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LECTURE 1
INTRODUCTION/BASIC CONVEXITY CONCEPTS

LECTURE OUTLINE

e Convex Optimization Problems

e Why is Convexity Important in Optimization
e Multipliers and Lagrangian Duality

e Min Common/Max Crossing Duality

e Convex sets and functions

e Epigraphs

e Closed convex functions

e Recognizing convex functions



OPTIMIZATION PROBLEMS

e (Generic form:

minimize f(x)

subject to x € C

Cost function f : R"™ — R, constraint set C, e.g.,

C=Xn{z]|h(z)=
N{z | gi(x) <

sy hm(z) =0}
. gr(z) <0}

e Examples of problem classifications:
— Continuous vs discrete
— Linear vs nonlinear
— Deterministic vs stochastic
— Static vs dynamic
e (Convex programming problems are those for

which f is convex and C' is convex (they are con-
tinuous problems).

e However, convexity permeates all of optimiza-
tion, including discrete problems.



WHY IS CONVEXITY SO SPECIAL?

e A convex function has no local minima that are
not global

e A convex set has a nonempty relative interior

e A convex set is connected and has feasible di-
rections at any point

e A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

e The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

e A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

e A real-valued convex function is continuous and
has nice differentiability properties

e (losed convex cones are self-dual with respect
to polarity

e Convex, lower semicontinuous functions are self-
dual with respect to conjugacy



CONVEXITY AND DUALITY

e Consider the (primal) problem

minimize f(z) s.t.  gi(x) <0,...,g-(x) <0

e We introduce multiplier vectors = (p41, ..., tr) >
0 and form the Lagrangian function

L(x,p) = f(a:)—l—z wigi(z), r e R, peR.
j=1

e Dual function

= inf L
q(p) = inf L(z,p)

e Dual problem: Maximize q(u) over y > 0

e Motivation: Under favorable circumstances
(strong duality) the optimal values of the primal
and dual problems are equal, and their optimal
solutions are related



KEY DUALITY RELATIONS

e Optimal primal value

* — lnf €T) = 1nf S L.CU,
f gj(:C)SO,jZL...,rf( ) rERT /LZI()) ( ILL)

e Optimal dual value

q* =sup q(p) = sup inf L(w,pu)
>0 p>0 TER™

e We always have ¢* < f* (weak duality - impor-
tant in discrete optimization problems).
e Under favorable circumstances (convexity in the
primal problem, plus ...):

— We have ¢* = f* (strong duality)

— If pu* is optimal dual solution, all optimal

primal solutions minimize L(x, pu*)

e This opens a wealth of analytical and computa-
tional possibilities, and insightful interpretations.

e Note that the equality of “supinf” and “inf sup”
is a key issue in minimax theory and game theory.



MIN COMMON/MAX CROSSING DUALITY
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e All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

e This is the novel aspect of the treatment (al-
though the ideas are closely connected to conju-
gate convex function theory)

e The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional /pathological behavior shown in (c).



EXCEPTIONAL BEHAVIOR

e If convex structure is so favorable, what is the
source of exceptional /pathological behavior [like
in (c) of the preceding slide|?

e Answer: Some common operations on convex
sets do not preserve some basic properties.

e Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

A Ci = {(:L'l,.'ljz) |:131 > 0,29 >0, x129 > 1}

” AN

Z1

Cz = {(1171,1'2) | r1 = O}

e This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



COURSE OUTLINE

1) Basic Convexity Concepts (2): Convex sets
and functions. Convex and affine hulls. Closure,
relative interior, and continuity.

2) More Convexity Concepts (2): Directions
of recession. Hyperplanes. Conjugate convex func-
tions.

3) Convex Optimization Concepts (1): Exis-
tence of optimal solutions. Partial minimization.
Saddle point and minimax theory.

4) Min common/max crossing duality (1):
MC/MC duality. Special cases in constrained min-
imization and minimax. Strong duality theorem.
Existence of dual optimal solutions.

5) Duality applications (2): Constrained op-
timization (Lagrangian, Fenchel, and conic dual-
ity). Subdifferential theory and optimality condi-
tions. Minimax theorems. Nonconvex problems
and estimates of the duality gap.



