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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• Convex and Nonconvex Optimization Problems

• Why is Convexity Important in Optimization

• Lagrange Multipliers and Duality

• Min Common/Max Crossing Duality



OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)
subject to x ∈ C

Cost function f : �n �→ �, constraint set C, e.g.,

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
• Examples of problem classifications:

− Continuous vs discrete

− Linear vs nonlinear

− Deterministic vs stochastic

− Static vs dynamic

• Convex programming problems are those for
which f is convex and C is convex (they are con-
tinuous problems).

• However, convexity permeates all of optimiza-
tion, including discrete problems.



WHY IS CONVEXITY SO SPECIAL IN OPTIMIZATION?

• A convex function has no local minima that are
not global

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible
directions at any point

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in terms
of a finite set of extreme points and extreme direc-
tions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are
self-dual with respect to conjugacy



CONVEXITY AND DUALITY

• A multiplier vector for the problem

minimize f(x) subject to g1(x) ≤ 0, . . . , gr(x) ≤ 0

is a µ∗ = (µ∗
1, . . . , µ

∗
r) ≥ 0 such that

inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈�n

L(x, µ∗)

where L is the Lagrangian function

L(x, µ) = f(x)+
r∑

j=1

µjgj(x), x ∈ �n, µ ∈ �r.

• Dual function (always concave)

q(µ) = inf
x∈�n

L(x, µ)

• Dual problem: Maximize q(µ) over µ ≥ 0



KEY DUALITY RELATIONS

• Optimal primal value

f∗ = inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈�n

sup
µ≥0

L(x, µ)

• Optimal dual value

q∗ = sup
µ≥0

q(µ) = sup
µ≥0

inf
x∈�n

L(x, µ)

• We always have q∗ ≤ f∗ (weak duality - impor-
tant in discrete optimization problems).

• Under favorable circumstances (convexity in the
primal problem, plus ...):

− We have q∗ = f∗

− Optimal solutions of the dual problem are
multipliers for the primal problem

• This opens a wealth of analytical and computa-
tional possibilities, and insightful interpretations.

• Note that the equality of “sup inf” and “inf sup”
is a key issue in minimax theory and game theory.



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in terms
of this one figure.

• The machinery of convex analysis is needed
to flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior [like
in (c) of the preceding slide]?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

C = {(x1,x2) | x1 > 0, x2 >0, x1x2 ≥ 1}

x1

x2

• This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



COURSE OUTLINE

1) Basic Concepts (4): Convex hulls. Closure,
relative interior, and continuity. Recession cones.
2) Convexity and Optimization (4): Direc-
tions of recession and existence of optimal solu-
tions. Hyperplanes. Min common/max crossing
duality. Saddle points and minimax theory.
3) Polyhedral Convexity (3): Polyhedral sets.
Extreme points. Polyhedral aspects of optimiza-
tion. Polyhedral aspects of duality.
4) Subgradients (3): Subgradients. Conical ap-
proximations. Optimality conditions.
5) Lagrange Multipliers (3): Fritz John theory.
Pseudonormality and constraint qualifications.
6) Lagrangian Duality (3): Constrained opti-
mization duality. Linear and quadratic program-
ming duality. Duality theorems.
7) Conjugate Duality (3): Fenchel duality the-
orem. Conic and semidefinite programming. Ex-
act penalty functions.
8) Dual Computational Methods (3): Classi-
cal subgradient and cutting plane methods. Appli-
cation in Lagrangian relaxation and combinatorial
optimization.



WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework and a term paper

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat rigorously an important branch of
applied math, and to provide some appreci-
ation of the research in the field

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

• Applications:

− They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models (see
http://www.stanford.edu/ boyd/cvxbook.html)

− You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance ideas,
not to express them precisely

• The omitted proofs and a much fuller discussion
can be found in the “Convex Analysis” textbook



LECTURE 2

LECTURE OUTLINE

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions



SOME MATH CONVENTIONS

• All of our work is done in �n: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “′” denotes transpose, so we use x′ to denote a
row vector

• x′y is the inner product
∑n

i=1 xiyi of vectors x
and y

• ‖x‖ =
√

x′x is the (Euclidean) norm of x. We
use this norm almost exclusively

• See Section 1.1 of the textbook for an overview
of the linear algebra and real analysis background
that we will use



CONVEX SETS

Convex Sets Nonconvex Sets

x

y

αx + (1 - α)y,  0 < α < 1
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• A subset C of �n is called convex if

αx + (1 − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]

• Operations that preserve convexity

− Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

• Cones: Sets C such that λx ∈ C for all λ > 0
and x ∈ C (not always convex or closed)



CONVEX FUNCTIONS

αf(x) + (1 - α)f(y)

x y

C

z

f(z)

• Let C be a convex subset of �n. A function
f : C �→ � is called convex if

f
(
αx+(1−α)y

)
≤ αf(x)+(1−α)f(y), ∀x, y ∈ C

• If f is a convex function, then all its level sets
{x ∈ C | f(x) ≤ a} and {x ∈ C | f(x) < a},
where a is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

• The epigraph of a function f : X �→ [−∞,∞] is
the subset of �n+1 given by

epi(f) =
{
(x, w) | x ∈ X, w ∈ �, f(x) ≤ w

}
• The effective domain of f is the set

dom(f) =
{
x ∈ X | f(x) < ∞

}
• We say that f is proper if f(x) < ∞ for at least
one x ∈ X and f(x) > −∞ for all x ∈ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

• An extended real-valued function f : X �→
[−∞,∞] is called lower semicontinuous at a vec-
tor x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every
sequence {xk} ⊂ X with xk → x.

• We say that f is closed if epi(f) is a closed set.



CLOSEDNESS AND SEMICONTINUITY

• Proposition: For a function f : �n �→ [−∞,∞],
the following are equivalent:

(i) {x | f(x) ≤ a} is closed for every scalar a.

(ii) f is lower semicontinuous at all x ∈ �n.

(iii) f is closed.
f(x)

x

Epigraph epi(f)

γ

{x | f(x) ≤ γ}
0

• Note that:

− If f is lower semicontinuous at all x ∈ dom(f),
it is not necessarily closed

− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X �→ [−∞,∞] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ∈ dom(f), then f is closed.



EXTENDED REAL-VALUED CONVEX FUNCTIONS

f(x)

x

Convex function

f(x)

x

Nonconvex function

Epigraph Epigraph

• Let C be a convex subset of �n. An extended
real-valued function f : C �→ [−∞,∞] is called
convex if epi(f) is a convex subset of �n+1.

• If f is proper, this definition is equivalent to

f
(
αx+(1−α)y

)
≤ αf(x)+(1−α)f(y), ∀x, y ∈ C

• An improper closed convex function is very pe-
culiar: it takes an infinite value (∞ or−∞) at every
point.



RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: Let fi : �n �→ (−∞,∞], i ∈ I, be
given functions (I is an arbitrary index set).
(a) The function g : �n �→ (−∞,∞] given by

g(x) = λ1f1(x) + · · · + λmfm(x), λi > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).
(b) The function g : �n �→ (−∞,∞] given by

g(x) = f(Ax)

where A is an m × n matrix is convex (or closed)
if f is convex (respectively, closed).
(c) The function g : �n �→ (−∞,∞] given by

g(x) = sup
i∈I

fi(x)

is convex (or closed) if the fi are convex (respec-
tively, closed).



LECTURE 3

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and Affine Hulls

• Caratheodory’s Theorem

• Closure, Relative Interior, Continuity



DIFFERENTIABLE CONVEX FUNCTIONS

f(z)
f(x) + (z - x)'∇f(x)

x z

• Let C ⊂ �n be a convex set and let f : �n �→ �
be differentiable over �n.

(a) The function f is convex over C if and only
if

f(z) ≥ f(x) + (z − x)′∇f(x), ∀ x, z ∈ C

(b) If the inequality is strict whenever x �= z,
then f is strictly convex over C, i.e., for all
α ∈ (0, 1) and x, y ∈ C, with x �= y

f
(
αx + (1 − α)y

)
< αf(x) + (1 − α)f(y)



TWICE DIFFERENTIABLE CONVEX FUNCTIONS

• Let C be a convex subset of �n and let f : �n �→
� be twice continuously differentiable over �n.

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ∈ C.

Proof: (a) By mean value theorem, for x, y ∈ C

f(y) = f(x)+(y−x)′∇f(x)+ 1
2
(y−x)′∇2f

(
x+α(y−x)

)
(y−x)

for some α ∈ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) + (y − x)′∇f(x), ∀ x, y ∈ C

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(x) + (y −
x)′∇f(x) for all x, y ∈ C with x �= y, and we use
the preceding result.



CONVEX AND AFFINE HULLS

• Given a set X ⊂ �n:

• A convex combination of elements of X is a
vector of the form

∑m
i=1 αixi, where xi ∈ X, αi ≥

0, and
∑m

i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X (also
the set of all convex combinations from X).

• The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space). Note that aff(X) is itself an affine set.

• A nonnegative combination of elements of X is
a vector of the form

∑m
i=1 αixi, where xi ∈ X and

αi ≥ 0 for all i.

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:

− It is a convex cone containing the origin.

− It need not be closed.

− If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM
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• Let X be a nonempty subset of �n.

(a) Every x �= 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm

from X that are linearly independent.

(b) Every x /∈ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1, . . . , xm from X such that x2 −
x1, . . . , xm − x1 are linearly independent.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X), and let
m be the smallest integer such that x has the
form

∑m
i=1 αixi, where αi > 0 and xi ∈ X for

all i = 1, . . . , m. If the vectors xi were linearly
dependent, there would exist λ1, . . . , λm, with

m∑
i=1

λixi = 0

and at least one of the λi is positive. Consider
m∑

i=1

(αi − γλi)xi,

where γ is the largest γ such that αi − γλi ≥ 0 for
all i. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X – a contradiction. Therefore, x1, . . . , xm,
are linearly independent.

(b) Apply part (a) to the subset of �n+1

Y =
{
(x, 1) | x ∈ X

}



AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X)
can be expressed as

{∑n+1
i=1 αk

i xk
i

}
, where for all

k and i, αk
i ≥ 0, xk

i ∈ X, and
∑n+1

i=1 αk
i = 1. Since

the sequence

{
(αk

1 , . . . , αk
n+1, x

k
1 , . . . , xk

n+1)
}

is bounded, it has a limit point

{
(α1, . . . , αn+1, x1, . . . , xn+1)

}
,

which must satisfy
∑n+1

i=1 αi = 1, and αi ≥ 0,
xi ∈ X for all i. Thus, the vector

∑n+1
i=1 αixi,

which belongs to conv(X), is a limit point of the

sequence
{∑n+1

i=1 αk
i xk

i

}
, showing that conv(X)

is compact. Q.E.D.



RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ∈ ri(C) and x ∈ cl(C), then all points on the line
segment connecting x and x, except possibly x,
belong to ri(C).

S

Sα

x

ε

α εx

xα = αx + (1 - α)x

C



ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) x ∈ ri(C) if and only if every line segment
in C having x as one endpoint can be pro-
longed beyond x without leaving C.

X

z1

0

C

z2

Proof: (a) Assume that 0 ∈ C. We choose m lin-
early independent vectors z1, . . . , zm ∈ C, where
m is the dimension of aff(C), and we let

X =

{
m∑

i=1

αizi

∣∣∣ m∑
i=1

αi < 1, αi > 0, i = 1, . . . , m

}

(b) => is clear by the def. of rel. interior. Reverse:
take any x ∈ ri(C); use Line Segment Principle.



OPTIMIZATION APPLICATION

• A concave function f : �n �→ � that attains its
minimum over a convex set X at an x∗ ∈ ri(X)
must be constant over X.

aff(X)

x*
x

x

X

Proof: (By contradiction.) Let x ∈ X be such
that f(x) > f(x∗). Prolong beyond x∗ the line
segment x-to-x∗ to a point x ∈ X. By concavity
of f , we have for some α ∈ (0, 1)

f(x∗) ≥ αf(x) + (1 − α)f(x),

and since f(x) > f(x∗), we must have f(x∗) >
f(x) - a contradiction. Q.E.D.



LECTURE 4

LECTURE OUTLINE

• Review of relative interior

• Algebra of relative interiors and closures

• Continuity of convex functions

• Recession cones
***********************************

• Recall: x is a relative interior point of C, if x is
an interior point of C relative to aff(C)

• Three important properties of ri(C) of a convex
set C:

− ri(C) is nonempty

− Line Segment Principle: If x ∈ ri(C) and
x ∈ cl(C), then all points on the line seg-
ment connecting x and x, except possibly x,
belong to ri(C)

− Prolongation Principle: If x ∈ ri(C) and x ∈
C, the line segment connecting x and x can
be prolonged beyond x without leaving C



A SUMMARY OF FACTS

• The closure of a convex set is equal to the clo-
sure of its relative interior.

• The relative interior of a convex set is equal to
the relative interior of its closure.

• Relative interior and closure commute with Carte-
sian product and inverse image under a linear
transformation.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither closure nor relative interior commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

• Let C be a nonempty convex set. Then ri(C)
and cl(C) are “not too different for each other.”

• Proposition:

(a) We have cl(C) = cl
(
ri(C)

)
.

(b) We have ri(C) = ri
(
cl(C)

)
.

(c) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(
ri(C)

)
⊂

cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C).
By the Line Segment Principle, we have αx+(1−
α)x ∈ ri(C) for all α ∈ (0, 1]. Thus, x is the limit of
a sequence that lies in ri(C), so x ∈ cl

(
ri(C)

)
.

x

x
C



LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of �n and
let A be an m × n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A·C (relative to the affine hull).

(b) We have A · cl(C) ⊂ cl(A · C), since if a se-
quence {xk} ⊂ C converges to some x ∈ cl(C)
then the sequence {Axk}, which belongs to A ·C,
converges to Ax, implying that Ax ∈ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ∈ cl(A · C). Then, there
exists a sequence {xk} ⊂ C such that Axk → z.
Since C is bounded, {xk} has a subsequence that
converges to some x ∈ cl(C), and we must have
Ax = z. It follows that z ∈ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) �= int(A · C), A · cl(C) �= cl(A · C)



INTERSECTIONS AND VECTOR SUMS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⊂ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) If ri(C1) ∩ ri(C2) �= Ø, then

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2),

cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) �→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0}



CONTINUITY OF CONVEX FUNCTIONS

• If f : �n �→ � is convex, then it is continuous.

e1

xk

xk+1

0

yke3 e2

e4 zk

Proof: We will show that f is continuous at 0. By
convexity, f is bounded within the unit cube by the
maximum value of f over the corners of the cube.

Consider sequence xk → 0 and the sequences
yk = xk/‖xk‖∞, zk = −xk/‖xk‖∞. Then

f(xk) ≤
(
1 − ‖xk‖∞

)
f(0) + ‖xk‖∞f(yk)

f(0) ≤ ‖xk‖∞
‖xk‖∞ + 1

f(zk) +
1

‖xk‖∞ + 1
f(xk)

Since ‖xk‖∞ → 0, f(xk) → f(0). Q.E.D.

• Extension to continuity over ri(dom(f)).



RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector y is
a direction of recession if starting at any x in C
and going indefinitely along y, we never cross the
relative boundary of C to points outside C:

x + αy ∈ C, ∀ x ∈ C, ∀ α ≥ 0

0

x + αy

x

Convex Set C

Recession Cone RC

y

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.



RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector y belongs to RC if and only if there
exists a vector x ∈ C such that x + αy ∈ C
for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ∩ D �= Ø, we have

RC∩D = RC ∩ RD

More generally, for any collection of closed
convex sets Ci, i ∈ I, where I is an arbitrary
index set and ∩i∈ICi is nonempty, we have

R∩i∈ICi = ∩i∈IRCi



PROOF OF PART (B)

x

z1 = x + y

z2

z3

x
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C

• Let y �= 0 be such that there exists a vector
x ∈ C with x + αy ∈ C for all α ≥ 0. We fix x ∈ C
and α > 0, and we show that x + αy ∈ C. By
scaling y, it is enough to show that x + y ∈ C.

Let zk = x + ky for k = 1, 2, . . ., and yk =
(zk − x)‖y‖/‖zk − x‖. We have

yk

‖y‖
=

‖zk − x‖
‖zk − x‖

y

‖y‖
+

x − x

‖zk − x‖
,

‖zk − x‖
‖zk − x‖

→ 1,
x − x

‖zk − x‖
→ 0,

so yk → y and x + yk → x + y. Use the convexity
and closedness of C to conclude that x + y ∈ C.



LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors y such that y ∈ RC

and −y ∈ RC :

LC = RC ∩ (−RC)

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of �n. Then,

C = LC + (C ∩ L⊥
C).

Also, if LC = RC , the component C ∩ L⊥
C is com-

pact (this will be shown later).

C

0

S

S

C∩S

x

y

z



LECTURE 5

LECTURE OUTLINE

• Directions of recession of convex functions

• Existence of optimal solutions - Weierstrass’
theorem

• Intersection of nested sequences of closed sets

• Asymptotic directions

−−−−−−−−−−−−−−−−−−−−−−−−
• For a closed convex set C, recall that y is a
direction of recession if x + αy ∈ C, for all x ∈ C
and α ≥ 0.

0

x + αy

x

Convex Set C

Recession Cone RC

y

• Recession cone theorem: If this property is
true for one x ∈ C, it is true for all x ∈ C; also C
is compact iff RC = {0}.



DIRECTIONS OF RECESSION OF A FUNCTION

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets
{
x |

f(x) ≤ γ
}

are unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS

• Proposition: Let f : �n �→ (−∞,∞] be a closed
proper convex function and consider the level sets
Vγ =

{
x | f(x) ≤ γ

}
, where γ is a scalar. Then:

(a) All the nonempty level sets Vγ have the same
recession cone, given by

RVγ =
{
y | (y, 0) ∈ Repi(f)

}
(b) If one nonempty level set Vγ is compact, then

all nonempty level sets are compact.

