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LECTURE 1

INTRODUCTION/BASIC CONVEXITY CONCEPTS

LECTURE OUTLINE

• Convex Optimization Problems

• Why is Convexity Important in Optimization

• Multipliers and Lagrangian Duality

• Min Common/Max Crossing Duality

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions



OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)

subject to x ∈ C

Cost function f : ℜn 7→ ℜ, constraint set C, e.g.,

C = X ∩
{

x | h1(x) = 0, . . . , hm(x) = 0
}

∩
{

x | g1(x) ≤ 0, . . . , gr(x) ≤ 0
}

• Examples of problem classifications:

− Continuous vs discrete

− Linear vs nonlinear

− Deterministic vs stochastic

− Static vs dynamic

• Convex programming problems are those for
which f is convex and C is convex (they are con-
tinuous problems).

• However, convexity permeates all of optimiza-
tion, including discrete problems.



WHY IS CONVEXITY SO SPECIAL?

• A convex function has no local minima that are
not global

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible di-
rections at any point

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are self-
dual with respect to conjugacy



CONVEXITY AND DUALITY

• Consider the (primal) problem

minimize f(x) s.t. g1(x) ≤ 0, . . . , gr(x) ≤ 0

• We introduce multiplier vectors µ = (µ1, . . . , µr) ≥
0 and form the Lagrangian function

L(x, µ) = f(x)+

r
∑

j=1

µjgj(x), x ∈ ℜn, µ ∈ ℜr.

• Dual function

q(µ) = inf
x∈ℜn

L(x, µ)

• Dual problem: Maximize q(µ) over µ ≥ 0

• Motivation: Under favorable circumstances
(strong duality) the optimal values of the primal
and dual problems are equal, and their optimal
solutions are related



KEY DUALITY RELATIONS

• Optimal primal value

f∗ = inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈ℜn

sup
µ≥0

L(x, µ)

• Optimal dual value

q∗ = sup
µ≥0

q(µ) = sup
µ≥0

inf
x∈ℜn

L(x, µ)

• We always have q∗ ≤ f∗ (weak duality - impor-
tant in discrete optimization problems).

• Under favorable circumstances (convexity in the
primal problem, plus ...):

− We have q∗ = f∗ (strong duality)

− If µ∗ is optimal dual solution, all optimal
primal solutions minimize L(x, µ∗)

• This opens a wealth of analytical and computa-
tional possibilities, and insightful interpretations.

• Note that the equality of “sup inf” and “inf sup”
is a key issue in minimax theory and game theory.



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

• This is the novel aspect of the treatment (al-
though the ideas are closely connected to conju-
gate convex function theory)

• The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior [like
in (c) of the preceding slide]?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

x1

x2

C1 =
{

(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1
}

C2 =
{

(x1, x2) | x1 = 0
}

,

• This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



COURSE OUTLINE

1) Basic Convexity Concepts (2): Convex sets
and functions. Convex and affine hulls. Closure,
relative interior, and continuity.

2) More Convexity Concepts (2): Directions
of recession. Hyperplanes. Conjugate convex func-
tions.

3) Convex Optimization Concepts (1): Exis-
tence of optimal solutions. Partial minimization.
Saddle point and minimax theory.

4) Min common/max crossing duality (1):
MC/MC duality. Special cases in constrained min-
imization and minimax. Strong duality theorem.
Existence of dual optimal solutions.

5) Duality applications (2): Constrained op-
timization (Lagrangian, Fenchel, and conic dual-
ity). Subdifferential theory and optimality condi-
tions. Minimax theorems. Nonconvex problems
and estimates of the duality gap.



WHAT TO EXPECT FROM THIS COURSE

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat rigorously an important branch of
applied math, and to provide some appreci-
ation of the research in the field

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs are important ... but the rich geom-
etry helps guide the mathematics

• We will make maximum use of visualization and
figures

• Applications: They are many and pervasive
... but don’t expect much in this course. The
book by Boyd and Vandenberghe describes a lot
of practical convex optimization models
(http://www.stanford.edu/ boyd/cvxbook.html)

• Handouts: Slides, 1st chapter, material in
http://www.athenasc.com/convexity.html



A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect strict mathematical rigor

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance ideas,
not to express them precisely

• The omitted proofs and a much fuller discus-
sion can be found in the “Convex Optimization”
textbook and handouts