WHAT TO EXPECT FROM THIS COURSE

e We aim:

— To develop insight and deep understanding
of a fundamental optimization topic

— To treat rigorously an important branch of
applied math, and to provide some appreci-
ation of the research in the field

e Mathematical level:

— Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

— Prootfs are important ... but the rich geom-
etry helps guide the mathematics

e We will make maximum use of visualization and
figures

e Applications: They are many and pervasive
... but don’t expect much in this course. The
book by Boyd and Vandenberghe describes a lot
of practical convex optimization models
(http://www.stanford.edu/ boyd/cvxbook.html)

e Handouts: Slides, 1st chapter, material in
http://www.athenasc.com /convexity.html



A NOTE ON THESE SLIDES

e These slides are a teaching aid, not a text
e Don’t expect strict mathematical rigor

e The statements of theorems are fairly precise,
but the proofs are not

e Many proofs have been omitted or greatly ab-
breviated

e Figures are meant to convey and enhance ideas,
not to express them precisely

e The omitted proofs and a much fuller discus-
sion can be found in the “Convex Optimization”
textbook and handouts



SOME MATH CONVENTIONS

e All of our work is done in Rt™: space of n-tuples
r=(x1,...,Tn)

e All vectors are assumed column vectors

93

° denotes transpose, so we use x’ to denote a

row vector

e z'y is the inner product Y. | x;y; of vectors
and y

e ||z|| = va'zx is the (Euclidean) norm of x. We
use this norm almost exclusively

e See the appendix for an overview of the linear
algebra and real analysis background that we will
use



CONVEX SETS

e A subset C' of R" is called convex if

ar+ (1 —a)y € C, Vaz,yeC, Vael01l]

e Operations that preserve convexity

— Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

e Cones: Sets C such that Az € C for all A > 0
and x € C (not always convex or closed)



REAL-VALUED CONVEX FUNCTIONS

f(&w +(1— a)y)

& oax + (1 —a)y (]
- >

C

e Let C be a convex subset of R*. A function
f:C — R is called conver if

flaz+ (1 —a)y) <af(z)+ (1 —a)f(y)

for all x,y € C, and « € [0, 1].

e If f is a convex function, then all its level sets
{r € C| f(r) <a} and {x € C | f(x) < a},

where a is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

e The epigraph of a function f : X — [—o00, 0] is
the subset of Rnt1 given by

epi(f) = {(z,w) |z € X, w e R, f(z) <w}

e The effective domain of f is the set

dom(f) ={z € X | f(x) < oo}

e We say that f is properif f(x) < oo for at least
one z € X and f(z) > —oo for all z € X, and we
will call f improper if it is not proper.

e Note that f is proper if and only if its epigraph

is nonempty and does not contain a “vertical line.”

e An extended real-valued function f : X —
|[—00, 00] is called lower semicontinuous at a vec-
tor x € X if f(x) < liminfx_ o f(xg) for every
sequence {x;} C X with x; — x.

e We say that f is closed if epi(f) is a closed set.



CLOSEDNESS AND SEMICONTINUITY

e Proposition: For a function f : R” — [—o0, 00|,
the following are equivalent:

(i) {z | f(x) < a} is closed for every scalar a.
(ii) f is lower semicontinuous at all z € Rn.
(iii) f is closed.

f@) 4

e Note that:

— If f is lower semicontinuous at all x € dom(f),
it is not necessarily closed

— If fis closed, dom(f) is not necessarily closed
e Proposition: Let f : X — [—o0, 0] be a func-

tion. If dom(f) is closed and f is lower semicon-
tinuous at all x € dom(f), then f is closed.



EXTENDED REAL-VALUED CONVEX FUNCTIONS
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e Let C be a convex subset of *". An extended
real-valued function f : C' — |[—00,00] is called
conver if epi(f) is a convex subset of R+l

e If f is proper, this definition is equivalent to

flaz+ (1 —a)y) <af(z)+ (1 —-a)f(y)

for all x,y € C, and « € [0, 1].

e An improper closed convex function is very pe-
culiar: it takes an infinite value (oo or —oo) at
every point.



RECOGNIZING CONVEX FUNCTIONS

e Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

e Proposition: Let f; : R — (—o00,00], 7 € I, be
given functions ([ is an arbitrary index set).
(a) The function g : R +— (—o00, 00| given by

9(x) = Mfi(z) + -+ Amfm(z),  Ai>0

is convex (or closed) if f1,..., fm are convex (re-
spectively, closed).
(b) The function g : ®" — (—o0, 0| given by

g(z) = f(Ax)

where A is an m X n matrix is convex (or closed)
if f is convex (respectively, closed).
(¢) The function g : ™ — (—o0, 00| given by
9(x) = sup fi(x)
iel
is convex (or closed) if the f; are convex (respec-
tively, closed).



LECTURE 2

LECTURE OUTLINE

Differentiable Convex Functions
Convex and Affine Hulls
Caratheodory’s Theorem

Closure, Relative Interior, Continuity



DIFFERENTIABLE CONVEX FUNCTIONS

e Let C' C R" be a convex set and let f : k" — R
be differentiable over R".