Proof: For all γ for which Vγ is nonempty,

{
(x, γ) | x ∈ Vγ

}
= epi(f) ∩

{
(x, γ) | x ∈ �n

}
The recession cone of the set on the left is

{
(y, 0) |

y ∈ RVγ

}
. The recession cone of the set on the

right is the intersection of Repi(f) and the reces-
sion cone of

{
(x, γ) | x ∈ �n

}
. Thus we have

{
(y, 0) | y ∈ RVγ

}
=

{
(y, 0) | (y, 0) ∈ Repi(f)

}
,

from which the result follows.



RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : �n �→
(−∞,∞], the (common) recession cone of the
nonempty level sets Vγ =

{
x | f(x) ≤ γ

}
, γ ∈ �,

is the recession cone of f , and is denoted by Rf .

0

Level Sets of Convex
Function f

Recession Cone Rf

• Terminology:

− y ∈ Rf : a direction of recession of f .

− Lf = Rf ∩ (−Rf ): the lineality space of f .

− y ∈ Lf : a direction of constancy of f .

− Function rf : �n �→ (−∞,∞] whose epi-
graph is Repi(f): the recession function of f .

• Note: rf (y) is the “asymptotic slope” of f in the
direction y. In fact, rf (y) = limα→∞ ∇f(x+αy)′y
if f is differentiable. Also, y ∈ Rf iff rf (y) ≤ 0.



DESCENT BEHAVIOR OF A CONVEX FUNCTION

f(x + αy)

α

f(x)

(a)

f(x + αy)

α

f(x)

(b)

f(x + αy)

α

f(x)

(c)

f(x + αy)

α

f(x)

(d)

f(x + αy)

α

f(x)

(e)

f(x + αy)

α

f(x)

(f)

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ∈ dom(f).



EXISTENCE OF SOLUTIONS - BOUNDED CASE

Proposition: The set of minima of a closed proper
convex function f : �n �→ (−∞,∞] is nonempty
and compact if and only if f has no nonzero direc-
tion of recession.

Proof: Let X∗ be the set of minima, let f∗ =
infx∈�n f(x), and let {γk} be a scalar sequence
such that γk ↓ f∗. Note that

X∗ = ∩∞
k=0

(
X ∩

{
x | f(x) ≤ γk

})
If f has no nonzero direction of recession,

the sets X ∩
{
x | f(x) ≤ γk

}
are nonempty, com-

pact, and nested, so X∗ is nonempty and com-
pact.

Conversely, we have

X∗ =
{
x | f(x) ≤ f∗

}
,

so if X∗ is nonempty and compact, all the level
sets of f are compact and f has no nonzero di-
rection of recession. Q.E.D.



SPECIALIZATION/GENERALIZATION OF THE IDEA

• Important special case: Minimize a real-
valued function f : �n �→ � over a nonempty
set X. Apply the preceding proposition to the ex-
tended real-valued function

f̃(x) =
{

f(x) if x ∈ X,
∞ otherwise.

• The set intersection/compactness argument gen-
eralizes to nonconvex.
Weierstrass’ Theorem: The set of minima of f
over X is nonempty and compact if X is closed,
f is lower semicontinuous over X, and one of the
following conditions holds:

(1) X is bounded.

(2) Some set
{
x ∈ X | f(x) ≤ γ

}
is nonempty

and bounded.

(3) f̃ is coercive, i.e., for every sequence {xk} ⊂
X s. t. ‖xk‖ → ∞, we have limk→∞ f(xk) =
∞.

Proof: In all cases the level sets of f̃ are com-
pact. Q.E.D.



THE ROLE OF CLOSED SET INTERSECTIONS

• A fundamental question: Given a sequence
of nonempty closed sets {Sk} in �n with Sk+1 ⊂
Sk for all k, when is ∩∞

k=0Sk nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : �n �→ (−∞,∞] attain a
minimum over a set X? This is true iff the in-
tersection of the nonempty level sets

{
x ∈ X |

f(x) ≤ γk

}
is nonempty.

2. If C is closed and A is a matrix, is A C closed?
Special case:

− If C1 and C2 are closed, is C1 + C2 closed?

3. If F (x, z) is closed, is f(x) = infz F (x, z) closed?
(Critical question in duality theory.) Can be ad-
dressed by using the relation

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P

(
epi(F )

))

where P (·) is projection on the space of (x, w).



ASYMPTOTIC DIRECTIONS

• Given a sequence of nonempty nested closed
sets {Sk}, we say that a vector d �= 0 is an asymp-
totic direction of {Sk} if there exists {xk} s. t.

xk ∈ Sk, xk �= 0, k = 0, 1, . . .

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖

• A sequence {xk} associated with an asymp-
totic direction d as above is called an asymptotic
sequence corresponding to d.

x0

x1

x2

x3

x4

x5

x6

S0

S2

S1

0

d

S3

Asymptotic Direction

Asymptotic Sequence



CONNECTION WITH RECESSION CONES

• We say that d is an asymptotic direction of a
nonempty closed set S if it is an asymptotic direc-
tion of the sequence {Sk}, where Sk = S for all
k.

• Notation: The set of asymptotic directions of
S is denoted AS .

• Important facts:
− The set of asymptotic directions of a closed

set sequence {Sk} is

∩∞
k=0ASk

− For a closed convex set S

AS = RS \ {0}

− The set of asymptotic directions of a closed
convex set sequence {Sk} is

∩∞
k=0RSk \ {0}



LECTURE 6

LECTURE OUTLINE

• Asymptotic directions that are retractive

• Nonemptiness of closed set intersections

• Frank-Wolfe Theorem

• Horizon directions

• Existence of optimal solutions

• Preservation of closure under linear transfor-
mation and partial minimization

−−−−−−−−−−−−−−−−−−
Asymptotic directions of a closed set sequence

x0

x1

x2

x3

x4

x5

x6

S0

S2

S1

0

d

S3

Asymptotic Direction

Asymptotic Sequence



RETRACTIVE ASYMPTOTIC DIRECTIONS

• Consider a nested closed set sequence {Sk}.

• An asymptotic direction d is called retractive if
for every asymptotic sequence {xk} there exists
an index k such that

xk − d ∈ Sk, ∀ k ≥ k.

• {Sk} is called retractive if all its asymptotic di-
rections are retractive.

• These definitions specialize to closed convex
sets S by taking Sk ≡ S.

x0

x1

x2

S0

S2

S1

0

d

(a)

S0

S1

S2

x0

x1

x20

d

(b)



SET INTERSECTION THEOREM

• If {Sk} is retractive, then ∩∞
k=0 Sk is nonempty.

• Key proof ideas:

(a) The intersection ∩∞
k=0 Sk is empty iff there is

an unbounded sequence {xk} consisting of
minimum norm vectors from the Sk.

(b) An asymptotic sequence {xk} consisting of
minimum norm vectors from the Sk cannot
be retractive, because such a sequence even-
tually gets closer to 0 when shifted opposite
to the asymptotic direction.

x0

x1

x2
x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



RECOGNIZING RETRACTIVE SETS

• Unions, intersections, and Cartesian produsts
of retractive sets are retractive.

• The complement of an open convex set is re-
tractive.

C: Open, convexS: Closed

x0

xk+1xk

x1d

d

d

d

• Closed halfspaces are retractive.

• Polyhedral sets are retractive.

• Sets of the form
{
x | fj(x) ≥ 0, j = 1, . . . , r

}
,

where fj : �n �→ � is convex, are retractive.

• Vector sum of a compact set and a retractive
set is retractive.

• Nonpolyhedral cones are not retractive, level
sets of quadratic functions are not retractive.



LINEAR AND QUADRATIC PROGRAMMING

• Frank-Wolfe Theorem: Let

f(x) = x′Qx+c′x, X = {x | a′
jx+bj ≤ 0, j = 1, . . . , r},

where Q is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
is finite, there exists a minimum of f of over X.

• Proof (outline): Choose {γk} s.t. γk ↓ f∗,
where f∗ is the optimal value, and let

Sk = {x ∈ X | x′Qx + c′x ≤ γk}

The set of optimal solutions is ∩∞
k=0 Sk, so it will

suffice to show that for each asymptotic direc-
tion of {Sk}, each corresponding asymptotic se-
quence is retractive.

Choose an asymptotic direction d and a cor-
responding asymptotic sequence. Note that X
is retractive, so for k sufficiently large, we have
xk − d ∈ X.



PROOF OUTLINE – CONTINUED

• We use the relation x′
kQxk + c′xk ≤ γk to show

that

d′Qd ≤ 0, a′
jd ≤ 0, j = 1, . . . , r

• Then show, using the finiteness of f∗ [which
implies f(x + αd) ≥ f∗ for all x ∈ X], that

(c + 2Qx)′d ≥ 0, ∀ x ∈ X

• Thus,

f(xk−d) = (xk − d)′Q(xk − d) + c′(xk − d)
= xk

′Qxk + c′xk − (c + 2Qxk)′d + d′Qd

≤ xk
′Qxk + c′xk

≤ γk,

so xk − d ∈ Sk. Q.E.D.



INTERSECTION THEOREM FOR CONVEX SETS

Let {Ck} be a nested sequence of nonempty
closed convex sets. Denote

R = ∩∞
k=0RCk , L = ∩∞

k=0LCk .

(a) If R = L, then {Ck} is retractive, and∩∞
k=0 Ck

is nonempty. Furthermore, we have

∩∞
k=0Ck = L + C̃,

where C̃ is some nonempty and compact
set.

(b) Let X be a retractive closed set. Assume
that all the sets Sk = X ∩ Ck are nonempty,
and that

AX ∩ R ⊂ L.

Then, {Sk} is retractive, and∩∞
k=0 Sk is nonempty.



CRITICAL ASYMPTOTES

• Retractiveness works well for sets with a polyhe-
dral structure, but not for sets specified by convex
quadratic inequalities.

• Key question: Given nested sequences {S1
k}

and {S2
k} each with nonempty intersection by it-

self, and with

S1
k ∩ S2

k �= Ø, k = 0, 1, . . . ,

what causes the intersection sequence {S1
k ∩S2

k}
to have an empty intersection?

• The trouble lies with the existence of some “crit-
ical asymptotes.”

S2

Sk1

d: “Critical Asymptote”



HORIZON DIRECTIONS

• Consider {Sk}with∩∞
k=0 Sk �= Ø. An asymptotic

direction d of {Sk} is:

(a) A local horizon direction if, for every x ∈
∩∞

k=0 Sk, there exists a scalar α ≥ 0 such
that x + αd ∈ ∩∞

k=0 Sk for all α ≥ α.

(b) A global horizon direction if for every x ∈ �n

there exists a scalar α ≥ 0 such that x+αd ∈
∩∞

k=0 Sk for all α ≥ α.

• Example: (2-D Convex Quadratic Set Se-
quences)

Sk = {(x1,x2) | x1 - x2 ≤ 1/k}
2

x1

x2

0
Sk

Sk+1

Sk = {(x1,x2) | x1 ≤ 1/k}
2

x1

x2

0

Sk

Sk+1

Directions (0,γ), γ ≠ 0,
are local horizon directions

that are retractive

Directions (0,γ), γ > 0,
are global horizon directions



GENERAL CONVEX QUADRATIC SETS

• Let Sk =
{
x | x′Qx + a′x + b ≤ γk

}
, where

γk ↓ 0. Then, if all the sets Sk are nonempty,
∩∞

k=0Sk �= Ø.

• Asymptotic directions: d �= 0 such that Qd = 0
and a′d ≤ 0. There are two possibilities:

(a) Qd = 0 and a′d < 0, in which case d is a
global horizon direction.

(b) Qd = 0 and a′d = 0, in which case d is
a direction of constancy of f , and it follows
that d is a retractive local horizon direction.

• Drawing some 2-dimensional pictures and us-
ing the structure of asymptotic directions demon-
strated above, we conjecture that there are no
“critical asymptotes” for set sequences of the form
{S1

k ∩ S2
k} when S1

k and S2
k are convex quadratic

sets.

• This motivates a general definition of noncritical
asymptotic direction.



CRITICAL DIRECTIONS

• Given a nested closed set sequence {Sk} with
nonempty intersection, we say that an asymptotic
direction d of {Sk} is noncritical if d is either a
global horizon direction of {Sk}, or a retractive
local horizon direction of {Sk}.

• Proposition: Let Sk = S1
k∩S2

k∩· · ·∩Sr
k, where

{Sj
k} are nested sequence such that

Sk �= Ø, ∀ k, ∩∞
k=0 Sj

k �= Ø, ∀ j.

Assume that all the asymptotic directions of all
{Sj

k} are noncritical. Then ∩∞
k=0 Sk �= Ø.

• Special case: (Convex Quadratic Inequal-
ities) Let

Sk =
{
x | x′Qjx + a′

jx + bj ≤ γj
k, j = 1, . . . , r

}
where {γj

k} are scalar sequences with γj
k ↓ 0. As-

sume that Sk �= Ø is nonempty for all k. Then,
∩∞

k=0 Sk �= Ø.



APPLICATION TO QUADRATIC MINIMIZATION

• Let
f(x) = x′Qx + c′x,

X = {x | x′Rjx + a′
jx + bj ≤ 0, j = 1, . . . , r},

where Q and Rj are positive semidefinite matri-
ces. If the minimal value of f over X is finite, there
exists a minimum of f of over X.

Proof: Let f∗ be the minimal value, and let γk ↓
f∗. The set of optimal solutions is

X∗ = ∩∞
k=0

(
X ∩ {x | x′Qx + c′x ≤ γk}

)
.

All the set sequences involved in the intersection
are convex quadratic and hence have no critical
directions. By the preceding proposition, X∗ is
nonenpty. Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATIONS

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) A C is closed if RC ∩ N(A) ⊂ LC .

(b) A(X ∩ C) is closed if X is a polyhedral set
and

RX ∩ RC ∩ N(A) ⊂ LC ,

(c) AC is closed if C = {x | fj(x) ≤ 0, j =
1, . . . , r}with fj : convex quadratic functions.

Proof: (Outline) Let {yk} ⊂ A C with yk → y.
We prove ∩∞

k=0Sk �= Ø, where Sk = C ∩ Nk, and

Nk = {x | Ax ∈ Wk}, Wk =
{
z | ‖z−y‖ ≤ ‖yk−y‖

}

C

AC

y

x

ykyk+1

Wk

Sk

Nk



LECTURE 7

LECTURE OUTLINE

• Existence of optimal solutions

• Preservation of closure under partial minimiza-
tion

• Hyperplane separation

• Nonvertical hyperplanes

• Min common and max crossing problems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• We have talked so far about set intersection the-
orems that use two types of asymptotic directions:

− Retractive directions (mostly for polyhedral-
type sets)

− Horizon directions (for special types of sets
- e.g., quadratic)

• We now apply these theorems to issues of
existence of optimal solutions, and preservation
of closedness under linear transformation, vector
sum, and partial minimization.



PROJECTION THEOREM

• Let C be a nonempty closed convex set in �n.

(a) For every x ∈ �n, there exists a unique vec-
tor PC(x) that minimizes ‖z − x‖ over all
z ∈ C (called the projection of x on C).

(b) For every x ∈ �n, a vector z ∈ C is equal to
PC(x) if and only if

(y − z)′(x − z) ≤ 0, ∀ y ∈ C

In the case where C is an affine set, the
above condition is equivalent to

x − z ∈ S⊥,

where S is the subspace that is parallel to
C.

(c) The function f : �n �→ C defined by f(x) =
PC(x) is continuous and nonexpansive, i.e.,

∥∥PC(x)−PC(y)
∥∥ ≤ ‖x−y‖, ∀ x, y ∈ �n



EXISTENCE OF OPTIMAL SOLUTIONS

• Let X and f : �n �→ (−∞,∞] be closed convex
and such that X∩dom(f) �= Ø. The set of minima
of f over X is nonempty under any one of the
following three conditions:

(1) RX ∩ Rf = LX ∩ Lf .

(2) RX ∩ Rf ⊂ Lf , and X is polyhedral.

(3) f∗ > −∞, and f and X are specified by
convex quadratic functions:

f(x) = x′Qx + c′x,

X =
{
x | x′Qjx+a′

jx+bj ≤ 0, j = 1, . . . , r
}
.

Proof: Follows by writing

Set of Minima = ∩ (Nonempty Level Sets)

and by applying the corresponding set intersec-
tion theorems. Q.E.D.



EXISTENCE OF OPTIMAL SOLUTIONS: EXAMPLE

(a)
(b)

0 x1

x2

Level Sets of 
Convex Function f

Constancy Space Lf

X

0 x1

x2

Level Sets of 
Convex Function f

Constancy Space Lf

X

• Here f(x1, x2) = ex1 .

• In (a), X is polyhedral, and the minimum is
attained.

• In (b),

X =
{
(x1, x2) | x2

1 ≤ x2

}
We have RX ∩ Rf ⊂ Lf , but the minimum is not
attained (X is not polyhedral).



PARTIAL MINIMIZATION THEOREM

• Let F : �n+m �→ (−∞,∞] be a closed proper
convex function, and consider f(x) = infz∈�m F (x, z).

• Each of the major set intersection theorems
yields a closedness result. The simplest case is
the following:

• Preservation of Closedness Under Com-
pactness: If there exist x ∈ �n, γ ∈ � such that
the set {

z | F (x, z) ≤ γ
}

is nonempty and compact, then f is convex, closed,
and proper. Also, for each x ∈ dom(f), the set of
minima of F (x, ·) is nonempty and compact.

Proof: (Outline) By the hypothesis, there is no
nonzero y such that (0, y, 0) ∈ Repi(F ). Also, all
the nonempty level sets

{z | F (x, z) ≤ γ}, x ∈ �n, γ ∈ �,

have the same recession cone, which by hypoth-
esis, is equal to {0}.



HYPERPLANES

Positive Halfspace
{x | a'x ≥ b}

a

Negative Halfspace
{x | a'x ≤ b}

x

Hyperplane
{x | a'x = b} = {x | a'x = a'x}  

_

_

• A hyperplane is a set of the form {x | a′x = b},
where a is nonzero vector in �n and b is a scalar.