SOME MATH CONVENTIONS

• All of our work is done in ℜn: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “′” denotes transpose, so we use x′ to denote a
row vector

• x′y is the inner product
∑n

i=1 xiyi of vectors x
and y

• ‖x‖ =
√

x′x is the (Euclidean) norm of x. We
use this norm almost exclusively

• See the appendix for an overview of the linear
algebra and real analysis background that we will
use



CONVEX SETS
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• A subset C of ℜn is called convex if

αx + (1 − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]

• Operations that preserve convexity

− Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

• Cones: Sets C such that λx ∈ C for all λ > 0
and x ∈ C (not always convex or closed)



REAL-VALUED CONVEX FUNCTIONS
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• Let C be a convex subset of ℜn. A function
f : C 7→ ℜ is called convex if

f
(

αx + (1 − α)y
)

≤ αf(x) + (1 − α)f(y)

for all x, y ∈ C, and α ∈ [0, 1].

• If f is a convex function, then all its level sets
{x ∈ C | f(x) ≤ a} and {x ∈ C | f(x) < a},
where a is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

• The epigraph of a function f : X 7→ [−∞,∞] is
the subset of ℜn+1 given by

epi(f) =
{

(x,w) | x ∈ X, w ∈ ℜ, f(x) ≤ w
}

• The effective domain of f is the set

dom(f) =
{

x ∈ X | f(x) < ∞
}

• We say that f is proper if f(x) < ∞ for at least
one x ∈ X and f(x) > −∞ for all x ∈ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

• An extended real-valued function f : X 7→
[−∞,∞] is called lower semicontinuous at a vec-
tor x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every
sequence {xk} ⊂ X with xk → x.

• We say that f is closed if epi(f) is a closed set.



CLOSEDNESS AND SEMICONTINUITY

• Proposition: For a function f : ℜn 7→ [−∞,∞],
the following are equivalent:

(i) {x | f(x) ≤ a} is closed for every scalar a.

(ii) f is lower semicontinuous at all x ∈ ℜn.

(iii) f is closed.

f(x)

X x
{

x | f(x) ≤ γ
}

γ

epi(f)

• Note that:

− If f is lower semicontinuous at all x ∈ dom(f),
it is not necessarily closed

− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X 7→ [−∞,∞] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ∈ dom(f), then f is closed.



EXTENDED REAL-VALUED CONVEX FUNCTIONS
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• Let C be a convex subset of ℜn. An extended
real-valued function f : C 7→ [−∞,∞] is called
convex if epi(f) is a convex subset of ℜn+1.

• If f is proper, this definition is equivalent to

f
(

αx + (1 − α)y
)

≤ αf(x) + (1 − α)f(y)

for all x, y ∈ C, and α ∈ [0, 1].

• An improper closed convex function is very pe-
culiar: it takes an infinite value (∞ or −∞) at
every point.



RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: Let fi : ℜn 7→ (−∞,∞], i ∈ I, be
given functions (I is an arbitrary index set).
(a) The function g : ℜn 7→ (−∞,∞] given by

g(x) = λ1f1(x) + · · · + λmfm(x), λi > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).
(b) The function g : ℜn 7→ (−∞,∞] given by

g(x) = f(Ax)

where A is an m × n matrix is convex (or closed)
if f is convex (respectively, closed).
(c) The function g : ℜn 7→ (−∞,∞] given by

g(x) = sup
i∈I

fi(x)

is convex (or closed) if the fi are convex (respec-
tively, closed).



LECTURE 2

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and Affine Hulls

• Caratheodory’s Theorem

• Closure, Relative Interior, Continuity



DIFFERENTIABLE CONVEX FUNCTIONS
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• Let C ⊂ ℜn be a convex set and let f : ℜn 7→ ℜ
be differentiable over ℜn.

(a) The function f is convex over C iff

f(z) ≥ f(x) + (z − x)′∇f(x), ∀ x, z ∈ C

Implies that x∗ minimizes f over C iff

∇f(x∗)′(x − x∗) ≥ 0, ∀ x ∈ C

(b) If the inequality is strict whenever x 6= z,
then f is strictly convex over C, i.e., for all
α ∈ (0, 1) and x, y ∈ C, with x 6= y

f
(

αx + (1 − α)y
)

< αf(x) + (1 − α)f(y)



PROOF IDEAS
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TWICE DIFFERENTIABLE CONVEX FUNCTIONS

• Let C be a convex subset of ℜn and let f :
ℜn 7→ ℜ be twice continuously differentiable over
ℜn.