(a) The function f is convex over C' iff
f(z) =2 fa)+(z—2)Vf(x), Va,ze€C
Implies that x* minimizes f over C'iff

Vilx*)(x—x*) >0, Vel

(b) If the inequality is strict whenever = # z,
then f is strictly convex over C, i.e., for all
a € (0,1) and z,y € C, with x £ y

flar+ (1 —a)y) < af(z)+ (1 —a)f(y)



PROOF IDEAS




TWICE DIFFERENTIABLE CONVEX FUNCTIONS

e Let C be a convex subset of " and let f :
R» — R be twice continuously differentiable over

R,

(a) If V2f(x) is positive semidefinite for all x €
C', then f is convex over C.

(b) If V2f(x) is positive definite for all x € C,
then f is strictly convex over C.

(c) If C' is open and f is convex over C, then
V2 f(x) is positive semidefinite for all z € C.

Proof: (a) By mean value theorem, for x,y € C

fy) = f(@)+@y—2) Vi(@)+3(y—2) V2 f (z+aly—2)) (y—=)

for some a € [0,1]. Using the positive semidefi-
niteness of V2 f, we obtain

fly) = f(z) +(y —x)Vfz), Vazyel

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(z) + (y —
x)'V f(x) for all x,y € C' with x # y, and we use
the preceding result.



CONVEX AND AFFINE HULLS

e (iven a set X C R»:

e A conver combination of elements of X is a
vector of the form > " | a;x;, where z; € X, a; >
0, and Z:’il a; = 1.

e The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X (also
the set of all convex combinations from X).

e The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form * 4+ S, where S is a sub-
space). Note that aff(X) is itself an affine set.

e A nonnegative combination of elements of X is
a vector of the form Y . | «;x;, where z; € X and
a; > 0 for all «.

e The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:
— It is a convex cone containing the origin.
— It need not be closed (even if X is compact).

— If X is a finite set, cone(X) is closed (non-
trivial to show!)



I1

CARATHEODORY’S THEOREM

T4 L2
conv(X)

T2

Z1

3

e Let X be a nonempty subset of R™.

(a)

Every x % 0 in cone(X) can be represented
as a positive combination of vectors x1, ..., Tm
from X that are linearly independent (so
m < n).

Every x ¢ X that belongs to conv(X) can
be represented as a convex combination of
at most n + 1 vectors.



PROOF OF CARATHEODORY’S THEOREM

(a) Let = be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form > ", a;x;, where o; > 0 and z; € X for
all 2+ = 1,...,m. If the vectors z; were linearly
dependent, there would exist A1,..., A\, with

i )\ixi =0
1=1

and at least one of the \; is positive. Consider

Z(Oéz‘ — A\ ) T4,

1=1

where 7 is the largest v such that a; —yA; > 0 for
all 2. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X —a contradiction. Therefore, x1,...,Tm,
are linearly independent.

(b) Apply part (a) to the subset of Jtn+!
Y={(z1)|z€X}

consider cone(Y'), represent (x,1) € cone(Y) in
terms of at most n + 1 vectors, etc.



AN APPLICATION OF CARATHEODORY

e The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X ) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can

be expressed as { ;:11 afz? }, where for all k¥ and

. 1 .
i, af >0, zF € X, and Z;fl af = 1. Since

{(a’f,...,(xﬁﬂ,az’f,...,a:ff”bﬂ)}

is bounded, it has a limit point

{(041,. ey On41,L1, .. .,xn+1)},

which must satisty Z?:Jrll a; = 1, and a; > 0,
x; € X for all i. Thus, the vector Z;:rll X,

which belongs to conv(X), is a limit point of the

1 .
sequence { " af:vf}, so conv(X) is compact.

Q.E.D.

e Note the convex hull of a closed set need not be
closed.



RELATIVE INTERIOR

e x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

e 1i(C') denotes the relative interior of C, i.e., the
set of all relative interior points of C.

e Line Segment Principle: If C is a convex set,
z € ri(C) and T € cl(C), then all points on the
line segment connecting r and x, except possibly
Z, belong to ri(C).




ADDITIONAL MAJOR RESULTS

e Let C be a nonempty convex set.

(a) ri(C') is a nonempty convex set, and has the
same affine hull as C.

(b) x € ri(C) if and only if every line segment in

C' having x as one endpoint can be prolonged
beyond x without leaving C.

Proof: (a) Assume that 0 € C. We choose m lin-
early independent vectors zi,...,z, € C, where
m is the dimension of aff(C'), and we let

X = {iazzz i&i<1, 047;>0,7j:1,...,m}
1=1 1=1

Then argue that X C ri(C).

(b) => is clear by the def. of rel. interior. Reverse:
argue by contradiction; take any T € ri(C); use
prolongation assumption and Line Segment Princ.