• We say that two sets C1 and C2 are separated
by a hyperplane H = {x | a′x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a′x1 ≤ b ≤ a′x2, ∀x1 ∈ C1, ∀x2 ∈ C2,

or a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.



VISUALIZATION

• Separating and supporting hyperplanes:

a C2

C1

(a)

a

C

(b)

x

• A separating {x | a′x = b} that is disjoint from
C1 and C2 is called strictly separating:

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2

(b)(a)

C2 = {(ξ1,ξ2) | ξ1 > 0, ξ2 >0, ξ1ξ2 ≥ 1}

C1 = {(ξ1,ξ2) | ξ1 ≤ 0}

a

C1

C2
x2

x1

x



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

x3
x2

x1

x0

a2

a1

a0

C

x2 x1

x0

x

x3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ∈ cl(C)

a′
kx ≥ a′

kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,

where ak = (x̂k − xk)/‖x̂k − xk‖. Le a be a limit
point of {ak}, and take limit as k → ∞. Q.E.D.



SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of �n. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a �= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a �= 0 such
that

0 ≤ a′x, ∀ x ∈ C1 − C2,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(b)(a)

C2 = {(ξ1,ξ2) | ξ1 > 0, ξ2 >0, ξ1ξ2 ≥ 1}

C1 = {(ξ1,ξ2) | ξ1 ≤ 0}

a

C1

C2
x2

x1

x

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1−C2 is closed.
Since C1 ∩ C2 = Ø, 0 /∈ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.



ADDITIONAL THEOREMS

• Fundamental Characterization: The clo-
sure of the convex hull of a set C ⊂ �n is the
intersection of the closed halfspaces that contain
C.

• We say that a hyperplane properly separates C1

and C2 if it separates C1 and C2 and does not fully
contain both C1 and C2.

a

C2

C1Separating
hyperplane

(b)(a)

a

C2

C1

Separating
hyperplane

• Proper Separation Theorem: Let C1 and C2

be two nonempty convex subsets of�n. There ex-
ists a hyperplane that properly separates C1 and
C2 if and only if

ri(C1) ∩ ri(C2) = Ø



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of �n+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n +
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider “non-
vertical” hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.

0

Min Common Point w*

Max Crossing Point q*

M

w

0

M

Max Crossing Point q*

Min Common Point w*w

uu

• We first need to study “nonvertical” hyperplanes.



NONVERTICAL HYPERPLANES

• A hyperplane in �n+1 with normal (µ, β) is non-
vertical if β �= 0.

• It intersects the (n+1)st axis at ξ = (µ/β)′u+w,
where (u, w) is any vector on the hyperplane.

(µ,β)

w

uNonvertical
Hyperplane

(µ,0)

Vertical
Hyperplane

(u,w)
__

(µ/β)' u  + w
__

0

• A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

• The epigraph of a proper convex function does
not contain a vertical line, so it appears plausi-
ble that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of �n+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a
nonvertical hyperplane, i.e., there exist µ ∈
�n, β ∈ � with β �= 0, and γ ∈ � such that
µ′u + βw ≥ γ for all (u, w) ∈ C.

(b) If (u, w) /∈ cl(C), there exists a nonvertical
hyperplane strictly separating (u, w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ε-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).
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• Min Common / Max Crossing problems

• Weak duality

• Strong duality

• Existence of optimal solutions

• Minimax problems

0

Min Common Point w*

Max Crossing Point q*

M

w

0

M

Max Crossing Point q*

Min Common Point w*w

uu



WEAK DUALITY

• Optimal value of the min common problem:

w∗ = inf
(0,w)∈M

w

• Math formulation of the max crossing problem:
Focus on hyperplanes with normals (µ, 1) whose
crossing point ξ satisfies

ξ ≤ w + µ′u, ∀ (u, w) ∈ M

Max crossing problem is to maximize ξ subject to
ξ ≤ inf(u,w)∈M{w + µ′u}, µ ∈ �n, or

maximize q(µ)
�
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ �n.

• For all (u, w) ∈ M and µ ∈ �n,

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

so maximizing over µ ∈ �n, we obtain q∗ ≤ w∗.

• Note that q is concave and upper-semicontinuous.



STRONG DUALITY

• Question: Under what conditions do we have
q∗ = w∗ and the supremum in the max crossing
problem is attained?

0

(a)

Min Common Point w*

Max Crossing Point q*

M

0

(b)

M

_
M

Max Crossing Point q*

Min Common Point w*
w w

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u



DUALITY THEOREMS

• Assume that w∗ < ∞ and that the set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

• Min Common/Max Crossing Theorem I : We
have q∗ = w∗ if and only if for every sequence{
(uk, wk)

}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk.

• Min Common/Max Crossing Theorem II : As-
sume in addition that −∞ < w∗ and that the set

D =
{
u | there exists w ∈ � with (u, w) ∈ M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists a vector µ ∈ �n such that
q(µ) = q∗. If D contains the origin in its interior, the
set of all µ ∈ �n such that q(µ) = q∗ is compact.

• Min Common/Max Crossing Theorem III : In-
volves polyhedral assumptions, and will be devel-
oped later.



PROOF OF THEOREM I

• Assume that for every sequence
{
(uk, wk)

}
⊂

M with uk → 0, there holds w∗ ≤ lim infk→∞ wk.
If w∗ = −∞, then q∗ = −∞, by weak duality, so
assume that −∞ < w∗. Steps of the proof:

(1) M does not contain any vertical lines.

(2) (0, w∗ − ε) /∈ cl(M) for any ε > 0.

(3) There exists a nonvertical hyperplane strictly
separating (0, w∗ − ε) and M . This hyper-
plane crosses the (n + 1)st axis at a vector
(0, ξ) with w∗− ε ≤ ξ ≤ w∗, so w∗− ε ≤ q∗ ≤
w∗. Since ε can be arbitrarily small, it follows
that q∗ = w∗.

Conversely, assume that q∗ = w∗. Let
{
(uk, wk)

}
⊂

M be such that uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w+µ′u} ≤ wk+µ′uk, ∀ k, ∀µ ∈ �n

Taking the limit as k → ∞, we obtain q(µ) ≤
lim infk→∞ wk, for all µ ∈ �n, implying that

w∗ = q∗ = sup
µ∈�n

q(µ) ≤ lim inf
k→∞

wk



PROOF OF THEOREM II

• Note that (0, w∗) is not a relative interior point
of M . Therefore, by the Proper Separation Theo-
rem, there exists a hyperplane that passes through
(0, w∗), contains M in one of its closed halfspaces,
but does not fully contain M , i.e., there exists
(µ, β) such that

βw∗ ≤ µ′u + βw, ∀ (u, w) ∈ M,

βw∗ < sup
(u,w)∈M

{µ′u + βw}

Since for any (u, w) ∈ M , the set M contains the
halfline

{
(u, w) | w ≤ w

}
, it follows that β ≥ 0. If

β = 0, then 0 ≤ µ′u for all u ∈ D. Since 0 ∈ ri(D)
by assumption, we must have µ′u = 0 for all u ∈ D
a contradiction. Therefore, β > 0, and we can
assume that β = 1. It follows that

w∗ ≤ inf
(u,w)∈M

{µ′u + w} = q(µ) ≤ q∗

Since the inequality q∗ ≤ w∗ holds always, we
must have q(µ) = q∗ = w∗.



MINIMAX PROBLEMS

Given φ : X × Z �→ �, where X ⊂ �n, Z ⊂ �m

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

and
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Some important contexts:

− Worst-case design. Special case: Minimize
over x ∈ X

max
{
f1(x), . . . , fm(x)

}
− Duality theory and zero sum game theory

(see the next two slides)

• We will study minimax problems using the min
common/max crossing framework



CONSTRAINED OPTIMIZATION DUALITY

• For the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r

introduce the Lagrangian function

L(x, µ) = f(x) +
r∑

j=1

µjgj(x)

• Primal problem (equivalent to the original)

min
x∈X

sup
µ≥0

L(x, µ) =

{
f(x) if g(x) ≤ 0,

∞ otherwise,

• Dual problem

max
µ≥0

inf
x∈X

L(x, µ)

• Key duality question: Is it true that

sup
µ≥0

inf
x∈�n

L(x, µ) = inf
x∈�n

sup
µ≥0

L(x, µ)



ZERO SUM GAMES

• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd
chooses j ∈ {1, . . . , m}.

• If moves i and j are selected, the 1st player
gives aij to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible moves.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x′Az =
∑
i,j

aijxizj

where A is the n × m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So

− 1st player minimizes maxz x′Az

− 2nd player maximizes minx x′Az



MINIMAX INEQUALITY

• We always have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

[for every z ∈ Z, write

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

and take the sup over z ∈ Z of the left-hand side].

• This is called the minimax inequality . When
it holds as an equation, it is called the minimax
equality .

• The minimax equality need not hold in general.

• When the minimax equality holds, it often leads
to interesting interpretations and algorithms.

• The minimax inequality is often the basis for
interesting bounding procedures.
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• Min-Max Problems

• Saddle Points

• Min Common/Max Crossing for Min-Max

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Given φ : X × Z �→ �, where X ⊂ �n, Z ⊂ �m

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

and
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Minimax inequality (holds always)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)



SADDLE POINTS

Definition: (x∗, z∗) is called a saddle point of φ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀x ∈ X, ∀ z ∈ Z

Proposition: (x∗, z∗) is a saddle point if and only
if the minimax equality holds and

x∗ ∈ arg min
x∈X

sup
z∈Z

φ(x, z), z∗ ∈ arg max
z∈Z

inf
x∈X

φ(x, z) (*)

Proof: If (x∗, z∗) is a saddle point, then

inf
x∈X

sup
z∈Z

φ(x, z) ≤ sup
z∈Z

φ(x∗, z) = φ(x∗, z∗)

= inf
x∈X

φ(x, z∗) ≤ sup
z∈Z

inf
x∈X

φ(x, z)

By the minimax inequality, the above holds as an
equality holds throughout, so the minimax equality
and Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

φ(x, z∗) ≤ φ(x∗, z∗)

≤ sup
z∈Z

φ(x∗, z) = inf
x∈X

sup
z∈Z

φ(x, z)

Using the minimax equ., (x∗, z∗) is a saddle point.



VISUALIZATION

x

z

Curve of maxima

Curve of minima

φ(x,z)

Saddle point
(x*,z*)

^φ(x(z),z)

φ(x,z(x))^

The curve of maxima φ(x, ẑ(x)) lies above the
curve of minima φ(x̂(z), z), where

ẑ(x) = arg max
z

φ(x, z), x̂(z) = arg min
x

φ(x, z)

Saddle points correspond to points where these
two curves meet.



MIN COMMON/MAX CROSSING FRAMEWORK

• Introduce perturbation function p : �m �→ [−∞,∞]

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z) − u′z

}
, u ∈ �m

• Apply the min common/max crossing framework
with the set M equal to the epigraph of p.

• Application of a more general idea: To evalu-
ate a quantity of interest w∗, introduce a suitable
perturbation u and function p, with p(0) = w∗.

• Note that w∗ = inf supφ. We will show that:

− Convexity in x implies that M is a convex set.

− Concavity in z implies that q∗ = sup inf φ.

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*

(a)

0

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*

(b)

0

q(µ)
q(µ)

(µ,1)

(µ,1)



IMPLICATIONS OF CONVEXITY IN X

Lemma 1: Assume that X is convex and that
for each z ∈ Z, the function φ(·, z) : X �→ � is
convex. Then p is a convex function.

Proof: Let

F (x, u) =
{

supz∈Z

{
φ(x, z) − u′z

}
if x ∈ X,

∞ if x /∈ X.

Since φ(·, z) is convex, and taking pointwise supre-
mum preserves convexity, F is convex. Since

p(u) = inf
x∈�n

F (x, u),

and partial minimization preserves convexity, the
convexity of p follows from the convexity of F .
Q.E.D.



THE MAX CROSSING PROBLEM

• The max crossing problem is to maximize q(µ)
over µ ∈ �n, where

q(µ) = inf
(u,w)∈epi(p)

{w + µ′u} = inf
{(u,w)|p(u)≤w}

{w + µ′u}

= inf
u∈�m

{
p(u) + µ′u

}
Using p(u) = infx∈X supz∈Z

{
φ(x, z) − u′z

}
, we

obtain

q(µ) = inf
u∈�m

inf
x∈X

sup
z∈Z

{
φ(x, z) + u′(µ − z)

}

• By setting z = µ in the right-hand side,

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z

Hence, using also weak duality (q∗ ≤ w∗),

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
µ∈�m

q(µ) = q∗

≤ w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z)



IMPLICATIONS OF CONCAVITY IN Z

Lemma 2: Assume that for each x ∈ X, the
function rx : �m �→ (−∞,∞] defined by

rx(z) =
{
−φ(x, z) if z ∈ Z,
∞ otherwise,

is closed and convex. Then

q(µ) =
{

infx∈X φ(x, µ) if µ ∈ Z,
−∞ if µ /∈ Z.

Proof: (Outline) From the preceding slide,

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z

We show that q(µ) ≤ infx∈X φ(x, µ) for all µ ∈
Z and q(µ) = −∞ for all µ /∈ Z, by considering
separately the two cases where µ ∈ Z and µ /∈ Z.

First assume that µ ∈ Z. Fix x ∈ X, and for
ε > 0, consider the point

(
µ, rx(µ)−ε

)
, which does

not belong to epi(rx). Since epi(rx) does not con-
tain any vertical lines, there exists a nonvertical
strictly separating hyperplane ...



MINIMAX THEOREM I

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) < ∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z �→
� is closed and convex.

Then, the minimax equality holds if and only if the
function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
q∗ = w∗ in the min common/max crossing frame-
work. Furthermore, w∗ < ∞ by assumption, and
the set M [equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w∗ = q∗ iff for every sequence{
(uk, wk)

}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. This is equivalent to the lower
semicontinuity assumption on p:

p(0) ≤ lim inf
k→∞

p(uk), for all {uk} with uk → 0



MINIMAX THEOREM II

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z �→
� is closed and convex.

(5) 0 lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in supz∈Z infx∈X φ(x, z) is attained by some
z ∈ Z. [Also the set of z where the sup is attained
is compact if 0 is in the interior of dom(f).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.



EXAMPLE I

• Let X =
{
(x1, x2) | x ≥ 0

}
and Z = {z ∈ � |

z ≥ 0}, and let
φ(x, z) = e−

√
x1x2 + zx1,

which satisfy the convexity and closedness as-
sumptions. For all z ≥ 0,

inf
x≥0

{
e−

√
x1x2 + zx1

}
= 0,

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0,

sup
z≥0

{
e−

√
x1x2 + zx1

}
=

{
1 if x1 = 0,
∞ if x1 > 0,

so infx≥0 supz≥0 φ(x, z) = 1.

epi(p)

u

p(u)

1

0

p(u) = inf
x≥0

sup
z≥0

{
e−

√
x1x2 + z(x1 − u)

}

=

{
∞ if u < 0,

1 if u = 0,

0 if u > 0,



EXAMPLE II

• Let X = �, Z = {z ∈ � | z ≥ 0}, and let

φ(x, z) = x + zx2,

which satisfy the convexity and closedness as-
sumptions. For all z ≥ 0,

inf
x∈�

{x + zx2} =
{
−1/(4z) if z > 0,
−∞ if z = 0,

so supz≥0 infx∈� φ(x, z) = 0. Also, for all x ∈ �,

sup
z≥0

{x + zx2} =
{

0 if x = 0,
∞ otherwise,

so infx∈� supz≥0 φ(x, z) = 0. However, the sup is
not attained.

u

p(u)

0

epi(p)

p(u) = inf
x∈�

sup
z≥0

{x + zx2 − uz}

=

{
−√

u if u ≥ 0,

∞ if u < 0.



SADDLE POINT ANALYSIS

• The preceding analysis has underscored the
importance of the perturbation function

p(u) = inf
x∈�n

F (x, u),

where

F (x, u) =
{

supz∈Z

{
φ(x, z) − u′z

}
if x ∈ X,

∞ if x /∈ X.

It suggests a two-step process to establish the
minimax equality and the existence of a saddle
point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verify that the infimum of supz∈Z φ(x, z) over
x ∈ X, and the supremum of infx∈X φ(x, z)
over z ∈ Z are attained, thereby showing
that the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

• Step (1) requires two types of assumptions:

(a) Convexity/concavity/semicontinuity conditions:

− X and Z are convex and compact.

− φ(·, z): convex for each z ∈ Z, and φ(x, ·)
is concave and upper semicontinuous over
Z for each x ∈ X, so that the min com-
mon/max crossing framework is applicable.

− φ(·, z) is lower semicontinuous over X, so
that F is convex and closed (it is the point-
wise supremum over z ∈ Z of closed convex
functions).

(b) Conditions for preservation of closedness by
the partial minimization in

p(u) = inf
x∈�n

F (x, u)

• Step (2) requires that either Weierstrass’ Theo-
rem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
is satisfied.



SADDLE POINT THEOREM

Assume the convexity/concavity/semicontinuity con-
ditions, and that any one of the following holds:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z ∈ Z
and a scalar γ such that the level set

{
x ∈

X | φ(x, z) ≤ γ
}

is nonempty and compact.

(3) X is compact and there exists a vector x ∈ X
and a scalar γ such that the level set

{
z ∈

Z | φ(x, z) ≥ γ
}

is nonempty and compact.

(4) There exist vectors x ∈ X and z ∈ Z, and a
scalar γ such that the level sets

{
x ∈ X | φ(x, z) ≤ γ

}
,

{
z ∈ Z | φ(x, z) ≥ γ

}
,

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of φ is nonempty and compact.
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• Polar cones and polar cone theorem

• Polyhedral and finitely generated cones

• Farkas Lemma, Minkowski-Weyl Theorem

• Polyhedral sets and functions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• The main convexity concepts so far have been:

− Closure, convex hull, affine hull, relative in-
terior, directions of recession

− Set intersection theorems

− Preservation of closure under linear trans-
formation and partial minimization

− Existence of optimal solutions

− Hyperplanes, Min common/max crossing du-
ality, and application in minimax

• We now introduce new concepts with important
theoretical and algorithmic implications: polyhe-
dral convexity, extreme points, and related issues.