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ∈ C.

Proof: (a) By mean value theorem, for x, y ∈ C

f(y) = f(x)+(y−x)′∇f(x)+ 1

2
(y−x)′∇2f

(

x+α(y−x)
)

(y−x)

for some α ∈ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) + (y − x)′∇f(x), ∀ x, y ∈ C

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(x) + (y −
x)′∇f(x) for all x, y ∈ C with x 6= y, and we use
the preceding result.



CONVEX AND AFFINE HULLS

• Given a set X ⊂ ℜn:

• A convex combination of elements of X is a
vector of the form

∑m
i=1 αixi, where xi ∈ X, αi ≥

0, and
∑m

i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X (also
the set of all convex combinations from X).

• The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space). Note that aff(X) is itself an affine set.

• A nonnegative combination of elements of X is
a vector of the form

∑m

i=1 αixi, where xi ∈ X and
αi ≥ 0 for all i.

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:

− It is a convex cone containing the origin.

− It need not be closed (even if X is compact).

− If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM
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• Let X be a nonempty subset of ℜn.

(a) Every x 6= 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm

from X that are linearly independent (so
m ≤ n).

(b) Every x /∈ X that belongs to conv(X) can
be represented as a convex combination of
at most n + 1 vectors.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form

∑m

i=1 αixi, where αi > 0 and xi ∈ X for
all i = 1, . . . ,m. If the vectors xi were linearly
dependent, there would exist λ1, . . . , λm, with

m
∑

i=1

λixi = 0

and at least one of the λi is positive. Consider
m

∑

i=1

(αi − γλi)xi,

where γ is the largest γ such that αi −γλi ≥ 0 for
all i. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X – a contradiction. Therefore, x1, . . . , xm,
are linearly independent.

(b) Apply part (a) to the subset of ℜn+1

Y =
{

(z, 1) | z ∈ X
}

consider cone(Y ), represent (x, 1) ∈ cone(Y ) in
terms of at most n + 1 vectors, etc.



AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can

be expressed as
{

∑n+1
i=1 αk

i xk
i

}

, where for all k and

i, αk
i ≥ 0, xk

i ∈ X, and
∑n+1

i=1 αk
i = 1. Since

{

(αk
1 , . . . , αk

n+1, x
k
1 , . . . , xk

n+1)
}

is bounded, it has a limit point

{

(α1, . . . , αn+1, x1, . . . , xn+1)
}

,

which must satisfy
∑n+1

i=1 αi = 1, and αi ≥ 0,

xi ∈ X for all i. Thus, the vector
∑n+1

i=1 αixi,
which belongs to conv(X), is a limit point of the

sequence
{

∑n+1
i=1 αk

i xk
i

}

, so conv(X) is compact.

Q.E.D.

• Note the convex hull of a closed set need not be
closed.



RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ∈ ri(C) and x ∈ cl(C), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

x

C xα = αx+(1−α)x

x

x S

Sα
α ǫ

0 αǫ



ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) x ∈ ri(C) if and only if every line segment in
C having x as one endpoint can be prolonged
beyond x without leaving C.

X

z1

0

C

z2

Proof: (a) Assume that 0 ∈ C. We choose m lin-
early independent vectors z1, . . . , zm ∈ C, where
m is the dimension of aff(C), and we let

X =

{

m
∑

i=1

αizi

∣

∣

∣

m
∑

i=1

αi < 1, αi > 0, i = 1, . . . ,m

}

Then argue that X ⊂ ri(C).
(b) => is clear by the def. of rel. interior. Reverse:
argue by contradiction; take any x ∈ ri(C); use
prolongation assumption and Line Segment Princ.



OPTIMIZATION APPLICATION

• A concave function f : ℜn 7→ ℜ that attains its
minimum over a convex set X at an x∗ ∈ ri(X)
must be constant over X.

aff(X)

x*
x

x

X

Proof: (By contradiction.) Let x ∈ X be such
that f(x) > f(x∗). Prolong beyond x∗ the line
segment x-to-x∗ to a point x ∈ X. By concavity
of f , we have for some α ∈ (0, 1)

f(x∗) ≥ αf(x) + (1 − α)f(x),

and since f(x) > f(x∗), we must have f(x∗) >
f(x) - a contradiction. Q.E.D.

• Corollary: A linear function can attain a min-
inum only at the boundary of a convex set.