OPTIMIZATION APPLICATION

e A concave function f : R"™ — R that attains its
minimum over a convex set X at an x* € ri(X)
must be constant over X.

aff(X)

Proof: (By contradiction.) Let € X be such
that f(z) > f(x*). Prolong beyond z* the line
segment x-to-r* to a point T € X. By concavity
of f, we have for some a € (0,1)

fla*) z af(x) + (1 —a)f(T),

and since f(x) > f(z*), we must have f(x*) >
f(Z) - a contradiction. Q.E.D.

e Corollary: A linear function can attain a min-
inum only at the boundary of a convex set.



CALCULUS OF RELATIVE INTERIORS: SUMMARY

e The relative interior of a convex set is equal to
the relative interior of its closure.

e The closure of the relative interior of a convex
set is equal to its closure.

e Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

e Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

e Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

e Let C be a nonempty convex set. Then ri(C)
and cl(C') are “not too different for each other.”

e Proposition:
(a) We have cl(C) = cl(ri(C)).
(b) We have 1i(C) = ri(cl(C)).

(c) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.
(iii) 1i(C) c C C cl(O).

Proof: (a) Since 1i(C') C C, we have cl(ri(C))) C
cl(C). Conversely, let T € cl(C'). Let x € ri(C).
By the Line Segment Principle, we have ax + (1 —
a)T € ri(C) for all @ € (0,1]. Thus, Z is the limit
of a sequence that lies in ri(C), so T € cl(xi(C)).

XI



LINEAR TRANSFORMATIONS

e Let C' be a nonempty convex subset of " and
let A be an m X n matrix.

(a) We have A -ri(C) =ri(A-C).

(b) We have A -cl(C) C cl(A-C). Furthermore,
if C'is bounded, then A - cl(C) = cl(A - C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A - C' (relative to the affine
hull).

(b) We have A-cl(C') C cl(A-C), since if a sequence
{zr.} C C converges to some x € cl(C) then the
sequence { Axy }, which belongs to A-C', converges
to Az, implying that Ax € cl(A - C).

To show the converse, assuming that C' is
bounded, choose any z € cl(A - C). Then, there
exists a sequence {xx} C C such that Az — z.
Since C' is bounded, {z} has a subsequence that
converges to some x € cl(C), and we must have

Ax = z. It follows that z € A-cl(C). Q.E.D.

Note that in general, we may have

A-int(C) # int(A - C), A-cl(C)#cl(A-C)



INTERSECTIONS AND VECTOR SUMS

e Let (1 and (> be nonempty convex sets.

(a) We have
ri(C1 + C2) = 1i(C1) +1i(C2),

CI(C1) —+ Cl(Cz) C Cl(Cl + 02)
If one of C; and Cs is bounded, then

CI(C1) —+ CI(CQ) = CI(C1 —+ 02)

(b) If ri(C1) Nri(C2) # O, then
ri(C1 M 02) — ri(C1) M ri(CQ),

cl(C1 NCy) = cl(Ch) Nel(Cy)

Proof of (a): C; 4+ (s is the result of the linear
transformation (x1,x2) — x1 + x2.

e Counterexample for (b):

Chr ={x |z <0}, Cy={x | x>0}



CONTINUITY OF CONVEX FUNCTIONS

o If f:R” — RN is convex, then it is continuous.

Yk

€3 €s

84 Zy el

Proof: We will show that f is continuous at O.
By convexity, f is bounded within the unit cube
by the maximum value of f over the corners of the
cube.

Consider sequence x; — 0 and the sequences

Yk = Tk/||Tk||oo, 2k = —Tk/||Tk]|cc- Then

fl@r) < (1= llzkllo) £(0) + [[zklloo f (yr)

|2k [] o0 1
f(0) < TR 1f(2k:) + T +1f(93k)

Since ||zk|lcoc — 0, f(xx) — f(0). Q.E.D.

e Fxtension to continuity over ri(dom(f)).



CLOSURES OF FUNCTIONS

e The closure of a function f : X +— [—o00,00] is
the function cl f : R™ — [—00, 00| with

epi(cl f) = cl(epi(f))
e The convez closure of f is the function cl f with
epi(cl f) = cl(conv (epi(f)))

e Proposition: For any f : X — [—00, 00]

inf f(z)= inf (cl f)(z) = inf (cl f)(x).

reX rERM reERM

Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and cl f.

e Proposition: For any f : X — [—00, 00]:

(a) cl f (cl f) is the greatest closed (closed con-
vex, resp.) function majorized by f.