POLAR CONES

• Given a set C, the cone given by

C∗ = {y | y′x ≤ 0, ∀ x ∈ C},

is called the polar cone of C.

0
C∗

C
a1

a2

(a)

C

a1

0
C∗

a2

(b)

• C∗ is a closed convex cone, since it is the inter-
section of closed halfspaces.

• Note that

C∗ =
(
cl(C)

)∗ =
(
conv(C)

)∗ =
(
cone(C)

)∗
• Important example: If C is a subspace, C∗ =
C⊥. In this case, we have (C∗)∗ = (C⊥)⊥ = C.



POLAR CONE THEOREM

• For any cone C, we have (C∗)∗ = cl
(
conv(C)

)
.

If C is closed and convex, we have (C∗)∗ = C.

x
C

y

z

0

C∗

ẑ
2 ẑ

z - ẑ

Proof: Consider the case where C is closed and
convex. For any x ∈ C, we have x′y ≤ 0 for all
y ∈ C∗, so that x ∈ (C∗)∗, and C ⊂ (C∗)∗.

To prove the reverse inclusion, take z ∈ (C∗)∗,
and let ẑ be the projection of z on C, so that
(z − ẑ)′(x − ẑ) ≤ 0, for all x ∈ C. Taking x = 0
and x = 2ẑ, we obtain (z − ẑ)′ẑ = 0, so that
(z−ẑ)′x ≤ 0 for all x ∈ C. Therefore, (z−ẑ) ∈ C∗,
and since z ∈ (C∗)∗, we have (z − ẑ)′z ≤ 0. Sub-
tracting (z− ẑ)′ẑ = 0 yields ‖z− ẑ‖2 ≤ 0. It follows
that z = ẑ and z ∈ C, implying that (C∗)∗ ⊂ C.



POLYHEDRAL AND FINITELY GENERATED CONES

• A cone C ⊂ �n is polyhedral , if

C = {x | a′
jx ≤ 0, j = 1, . . . , r},

where a1, . . . , ar are some vectors in �n.

• A cone C ⊂ �n is finitely generated , if

C =

⎧⎨
⎩x

∣∣∣ x =
r∑

j=1

µjaj , µj ≥ 0, j = 1, . . . , r

⎫⎬
⎭

= cone
(
{a1, . . . , ar}

)
,

where a1, . . . , ar are some vectors in �n.

(a)

a1

0

a3
a2

a1

0

a3
a2

(b)



FARKAS-MINKOWSKI-WEYL THEOREMS

Let a1, . . . , ar be given vectors in �n, and let

C = cone
(
{a1, . . . , ar}

)
(a) C is closed and

C∗ =
{
y | a′

jy ≤ 0, j = 1, . . . , r
}

(b) (Farkas’ Lemma) We have

{
y | a′

jy ≤ 0, j = 1, . . . , r
}∗ = C

(There is also a version of this involving sets de-
scribed by linear equality as well as inequality con-
straints.)

(c) (Minkowski-Weyl Theorem) A cone is polyhe-
dral if and only if it is finitely generated.



PROOF OUTLINE

(a) First show that for C = cone({a1, . . . , ar}),

C∗ = cone({a1, . . . , ar})∗ =
{
y | a′

jy ≤ 0, j = 1, . . . , r
}

If y′aj ≤ 0 for all j, then y′x ≤ 0 for all x ∈ C,
so C∗ ⊃

{
y | a′

jy ≤ 0, j = 1, . . . , r
}

. Conversely,
if y ∈ C∗, i.e., if y′x ≤ 0 for all x ∈ C, then,
since aj ∈ C, we have y′aj ≤ 0, for all j. Thus,
C∗ ⊂

{
y | a′

jy ≤ 0, j = 1, . . . , r
}

.

• Showing that C = cone({a1, . . . , ar}) is closed
is nontrivial! Follows from Prop. 1.5.8(b), which
shows (as a special case where C = �n) that
closedness of polyhedral sets is preserved by lin-
ear transformations. (The text has two other lines
of proof.)

(b) Assume no equalities. Farkas’ Lemma says:{
y | a′

jy ≤ 0, j = 1, . . . , r
}∗ = C

Since by part (a), C∗ =
{
y | a′

jy ≤ 0, j = 1, . . . , r
}

and C is closed and convex, the result follows by
the Polar Cone Theorem.

(c) See the text.



POLYHEDRAL SETS

• A set P ⊂ �n is said to be polyhedral if it is
nonempty and

P =
{
x | a′

jx ≤ bj , j = 1, . . . , r
}
,

for some aj ∈ �n and bj ∈ �.

• A polyhedral set may involve affine equalities
(convert each into two affine inequalities).

v3

v4

v1

v2

0

C

Theorem: A set P is polyhedral if and only if

P = conv
(
{v1, . . . , vm}

)
+ C,

for a nonempty finite set of vectors {v1, . . . , vm}
and a finitely generated cone C.



PROOF OUTLINE

Proof: Assume that P is polyhedral. Then,

P =
{
x | a′

jx ≤ bj , j = 1, . . . , r
}
,

for some aj and bj . Consider the polyhedral cone

P̂ =
{
(x, w) | 0 ≤ w, a′

jx ≤ bjw, j = 1, . . . , r
}

and note that P =
{
x | (x, 1) ∈ P̂

}
. By Minkowski-

Weyl, P̂ is finitely generated, so it has the form

P̂ =

⎧⎨
⎩(x, w)

∣∣∣ x =
m∑

j=1

µjvj , w =
m∑

j=1

µjdj , µj ≥ 0

⎫⎬
⎭ ,

for some vj and dj . Since w ≥ 0 for all vectors
(x, w) ∈ P̂ , we see that dj ≥ 0 for all j. Let

J+ = {j | dj > 0}, J0 = {j | dj = 0}



PROOF CONTINUED

• By replacing µj by µj/dj for all j ∈ J+,

P̂ =

⎧⎨
⎩(x, w)

∣∣∣ x =
∑

j∈J+∪J0

µjvj , w =
∑

j∈J+

µj , µj ≥ 0

⎫⎬
⎭

Since P =
{
x | (x, 1) ∈ P̂

}
, we obtain

P =

⎧⎨
⎩x

∣∣∣ x =
∑

j∈J+∪J0

µjvj ,
∑

j∈J+

µj = 1, µj ≥ 0

⎫⎬
⎭

Thus,

P = conv
(
{vj | j ∈ J+}

)
+

⎧⎨
⎩

∑
j∈J0

µjvj

∣∣∣ µj ≥ 0, j ∈ J0

⎫⎬
⎭

• To prove that the vector sum of conv
(
{v1, . . . , vm}

)
and a finitely generated cone is a polyhedral set,
we reverse the preceding argument. Q.E.D.



POLYHEDRAL FUNCTIONS

• A function f : �n �→ (−∞,∞] is polyhedral if its
epigraph is a polyhedral set in �n+1.

• Note that every polyhedral function is closed,
proper, and convex.

Theorem: Let f : �n �→ (−∞,∞] be a convex
function. Then f is polyhedral if and only if dom(f)
is a polyhedral set, and

f(x) = max
j=1,...,m

{a′
jx + bj}, ∀ x ∈ dom(f),

for some aj ∈ �n and bj ∈ �.

Proof: Assume that dom(f) is polyhedral and f
has the above representation. We will show that
f is polyhedral. The epigraph of f can be written
as

epi(f) =
{
(x, w) | x ∈ dom(f)

}
∩

{
(x, w) | a′

jx + bj ≤ w, j = 1, . . . , m
}
.

Since the two sets on the right are polyhedral,
epi(f) is also polyhedral. Hence f is polyhedral.



PROOF CONTINUED

• Conversely, if f is polyhedral, its epigraph is a
polyhedral and can be represented as the inter-
section of a finite collection of closed halfspaces
of the form

{
(x, w) | a′

jx+ bj ≤ cjw
}

, j = 1, . . . , r,
where aj ∈ �n, and bj , cj ∈ �.

• Since for any (x, w) ∈ epi(f), we have (x, w +
γ) ∈ epi(f) for all γ ≥ 0, it follows that cj ≥ 0, so by
normalizing if necessary, we may assume without
loss of generality that either cj = 0 or cj = 1.
Letting cj = 1 for j = 1, . . . , m, and cj = 0 for
j = m + 1, . . . , r, where m is some integer,

epi(f) =
{
(x, w) | a′

jx + bj ≤ w, j = 1, . . . , m,

a′
jx + bj ≤ 0, j = m + 1, . . . , r

}
.

Thus

dom(f) =
{
x | a′

jx + bj ≤ 0, j = m + 1, . . . , r
}
,

f(x) = max
j=1,...,m

{a′
jx + bj}, ∀ x ∈ dom(f)

Q.E.D.



LECTURE 11

LECTURE OUTLINE

• Extreme points

• Extreme points of polyhedral sets

• Extreme points and linear/integer programming

−−−−−−−−−−−−−−−−−−−−−−−−−−
Recall some of the facts of polyhedral convexity:

• Polarity relation between polyhedral and finitely
generated cones

{x | a′
jx ≤ 0, j = 1, . . . , r} = cone

(
{a1, . . . , ar}

)∗
• Farkas’ Lemma

{x | a′
jx ≤ 0, j = 1, . . . , r}∗ = cone

(
{a1, . . . , ar}

)
• Minkowski-Weyl Theorem: a cone is polyhedral
iff it is finitely generated. A corollary (essentially):

Polyhedral set P = conv
(
{v1, . . . , vm}

)
+ RP



EXTREME POINTS

• A vector x is an extreme point of a convex set C
if x ∈ C and x cannot be expressed as a convex
combination of two vectors of C, both of which are
different from x.

Extreme
Points

Extreme
Points

Extreme
Points

(a) (b) (c)

Proposition: Let C be closed and convex. If H
is a hyperplane that contains C in one of its closed
halfspaces, then every extreme point of C ∩ H is
also an extreme point of C.

z
x

y

C

H

Extreme
points of C∩H

Proof: Let x ∈ C ∩H be a nonextreme

point of C. Then x = αy +(1−α)z for

some α ∈ (0, 1), y, z ∈ C, with y 
= x

and z 
= x. Since x ∈ H, the closed

halfspace containing C is of the form

{x | a′x ≥ a′x}. Then a′y ≥ a′x and

a′z ≥ a′x, which in view of x = αy +

(1 − α)z, implies that a′y = a′x and

a′z = a′x. Thus, y, z ∈ C ∩H, showing

that x is not an extreme point of C∩H.



PROPERTIES OF EXTREME POINTS I

Proposition: A closed and convex set has at
least one extreme point if and only if it does not
contain a line.

Proof: If C contains a line, then this line trans-
lated to pass through an extreme point is fully con-
tained in C - impossible.

Conversely, we use induction on the dimen-
sion of the space to show that if C does not contain
a line, it must have an extreme point. True in �,
so assume it is true in �n−1, where n ≥ 2. We will
show it is true in �n.

Since C does not contain a line, there must
exist points x ∈ C and y /∈ C. Consider the rela-
tive boundary point x.

xxy

C

H

The set C∩H lies in an (n−1)-dimensional

space and does not contain a line, so it

contains an extreme point. By the pre-

ceding proposition, this extreme point

must also be an extreme point of C.



PROPERTIES OF EXTREME POINTS II

Krein-Milman Theorem: A convex and com-
pact set is equal to the convex hull of its extreme
points.

Proof: By convexity, the given set contains the
convex hull of its extreme points.

Next show the reverse, i.e, every x in a com-
pact and convex set C can be represented as a
convex combination of extreme points of C.

Use induction on the dimension of the space.
The result is true in �. Assume it is true for all
convex and compact sets in �n−1. Let C ⊂ �n

and x ∈ C.

x x2xx1

C

H1

H2

If x is another point in C, the points

x1 and x2 shown can be represented as

convex combinations of extreme points

of the lower dimensional convex and com-

pact sets C∩H1 and C∩H2, which are

also extreme points of C.



EXTREME POINTS OF POLYHEDRAL SETS

• Let P be a polyhedral subset of �n. If the set of
extreme points of P is nonempty, then it is finite.

Proof: Consider the representation P = P̂ + C,
where

P̂ = conv
(
{v1, . . . , vm}

)
and C is a finitely generated cone.

• An extreme point x of P cannot be of the form
x = x̂ + y, where x̂ ∈ P̂ and y �= 0, y ∈ C,
since in this case x would be the midpoint of the
line segment connecting the distinct vectors x̂ and
x̂ + 2y. Therefore, an extreme point of P must
belong to P̂ , and since P̂ ⊂ P , it must also be an
extreme point of P̂ .

• An extreme point of P̂ must be one of the vectors
v1, . . . , vm, since otherwise this point would be ex-
pressible as a convex combination of v1, . . . , vm.
Thus the extreme points of P belong to the finite
set {v1, . . . , vm}. Q.E.D.



CHARACTERIZATION OF EXTREME POINTS

Proposition: Let P be a polyhedral subset of�n.
If P has the form

P =
{
x | a′

jx ≤ bj , j = 1, . . . , r
}
,

where aj and bj are given vectors and scalars,
respectively, then a vector v ∈ P is an extreme
point of P if and only if the set

Av =
{
aj | a′

jv = bj , j ∈ {1, . . . , r}
}

contains n linearly independent vectors.

(a) (b)

a1

a2
a3

a1

a2

v v

PP

a3

a5 a5

a4a4



PROOF OUTLINE

If the set Av contains fewer than n linearly inde-
pendent vectors, then the system of equations

a′
jw = 0, ∀ aj ∈ Av

has a nonzero solution w. For small γ > 0, we
have v + γw ∈ P and v − γw ∈ P , thus showing
that v is not extreme. Thus, if v is extreme, Av

must contain n linearly independent vectors.
Conversely, assume that Av contains a sub-

set Āv of n linearly independent vectors. Suppose
that for some y ∈ P , z ∈ P , and α ∈ (0, 1), we
have v = αy + (1 − α)z. Then, for all aj ∈ Āv,

bj = a′
jv = αa′

jy+(1−α)a′
jz ≤ αbj+(1−α)bj = bj

Thus, v, y, and z are all solutions of the system of
n linearly independent equations

a′
jw = bj , ∀ aj ∈ Āv

Hence, v = y = z, implying that v is an extreme
point of P .



EXTREME POINTS AND CONCAVE MINIMIZATION

• Let C be a closed and convex set that has at
least one extreme point. A concave function f :
C �→ � that attains a minimum over C attains the
minimum at some extreme point of C.

x*

C

(a)

C∩H1∩H2

C

x*

(c)

C

x*

C∩H1

(b)

Proof (abbreviated): If x∗ ∈ ri(C) [see (a)], f
must be constant over C, so it attains a minimum
at an extreme point of C. If x∗ /∈ ri(C), there is a
hyperplane H1 that supports C and contains x∗.

If x∗ ∈ ri(C ∩ H1) [see (b)], then f must
be constant over C ∩ H1, so it attains a mini-
mum at an extreme point C ∩ H1. This optimal
extreme point is also an extreme point of C. If
x∗ /∈ ri(C∩H1), there is a hyperplane H2 support-
ing C ∩ H1 through x∗. Continue until an optimal
extreme point is obtained (which must also be an
extreme point of C).



FUNDAMENTAL THEOREM OF LP

• Let P be a polyhedral set that has at least
one extreme point. Then, if a linear function is
bounded below over P , it attains a minimum at
some extreme point of P .

Proof: Since the cost function is bounded below
over P , it attains a minimum. The result now fol-
lows from the preceding theorem. Q.E.D.

• Two possible cases in LP: In (a) there is an
extreme point; in (b) there is none.

(a) (b)

P

Level sets of f

P



EXTREME POINTS AND INTEGER PROGRAMMING

• Consider a polyhedral set

P = {x | Ax = b, c ≤ x ≤ d},

where A is m×n, b ∈ �m, and c, d ∈ �n. Assume
that all components of A and b, c, and d are integer.

• Question: Under what conditions do the ex-
treme points of P have integer components?

Definition: A square matrix with integer compo-
nents is unimodular if its determinant is 0, 1, or
-1. A rectangular matrix with integer components
is totally unimodular if each of its square subma-
trices is unimodular.

Theorem: If A is totally unimodular, all the ex-
treme points of P have integer components.

• Most important special case: Linear network
optimization problems (with “single commodity”
and no “side constraints”), where A is the, so-
called, arc incidence matrix of a given directed
graph.



LECTURE 12

LECTURE OUTLINE

• Polyhedral aspects of duality

• Hyperplane proper polyhedral separation

• Min Common/Max Crossing Theorem under
polyhedral assumptions

• Nonlinear Farkas Lemma

• Application to convex programming



HYPERPLANE PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ∩ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ∩ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

C

P

Separating
hyperplane

a

P

Separating
hyperplane

a
C

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



MIN COMMON/MAX CROSSING TH. - SIMPLE

• Consider the min common and max crossing
problems, and assume that:

(1) The set M is defined in terms of a convex
function f : �m �→ (−∞,∞], an r×m matrix
A, and a vector b ∈ �r:

M =
{
(u, w) | for some (x, w) ∈ epi(f), Ax − b ≤ u

}
(2) There is an x ∈ ri(dom(f)) s. t. Ax − b ≤ 0.

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗.

• We have M ≈ epi(p), where p(u) = infAx−b≤u f(x).