CALCULUS OF RELATIVE INTERIORS: SUMMARY

• The relative interior of a convex set is equal to
the relative interior of its closure.

• The closure of the relative interior of a convex
set is equal to its closure.

• Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

• Let C be a nonempty convex set. Then ri(C)
and cl(C) are “not too different for each other.”

• Proposition:

(a) We have cl(C) = cl
(

ri(C)
)

.

(b) We have ri(C) = ri
(

cl(C)
)

.

(c) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(

ri(C)
)

⊂
cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C).
By the Line Segment Principle, we have αx+(1−
α)x ∈ ri(C) for all α ∈ (0, 1]. Thus, x is the limit
of a sequence that lies in ri(C), so x ∈ cl

(

ri(C)
)

.

x

x
C



LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of ℜn and
let A be an m × n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A · C (relative to the affine
hull).

(b) We have A·cl(C) ⊂ cl(A·C), since if a sequence
{xk} ⊂ C converges to some x ∈ cl(C) then the
sequence {Axk}, which belongs to A ·C, converges
to Ax, implying that Ax ∈ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ∈ cl(A · C). Then, there
exists a sequence {xk} ⊂ C such that Axk → z.
Since C is bounded, {xk} has a subsequence that
converges to some x ∈ cl(C), and we must have
Ax = z. It follows that z ∈ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) 6= int(A · C), A · cl(C) 6= cl(A · C)



INTERSECTIONS AND VECTOR SUMS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⊂ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) If ri(C1) ∩ ri(C2) 6= Ø, then

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2),

cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) 7→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0}



CONTINUITY OF CONVEX FUNCTIONS

• If f : ℜn 7→ ℜ is convex, then it is continuous.

e1

xk

xk+1

0

yke3 e2

e4 zk

Proof: We will show that f is continuous at 0.
By convexity, f is bounded within the unit cube
by the maximum value of f over the corners of the
cube.

Consider sequence xk → 0 and the sequences
yk = xk/‖xk‖∞, zk = −xk/‖xk‖∞. Then

f(xk) ≤
(

1 − ‖xk‖∞
)

f(0) + ‖xk‖∞f(yk)

f(0) ≤ ‖xk‖∞
‖xk‖∞ + 1

f(zk) +
1

‖xk‖∞ + 1
f(xk)

Since ‖xk‖∞ → 0, f(xk) → f(0). Q.E.D.

• Extension to continuity over ri(dom(f)).



CLOSURES OF FUNCTIONS

• The closure of a function f : X 7→ [−∞,∞] is
the function cl f : ℜn 7→ [−∞,∞] with

epi(cl f) = cl
(

epi(f)
)

• The convex closure of f is the function čl f with

epi(čl f) = cl
(

conv
(

epi(f)
))

• Proposition: For any f : X 7→ [−∞,∞]

inf
x∈X

f(x) = inf
x∈ℜn

(cl f)(x) = inf
x∈ℜn

(čl f)(x).

Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and čl f .

• Proposition: For any f : X 7→ [−∞,∞]:

(a) cl f (čl f) is the greatest closed (closed con-
vex, resp.) function majorized by f .

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(cl f)(x) = f(x), ∀ x ∈ ri
(

dom(f)
)

,

and if x ∈ ri
(

dom(f)
)

and y ∈ dom(cl f),

(cl f)(y) = lim
α↓0

f
(

y + α(x − y)
)

.



LECTURE 3

LECTURE OUTLINE

• Recession cones

• Directions of recession of convex functions

• Nonemptiness of closed set intersections

• Linear and Quadratic Programming

• Preservation of closure under linear transforma-
tion



RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C to points outside C:

x + αd ∈ C, ∀ x ∈ C, ∀ α ≥ 0

x

C

0

d

x + αd

Recession Cone RC

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.



RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector d belongs to RC if and only if there
exists a vector x ∈ C such that x + αd ∈ C
for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ∩ D 6= Ø, we have

RC∩D = RC ∩ RD

More generally, for any collection of closed
convex sets Ci, i ∈ I, where I is an arbitrary
index set and ∩i∈ICi is nonempty, we have

R∩i∈ICi
= ∩i∈IRCi



PROOF OF PART (B)

x

C

z1 = x + d

d z2

z3

x

x + d

d x + d1

x + d2

x + d3

• Let d 6= 0 be such that there exists a vector
x ∈ C with x + αd ∈ C for all α ≥ 0. We fix
x ∈ C and α > 0, and we show that x + αd ∈ C.
By scaling d, it is enough to show that x + d ∈ C.