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(clf)(@) = f(z), ¥ aeri(dom(f)),
and if € ri(dom(f)) and y € dom(cl f),

(el f)(y) = lim f (y + a(z — y)).

al0



LECTURE 3

LECTURE OUTLINE

e Recession cones

e Directions of recession of convex functions
e Nonemptiness of closed set intersections

e Linear and Quadratic Programming

e Preservation of closure under linear transforma-
tion



RECESSION CONE OF A CONVEX SET

e Given a nonempty convex set C, a vector d is
a direction of recession if starting at any = in C
and going indefinitely along d, we never cross the
relative boundary of C' to points outside C"

x+ade C, Veel, Ya>0

Recession Cone R¢

C

e Recession cone of C' (denoted by R¢): The set
of all directions of recession.

e R is a cone containing the origin.



RECESSION CONE THEOREM

e Let C be a nonempty closed convex set.

(a) The recession cone R¢ is a closed convex
cone.

(b) A vector d belongs to R¢ if and only if there
exists a vector x € C such that x + ad € C
for all o > 0.

(¢) Rc contains a nonzero direction if and only
if C' is unbounded.

(d) The recession cones of C' and ri(C') are equal.

(e) If D is another closed convex set such that
CND+# O, we have

Rcnp = Rc N Rp
More generally, for any collection of closed
convex sets C;, © € I, where [ is an arbitrary

index set and N;c7C; is nonempty, we have

RmiEICi — ﬁiEIRC’i



PROOF OF PART (B)

e Let d #% 0 be such that there exists a vector
r € C with x + ad € C for all « > 0. We fix
Tz € C'and o > 0, and we show that T + ad € C.
By scaling d, it is enough to show that T +d € C.

Let zz. = x+ kd for kK =1,2,..., and di =
(zi — 7)||d||/]|zx — Z||. We have

di, |z — x| d x—7T |z — x| x—7T

— 0,

Il Mz =zl N1dll - Nee =2z =2l 7 [lzx — 2

so dp — d and T + dr — T + d. Use the convexity
and closedness of C' to conclude that T 4+ d € C.



LINEALITY SPACE

e The lineality space of a convex set C', denoted by

Lc, is the subspace of vectors d such that d € R¢
and —d € R¢:

Lo =ReoN (—Rc)

e If d € Lo, the entire line defined by d is con-
tained in C, starting at any point of C.

e Decomposition of a Convex Set: Let C be a
nonempty convex subset of . Then,

C:Lc—l—(CﬂLé).

e True also if L¢ is replaced by a subset S C L¢.




DIRECTIONS OF RECESSION OF A FUNCTION

e Some basic geometric observations:

— The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

— Along these directions the level sets {:1: |
f(z) < ~} are unbounded and f is mono-
tonically nondecreasing.

e These are the directions of recession of f.

A
epi(f)

—

Q' ! “Slice” {(x,

\

O Recession
Cone of f

/Q X 1(x)




RECESSION CONE OF LEVEL SETS

e Proposition: Let f : R" — (—o0, 00] be a closed
proper convex function and consider the level sets
V, ={x| f(z) <}, where v is a scalar. Then:

(a) All the nonempty level sets V5 have the same
recession cone, given by

Ry, = {d|(d,0) € Repi(p)}

(b) If one nonempty level set V,, is compact, then
all nonempty level sets are compact.

Proof: For each fixed v for which V5 is nonempty,

{(z.7) [z € Vy} =epi(f)N{(z,7) | z € R}

The recession cone of the set on the left is {(d, 0) |

d € Rv,y}. The recession cone of the set on the
right is the intersection of Repi(f) and the reces-
sion cone of {(z,7v) | € R }. Thus we have

{(d,0) | d € Ry, } = {(d,0) | (d,0) € Repi(p }

from which the result follows.



RECESSION CONE OF A CONVEX FUNCTION

e For a closed proper convex function f : R" —
(—o0, 00], the (common) recession cone of the nonempty
level sets Vo, = {z | f(z) <7}, v € R, is the re-
cesston cone of f, and is denoted by Rj.

Recession Cone Ry

Level Sets of f

e Terminology:
— d € Ry: a direction of recession of f.
— Ly = Rs N (—Ry): the lineality space of f.
— d € Ly: a direction of constancy of f.

e Example: For the pos. semidefinite quadratic
flz) =2'Qx + a’x + b,
the recession cone and constancy space are

Ry={d|Qd=0,ad<0}, Ly ={d| Qd=0, a’d =0}



RECESSION FUNCTION

e Function ry : B" — (—o00, 0] whose epigraph
is Repi(p): the recession function of f.

e (haracterizes the recession cone:
Ry={d|rs(d) <0}, Ly={d]|rs(d)=rs(—d)=0}

e (Can be shown that

flz + ad) — f(z)

rf(d) = sup _ iy Bt ad) — f(z)

a>0 (84 Qa— 00 (84

e Thus r¢(d) is the “asymptotic slope” of f in the
direction d. In fact,

r¢(d) = lim Vf(z+ ad)d, Vx,de R

a— 00

if f is differentiable.

e (alculus of recession functions:
F it fn () = 75 (d) - -+ 75, (d)

Tsup,c; fi (d) — Supry, (d)
el



DESCENT BEHAVIOR OF A CONVEX FUNCTION

Y f(z+ad) } fl@+ ad)
£(z) \Tf(d) =0 £(@) \ r¢(d) <0
(@) (b)
A f(:E + ad) A f(.’E + ad)
, _ re(d) =0
7(@) \f(d) 0 f(@) !
© @
f(z+ ad)

(©) ®

e y is a direction of recession in (a)-(d).

e This behavior is independent of the starting
point x, as long as x € dom(f).