• We have w∗ = p(0) = infAx−b≤0 f(x).

f(x) < w

Ax-b ≤ 0

Ax-b ≤ u

w

x

x

w

u

p(u)

0

M = epi(p)



PROOF

• Consider the disjoint convex sets

v

x

x

C1

w*
C2

(ξ,β)

C1 =
{

(x, v) | f(x) < v
}

C2 =
{

(x, w∗) | Ax − b ≤ 0
}

• Since C2 is polyhedral, there exists a separating
hyperplane not containing C1, i.e., a (ξ, β) �= (0, 0)

βw∗+ξ′z ≤ βv+ξ′x, ∀ (x, v) ∈ C1, ∀ z with Az−b ≤ 0,

inf
(x,v)∈C1

{
βv + ξ′x

}
< sup

(x,v)∈C1

{
βv + ξ′x

}
Because of the relative interior point, β �= 0, so
we may assume that β = 1. Hence

sup
Az−b≤0

{
w∗ + ξ′z

}
≤ inf

(x,w)∈epi(f)

{
w + ξ′x

}

The LP on the left has an optimal solution z∗.



PROOF (CONTINUED)

• Let a′
j be the rows of A, and J = {j | a′

jz
∗ = bj}.

We have

ξ′y ≤ 0, ∀ y with a′
jy ≤ 0, ∀ j ∈ J,

so by Farkas’ Lemma, there exist µj ≥ 0, i ∈ J ,
such that ξ =

∑
j∈J µjaj . Defining µj = 0 for

j /∈ J , we have

ξ = A′µ and µ′(Az∗ − b) = 0, so ξ′z∗ = µ′b

• Hence from w∗+ξ′z∗ ≤ inf(x,w)∈epi(f)

{
w+ξ′x

}
,

w∗ ≤ inf
(x,w)∈epi(f)

{
w + µ′(Ax − b)

}
≤ inf

(x,w)∈epi(f),
Ax−b≤u

{w + µ′(Ax − b)}

≤ inf
(x,w)∈epi(f), u∈�n

Ax−b≤u

{w + µ′u}

= inf
(u,w)∈M

{w + µ′u} = q(µ) ≤ q∗.

Since generically q∗ ≤ w∗, it follows that q(µ) =
q∗ = w∗. Q.E.D.



NONLINEAR FARKAS’ LEMMA

• Let C ⊂ �n be convex, and f : C �→ � and
gj : C �→ �, j = 1, . . . , r, be convex functions.
Assume that

f(x) ≥ 0, ∀ x ∈ F =
{
x ∈ C | g(x) ≤ 0

}
,

and one of the following two conditions holds:

(1) 0 is in the relative interior of the set
D =

{
u | g(x) ≤ u for some x ∈ C

}
.

(2) The functions gj , j = 1, . . . , r, are affine, and
F contains a relative interior point of C.

Then, there exist scalars µ∗
j ≥ 0, j = 1, . . . , r, s. t.

f(x) +
r∑

j=1

µ∗
jgj(x) ≥ 0, ∀ x ∈ C

• Reduces to Farkas’ Lemma if C = �n, and f
and gj are linear.



VISUALIZATION OF NONLINEAR FARKAS’ LEMMA

0

{(g(x),f(x) | x ∈ C}

(a)

(µ,1)

{(g(x),f(x) | x ∈ C}

0

{(g(x),f(x) | x ∈ C}

0

(c)(b)

(µ,1)

• Assuming that for all x ∈ C with g(x) ≤ 0, we
have f(x) ≥ 0, etc.

• The lemma asserts the existence of a nonver-
tical hyperplane in �r+1, with normal (µ, 1), that
passes through the origin and contains the set

{(
g(x), f(x)

)
| x ∈ C

}
in its positive halfspace.

• Figures (a) and (b) show examples where such
a hyperplane exists, and figure (c) shows an ex-
ample where it does not.



PROOF OF NONLINEAR FARKAS’ LEMMA

• Apply Min Common/Max Crossing to

M =
{
(u, w) | there is x ∈ C s. t. g(x) ≤ u, f(x) ≤ w

}
• Under condition (1), Min Common/Max Cross-
ing Theorem II applies: 0 ∈ ri(D), where

D =
{
u | there exists w ∈ � with (u, w) ∈ M

}
• Under condition (2), Min Common/Max Cross-
ing Theorem III applies: g(x) ≤ 0 can be written
as Ax − b ≤ 0.

• Hence for some µ∗, we have w∗ = supµ q(µ) =
q(µ∗), where q(µ) = inf(u,w)∈M{w + µ′u}. Using
the definition of M ,

q(µ) =
{

infx∈C

{
f(x) +

∑r
j=1 µjgj(x)

}
if µ ≥ 0,

−∞ otherwise,

so µ∗ ≥ 0 and infx∈C

{
f(x) +

∑r
j=1 µ∗

jgj(x)
}

=
w∗ ≥ 0.



EXAMPLE

g(x)

f(x)
f(x)

g(x)

g(x) ≤ 0

• Here C = �, f(x) = x. In the example on the
left, g is given by g(x) = e−x − 1, while in the
example on the right, g is given by g(x) = x2.

• In both examples, f(x) ≥ 0 for all x such that
g(x) ≤ 0.

• On the left, condition (1) of the Nonlinear Farkas
Lemma is satisfied, and for µ∗ = 1, we have

f(x) + µ∗g(x) = x + e−x − 1 ≥ 0, ∀ x ∈ �

• On the right, condition (1) is violated, and for ev-
ery µ∗ ≥ 0, the function f(x) + µ∗g(x) = x + µ∗x2

takes negative values for x negative and suffi-
ciently close to 0.



APPLICATION TO CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ∈ F =
{
x ∈ C | gj(x) ≤ 0, j = 1, . . . , r

}
where C ⊂ �n is convex, and f : C �→ � and
gj : C �→ � are convex. Assume that f∗ is finite.

• Replace f(x) by f(x)−f∗ and apply the nonlin-
ear Farkas Lemma. Then, under the assumptions
of the lemma, there exist µ∗

j ≥ 0, such that

f∗ ≤ f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ C

Since F ⊂ C and µ∗
jgj(x) ≤ 0 for all x ∈ F ,

f∗ ≤ inf
x∈F

⎧⎨
⎩f(x) +

r∑
j=1

µ∗
jgj(x)

⎫⎬
⎭ ≤ inf

x∈F
f(x) = f∗

Thus equality holds throughout, and we have

f∗ = inf
x∈C

⎧⎨
⎩f(x) +

r∑
j=1

µ∗
jgj(x)

⎫⎬
⎭



CONVEX PROGRAMMING DUALITY - OUTLINE

• Define the dual function

q(µ) = inf
x∈C

⎧⎨
⎩f(x) +

r∑
j=1

µjgj(x)

⎫⎬
⎭

and the dual problem maxµ≥0 q(µ).

• Note that for all µ ≥ 0 and x ∈ C with g(x) ≤ 0

q(µ) ≤ f(x) +
r∑

j=1

µjgj(x) ≤ f(x)

Therefore, we have the weak duality relation

q∗ = sup
µ≥0

q(µ) ≤ inf
x∈C, g(x)≤0

f(x) = f∗

• If we can use Farkas’ Lemma, there exists µ∗ ≥
0 that solves the dual problem and q∗ = f∗.

• This is so if (1) there exists x ∈ C with gj(x) < 0
for all j, or (2) the constraint functions gj are affine
and there is a feasible point in ri(C).



LECTURE 13

LECTURE OUTLINE

• Directional derivatives of one-dimensional con-
vex functions

• Directional derivatives of multi-dimensional con-
vex functions

• Subgradients and subdifferentials

• Properties of subgradients



ONE-DIMENSIONAL DIRECTIONAL DERIVATIVES

• Three slopes relation for a convex f : � �→ �:

slope =

slope =slope =
y - x

f(y) - f(x)
z - y

f(z) - f(y)

z - x
f(z) - f(x)

x y z

f(y) − f(x)
y − x

≤ f(z) − f(x)
z − x

≤ f(z) − f(y)
z − y

• Right and left directional derivatives exist

f+(x) = lim
α↓0

f(x + α) − f(x)
α

f−(x) = lim
α↓0

f(x) − f(x − α)
α



MULTI-DIMENSIONAL DIRECTIONAL DERIVATIVES

• For a convex f : �n �→ �

f ′(x; y) = lim
α↓0

f(x + αy) − f(x)
α

,

is the directional derivative at x in the direction y.

• Exists for all x and all directions.

• f is differentiable at x if f ′(x; y) is a linear func-
tion of y denoted by

f ′(x; y) = ∇f(x)′y,

where ∇f(x) is the gradient of f at x.

• Directional derivatives can be defined for ex-
tended real-valued convex functions, but we will
not pursue this topic (see the textbook).



SUBGRADIENTS

• Let f : �n �→ � be a convex function. A vector
d ∈ �n is a subgradient of f at a point x ∈ �n if

f(z) ≥ f(x) + (z − x)′d, ∀ z ∈ �n

• d is a subgradient if and only if

f(z) − z′d ≥ f(x) − x′d, ∀ z ∈ �n

so d is a subgradient at x if and only if the hyper-
plane in �n+1 that has normal (−d, 1) and passes
through

(
x, f(x)

)
supports the epigraph of f .

z

(x, f(x))

f(z)

(-d, 1)



SUBDIFFERENTIAL

• The set of all subgradients of a convex function
f at x is called the subdifferential of f at x, and is
denoted by ∂f(x).

• Examples of subdifferentials:

f(x) = |x| f(x) = max{0, (1/2)(x2 - 1)}

0 0 1- 1 x

∂f(x) ∂f(x)

0 0 1- 1

1

- 1

x x

x



PROPERTIES OF SUBGRADIENTS I

• ∂f(x) is nonempty, convex, and compact.

Proof: Consider the min common/max crossing
framework with

M =
{
(u, w) | u ∈ �n, f(x + u) ≤ w

}
Min common value: w∗ = f(x). Crossing value
function is q(µ) = inf(u,w)∈M{w + µ′u}. We have
w∗ = q∗ = q(µ) iff f(x) = inf(u,w)∈M{w + µ′u}, or

f(x) ≤ f(x + u) + µ′u, ∀ u ∈ �n

Thus, the set of optimal solutions of the max cross-
ing problem is precisely −∂f(x). Use the Min
Common/Max Crossing Theorem II: since the set

D =
{
u | there exists w ∈ � with (u, w) ∈ M

}
= �n

contains the origin in its interior, the set of op-
timal solutions of the max crossing problem is
nonempty, convex, and compact. Q.E.D.



PROPERTIES OF SUBGRADIENTS II

• For every x ∈ �n, we have

f ′(x; y) = max
d∈∂f(x)

y′d, ∀ y ∈ �n

• f is differentiable at x with gradient ∇f(x), if
and only if it has ∇f(x) as its unique subgradient
at x.

• If f = α1f1+· · ·+αmfm, where the fj : �n �→ �
are convex and αj > 0,

∂f(x) = α1∂f1(x) + · · · + αm∂fm(x)

• Chain Rule: If F (x) = f(Ax), where A is a
matrix,

∂F (x) = A′∂f(Ax) =
{
A′g | g ∈ ∂f(Ax)

}

• Generalizes to functions F (x) = g
(
f(x)

)
, where

g is smooth.



ADDITIONAL RESULTS ON SUBGRADIENTS

• Danskin’s Theorem: Let Z be compact, and
φ : �n × Z �→ � be continuous. Assume that
φ(·, z) is convex and differentiable for all z ∈ Z.
Then the function f : �n �→ � given by

f(x) = max
z∈Z

φ(x, z)

is convex and for all x

∂f(x) = conv
{
∇xφ(x, z) | z ∈ Z(x)

}
• The subdifferential of an extended real valued
convex function f : �n �→ (−∞,∞] is defined by

∂f(x) =
{
d | f(z) ≥ f(x) + (z − x)′d, ∀ z ∈ �n

}
• ∂f(x), is closed but may be empty at rela-
tive boundary points of dom(f), and may be un-
bounded.

• ∂f(x) is nonempty at all x ∈ ri
(
dom(f)

)
, and

it is compact if and only if x ∈ int
(
dom(f)

)
. The

proof again is by Min Common/Max Crossing II.



LECTURE 14

LECTURE OUTLINE

• Conical approximations

• Cone of feasible directions

• Tangent and normal cones

• Conditions for optimality

−−−−−−−−−−−−−−−−−−−−−−−−−−
• A basic necessary condition:

− If x∗ minimizes a function f(x) over x ∈ X,
then for every y ∈ �n, α∗ = 0 minimizes
g(α) ≡ f(x + αy) over the line subset

{α | x + αy ∈ X}

• Special cases of this condition (f : differen-
tiable):

− X = �n: ∇f(x∗) = 0.

− X is convex: ∇f(x∗)′(x−x∗) ≥ 0, ∀ x ∈ X.

• We will aim for more general conditions.



CONE OF FEASIBLE DIRECTIONS

• Consider a subset X of �n and a vector x ∈ X.

• A vector y ∈ �n is a feasible direction of X at x
if there exists an α > 0 such that x + αy ∈ X for
all α ∈ [0, α].

• The set of all feasible directions of X at x is
denoted by FX(x).

• FX(x) is a cone containing the origin. It need
not be closed or convex.

• If X is convex, FX(x) consists of the vectors of
the form α(x − x) with α > 0 and x ∈ X.

• Easy optimality condition: If x∗ minimizes a
differentiable function f(x) over x ∈ X, then

∇f(x∗)′y ≥ 0, ∀ y ∈ FX(x∗)

• Difficulty: The condition may be vacuous be-
cause there may be no feasible directions (other
than 0), e.g., take X to be the boundary of a circle.



TANGENT CONE

• Consider a subset X of �n and a vector x ∈ X.

• A vector y ∈ �n is said to be a tangent of X at x if
either y = 0 or there exists a sequence {xk} ⊂ X
such that xk �= x for all k and

xk → x,
xk − x

‖xk − x‖ → y

‖y‖

• The set of all tangents of X at x is called the
tangent cone of X at x, and is denoted by TX(x).

X
x

x + yk

x + yk+1

xk

xk+1

x + y

Ball of 
radius ||y||

• y is a tangent of X at x iff there exists {xk} ⊂ X
with xk → x, and a positive scalar sequence {αk}
such that αk → 0 and (xk − x)/αk → y.



EXAMPLES

x1

x2

(a)

x1

x2

(b)

(1,2)
TX(x) = cl(FX(x))

x = (0,1)
x = (0,1)

TX(x)

• In (a), X is convex: The tangent cone TX(x) is
equal to the closure of the cone of feas. directions
FX(x).

• In (b), X is nonconvex: TX(x) is closed but
not convex, while FX(x) consists of just the zero
vector.

• In general, FX(x) ⊂ TX(x).

• For X: polyhedral, FX(x) = TX(x).



RELATION OF CONES

• Let X be a subset of �n and let x be a vector
in X. The following hold.

(a) TX(x) is a closed cone.

(b) cl
(
FX(x)

)
⊂ TX(x).

(c) If X is convex, then FX(x) and TX(x) are
convex, and we have

cl
(
FX(x)

)
= TX(x)

Proof: (a) Let {yk} be a sequence in TX(x) that
converges to some y ∈ �n. We show that y ∈
TX(x) ...

(b) Every feasible direction is a tangent, so FX(x) ⊂
TX(x). Since by part (a), TX(x) is closed, the re-
sult follows.

(c) Since X is convex, the set FX(x) consists of
the vectors of the form α(x − x) with α > 0 and
x ∈ X. Verify definition of convexity ...



NORMAL CONE

• Consider subset X of �n and a vector x ∈ X.

• A vector z ∈ �n is said to be a normal of X at x
if there exist sequences {xk} ⊂ X and {zk} with

xk → x, zk → z, zk ∈ TX(xk)∗, ∀ k

• The set of all normals of X at x is called the
normal cone of X at x and is denoted by NX(x).

• Example:

NX(x)
x = 0

X

TX(x) = Rn

• NX(x) is “usually equal” to the polar TX(x)∗,
but may differ at points of “discontinuity” of TX(x).



RELATION OF NORMAL AND POLAR CONES

• We have TX(x)∗ ⊂ NX(x).

• When NX(x) = TX(x)∗, we say that X is regular
at x.

• If X is convex, then for all x ∈ X, we have

z ∈ TX(x)∗ if and only if z′(x−x) ≤ 0, ∀ x ∈ X

Furthermore, X is regular at all x ∈ X. In partic-
ular, we have

TX(x)∗ = NX(x), TX(x) = NX(x)∗

• Note that convexity of TX(x) does not imply
regularity of X at x.

• Important fact in nonsmooth analysis: If X is
closed and regular at x, then

TX(x) = NX(x)∗.

In particular, TX(x) is convex.



OPTIMALITY CONDITIONS I

• Let f : �n �→ � be a smooth function. If x∗ is a
local minimum of f over a set X ⊂ �n, then

∇f(x∗)′y ≥ 0, ∀ y ∈ TX(x∗)

Proof: Let y ∈ TX(x∗) with y �= 0. Then, there
exist {ξk} ⊂ � and {xk} ⊂ X such that xk �= x∗

for all k, ξk → 0, xk → x∗, and

(xk − x∗)/‖xk − x∗‖ = y/‖y‖ + ξk

By the Mean Value Theorem, we have for all k

f(xk) = f(x∗) + ∇f(x̃k)′(xk − x∗),

where x̃k is a vector that lies on the line segment
joining xk and x∗. Combining these equations,

f(xk) = f(x∗) + (‖xk − x∗‖/‖y‖)∇f(x̃k)′yk,

where yk = y + ‖y‖ξk. If ∇f(x∗)′y < 0, since
x̃k → x∗ and yk → y, for sufficiently large k,
∇f(x̃k)′yk < 0 and f(xk) < f(x∗). This con-
tradicts the local optimality of x∗.



OPTIMALITY CONDITIONS II

• Let f : �n �→ � be a convex function. A vector
x∗ minimizes f over a convex set X if and only if
there exists a subgradient d ∈ ∂f(x∗) such that

d′(x − x∗) ≥ 0, ∀ x ∈ X

Proof: If for some d ∈ ∂f(x∗) and all x ∈ X, we
have d′(x − x∗) ≥ 0, then, from the definition of a
subgradient we have f(x)−f(x∗) ≥ d′(x−x∗) for
all x ∈ X. Hence f(x) − f(x∗) ≥ 0 for all x ∈ X.