Let zk = x + kd for k = 1, 2, . . ., and dk =
(zk − x)‖d‖/‖zk − x‖. We have

dk

‖d‖
=

‖zk − x‖

‖zk − x‖

d

‖d‖
+

x − x

‖zk − x‖
,

‖zk − x‖

‖zk − x‖
→ 1,

x − x

‖zk − x‖
→ 0,

so dk → d and x + dk → x + d. Use the convexity
and closedness of C to conclude that x + d ∈ C.



LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors d such that d ∈ RC

and −d ∈ RC :

LC = RC ∩ (−RC)

• If d ∈ LC , the entire line defined by d is con-
tained in C, starting at any point of C.

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of ℜn. Then,

C = LC + (C ∩ L⊥
C).

• True also if LC is replaced by a subset S ⊂ LC .

x

C

S

S⊥

C ∩ S⊥

< 0

d

d z



DIRECTIONS OF RECESSION OF A FUNCTION

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets
{

x |
f(x) ≤ γ

}

are unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS

• Proposition: Let f : ℜn 7→ (−∞,∞] be a closed
proper convex function and consider the level sets
Vγ =

{

x | f(x) ≤ γ
}

, where γ is a scalar. Then:

(a) All the nonempty level sets Vγ have the same
recession cone, given by

RVγ
=

{

d | (d, 0) ∈ Repi(f)

}

(b) If one nonempty level set Vγ is compact, then
all nonempty level sets are compact.

Proof: For each fixed γ for which Vγ is nonempty,

{

(x, γ) | x ∈ Vγ

}

= epi(f) ∩
{

(x, γ) | x ∈ ℜn
}

The recession cone of the set on the left is
{

(d, 0) |
d ∈ RVγ

}

. The recession cone of the set on the
right is the intersection of Repi(f) and the reces-
sion cone of

{

(x, γ) | x ∈ ℜn
}

. Thus we have

{

(d, 0) | d ∈ RVγ

}

=
{

(d, 0) | (d, 0) ∈ Repi(f)

}

,

from which the result follows.



RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : ℜn 7→
(−∞,∞], the (common) recession cone of the nonempty
level sets Vγ =

{

x | f(x) ≤ γ
}

, γ ∈ ℜ, is the re-

cession cone of f , and is denoted by Rf .

0

Recession Cone Rf

Level Sets of f

• Terminology:

− d ∈ Rf : a direction of recession of f .

− Lf = Rf ∩ (−Rf ): the lineality space of f .

− d ∈ Lf : a direction of constancy of f .

• Example: For the pos. semidefinite quadratic

f(x) = x′Qx + a′x + b,

the recession cone and constancy space are

Rf = {d | Qd = 0, a′d ≤ 0}, Lf = {d | Qd = 0, a′d = 0}



RECESSION FUNCTION

• Function rf : ℜn 7→ (−∞,∞] whose epigraph
is Repi(f): the recession function of f .

• Characterizes the recession cone:

Rf =
{

d | rf (d) ≤ 0
}

, Lf =
{

d | rf (d) = rf (−d) = 0
}

• Can be shown that

rf (d) = sup
α>0

f(x + αd) − f(x)

α
= lim

α→∞

f(x + αd) − f(x)

α

• Thus rf (d) is the “asymptotic slope” of f in the
direction d. In fact,

rf (d) = lim
α→∞

∇f(x + αd)′d, ∀ x, d ∈ ℜn

if f is differentiable.

• Calculus of recession functions:

rf1+···+fm
(d) = rf1

(d) + · · · + rfm
(d)

rsupi∈I fi
(d) = sup

i∈I

rfi
(d)



DESCENT BEHAVIOR OF A CONVEX FUNCTION

f(x + a y)

a

f(x)

(a)

f(x + a y)

a

f(x)

(b)

f(x + a y)

a

f(x)

(c)

f(x + a y)

a

f(x)

(d)

f(x + a y)

a

f(x)

(e)

f(x + a y)

a

f(x)

(f)

α α

αα

α α

x, f(x)

x, f(x)

x, f(x)

x, f(x)

x, f(x)

x, f(x)

f(x + αd)

f(x + αd) f(x + αd)

f(x + αd)

f(x + αd)f(x + αd)

rf (d) = 0

rf (d) = 0 rf (d) = 0

rf (d) < 0

rf (d) > 0 rf (d) > 0

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting

point x, as long as x ∈ dom(f).