THE ROLE OF CLOSED SET INTERSECTIONS

e A fundamental question: Given a sequence
of nonempty closed sets {Cy} in R with Cix41 C
(' for all k£, when is N2 ,C nonempty?

e Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : R* — (—o0,00] attain
a minimum over a set X7 This is true iff the
intersection of the nonempty level sets {az c X |

f(z) <~} is nonempty.

2. If C is closed and A is a matrix, is A C closed?
Special case:

— If C1 and Cs are closed, is C; + Cs closed?

3. If F(x,2) is closed, is f(z) = inf, F(x,2)
closed? (Critical question in duality theory.) Can
be addressed by using the relation

P(epi(F)) C epi(f) C CI(P(ePi(F))>

where P(-) is projection on the space of (z,w).



ASYMPTOTIC DIRECTIONS

e Given nested sequence {C}} of closed convex
sets, {xx} is an asymptotic sequence if

CCkGCk, CIZk#O, k=0,1,...

Tk \ d
[E7 | I—]

k|| — oo,

where d is a nonzero common direction of recession
of the sets (.

e As a special case we define asymptotic sequence
of a closed convex set C' (use C = C).

e FEvery unbounded {zy} with z; € C} has an
asymptotic subsequence.

o {x} is called retractive if for some k, we have
xrp —d e Oy, vV k> k.

~-— X3

- X4 X5
X0 " ® ¢
<

Asymptotic Sequence

0
—p d

/

Asymptotic Direction



RETRACTIVE SEQUENCES

e A nested sequence {Cy} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

e Intersections and Cartesian products of retrac-
tive set sequences are retractive.

e A closed halfspace (viewed as a sequence with
identical components) is retractive.

e A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set 1s retractive.

e Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.

A Intersection N2 Cy, A Intersection N2 (Cy,
e ~
Kl L3
42
>
0 |
Z1
Co
Cl Zo
Co

(a) Retractive Set Sequence (b) Nonretractive Set Sequence



SET INTERSECTION THEOREM I

Proposition: If {C}} is retractive, then N2, C}
1S nonempty.

e Key proof ideas:

(a) The intersection N2, C is empty iff the se-
quence {zr} of minimum norm vectors of Cj,
is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {zy} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-

rection.
Xq
X2 <_Xf
- X4 X5
X0 e e 4_‘
4

Asymptotic Sequence

0
—p d

/

Asymptotic Direction



SET INTERSECTION THEOREM 11

Proposition: Let {Cy} be a nested sequence of
nonempty closed convex sets, and X be a retrac-

tive set such that all the sets Cr. = X N Ok are
nonempty. Assume that

RxNRCL,
where
R =N Rc,, L =0 ,Lc,

Then {C}} is retractive and N° , Ok, is nonempty.
e Special case: X =R, R = L.

Proof: The set of common directions of recession
of 'y is Rx N R. For any asymptotic sequence
{x}} corresponding to d € Rx N R:

(1) z, —d € Ck (because d € L)
(2) xp —d € X (because X is retractive)

So {C}} is retractive.



NEED TO ASSUME THAT X IS RETRACTIVE

Consider N2, Cr, with Cr=XnNC,

e The condition Rx N R C L holds
e In the figure on the left, X is polyhedral.

e In the figure on the right, X is nonpolyhedral
and nonretrative, and

N22o Cp=0



LINEAR AND QUADRATIC PROGRAMMING

e Theorem: Let
f(z) =2'Qz+cz, X ={z|ajz+b; <0,j=1,...,r},

where () is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write
Set of Minima = X N {z | 2/Qzx + 'z < Y}

with
Ve | f*= ggif(x)-

Verify the condition Rx N R C L of the preceding
set intersection theorem, where R and L are the

sets of common recession and lineality directions
of the sets

{z|2Qx+cz < i}

Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATIONS

e Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC is closed if Re N N(A) C Lc¢.