Conversely, suppose that x∗ minimizes f over
X. Then, x∗ minimizes f over the closure of X,
and we have

f ′(x∗;x−x∗) = sup
d∈∂f(x∗)

d′(x−x∗) ≥ 0, ∀x ∈ cl(X)

Therefore,

inf
x∈cl(X)∩{z|‖z−x∗‖≤1}

sup
d∈∂f(x∗)

d′(x − x∗) = 0

Apply the saddle point theorem to conclude that
“infsup=supinf” and that the supremum is attained
by some d ∈ ∂f(x∗).



OPTIMALITY CONDITIONS III

• Let x∗ be a local minimum of a function f : �n �→
� over a subset X of �n. Assume that the tangent
cone TX(x∗) is convex, and that f has the form

f(x) = f1(x) + f2(x),

where f1 is convex and f2 is smooth. Then

−∇f2(x∗) ∈ ∂f1(x∗) + TX(x∗)∗

• The convexity assumption on TX(x∗) (which is
implied by regularity) is essential in general.

• Example: Consider the subset of �2

X =
{
(x1, x2) | x1x2 = 0

}
Then TX(0)∗ = {0}. Take f to be any convex non-
differentiable function for which x∗ = 0 is a global
minimum over X, but x∗ = 0 is not an uncon-
strained global minimum. Such a function violates
the necessary condition.



LECTURE 15

LECTURE OUTLINE

• Intro to Lagrange multipliers

• Enhanced Fritz John Theory

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• Problem

minimize f(x)
subject to x ∈ X, h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gr(x) ≤ 0

where f , hi, gj : �n �→ � are smooth functions,
and X is a nonempty closed set

• Main issue: What is the structure of the con-
straint set that guarantees the existence of La-
grange multipliers?



DEFINITION OF LAGRANGE MULTIPLIER

• Let x∗ be a local minimum. Then λ∗ = (λ∗
1, . . . , λ

∗
m)

and µ∗ = (µ∗
1, . . . , µ

∗
r) are Lagrange multipliers if

µ∗
j ≥ 0, ∀ j = 1, . . . , r,

µ∗
j = 0, ∀ j with gj(x∗) < 0,

∇xL(x∗, λ∗, µ∗)′y ≥ 0, ∀ y ∈ TX(x∗),

where L is the Lagrangian function

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x)

• Note: When X = �n, then TX(x∗) = �n and
the Lagrangian stationarity condition becomes

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑
j=1

µ∗
j∇gj(x∗) = 0



EXAMPLE OF NONEXISTENCE

OF A LAGRANGE MULTIPLIER

x1

x2

∇f(x*) = (1,1)

∇h1(x*) = (2,0)∇h2(x*) = (-4,0)

h1(x) = 0

h2(x) = 0

2−1 x*

Minimize
f(x) = x1 + x2

subject to the two constraints

h1(x) = (x1 + 1)2 + x2
2 − 1 = 0,

h2(x) = (x1 − 2)2 + x2
2 − 4 = 0



CLASSICAL ANALYSIS

• Necessary condition at a local minimum x∗:

−∇f(x∗) ∈ T (x∗)∗

• Assume linear equality constraints only

hi(x) = a′
ix − bi, i = 1, . . . , m,

• The tangent cone is

T (x∗) = {y | a′
iy = 0, i = 1, . . . , m}

and its polar, T (x∗)∗, is the range space of the ma-
trix having as columns the ai, so for some scalars
λ∗

i

∇f(x∗) +
m∑

i=1

λ∗
i ai = 0



QUASIREGULARITY

• If the hi are nonlinear AND

T (x∗) = {y | ∇hi(x∗)′y = 0, i = 1, . . . , m} (∗)

similarly, for some scalars λ∗
i , we have

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) = 0

• Eq. (∗) (called quasiregularity) can be shown to
hold if the ∇hi(x∗) are linearly independent

• Extension to inequality constraints: If quasireg-
ularity holds, i.e.,

T (x∗) = {y | ∇hi(x
∗)′y = 0, ∇gj(x

∗)′y ≤ 0, ∀j ∈ A(x∗)}

where A(x∗) = {j | gj(x∗) = 0}, the condition
−∇f(x∗) ∈ T (x∗)∗, by Farkas’ lemma, implies
µ∗

j = 0 ∀ j /∈ A(x∗) and

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑
j=1

µ∗
j∇gj(x∗) = 0



FRITZ JOHN THEORY

• Back to equality constraints. There are two
possibilities:

− Either ∇hi(x∗) are linearly independent and

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) = 0

− or for some λ∗
i (not all 0)

m∑
i=1

λ∗
i∇hi(x∗) = 0

• Combination of the two: There exist µ∗
0 ≥ 0 and

λ∗
1, . . . , λ

∗
m (not all 0) such that

µ∗
0∇f(x∗) +

m∑
i=1

λ∗
i∇hi(x∗) = 0

• Question now becomes: When is µ∗
0 �= 0?



SENSITIVITY (SINGLE LINEAR CONSTRAINT)

∇f(x*)

x* + ∆x

x*

∆x

a a'x = b + ∆b

a'x = b

• Perturb RHS of the constraint by ∆b. The min-
imum is perturbed by ∆x, where a′∆x = ∆b.

• If λ∗ is Lagrange multiplier, ∇f(x∗) = −λ∗a,

∆cost = ∇f(x∗)′∆x+o(‖∆x‖) = −λ∗a′∆x+o(‖∆x‖

• So ∆cost = −λ∗∆b + o(‖∆x‖), and up to first
order we have

λ∗ = −∆cost
∆b



EXACT PENALTY FUNCTIONS

• Consider

Fc(x) = f(x) + c

⎛
⎝ m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)

⎞
⎠

• A local min x∗ of the constrained opt. problem
is typically a local minimum of Fc, provided c is
larger than some threshold value.

g(x) < 0

f(x)

x*

µ*g(x)

x

Fc(x)

(a)

g(x) < 0

f(x)

x*

g(x)

x

(b)

• Connection with Lagrange multipliers.



OUR APPROACH

• Abandon the classical approach – it does not
work when X �= �n.

• Enhance the Fritz John conditions so that they
become really useful.

• Show (under minimal assumptions) that when
Lagrange multipliers exist, there exist some that
are informative in the sense that pick out the “im-
portant constraints” and have meaningful sensi-
tivity interpretation.

• Use the notion of constraint pseudonormality as
the linchpin of a theory of constraint qualifications,
and the connection with exact penalty functions.

• Make the connection with nonsmooth analysis
notions such as regularity and the normal cone.



ENHANCED FRITZ JOHN CONDITIONS

If x∗ is a local minimum, there exist µ∗
0, µ

∗
1, . . . , µ

∗
r ,

satisfying the following:

(i) −

⎛
⎝µ∗

0∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

(ii) µ∗
0, µ

∗
1, . . . , µ

∗
r ≥ 0 and not all 0

(iii) If
J = {j �= 0 | µ∗

j > 0}

is nonempty, there exists a sequence {xk} ⊂
X converging to x∗ and such that for all k,

f(xk) < f(x∗), gj(xk) > 0, ∀ j ∈ J,

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J

• The last condition is stronger than the classical

gj(x∗) = 0, ∀ j ∈ J



LECTURE 16

LECTURE OUTLINE

• Enhanced Fritz John Conditions

• Pseudonormality

• Constraint qualifications

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• Problem

minimize f(x)
subject to x ∈ X, h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gr(x) ≤ 0

where f , hi, gj : �n �→ � are smooth functions,
and X is a nonempty closed set.

• To simplify notation, we will often assume no
equality constraints.



DEFINITION OF LAGRANGE MULTIPLIER

• Consider the Lagrangian function

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x)

Let x∗ be a local minimum. Then λ∗ and µ∗ are
Lagrange multipliers if for all j,

µ∗
j ≥ 0, µ∗

j = 0 if gj(x∗) < 0,

and the Lagrangian is stationary at x∗, i.e., has
≥ 0 slope along the tangent directions of X at x∗

(feasible directions in case where X is convex):

∇xL(x∗, λ∗, µ∗)′y ≥ 0, ∀ y ∈ TX(x∗)

• Note 1: If X = �n, Lagrangian stationarity
means ∇xL(x∗, λ∗, µ∗) = 0.

• Note 2: If X is convex and the Lagrangian
is convex in x for µ ≥ 0, Lagrangian stationarity
means that L(·, λ∗, µ∗) is minimized over x ∈ X
at x∗.



ILLUSTRATION OF LAGRANGE MULTIPLIERS

X

(TX(x*))*

∇f(x*)

∇g(x*)

g(x) < 0

Level Sets
of  f

... .
xk

x*
x*

∇g1(x*)

∇g2(x*)

g1(x) < 0

g2(x) < 0

Level Sets
of  f

∇f(x*)

.

xk

...

(a) (b)

• (a) Case where X = �n: −∇f(x∗) is in the
cone generated by the gradients ∇gj(x∗) of the
active constraints.

• (b) Case where X �= �n: −∇f(x∗) is in the
cone generated by the gradients ∇gj(x∗) of the
active constraints and the polar cone TX(x∗)∗.



ENHANCED FRITZ JOHN NECESSARY CONDITIONS

If x∗ is a local minimum, there exist µ∗
0, µ

∗
1, . . . , µ

∗
r ,

satisfying the following:

(i) −

⎛
⎝µ∗

0∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

(ii) µ∗
0, µ

∗
1, . . . , µ

∗
r ≥ 0 and not all 0

(iii) If
J = {j �= 0 | µ∗

j > 0}

is nonempty, there exists a sequence {xk} ⊂
X converging to x∗ and such that for all k,

f(xk) < f(x∗), gj(xk) > 0, ∀ j ∈ J,

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J

• Note: In the classical Fritz John theorem, con-
dition (iii) is replaced by the weaker condition that

µ∗
j = 0, ∀ j with gj(x∗) < 0



GEOM. INTERPRETATION OF LAST CONDITION

X

(TX(x*))*

∇f(x*)

∇g(x*)

g(x) < 0

Level Sets
of  f

... .
xk

x*
x*

∇g1(x*)

∇g2(x*)

g1(x) < 0

g2(x) < 0

Level Sets
of  f

∇f(x*)

.

xk

...

(a) (b)

• Note: Multipliers satisfying the classical Fritz
John conditions may not satisfy condition (iii).

• Example: Start with any problem minh(x)=0 f(x)
that has a local min-Lagrange multiplier pair (x∗, λ∗)
with ∇f(x∗) �= 0 and ∇h(x∗) �= 0. Convert it to
the problem minh(x)≤0,−h(x)≤0 f(x). The (µ∗

0, µ
∗)

satisfying the classical FJ conditions:

µ∗
0 = 0, µ∗

1 = µ∗
2 �= 0 or µ∗

0 > 0, (µ∗
0)−1(µ∗

1−µ∗
2) = λ∗

The enhanced FJ conditions are satisfied only for

µ∗
0 > 0, µ∗

1 = λ∗/µ∗
0, µ∗

2 = 0 or µ∗
0 > 0, µ∗

1 = 0, µ∗
2 = −λ∗/µ∗

0



PROOF OF ENHANCED FJ THEOREM

• We use a quadratic penalty function approach.
Let g+

j (x) = max{0, gj(x)}, and for each k, con-
sider

min
X∩S

F k(x) ≡ f(x) +
k

2

r∑
j=1

(
g+

j (x)
)2 +

1
2
||x− x∗||2

where S = {x | ||x − x∗|| ≤ ε}, and ε > 0 is such
that f(x∗) ≤ f(x) for all feasible x with x ∈ S.
Using Weierstrass’ theorem, we select an optimal
solution xk. For all k, F k(xk) ≤ F k(x∗), or

f(xk) +
k

2

r∑
j=1

(
g+

j (xk)
)2 +

1
2
||xk − x∗||2 ≤ f(x∗)

Since f(xk) is bounded over X ∩ S, g+
j (xk) → 0,

and every limit point x of {xk} is feasible. Also,
f(xk) + (1/2)||xk − x∗||2 ≤ f(x∗) for all k, so

f(x) +
1
2
||x − x∗||2 ≤ f(x∗)

• Since x ∈ S and x is feasible, we have f(x∗) ≤
f(x), so x = x∗. Thus xk → x∗, and xk is an
interior point of the closed sphere S for all large k.



PROOF (CONTINUED)

• For k large, we have the necessary condition
−∇F k(xk) ∈ TX(xk)∗, which is written as

−
(
∇f(xk) +

r∑
j=1

ζk
j ∇gj(x

k) + (xk − x∗)

)
∈ TX(xk)∗,

where ζk
j = kg+

j (xk). Denote

δk =

√√√√1 +
r∑

j=1

(ζk
j )2, µk

0 =
1
δk

, µk
j =

ζk
j

δk
, j > 0

Dividing with δk,

−

(
µk

0∇f(xk) +

r∑
j=1

µk
j ∇gj(x

k) +
1

δk
(xk − x∗)

)
∈ TX(xk)∗

Since by construction (µk
0)2+

∑r
j=1(µ

k
j )2 = 1, the

sequence {µk
0 , µk

1 , . . . , µk
r} is bounded and must

contain a subsequence that converges to some
limit {µ∗

0, µ
∗
1, . . . , µ

∗
r}. This limit has the required

properties ...



CONSTRAINT QUALIFICATIONS

Suppose there do NOT exist µ1, . . . , µr, satisfying:

(i) −
∑r

j=1 µj∇gj(x∗) ∈ NX(x∗).

(ii) µ1, . . . , µr ≥ 0 and not all 0.

• Then we must have µ∗
0 > 0 in FJ, and can take

µ∗
0 = 1. So there exist µ∗

1, . . . , µ
∗
r , satisfying all the

Lagrange multiplier conditions except that:

−

⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

rather than −(·) ∈ TX(x∗)∗ (such multipliers are
called R-multipliers).

• If X is regular at x∗, R-multipliers are Lagrange
multipliers.

• LICQ (Lin. Independence Constr. Qual.):
There exists a unique Lagrange multiplier vector
if X = �n and x∗ is a regular point , i.e.,{

∇gj(x∗) | j with gj(x∗) = 0
}

are linearly independent.



PSEUDONORMALITY

A feasible vector x∗ is pseudonormal if there are
NO scalars µ1, . . . , µr, and a sequence {xk} ⊂
Xsuch that:

(i) −
(∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r, and µj = 0 for all
j /∈ A(x∗).

(iii) {xk} converges to x∗ and

r∑
j=1

µjgj(xk) > 0, ∀ k

• From Enhanced FJ conditions:

− If x∗ is pseudonormal there exists an R-multiplier
vector.

− If in addition X is regular at x∗, there exists
a Lagrange multiplier vector.



GEOM. INTERPRETATION OF PSEUDONORMALITY I

• Assume that X = �n

Tε

u1

u2

0

Tε

u1

u2

0

Not Pseudonormal

µ

Tε

u1

u2

0

µ

Pseudonormal
gj: Concave

Pseudonormal
∇gj: Linearly Indep.

• Consider, for a small positive scalar ε, the set

Tε =
{
g(x) | ‖x − x∗‖ < ε

}
• x∗ is pseudonormal if and only if either

− (1) the gradients ∇gj(x∗), j = 1, . . . , r, are
linearly independent, or

− (2) for every µ ≥ 0 with µ �= 0 and such
that

∑r
j=1 µj∇gj(x∗) = 0, there is a small

enough ε, such that the set Tε does not cross
into the positive open halfspace of the hyper-
plane through 0 whose normal is µ. This is
true if the gj are concave [then µ′g(x) is max-
imized at x∗ so µ′g(x) ≤ 0 for all x ∈ �n].



GEOM. INTERPRETATION OF PSEUDONORMALITY II

• Assume that X and the gj are convex, so that

−

⎛
⎝ r∑

j=1

µj∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

if and only if x∗ ∈ arg minx∈X

∑r
j=1 µjgj(x). Pseu-

donormality holds if and only if for every hyper-
plane with normal µ ≥ 0 that passes through the
origin and supports the set G = {g(x) | x ∈ X},
contains G in its negative halfspace.

(a)

0

G = {g(x) | x ∈ X}

g(x*)

µ

x*: pseudonormal
(Slater criterion)

H

(b)

0

G = {g(x) | x ∈ X}

g(x*)

µ

x*: pseudonormal
(Linearity criterion)

H

(c)

0

G = {g(x) | x ∈ X}

g(x*)

µ

x*: not pseudonormal

H



SOME MAJOR CONSTRAINT QUALIFICATIONS

CQ1: X = �n, and the functions gj are concave.

CQ2: There exists a y ∈ NX(x∗)∗ such that

∇gj(x∗)′y < 0, ∀ j ∈ A(x∗)

• Special case of CQ2: The Slater condition (X
is convex, gj are convex, and there exists x ∈ X
s.t. gj(x) < 0 for all j).

• CQ2 is known as the (generalized) Mangasarian-
Fromowitz CQ. The version with equality constraints:

(a) There does not exist a nonzero vector λ =
(λ1, . . . , λm) such that

m∑
i=1

λi∇hi(x∗) ∈ NX(x∗)

(b) There exists a y ∈ NX(x∗)∗ such that

∇hi(x∗)′y = 0, ∀ i, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗)



CONSTRAINT QUALIFICATION THEOREM

• If CQ1 or CQ2 holds, then x∗ is pseudonormal.

Proof: Assume that there are scalars µj , j =
1, . . . , r, satisfying conditions (i)-(iii) of the defini-
tion of pseudonormality. Then assume that each
of the constraint qualifications is in turn also sat-
isfied, and in each case arrive at a contradiction.

Case of CQ1 : By the concavity of gj , the condition∑r
j=1 µj∇gj(x∗) = 0, implies that x∗ maximizes

µ′g(x) over x ∈ �n, so

µ′g(x) ≤ µ′g(x∗) = 0, ∀ x ∈ �n

This contradicts condition (iii) [arbitrarily close to
x∗, there is an x satisfying

∑r
j=1 µjgj(x) > 0].