THE ROLE OF CLOSED SET INTERSECTIONS

• A fundamental question: Given a sequence
of nonempty closed sets {Ck} in ℜn with Ck+1 ⊂
Ck for all k, when is ∩∞

k=0Ck nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : ℜn 7→ (−∞,∞] attain
a minimum over a set X? This is true iff the
intersection of the nonempty level sets

{

x ∈ X |
f(x) ≤ γk

}

is nonempty.

2. If C is closed and A is a matrix, is AC closed?
Special case:

− If C1 and C2 are closed, is C1 + C2 closed?

3. If F (x, z) is closed, is f(x) = infz F (x, z)
closed? (Critical question in duality theory.) Can
be addressed by using the relation

P
(

epi(F )
)

⊂ epi(f) ⊂ cl
(

P
(

epi(F )
)

)

where P (·) is projection on the space of (x,w).



ASYMPTOTIC DIRECTIONS

• Given nested sequence {Ck} of closed convex
sets, {xk} is an asymptotic sequence if

xk ∈ Ck, xk 6= 0, k = 0, 1, . . .

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖
where d is a nonzero common direction of recession
of the sets Ck.

• As a special case we define asymptotic sequence
of a closed convex set C (use Ck ≡ C).

• Every unbounded {xk} with xk ∈ Ck has an
asymptotic subsequence.

• {xk} is called retractive if for some k, we have

xk − d ∈ Ck, ∀ k ≥ k.

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



RETRACTIVE SEQUENCES

• A nested sequence {Ck} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

• Intersections and Cartesian products of retrac-
tive set sequences are retractive.

• A closed halfspace (viewed as a sequence with
identical components) is retractive.

• A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.

x0x0

x1

x2

S0

S2

S1

(a) Retractive

0

(b) Nonretractive

d

x0

x1

x2

S0

S1

Intersection
Intersection

0

d

d

S2
x3

C0

C0

C1

C1

C2

C2

x0
d x1

d x1

d x2

d x2

d x3

(a) Retractive Set Sequence e (b) Nonretractive Set Sequence
f β α −1 1

Intersection ∩
∞

k=0
Ck Intersection ∩

∞

k=0
Ck

d d

d d

> 0

> 0



SET INTERSECTION THEOREM I

Proposition: If {Ck} is retractive, then ∩∞
k=0 Ck

is nonempty.

• Key proof ideas:

(a) The intersection ∩∞
k=0 Ck is empty iff the se-

quence {xk} of minimum norm vectors of Ck

is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xk} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-
rection.

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



SET INTERSECTION THEOREM II

Proposition: Let {Ck} be a nested sequence of
nonempty closed convex sets, and X be a retrac-
tive set such that all the sets Ck = X ∩ Ck are
nonempty. Assume that

RX ∩ R ⊂ L,

where

R = ∩∞
k=0RCk

, L = ∩∞
k=0LCk

Then {Ck} is retractive and ∩∞
k=0 Ck is nonempty.

• Special case: X = ℜn, R = L.

Proof: The set of common directions of recession
of Ck is RX ∩ R. For any asymptotic sequence
{xk} corresponding to d ∈ RX ∩ R:

(1) xk − d ∈ Ck (because d ∈ L)

(2) xk − d ∈ X (because X is retractive)

So {Ck} is retractive.



NEED TO ASSUME THAT X IS RETRACTIVE

y Ck C Ck+1

X

y Ck C Ck+1

X

Consider ∩∞
k=0 Ck, with Ck = X ∩ Ck

• The condition RX ∩ R ⊂ L holds

• In the figure on the left, X is polyhedral.

• In the figure on the right, X is nonpolyhedral
and nonretrative, and

∩∞
k=0 Ck = Ø



LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

f(x) = x
′

Qx+c
′

x, X = {x | a
′

jx+bj ≤ 0, j = 1, . . . , r},

where Q is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write

Set of Minima = X ∩ {x | x′Qx + c′x ≤ γk}

with
γk ↓ f∗ = inf

x∈X
f(x).

Verify the condition RX ∩R ⊂ L of the preceding
set intersection theorem, where R and L are the
sets of common recession and lineality directions
of the sets

{x | x′Qx + c′x ≤ γk}

Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATIONS

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC is closed if RC ∩ N(A) ⊂ LC .