(b) A(X NC) is closed if X is a retractive set
and

Proof: (Outline) Let {yx} C AC with y, — 7.
We prove N2 ,Cy # I, where Cj, = C'N Ny, and

Ni={z | Az € Wi}, Wi ={z|[2=7ll < lly»—7l}

A N,
\ P
I
I
I
: —~—
o
y+ yl'c+1 ’yk -
< AC

e Special Case: AX is closed if X is polyhedral.



NEED TO ASSUME THAT X IS RETRACTIVE

C c
A AN A /: \
N(A N(A) |
/( ) Y i
||
e ANE
: | -,
A(XNC) A(XNC)

Consider closedness of A(X NC)

e In both examples the condition
RxﬂRcﬂN(A) C Lo

is satisfied.

e However, in the example on the right, X is not
retractive, and the set A(X N ') is not closed.



LECTURE 4

LECTURE OUTLINE

Hyperplane separation
Proper separation
Nonvertical hyperplanes
Convex conjugate functions
Conjugacy theorem

Examples



HYPERPLANES

Positive Halfspace
{z | a’x > b}

Hyperplane
{z | d'z =b} ={z | dz =aT}

Negative Halfspace
{z | o’z < b}

e A hyperplane is a set of the form {z | a’x = b},
where a is nonzero vector in Jt* and b is a scalar.

e We say that two sets (1 and C2 are separated
by a hyperplane H = {x | o’z = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a’xz1 <b < a'xs, Va1 € Ch, Vas € O,
or a'xes <b<ax, VareCy, Var e (s
e If * belongs to the closure of a set C', a hyper-

plane that separates C' and the singleton set {T}
is said be supporting C' at x.



VISUALIZATION

e Separating and supporting hyperplanes:
(a) ()

e A separating {x | a’x = b} that is disjoint from
C'1 and C% is called strictly separating:

CL’CE1<b<CL’£B2, VSC1EC1, YV 20 € (9




SUPPORTING HYPERPLANE THEOREM

e Let C be convex and let T be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through  and contains C
in one of its closed halfspaces.

Proof: Take a sequence {zy} that does not be-
long to cl(C') and converges to Z. Let zj be the
projection of xx on cl(C). We have for all = €

cl(C)
a,T > a) Tk, Vxec(C), VE=0,1,...,

where ar = (Tx — xr)/||Zr — xx||.- Let a be a limit
point of {a}, and take limit as k — co. Q.E.D.



SEPARATING HYPERPLANE THEOREM

e Let C'1 and (5 be two nonempty convex subsets
of ®kn. If C'; and Cs are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a # 0 such that

a’ry < a'xs, Va1 €Cq, Vase(Cs.

Proof: Consider the convex set
01—02:{5172—561 ‘561 c (1, x2 ECQ}

Since C'1 and (> are disjoint, the origin does not
belong to C1 — (2, so by the Supporting Hyper-
plane Theorem, there exists a vector a # 0 such
that

0 <az, Vel —Cs,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

e Strict Separation Theorem: Let 7 and C5
be two disjoint nonempty convex sets. If C; is
closed, and (5 is compact, there exists a hyper-
plane that strictly separates them.

(@)

Proof: (Outline) Consider the set C1 —Ca. Since
(' is closed and (5 is compact, C; — C's is closed.
Since C1 N Cy = Q, 0 §§ Ci — Cy. Let T1 — Zo
be the projection of 0 onto C'; — C2. The strictly
separating hyperplane is constructed as in (b).

e Note: Any conditions that guarantee closed-
ness of C; — (> guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C7 — Cs
being closed.



ADDITIONAL THEOREMS

¢ Fundamental Characterization: The clo-
sure of the convex hull of a set C C R™ is the
intersection of the closed halfspaces that contain
C'. (Proof uses the strict separation theorem.)

e We say that a hyperplane properly separates C
and C if it separates C'1 and Cs and does not fully
contain both C7 and Cs.

e Proper Separation Theorem: Let (7 and
C2 be two nonempty convex subsets of Jt». There
exists a hyperplane that properly separates C'; and
C5 if and only if

l“i(C1) M ri(Cz) = ()



PROPER POLYHEDRAL SEPARATION

e Recall that two convex sets C' and P such that
ri(C) Nri(P) = 0

can be properly separated, i.e., by a hyperplane
that does not contain both C' and P.

e If P is polyhedral and the slightly stronger con-
dition

ri(C)NP =0
holds, then the properly separating hyperplane

can be chosen so that it does not contain the non-
polyhedral set ' while it may contain P.

C c *
Separating . Separating
Separating
hyperplane hyperplane hyperplane

On the left, the separating hyperplane can be cho-
sen so that it does not contain C'. On the right
where P is not polyhedral, this is not possible.



NONVERTICAL HYPERPLANES

e A hyperplane in R**1 with normal (u, () is
nonvertical if 3 # 0.

e It intersects the (n+1)st axis at £ = (u/3)'u+w,
where (u,w) is any vector on the hyperplane.