Case of CQ2 : We must have µj > 0 for at least
one j, and since µj ≥ 0 for all j with µj = 0 for
j /∈ A(x∗), we obtain

r∑
j=1

µj∇gj(x∗)′y < 0,

for the vector y of NX(x∗)∗ that appears in CQ2.



PROOF (CONTINUED)

Thus,

−
r∑

j=1

µj∇gj(x∗) /∈
(
NX(x∗)∗

)∗
Since NX(x∗) ⊂

(
NX(x∗)∗

)∗
,

−
r∑

j=1

µj∇gj(x∗) /∈ NX(x∗)

a contradiction of conditions (i) and (ii). Q.E.D.

• If X = �n, CQ2 is equivalent to the cone
{y | ∇gj(x∗)′y ≤ 0, j ∈ A(x∗)} having nonempty
interior, which (by Gordan’s theorem) is equivalent
to conditions (i) and (ii) of pseudonormality.

• Note that CQ2 can also be shown to be equiv-
alent to conditions (i) and (ii) of pseudonormality,
even when X �= �n, as long as X is regular at
x∗. These conditions can in turn can be shown in
turn to be equivalent to nonemptiness and com-
pactness of the set of Lagrange multipliers (which
is always closed and convex as the intersection of
a collection of halfspaces).
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LECTURE OUTLINE

• Sensitivity Issues

• Exact penalty functions

• Extended representations

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Review of Lagrange Multipliers

• Problem: min f(x) subject to x ∈ X, and gj(x) ≤
0, j = 1, . . . , r.

• Key issue is the existence of Lagrange multipli-
ers for a given local min x∗.

• Existence is guaranteed if X is regular at x∗

and we can choose µ∗
0 = 1 in the FJ conditions.

• Pseudonormality of x∗ guarantees that we can
take µ∗

0 = 1 in the FJ conditions.

• We derived several constraint qualifications on
X and gj that imply pseudonormality.



PSEUDONORMALITY

A feasible vector x∗ is pseudonormal if there are
NO scalars µ1, . . . , µr, and a sequence {xk} ⊂
Xsuch that:

(i) −
(∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r, and µj = 0 for all
j /∈ A(x∗) = {j | gj(x∗) = 0}.

(iii) {xk} converges to x∗ and

r∑
j=1

µjgj(xk) > 0, ∀ k

• From Enhanced FJ conditions:

− If x∗ is pseudonormal, there exists an R-
multiplier vector.

− If in addition X is regular at x∗, there exists
a Lagrange multiplier vector.



EXAMPLE WHERE X IS NOT REGULAR

h(x) = x2 = 0

X

x1

x2

x* = 0

• We have

TX(x∗) = X, TX(x∗)∗ = {0}, NX(x∗) = X

Let h(x) = x2 = 0 be a single equality constraint.
The only feasible point x∗ = (0, 0) is pseudonor-
mal (satisfies CQ2).

• There exists no Lagrange multiplier for some
choices of f .

• For each f , there exists an R-multiplier, i.e., a
λ∗ such that −(∇f(x∗) + λ∗∇h(x∗)) ∈ NX(x∗) ...
BUT for f such that there is no L-multiplier, the
Lagrangian has negative slope along a tangent
direction of X at x∗.



TYPES OF LAGRANGE MULTIPLIERS

• Informative: Those that satisfy condition (iii)
of the FJ Theorem

• Strong: Those that are informative if the con-
straints with µ∗

j = 0 are neglected

• Minimal: Those that have a minimum number
of positive components

• Proposition: Assume that TX(x∗) is convex.
Then the inclusion properties illustrated in the fol-
lowing figure hold. Furthermore, if there exists
at least one Lagrange multiplier, there exists one
that is informative (the multiplier of min norm is
informative - among possibly others).

Lagrange multipliers

Strong

Informative Minimal



SENSITIVITY

• Informative multipliers provide a certain amount
of sensitivity.

• They indicate the constraints that need to be
violated [those with µ∗

j > 0 and gj(xk) > 0] in
order to be able to reduce the cost from the optimal
value [f(xk) < f(x∗)].

• The L-multiplier µ∗ of minimum norm is informa-
tive, but it is also special; it provides quantitative
sensitivity information.

• More precisely, let d∗ ∈ TX(x∗) be the direction
of maximum cost improvement for a given value of
norm of constraint violation (up to 1st order; see
the text for precise definition). Then for {xk} ⊂ X
converging to x∗ along d∗,we have

f(xk) = f(x∗) −
r∑

j=1

µ∗
jgj(xk) + o(‖xk − x∗‖)

• In the case where there is a unique L-multiplier
and X = �n, this reduces to the classical inter-
pretation of L-multiplier.



EXACT PENALTY FUNCTIONS

• Exact penalty function

Fc(x) = f(x) + c

⎛
⎝ m∑

i=1

|hi(x)| +
r∑

j=1

g+
j (x)

⎞
⎠ ,

where c is a positive scalar, and

g+
j (x) = max

{
0, gj(x)

}
• We say that the constraint set C admits an exact
penalty at a feasible point x∗ if for every smooth
f for which x∗ is a strict local minimum of f over
C, there is a c > 0 such that x∗ is also a local
minimum of Fc over X.

• The strictness condition in the definition is es-
sential.

Main Result: If x∗ ∈ C is pseudonormal, the
constraint set admits an exact penalty at x∗.



PROOF NEEDS AN INTERMEDIATE RESULT

• First use the (generalized) Mangasarian-Fromovitz
CQ to obtain a necessary condition for a local min-
imum of the exact penalty function.

Proposition: Let x∗ be a local minimum of Fc =
f +c

∑r
j=1 g+

j over X. Then there exist µ∗
1, . . . , µ

∗
r

such that

−

⎛
⎝∇f(x∗) + c

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠ ∈ NX(x∗),

µ∗
j = 1 if gj(x∗) > 0, µ∗

j = 0 if gj(x∗) < 0,

µ∗
j ∈ [0, 1] if gj(x∗) = 0

Proof: Convert minimization of Fc(x) over X to
minimizing f(x) + c

∑r
j=1 vj subject to

x ∈ X, gj(x) ≤ vj , 0 ≤ vj , j = 1, . . . , r



PROOF THAT PN IMPLIES EXACT PENALTY

• Assume PN holds and that there exists a smooth
f such that x∗ is a strict local minimum of f over
C, while x∗ is not a local minimum over x ∈ X of
Fk = f + k

∑r
j=1 g+

j for all k = 1, 2, . . .

• Let xk minimize Fk over all x ∈ X satisfying
‖x − x∗‖ ≤ ε (where ε is s.t. f(x∗) < f(x) for
all x ∈ X with x �= 0 and ‖x − x∗‖ < ε). Then
xk �= x∗, xk is infeasible, and

Fk(xk) = f(xk) + k
r∑

j=1

g+
j (xk) ≤ f(x∗)

so g+
j (xk) → 0 and limit points of xk are feasible.

• Can assume xk → x∗, so ‖xk − x∗‖ < ε for
large k, and we have the necessary conditions

−

⎛
⎝1

k
∇f(xk) +

r∑
j=1

µk
j∇gj(xk)

⎞
⎠ ∈ NX(xk)

where µk
j = 1 if gj(xk) > 0, µk

j = 0 if gj(xk) < 0,
and µk

j ∈ [0, 1] if gj(xk) = 0.



PROOF CONTINUED

• We can find a subsequence {µk}k∈K such that
for some j we have µk

j = 1 and gj(xk) > 0 for all
k ∈ K. Let µ be a limit point of this subsequence.
Then µ �= 0, µ ≥ 0, and

−
r∑

j=1

µj∇gj(x∗) ∈ NX(x∗)

[using the closure of the mapping x �→ NX(x)].

• Finally, for all k ∈ K, we have µk
j gj(xk) ≥ 0

for all j, so that, for all k ∈ K, µjgj(xk) ≥ 0 for
all j. Since by construction of the subsequence
{µk}k∈K, we have for some j and all k ∈ K, µk

j = 1
and gj(xk) > 0, it follows that for all k ∈ K,

r∑
j=1

µjgj(xk) > 0

This contradicts the pseudonormality of x∗. Q.E.D.



EXTENDED REPRESENTATION

• X can often be described as

X =
{
x | gj(x) ≤ 0, j = r + 1, . . . , r

}
• Then C can alternatively be described without
an abstract set constraint,

C = {x | gj(x) ≤ 0, j = 1, . . . , r}

We call this the extended representation of C.

Proposition:

(a) If the constraint set admits Lagrange multi-
pliers in the extended representation, it ad-
mits Lagrange multipliers in the original rep-
resentation.

(b) If the constraint set admits an exact penalty
in the extended representation, it admits an
exact penalty in the original representation.



PROOF OF (A)

• By conditions for case X = �n there exist
µ∗

1, . . . , µ
∗
r satisfying

∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗) = 0,

µ∗
j ≥ 0, ∀ j = 0, 1, . . . , r, µ∗

j = 0, ∀ j /∈ A(x∗),

where

A(x∗) = {j | gj(x∗) = 0, j = 1, . . . , r}

For y ∈ TX(x∗), we have ∇gj(x∗)′y ≤ 0 for all
j = r + 1, . . . , r with j ∈ A(x∗). Hence

⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠

′

y ≥ 0, ∀ y ∈ TX(x∗),

and the µ∗
j , j = 1, . . . , r, are Lagrange multipliers

for the original representation.



THE BIG PICTURE

Admittance of an Exact
Penalty

Admittance of Informative
Lagrange Multipliers

Quasiregularity

X = Rn

Constraint Qualifications
CQ1-CQ4

Pseudonormality

Constraint Qualifications
CQ5, CQ6

X = Rn

Pseudonormality

Admittance of an Exact
Penalty

Admittance of R-multipliers

Constraint Qualifications
CQ5, CQ6

X = Rn  and  Regular 

Pseudonormality

Admittance of an Exact
Penalty

Admittance of Lagrange
MultipliersAdmittance of Lagrange

Multipliers

Admittance of Informative
Lagrange Multipliers
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LECTURE OUTLINE

• Convexity, geometric multipliers, and duality

• Relation of geometric and Lagrange multipliers

• The dual function and the dual problem

• Weak and strong duality

• Duality and geometric multipliers



GEOMETRICAL FRAMEWORK FOR MULTIPLIERS

• We start an alternative geometric approach to
Lagrange multipliers and duality for the problem

minimize f(x)
subject to x ∈ X, g1(x) ≤ 0, . . . , gr(x) ≤ 0

• We assume nothing on X, f , and gj , except
that

−∞ < f∗ = inf
x∈X

gj(x)≤0, j=1,...,r

f(x) < ∞

• A vector µ∗ = (µ∗
1, . . . , µ

∗
r) is said to be a geo-

metric multiplier if µ∗ ≥ 0 and

f∗ = inf
x∈X

L(x, µ∗),

where
L(x, µ) = f(x) + µ′g(x)

• Note that a G-multiplier is associated with the
problem and not with a specific local minimum.



VISUALIZATION

0

(0,f*)

(µ*,1)

w

z

H = {(z,w) | f* = w + Σ j µjzj}*

0

(c)

(0,f*)
(µ*,1)

Set of pairs (g(x),f(x)) corresponding to x
 that  minimize L(x, µ*) over X

z

w

(d)

(a)

0

(µ,1)

S = {(g(x),f(x)) | x ∈ X}

z

w

(g(x),f(x))

L(x,µ) = f(x) + µ'g(x)•

infx ∈ X L(x,µ)•

•

0 z

w

(0,f*)
•

•
•

(b)

S

S S

__ _

• Note: A G-multiplier solves a max-crossing
problem whose min common problem has optimal
value f∗.



EXAMPLES: A G-MULTIPLIER EXISTS

0(-1,0)

(µ*,1) min  f(x) =  (1/2) (x1
2 + x2

2)
s.t.  g(x) = x1 - 1 ≤ 0

 x ∈ X = R2

(b)

0

(0,-1)

(µ*,1)

(0,1) min  f(x) = x1 - x2
s.t.  g(x) = x1 + x2 - 1 ≤ 0

 x ∈ X = {(x1,x2) | x1 ≥ 0, x2 ≥ 0}

(a)

(-1,0)

0

(µ*,1)

min  f(x) = |x1| + x2
s.t.  g(x) = x1 ≤ 0

 x ∈ X = {(x1,x2) | x2 ≥ 0}

(c)

(µ*,1)

(µ*,1)

S = {(g(x),f(x)) | x ∈ X}

S = {(g(x),f(x)) | x ∈ X}

S = {(g(x),f(x)) | x ∈ X}



EXAMPLES: A G-MULTIPLIER DOESN’T EXIST

min  f(x) = x

s.t.  g(x) = x2 ≤ 0
 x ∈ X = R

(a)
(0,f*) = (0,0)

(-1/2,0)

S = {(g(x),f(x)) | x ∈ X}
min  f(x) = - x

s.t.  g(x) = x  - 1/2 ≤ 0
 x ∈ X = {0,1}

(b)

(0,f*) = (0,0)

(1/2,-1)

S = {(g(x),f(x)) | x ∈ X}

• Proposition: Let µ∗ be a geometric multiplier.
Then x∗ is a global minimum of the primal problem
if and only if x∗ is feasible and

x∗ = arg min
x∈X

L(x, µ∗), µ∗
jgj(x∗) = 0, j = 1, . . . , r



RELATION BETWEEN G- AND L- MULTIPLIERS

• Assume the problem is convex (X closed and
convex, and f and gj are convex and differen-
tiable over �n), and x∗ is a global minimum. Then
the set of L-multipliers concides with the set of
G-multipliers.

• For convex problems, the set of G-multipliers
does not depend on the optimal solution x∗ (it is
the same for all x∗, and may be nonempty even if
the problem has no optimal solution x∗).

• In general (for nonconvex problems):

− Set of G-multipliers may be empty even if the
set of L-multipliers is nonempty. [Example
problem: minx=0(−x2)]

− “Typically” there is no G-multiplier if the set

{
(u, w) | for some x ∈ X, g(x) ≤ u, f(x) ≤ w

}
is nonconvex, which often happens if the
problem is nonconvex.

− The G-multiplier idea underlies duality even
if the problem is nonconvex.



THE DUAL FUNCTION AND THE DUAL PROBLEM

• The dual problem is

maximize q(µ)
subject to µ ≥ 0,

where q is the dual function

q(µ) = inf
x∈X

L(x, µ), ∀ µ ∈ �r

• Note: The dual problem is equivalent to a max-
crossing problem.

(µ,1)

H = {(z,w) | w +  µ'z = b}

Optimal
Dual Value

x ∈ X
q(µ) = inf  L(x,µ)

Support points
correspond to minimizers
of L(x,µ) over X

S = {(g(x),f(x)) | x ∈ X}



WEAK DUALITY

• The domain of q is

Dq =
{
µ | q(µ) > −∞

}
• Proposition: q is concave, i.e., the domain Dq

is a convex set and q is concave over Dq.

• Proposition: (Weak Duality Theorem) We
have

q∗ ≤ f∗

Proof: For all µ ≥ 0, and x ∈ X with g(x) ≤ 0,
we have

q(µ) = inf
z∈X

L(z, µ) ≤ f(x) +
r∑

j=1

µjgj(x) ≤ f(x),

so

q∗ = sup
µ≥0

q(µ) ≤ inf
x∈X, g(x)≤0

f(x) = f∗



DUAL OPTIMAL SOLUTIONS AND G-MULTIPLIERS

Proposition: (a) If q∗ = f∗, the set of G-multipliers
is equal to the set of optimal dual solutions.
(b) If q∗ < f∗, the set of G-multipliers is empty (so
if there exists a G-multiplier, q∗ = f∗).

Proof: By definition, µ∗ ≥ 0 is a G-multiplier if
f∗ = q(µ∗). Since q(µ∗) ≤ q∗ and q∗ ≤ f∗,

µ∗ ≥ 0 is a G-multiplier iff q(µ∗) = q∗ = f∗

• Examples (dual functions for the two problems
with no G-multipliers, given earlier):

(a)

f* = 0

µ

q(µ)

1

(b)

µ

q(µ)

f* = 0

- 1

min  f(x) = x

s.t.  g(x) = x2 ≤ 0
 x ∈ X = R

min  f(x) = - x

s.t.  g(x) = x  - 1/2 ≤ 0
 x ∈ X = {0,1}

q(µ) =   min   {x + µx2} ={- 1/(4 µ)   if  µ > 0

-  ∞   if  µ ≤ 0

- 1/2

 x ∈ R

q(µ) =   min   { - x + µ(x - 1/2)} = min{ - µ/2, µ/2 −1}
 x ∈ {0,1}



DUALITY AND MINIMAX THEORY

• The primal and dual problems can be viewed in
terms of minimax theory:

Primal Problem <=> inf
x∈X

sup
µ≥0

L(x, µ)

Dual Problem <=> sup
µ≥0

inf
x∈X

L(x, µ)

• Optimality Conditions: (x∗, µ∗) is an optimal
solution/G-multiplier pair if and only if

x∗ ∈ X, g(x∗) ≤ 0, (Primal Feasibility),

µ∗ ≥ 0, (Dual Feasibility),

x∗ = arg min
x∈X

L(x, µ∗), (Lagrangian Optimality),

µ∗
jgj(x∗) = 0, j = 1, . . . , r, (Compl. Slackness).

• Saddle Point Theorem: (x∗, µ∗) is an opti-
mal solution/G-multiplier pair if and only if x∗ ∈ X,
µ∗ ≥ 0, and (x∗, µ∗) is a saddle point of the La-
grangian, in the sense that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀ x ∈ X, µ ≥ 0



A CONVEX PROBLEM WITH A DUALITY GAP

• Consider the two-dimensional problem

minimize f(x)
subject to x1 ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) = e−
√

x1x2 , ∀ x ∈ X,

and f(x) is arbitrarily defined for x /∈ X.

• f is convex over X (its Hessian is positive defi-
nite in the interior of X), and f∗ = 1.

