem here is that F is not a contraction
with respect to any norm (since e = Pe).

� � F ( � ) is a contraction w. r. to k � k� assuming
that e does not belong toS and � > 0 (the case
� = 0 is exceptional, but can be handled); see the
text. LSTD( � ), LSPE(� ), and TD( � ) are possible.



GENERALIZATION/UNIFICATION

� Consider approx. solution ofx = T(x), where

T(x) = Ax + b; A is n � n; b 2 < n

by solving the projected equation y = � T(y),
where � is projection on a subspace of basis func-
tions (with respect to some Euclidean norm).

� We can generalize from DP to the case where
A is arbitrary , subject only to

I � � A : invertible

Also can deal with case whereI � � A is (nearly)
singular (iterative methods, see the text).

� Bene�ts of generalization:

� Uni�cation/higher perspective for projected
equation (and aggregation) methods in ap-
proximate DP

� An extension to a broad new area of appli-
cations, based on an approx. DP perspective

� Challenge: Dealing with less structure

� Lack of contraction

� Absence of a Markov chain



GENERALIZED PROJECTED EQUATION

� Let � be projection with respect to

kxk� =

vu
u
t

nX

i =1

� i x2
i

where � 2 < n is a probability distribution with
positive components.

� If r � is the solution of the projected equation,
we have � r � = �( A� r � + b) or

r � = arg min
r 2< s

nX

i =1

� i

0

@� (i )0r �
nX

j =1

aij � (j )0r � � bi

1

A

2

where � (i )0 denotes thei th row of the matrix �.

� Optimality condition/equivalent form:

nX

i =1

� i � (i )

0

@� (i ) �
nX

j =1

aij � (j )

1

A

0

r � =
nX

i =1

� i � (i )bi

� The two expected values can be approximated
by simulation



SIMULATION MECHANISM
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� Row sampling: Generate sequencef i 0; i 1; : : :g
according to � , i.e., relative frequency of each row
i is � i

� Column sampling: Generate
�

(i 0; j 0); (i 1; j 1); : : :
	

according to some transition probability matrix P
with

pij > 0 if aij 6= 0 ;

i.e., for eachi , the relative frequency of (i; j ) is pij

(connection to importance sampling)

� Row sampling may be done using a Markov
chain with transition matrix Q (unrelated to P)

� Row sampling may also be done without a
Markov chain - just sample rows according to some
known distribution � (e.g., a uniform)



ROW AND COLUMN SAMPLING
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� Row sampling � State Sequence Generation in
DP. A�ects:

� The projection norm.

� Whether � A is a contraction.

� Column sampling � Transition Sequence Gen-
eration in DP.

� Can be totally unrelated to row sampling.
A�ects the sampling/simulation error.

� \Matching" P with jAj is bene�cial (has an
e�ect like in importance sampling).

� Independent row and column sampling allows
exploration at will! Resolves the exploration prob-
lem that is critical in approximate policy iteration.



LSTD-LIKE METHOD

� Optimality condition/equivalent form of pro-
jected equation

nX

i =1

� i � (i )

0

@� (i ) �
nX

j =1

aij � (j )

1

A

0

r � =
nX

i =1

� i � (i )bi

� The two expected values are approximated by
row and column sampling (batch 0! t).

� We solve the linear equation

tX

k=0

� (i k )
�

� (i k ) �
ai k j k

pi k j k

� (j k )
� 0

r t =
tX

k=0

� (i k )bi k

� We haver t ! r � , regardless of �A being a con-
traction (by law of large numbers; see next slide).

� Issues of singularity or near-singularity ofI � � A
may be important; see the text.

� An LSPE-like method is also possible, but re-
quires that � A is a contraction.

� Under the assumption
P n

j =1 jaij j � 1 for all i ,
there are conditions that guarantee contraction of
� A; see the text.



JUSTIFICATION W/ LAW OF LARGE NUMBERS

� We will match terms in the exact optimality
condition and the simulation-based version.

� Let �̂ t
i be the relative frequency of i in row

sampling up to time t.

� We have

1
t + 1

tX

k=0

� (i k )� (i k )0 =
nX

i =1

�̂ t
i � (i )� (i )0 �

nX

i =1

� i � (i )� (i )0

1
t + 1

tX

k=0

� (i k )bi k =
nX

i =1

�̂ t
i � (i )bi �

nX

i =1

� i � (i )bi

� Let p̂t
ij be the relative frequency of (i; j ) in

column sampling up to time t.

1
t + 1

tX

k=0

ai k j k

pi k j k

� (i k )� (j k )0

=
nX

i =1

�̂ t
i

nX

j =1

p̂t
ij

aij

pij
� (i )� (j )0

�
nX

i =1

� i

nX

j =1

aij � (i )� (j )0



BASIS FUNCTION ADAPTATION I

� An important issue in ADP is how to select
basis functions.

� A possible approach is to introducebasis func-
tions parametrized by a vector � , and optimize
over � , i.e., solve a problem of the form

min
� 2 �

F
� ~J (� )

�

where ~J (� ) approximates a cost vector J on the
subspace spanned by the basis functions.

� One example is

F
� ~J (� )

�
=

X

i 2 I

jJ (i ) � ~J (� )( i )j2;

where I is a subset of states, andJ (i ), i 2 I; are
the costs of the policy at these states calculated
directly by simulation.

� Another example is

F
� ~J (� )

�
=




 ~J (� ) � T

� ~J (� )
� 


 2

;

where ~J (� ) is the solution of a projected equation.