(b) A(X ∩ C) is closed if X is a retractive set
and

RX ∩ RC ∩ N(A) ⊂ LC ,

Proof: (Outline) Let {yk} ⊂ AC with yk → y.
We prove ∩∞

k=0Ck 6= Ø, where Ck = C ∩ Nk, and

Nk = {x | Ax ∈ Wk}, Wk =
{

z | ‖z−y‖ ≤ ‖yk−y‖
}

x

Nk

AC

C

k y C yk+1 yk

y Ck

• Special Case: AX is closed if X is polyhedral.



NEED TO ASSUME THAT X IS RETRACTIVE

A(X!C)

C

X

C

X

A(X!C)

N(A) N(A)

C C

N(A) N(A)

) X

) X

A(X ∩ C) A(X ∩ C)

Consider closedness of A(X ∩ C)

• In both examples the condition

RX ∩ RC ∩ N(A) ⊂ LC

is satisfied.

• However, in the example on the right, X is not
retractive, and the set A(X ∩ C) is not closed.



LECTURE 4

LECTURE OUTLINE

• Hyperplane separation

• Proper separation

• Nonvertical hyperplanes

• Convex conjugate functions

• Conjugacy theorem

• Examples



HYPERPLANES

x

Negative Halfspace

Positive Halfspace

e {x | a′x ≥ b}

e {x | a′x ≤ b}

Hyperplane

{x | a′x = b} = {x | a′x = a′x}

a

• A hyperplane is a set of the form {x | a′x = b},
where a is nonzero vector in ℜn and b is a scalar.

• We say that two sets C1 and C2 are separated

by a hyperplane H = {x | a′x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a′x1 ≤ b ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

or a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.



VISUALIZATION

• Separating and supporting hyperplanes:

a

(a)

C1 y C2

x

a

) (b)

C

• A separating {x | a′x = b} that is disjoint from
C1 and C2 is called strictly separating:

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2

(a)

C1 y C2

x

a

) (b)

C1

y C2

d x1

1 x2



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

a

C

x

x0

x1

x2

x3

x̂0

x̂1

1 x̂2

x̂3

a0

a1

a2
a3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ∈
cl(C)

a′
kx ≥ a′

kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,

where ak = (x̂k − xk)/‖x̂k − xk‖. Let a be a limit
point of {ak}, and take limit as k → ∞. Q.E.D.



SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of ℜn. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a 6= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a 6= 0 such
that

0 ≤ a′x, ∀ x ∈ C1 − C2,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(a)

C1 y C2

x

a

a) (b)

C1

y C2

d x1

1 x2

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1 −C2 is closed.
Since C1 ∩ C2 = Ø, 0 /∈ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.



ADDITIONAL THEOREMS

• Fundamental Characterization: The clo-
sure of the convex hull of a set C ⊂ ℜn is the
intersection of the closed halfspaces that contain
C. (Proof uses the strict separation theorem.)

• We say that a hyperplane properly separates C1

and C2 if it separates C1 and C2 and does not fully
contain both C1 and C2.

(a)

C1 y C2

a

C1 y C2

a

) (b)

a

C1 y C2

b) (c)

• Proper Separation Theorem: Let C1 and
C2 be two nonempty convex subsets of ℜn. There
exists a hyperplane that properly separates C1 and
C2 if and only if

ri(C1) ∩ ri(C2) = Ø



PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ∩ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ∩ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

C
P

Separating
hyperplane

a

P

Separating
hyperplane

aC
P

Separating
hyperplane

a

C

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



NONVERTICAL HYPERPLANES

• A hyperplane in ℜn+1 with normal (µ, β) is
nonvertical if β 6= 0.

• It intersects the (n+1)st axis at ξ = (µ/β)′u+w,
where (u,w) is any vector on the hyperplane.

X 0 0 u

u w

w (µ, β)

) (u, w)

)
µ

β

′

u + w

Nonvertical
Hyperplane

l Vertical

Hyperplane

(µ, 0)
(a) (b)

• A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

• The epigraph of a proper convex function does
not contain a vertical line, so it appears plausible
that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of ℜn+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist µ ∈ ℜn,
β ∈ ℜ with β 6= 0, and γ ∈ ℜ such that
µ′u + βw ≥ γ for all (u,w) ∈ C.

(b) If (u,w) /∈ cl(C), there exists a nonvertical
hyperplane strictly separating (u,w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u,w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ǫ-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).