(1, 0)
>

/ Vertical
ut+w _—Hyperplane

Nonvertical
\/Hyperplane
>
0 \ "

e A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

e The epigraph of a proper convex function does
not contain a vertical line, so it appears plausible
that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

e Let C be a nonempty convex subset of 7+l
that contains no vertical lines. Then:

(a) C'is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist u € R,
B € R with 8 # 0, and v € R such that
wu~+ Bw > v for all (u,w) € C.

(b) If (w,w) ¢ cl(C'), there exists a nonvertical
hyperplane strictly separating (w,w) and C.

Proof: Note that cl(C') contains no vert. line [since
C' contains no vert. line, ri(C') contains no vert.
line, and ri(C') and cl(C') have the same recession
cone]. So we just consider the case: C' closed.

(a) C is the intersection of the closed halfspaces
containing C'. If all these corresponded to vertical
hyperplanes, C' would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w)
and C'. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small e-multiple of a nonvertical hyperplane con-
taining C' in one of its halfspaces as per (a).



CONJUGATE CONVEX FUNCTIONS

e (Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi( f)

—  Crossing points of vertical axis

fr(y) = sup {z'y — f(=)}, y € RN,

rER™

/—Slope =y
>
0 / z

N
inf {f(x) —2'y} = —f*(y)

reER™

e Forany f : R" — |—00, o0], its conjugate conver
function is defined by

f*y) = sup {z'y — f(x)}, yeRr

rER™



EXAMPLES

f*y) = sup {2’y — f(x)}, yeR"
TERM
A
Slope = «
/ ’
-
0 «a 75 0 Qa
//ﬁ/ y
) = |z 0 if|lyl<1
ff() |z| f*(y):{oo ifIgI;l
\/ - ‘ i >
0 T —1 0 1 Y

?f*(y) = (1/2¢)y?

S /




CONJUGATE OF CONJUGATE

e From the definition

f(y) = sup {2’y — f(z)},  yeRn,

rER™

note that h s convex and closed.

e Reason: epi(f*) is the intersection of the epigraphs
of the linear functions of y

'y — f(=)
as r ranges over R,
e Consider the conjugate of the conjugate:
f*(x) = sup {y'z — f*(y)}, x€R
yeR”

e f**is convex and closed.

e Important fact/Conjugacy theorem: If f
is closed proper convex, then f** = f.



CONJUGACY THEOREM - VISUALIZATION

f*y) = sup {z'y — f(z)}, yeRn
reER"

f(x) = sup {y'z — f*(y)}, =xeRn

yeRn

e If f is closed convex proper, then f** = f.

(@) Y

-~
"o —
—

/ §§§§§ /_—Slope =y




CONJUGACY THEOREM

o Let f: R" — (—o00,00] be a function, let cl f be
its convex closure, let f* be its convex conjugate,
and consider the conjugate of f*,

[ (x) = sup {y'z — f*(y)}, xeRn

yeRn

(a) We have

fx) > f(x), Vazekn

(b) If f is convex, then properness of any one
of f, f*, and f** implies properness of the
other two.

(c) If f is closed proper and convex, then

f(z) = f**(x), V x € R

(d) If ¢l f(x) > —oo for all x € N7, then

cl f(z) = f*(x), V x € Rn



A COUNTEREXAMPLE

e A counterexample (with closed convex but im-
proper f) showing the need to assume properness
in order for f = f**:

_Joo itz >0,
f(x)_{—oo if z <0.

We have
f*(y) =00, Vyehr,

f**(x) = —o0, Vo e R

But )
clf=7,

so cl f # f*.



A FEW EXAMPLES

e [, and [, norm conjugacy, where % -+ % =1

1 — 1 —
f(x) = —leilp, f*(y) = —Zlyilq
p 1=1 q 1=1

e (Conjugate of a strictly convex quadratic

1
flx) = 537’@56 +a’x + b,

f(9) = 5 —ayQ 1y —a) b

e (Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) =p(A(x —¢)) + a’z +b,

) =q((A)"y —a)) + y+d,

where ¢ is the conjugate of p and d = —(c’a + b).



SUPPORT FUNCTIONS

e Conjugate of indicator function 0x of set X

ox(y) = sup y'T
T

is called the support function of X.

e epi(ox) is a closed convex cone.

e The sets X, cl(X), conv(X), and cl(conv(X))
all have the same support function (by the conju-
gacy theorem).

e To determine ox(y) for a given vector y, we
project the set X on the line determined by y,
we find 2, the extreme point of projection in the
direction y, and we scale by setting

ox(y) = 1z - lyl

\ \
0P o )/lul