BASIS FUNCTION ADAPTATION II

� Some optimization algorithm may be used to
minimize F

� ~J (� )
�

over � .

� A challenge here is that the algorithm should
use low-dimensional calculations.

� One possibility is to use a form ofrandom search
(the cross-entropy method); see the paper by Men-
ache, Mannor, and Shimkin (Annals of Oper. Res.,
Vol. 134, 2005)

� Another possibility is to use a gradient method.
For this it is necessary to estimate the partial
derivatives of ~J (� ) with respect to the components
of � .

� It turns out that by di�erentiating the pro-
jected equation, these partial derivatives can be
calculated using low-dimensional operations. See
the references in the text.



APPROXIMATION IN POLICY SPACE I

� Consider an average cost problem, where the
problem data are parametrized by a vectorr , i.e.,
a cost vector g(r ), transition probability matrix
P(r ). Let � (r ) be the (scalar) average cost per
stage, satisfying Bellman's equation

� (r )e+ h(r ) = g(r ) + P(r )h(r )

where h(r ) is the di�erential cost vector.
� Consider minimizing � (r ) over r . Other than
random search, we can try to solve the problem
by a policy gradient method:

r k+1 = r k � 
 k r � (r k )

� Approximate calculation of r � (r k ): If � � , � g,
� P are the changes in�; g; P due to a small change
� r from a given r , we have

� � = � 0(� g + � Ph);

where � is the steady-state probability distribu-
tion/vector corresponding to P(r ), and all the quan-
tities above are evaluated atr .



APPROXIMATION IN POLICY SPACE II

� Proof of the gradient formula: We have, by \dif-
ferentiating" Bellman's equation,

� � (r )�e+� h(r ) = � g(r )+� P(r )h(r )+ P(r )� h(r )

By left-multiplying with � 0,

� 0� � (r )�e+ � 0� h(r ) = � 0
�

� g(r )+� P (r )h(r )
�

+ � 0P (r )� h(r )

Since � 0� � (r ) � e = � � (r ) and � 0 = � 0P(r ), this
equation simpli�es to

� � = � 0(� g + � Ph)

� Since we don't know� , we cannot implement a
gradient-like method for minimizing � (r ). An al-
ternative is to use \sampled gradients", i.e., gener-
ate a simulation trajectory ( i 0; i 1; : : :), and change
r once in a while, in the direction of a simulation-
based estimate of� 0(� g + � Ph).

� Important Fact: � � can be viewed as an ex-
pected value!

� Much research on this subject, see the text.



6.231 DYNAMIC PROGRAMMING

OVERVIEW-EPILOGUE

� Finite horizon problems

� Deterministic vs Stochastic

� Perfect vs Imperfect State Info

� In�nite horizon problems

� Stochastic shortest path problems

� Discounted problems

� Average cost problems



FINITE HORIZON PROBLEMS - ANALYSIS

� Perfect state info

� A general formulation - Basic problem, DP
algorithm

� A few nice problems admit analytical solu-
tion

� Imperfect state info

� Reduction to perfect state info - Su�cient
statistics

� Very few nice problems admit analytical so-
lution

� Finite-state problems admit reformulation as
perfect state info problems whose states are
prob. distributions (the belief vectors)



FINITE HORIZON PROBS - EXACT COMP. SOL.

� Deterministic �nite-state problems

� Equivalent to shortest path

� A wealth of fast algorithms

� Hard combinatorial problems are a special
case (but # of states grows exponentially)

� Stochastic perfect state info problems

� The DP algorithm is the only choice

� Curse of dimensionality is big bottleneck

� Imperfect state info problems

� Forget it!

� Only small examples admit an exact compu-
tational solution



FINITE HORIZON PROBS - APPROX. SOL.

� Many techniques (and combinations thereof) to
choose from

� Simpli�cation approaches

� Certainty equivalence

� Problem simpli�cation

� Rolling horizon

� Aggregation - Coarse grid discretization

� Limited lookahead combined with:

� Rollout

� MPC (an important special case)

� Feature-based cost function approximation

� Approximation in policy space

� Gradient methods

� Random search



INFINITE HORIZON PROBLEMS - ANALYSIS

� A more extensive theory

� Bellman's equation

� Optimality conditions

� Contraction mappings

� A few nice problems admit analytical solution

� Idiosynchracies of problems with no underlying
contraction

� Idiosynchracies of average cost problems

� Elegant analysis



INF. HORIZON PROBS - EXACT COMP. SOL.

� Value iteration

� Variations (Gauss-Seidel, asynchronous, etc)

� Policy iteration

� Variations (asynchronous, based on value it-
eration, optimistic, etc)

� Linear programming

� Elegant algorithmic analysis

� Curse of dimensionality is major bottleneck



INFINITE HORIZON PROBS - ADP

� Approximation in value space (over a subspace
of basis functions)

� Approximate policy evaluation

� Direct methods (�tted VI)

� Indirect methods (projected equation meth-
ods, complex implementation issues)

� Aggregation methods (simpler implementa-
tion/many basis functions tradeo�)

� Q-Learning (model-free, simulation-based)

� Exact Q-factor computation

� Approximate Q-factor computation (�tted VI)

� Aggregation-based Q-learning

� Projected equation methods for opt. stop-
ping

� Approximate LP

� Rollout

� Approximation in policy space

� Gradient methods

� Random search