CONJUGATE CONVEX FUNCTIONS

• Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi(f)

7→ Crossing points of vertical axis

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn.

y x

) Slope = y

x 0

(−y, 1)

f(x)

inf
x∈ℜn

{f(x) − x′y} = −f⋆(y),

• For any f : ℜn 7→ [−∞,∞], its conjugate convex

function is defined by

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn



EXAMPLES

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

y x

y x

y x

= y

= y

= yβ/α

β

β α

α −1 1 1

) Slope = α

x 0

x 0

x 0x 0

x 0

x 0

f⋆(y) =

{

β if y = α

∞ if y "= α

{

f⋆(y) =

{

0 if |y| ≤ 1
∞ if |y| > 1

f⋆(y) = (1/2c)y2



CONJUGATE OF CONJUGATE

• From the definition

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn,

note that h is convex and closed .

• Reason: epi(f⋆) is the intersection of the epigraphs
of the linear functions of y

x′y − f(x)

as x ranges over ℜn.

• Consider the conjugate of the conjugate:

f⋆⋆(x) = sup
y∈ℜn

{

y′x − f⋆(y)
}

, x ∈ ℜn.

• f⋆⋆ is convex and closed.

• Important fact/Conjugacy theorem: If f
is closed proper convex, then f⋆⋆ = f .



CONJUGACY THEOREM - VISUALIZATION

f⋆(y) = sup
x∈ℜn

{

x′y − f(x)
}

, y ∈ ℜn

f⋆⋆(x) = sup
y∈ℜn

{

y′x − f⋆(y)
}

, x ∈ ℜn

• If f is closed convex proper, then f⋆⋆ = f .

y x

) Slope = y

x 0

f(x)
(−y, 1)

inf
x∈ℜn

{f(x) − x′y} = −f⋆(y),{

y′x − f⋆(y)
}

f⋆⋆(x) = sup
y∈ℜn

{

y′x − f⋆(y)
}

{



CONJUGACY THEOREM

• Let f : ℜn 7→ (−∞,∞] be a function, let čl f be
its convex closure, let f⋆ be its convex conjugate,
and consider the conjugate of f⋆,

f⋆⋆(x) = sup
y∈ℜn

{

y′x − f⋆(y)
}

, x ∈ ℜn

(a) We have

f(x) ≥ f⋆⋆(x), ∀ x ∈ ℜn

(b) If f is convex, then properness of any one
of f , f⋆, and f⋆⋆ implies properness of the
other two.

(c) If f is closed proper and convex, then

f(x) = f⋆⋆(x), ∀ x ∈ ℜn

(d) If čl f(x) > −∞ for all x ∈ ℜn, then

čl f(x) = f⋆⋆(x), ∀ x ∈ ℜn



A COUNTEREXAMPLE

• A counterexample (with closed convex but im-
proper f) showing the need to assume properness
in order for f = f⋆⋆:

f(x) =

{

∞ if x > 0,
−∞ if x ≤ 0.

We have

f⋆(y) = ∞, ∀ y ∈ ℜn,

f⋆⋆(x) = −∞, ∀ x ∈ ℜn.

But
čl f = f,

so čl f 6= f⋆⋆.



A FEW EXAMPLES

• lp and lq norm conjugacy, where 1
p

+ 1
q

= 1

f(x) =
1

p

n
∑

i=1

|xi|p, f⋆(y) =
1

q

n
∑

i=1

|yi|q

• Conjugate of a strictly convex quadratic

f(x) =
1

2
x′Qx + a′x + b,

f⋆(y) =
1

2
(y − a)′Q−1(y − a) − b.

• Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) = p
(

A(x − c)
)

+ a′x + b,

f⋆(y) = q
(

(A′)−1(y − a)
)

+ c′y + d,

where q is the conjugate of p and d = −(c′a + b).



SUPPORT FUNCTIONS

• Conjugate of indicator function δX of set X

σX(y) = sup
x∈X

y′x

is called the support function of X.

• epi(σX) is a closed convex cone.

• The sets X, cl(X), conv(X), and cl
(

conv(X)
)

all have the same support function (by the conju-
gacy theorem).

• To determine σX(y) for a given vector y, we
project the set X on the line determined by y,
we find x̂, the extreme point of projection in the
direction y, and we scale by setting

σX(y) = ‖x̂‖ · ‖y‖

0

y

X

σX(y)/‖y‖

x̂