• Also, for all µ ≥ 0 we have

q(µ) = inf
x≥0

{
e−

√
x1x2 + µx1

}
= 0,

since the expression in braces is nonnegative for
x ≥ 0 and can approach zero by taking x1 → 0
and x1x2 → ∞. It follows that q∗ = 0.



INFEASIBLE AND UNBOUNDED PROBLEMS

0

min  f(x) = 1/x

s.t.  g(x) = x  ≤ 0

 x ∈ X = {x | x > 0}

(a)
f* = ∞,   q* = ∞

0

S = {(x2,x) | x > 0}

min  f(x) = x

s.t.  g(x) = x2 ≤ 0

 x ∈ X = {x | x > 0}

(b)

f* = ∞,   q* = 0

0

S = {(g(x),f(x)) | x ∈ X}
   = {(z,w) | z > 0}

min  f(x) = x1 + x2
s.t.  g(x) = x1  ≤ 0

 x ∈ X = {(x1,x2) | x1 > 0}

(c)
f* = ∞,   q* = −∞

z

w

w

w

z

z

S = {(g(x),f(x)) | x ∈ X}
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LECTURE OUTLINE

• Linear and quadratic programming duality

• Conditions for existence of geometric multipliers

• Conditions for strong duality

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Primal problem: Minimize f(x) subject to x ∈ X,
and g1(x) ≤ 0, . . . , gr(x) ≤ 0 (assuming −∞ <
f∗ < ∞). It is equivalent to infx∈X supµ≥0 L(x, µ).

• Dual problem: Maximize q(µ) subject to µ ≥ 0,
where q(µ) = infx∈X L(x, µ). It is equivalent to
supµ≥0 infx∈X L(x, µ).

• µ∗ is a geometric multiplier if and only if f∗ = q∗,
and µ∗ is an optimal solution of the dual problem.

• Question: Under what conditions f∗ = q∗ and
there exists a geometric multiplier?



LINEAR AND QUADRATIC PROGRAMMING DUALITY

• Consider a LP or positive semidefinite QP under
the assumption

−∞ < f∗ < ∞

• We know from Chapter 2 that

−∞ < f∗ < ∞ ⇒ there is an optimal solution x∗

• Since the constraints are linear, there exist L-
multipliers corresponding to x∗, so we can use
Lagrange multiplier theory.

• Since the problem is convex, the L-multipliers
coincide with the G-multipliers.

• Hence there exists a G-multiplier, f∗ = q∗ and
the optimal solutions of the dual problem coincide
with the Lagrange multipliers.



THE DUAL OF A LINEAR PROGRAM

• Consider the linear program

minimize c′x

subject to e′ix = di, i = 1, . . . , m, x ≥ 0

• Dual function

q(λ) = inf
x≥0

⎧⎨
⎩

n∑
j=1

(
cj −

m∑
i=1

λieij

)
xj +

m∑
i=1

λidi

⎫⎬
⎭

• If cj −
∑m

i=1 λieij ≥ 0 for all j, the infimum
is attained for x = 0, and q(λ) =

∑m
i=1 λidi. If

cj −
∑m

i=1 λieij < 0 for some j, the expression in
braces can be arbitrarily small by taking xj suff.
large, so q(λ) = −∞. Thus, the dual is

maximize
m∑

i=1

λidi

subject to
m∑

i=1

λieij ≤ cj , j = 1, . . . , n.



THE DUAL OF A QUADRATIC PROGRAM

• Consider the quadratic program

minimize 1
2x

′Qx + c′x

subject to Ax ≤ b,

where Q is a given n×n positive definite symmet-
ric matrix, A is a given r × n matrix, and b ∈ �r

and c ∈ �n are given vectors.

• Dual function:

q(µ) = inf
x∈�n

{ 1
2x

′Qx + c′x + µ′(Ax − b)}

The infimum is attained for x = −Q−1(c + A′µ),
and, after substitution and calculation,

q(µ) = − 1
2µ

′AQ−1A′µ−µ′(b+AQ−1c)− 1
2c

′Q−1c

• The dual problem, after a sign change, is

minimize 1
2µ

′Pµ + t′µ

subject to µ ≥ 0,

where P = AQ−1A′ and t = b + AQ−1c.



RECALL NONLINEAR FARKAS’ LEMMA

Let C ⊂ �n be convex, and f : C �→ � and
gj : C �→ �, j = 1, . . . , r, be convex functions.
Assume that

f(x) ≥ 0, ∀ x ∈ F =
{
x ∈ C | g(x) ≤ 0

}
,

and one of the following two conditions holds:

(1) 0 is in the relative interior of the set
D =

{
u | g(x) ≤ u for some x ∈ C

}
.

(2) The functions gj , j = 1, . . . , r, are affine, and
F contains a relative interior point of C.

Then, there exist scalars µ∗
j ≥ 0, j = 1, . . . , r, s. t.

f(x) +
r∑

j=1

µ∗
jgj(x) ≥ 0, ∀ x ∈ C



APPLICATION TO CONVEX PROGRAMMING

Consider the problem

minimize f(x)
subject to x ∈ C, gj(x) ≤ 0, j = 1, . . . , r,

where C, f : C �→ �, and gj : C �→ � are convex.
Assume that the optimal value f∗ is finite.

• Replace f(x) by f(x)−f∗ and assume that the
conditions of Farkas’ Lemma are satisfied. Then
there exist µ∗

j ≥ 0 such that

f∗ ≤ f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ C

Since F ⊂ C and µ∗
jgj(x) ≤ 0 for all x ∈ F ,

f∗ ≤ inf
x∈F

⎧⎨
⎩f(x) +

r∑
j=1

µ∗
jgj(x)

⎫⎬
⎭ ≤ inf

x∈F
f(x) = f∗

Thus equality holds throughout, we have

f∗ = inf
x∈C

{f(x) + µ∗′g(x)} ,

and µ∗ is a geometric multiplier.



STRONG DUALITY THEOREM I

Assumption : (Convexity and Linear Constraints)
f∗ is finite, and the following hold:

(1) X = P ∩ C, where P is polyhedral and C is
convex.

(2) The cost function f is convex over C and the
functions gj are affine.

(3) There exists a feasible solution of the prob-
lem that belongs to the relative interior of C.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: If P = �n the result holds by Farkas. If
P �= �n, express P as

P = {x | a′
jx − bj ≤ 0, j = r + 1, . . . , p}

Apply Farkas to the extended representation, with

F = {x ∈ C | a′
jx − bj ≤ 0, j = 1, . . . , p}

Assert the existence of geometric multipliers in
the extended representation, and pass back to the
original representation. Q.E.D.



STRONG DUALITY THEOREM II

Assumption : (Linear and Nonlinear Constraints)
f∗ is finite, and the following hold:

(1) X = P ∩ C, with P : polyhedral, C: convex.

(2) The functions f and gj , j = 1, . . . , r, are
convex over C, and the functions gj , j =
r + 1, . . . , r, are affine.

(3) There exists a feasible vector x̄ such that
gj(x̄) < 0 for all j = 1, . . . , r.

(4) There exists a vector that satisfies the lin-
ear constraints [but not necessarily the con-
straints gj(x) ≤ 0, j = 1, . . . , r] and belongs
to the relative interior of C.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: If P = �n and there are no linear con-
straints (the Slater condition), apply Farkas. Oth-
erwise, lump the linear constraints within X, as-
sert the existence of geometric multipliers for the
nonlinear constraints, then use the preceding du-
ality result for linear constraints. Q.E.D.



THE PRIMAL FUNCTION

• Minimax theory centered around the function

p(u) = inf
x∈X

sup
µ≥0

{
L(x, µ) − µ′u

}
• Properties of p around u = 0 are critical in an-
alyzing the presence of a duality gap and the ex-
istence of primal and dual optimal solutions.

• p is known as the primal function of the con-
strained optimization problem.

• We have

sup
µ≥0

{
L(x, µ) − µ′u

}
= sup

µ≥0

{
f(x) + µ′

(
g(x) − u

)}
=

{
f(x) if g(x) ≤ u,
∞ otherwise.• So

p(u) = inf
x∈X

g(x)≤u

f(x)

and p(u) can be viewed as a perturbed optimal
value [note that p(0) = f∗].



CONDITIONS FOR NO DUALITY GAP

• Apply the minimax theory specialized to L(x, µ).

• Assume that f∗ < ∞, and that X is convex, and
L(·, µ) is convex over X for each µ ≥ 0. Then:

− p is convex.

− There is no duality gap if and only if p is lower
semicontinuous at u = 0.

• Conditions that guarantee lower semicontinuity
at u = 0, correspond to those for preservation of
closure under partial minimization, e.g.:

− f∗ < ∞, X is convex and compact, and for
each µ ≥ 0, the function L(·, µ), restricted to
have domain X, is closed and convex.

− Extensions involving directions of recession
of X, f , and gj , and guaranteeing that the
minimization in p(u) = inf x∈X

g(x)≤u
f(x) is (ef-

fectively) over a compact set.

• Under the above conditions, there is no duality
gap, and the primal problem has a nonempty and
compact optimal solution set. Furthermore, the
primal function p is closed, proper, and convex.



LECTURE 20

LECTURE OUTLINE

• The primal function

• Conditions for strong duality

• Sensitivity

• Fritz John conditions for convex programming
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Problem: Minimize f(x) subject to x ∈ X, and
g1(x) ≤ 0, . . . , gr(x) ≤ 0 (assuming −∞ < f∗ <
∞). It is equivalent to infx∈X supµ≥0 L(x, µ).

• The primal function is the perturbed optimal
value

p(u) = inf
x∈X

sup
µ≥0

{
L(x, µ) − µ′u

}
= inf

x∈X
g(x)≤u

f(x)

• Note that p(u) is the result of partial minimization
over X of the function F (x, u) given by

F (x, u) =
{

f(x) if x ∈ X and g(x) ≤ u,
∞ otherwise.



PRIMAL FUNCTION AND STRONG DUALITY

• Apply min common-max crossing framework
with set M = epi(p), assuming p is convex and
−∞ < p(0) < ∞.

• There is no duality gap if and only if p is lower
semicontinuous at u = 0.

• Conditions that guarantee lower semicontinuity
at u = 0, correspond to those for preservation
of closure under the partial minimization p(u) =
inf x∈X

g(x)≤u
f(x), e.g.:

− X is convex and compact, f, gj : convex.

− Extensions involving the recession cones of
X, f , gj .

− X = �n, f, gj : convex quadratic.



RELATION OF PRIMAL AND DUAL FUNCTIONS

• Consider the dual function q. For every µ ≥ 0,
we have

q(µ) = inf
x∈X

{f(x) + µ′g(x)}

= inf
{(u,x)|x∈X, g(x)≤u, j=1,...,r}

{f(x) + µ′g(x)}

= inf
{(u,x)|x∈X, g(x)≤u}

{f(x) + µ′u}

= inf
u∈�r

inf
x∈X, g(x)≤u

{f(x) + µ′u} .

• Thus

q(µ) = inf
u∈�r

{
p(u) + µ′u

}
, ∀ µ ≥ 0

S={(g(x),f(x)) | x  ∈ X}

f*

u

w

q* p(u)

q(µ) = infu{p(u) + µ′u}

(µ,1)



SUBGRADIENTS OF THE PRIMAL FUNCTION

S ={(g(x),f(x)) | x ∈ X}

u

p(u)f*

0

Slope: -µ*

(µ*,1)

• Assume that p is convex, p(0) is finite, and p is
proper. Then:

− The set of G-multipliers is −∂p(0) (negative
subdifferential of p at u = 0). This follows
from the relation

q(µ) = inf
u∈�r

{
p(u) + µ′u

}

− If the origin lies in the relative interior of the
effective domain of p, then there exists a G-
multiplier.

− If the origin lies in the interior of the effec-
tive domain of p, the set of G-multipliers is
nonempty and compact.



SENSITIVITY ANALYSIS I

• Assume that p is convex and differentiable.
Then −∇p(0) is the unique G-multiplier µ∗, and
we have

µ∗
j = −∂p(0)

∂uj
, ∀ j

• Let µ∗ be a G-multiplier, and consider a vector
uγ

j of the form

uγ
j = (0, . . . , 0, γ, 0, . . . , 0)

where γ is a scalar in the jth position. Then

lim
γ↑0

p(uγ
j ) − p(0)

γ
≤ −µ∗

j ≤ lim
γ↓0

p(uγ
j ) − p(0)

γ

Thus −µ∗
j lies between the left and the right slope

of p in the direction of the jth axis starting at u = 0.



SENSITIVITY ANALYSIS II

• Assume that p is convex and finite in a neighbor-
hood of 0. Then, from the theory of subgradients:

− ∂p(0) is nonempty and compact.

− The directional derivative p′(0; y) is a real-
valued convex function of y satisfying

p′(0; y) = max
g∈∂p(0)

y′g

• Consider the direction of steepest descent of p
at 0, i.e., the y that minimizes p′(0; y) over ‖y‖ ≤ 1.
Using the Saddle Point Theorem,

p′(0; y) = min
‖y‖≤1

p′(0; y) = min
‖y‖≤1

max
g∈∂p(0)

y′g = max
g∈∂p(0)

min
‖y‖≤1

y′g

• The saddle point is (g∗, y), where g∗ is the
subgradient of minimum norm in ∂p(0) and y =
−g∗/‖g∗‖. The min-max value is −‖g∗‖.

• Conclusion: If µ∗ is the G-multiplier of mini-
mum norm and µ∗ �= 0, the direction of steepest
descent of p at 0 is y = µ∗/‖µ∗‖, while the rate
of steepest descent (per unit norm of constraint
violation) is ‖µ∗‖.



FRITZ JOHN THEORY FOR CONVEX PROBLEMS

• Assume that X is convex, the functions f and
gj are convex over X, and f∗ < ∞. Then there
exist a scalar µ∗

0 and a vector µ∗ = (µ∗
1, . . . , µ

∗
r)

satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}

.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(0,f*)

(µ∗,µ0
∗)

w

u

M = {(u,w) | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w}

S = {(g(x),f(x)) | x ∈ X}

• If the multiplier µ∗
0 can be proved positive, then

µ∗/µ∗
0 is a G-multiplier.

• Under the Slater condition (there exists x ∈ X
s.t. g(x) < 0), µ∗

0 cannot be 0; if it were, then
0 = infx∈X µ∗′g(x) for some µ∗ ≥ 0 with µ∗ �= 0,
while we would also have µ∗′g(x) < 0.



FRITZ JOHN THEORY FOR LINEAR CONSTRAINTS

• Assume that X is convex, f is convex over X,
the gj are affine, and f∗ < ∞. Then there exist a
scalar µ∗

0 and a vector µ∗ = (µ∗
1, . . . , µ

∗
r), satisfy-

ing the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}

.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(iv) If the index set J = {j �= 0 | µ∗
j > 0} is

nonempty, there exists a vector x̃ ∈ X such
that f(x̃) < f∗ and µ∗′

g(x̃) > 0.

• Proof uses Polyhedral Proper Separation Th.

• Can be used to show that there exists a geomet-
ric multiplier if X = P ∩C, where P is polyhedral,
and ri(C) contains a feasible solution.

• Conclusion: The Fritz John theory is suffi-
ciently powerful to show the major constraint qual-
ification theorems for convex programming.

• The text has more material on pseudonormality,
informative geometric multipliers, etc.
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• Fenchel Duality

• Conjugate Convex Functions

• Relation of Primal and Dual Functions

• Fenchel Duality Theorems

−−−−−−−−−−−−−−−−−−−−−−−−−−−−



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) − f2(x)
subject to x ∈ X1 ∩ X2,

where f1 and f2 are real-valued functions on �n,
and X1 and X2 are subsets of �n.

• Assume that f∗ < ∞.

• Convert problem to

minimize f1(y) − f2(z)
subject to z = y, y ∈ X1, z ∈ X2,

and dualize the constraint z = y:

q(λ) = inf
y∈X1, z∈X2

{
f1(y) − f2(z) + (z − y)′λ

}
= inf

z∈X2

{
z′λ − f2(z)

}
− sup

y∈X1

{
y′λ − f1(y)

}
= g2(λ) − g1(λ)



CONJUGATE FUNCTIONS

• The functions g1(λ) and g2(λ) are called the
conjugate convex and conjugate concave functions
corresponding to the pairs (f1, X1) and (f2, X2).

• An equivalent definition of g1 is

g1(λ) = sup
x∈�n

{
x′λ − f̃1(x)

}
,

where f̃1 is the extended real-valed function

f̃1(x) =
{

f1(x) if x ∈ X1,
∞ if x /∈ X1.

• We are led to consider the conjugate convex
function of a general extended real-valued proper
function f : �n �→ (−∞,∞]:

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
, λ ∈ �n.

• Conjugate concave functions are defined through
conjugate convex functions after appropriate sign
reversals.



VISUALIZATION

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
, λ ∈ �n

0x

f(x)

(- λ,1)

inf {f(x) - x'λ} = - g(λ)
x

 x'λ - g(λ)

f(x) = sup { x'λ - g(λ)}
~

λ

(a)

0

f(x)

f(x) = sup { x'λ - g(λ)}
~

λ

Conjugate of
conjugate of f

(b)



EXAMPLES OF CONJUGATE PAIRS

g(λ) = sup
x∈�n

{
x′λ−f(x)

}
, f̃(x) = sup

λ∈�n

{
x′λ−g(λ)

}

0 x

Slope = α

β/α 0 λα

β

g(λ) = { β  if  λ = α
∞  if  λ ≠ αf(x) = αx - β

0 x 0 λ

g(λ) = {0    if  |λ| ≤ 1
∞   if  |λ| > 1

f(x) = |x| 

0 x 0 λ

g(λ) = (1/2c)λ2f(x) = (c/2)x2

X = (- ∞, ∞)

X = (- ∞, ∞)

X = (- ∞, ∞)

1-1



CONJUGATE OF THE CONJUGATE FUNCTION

• Two cases to consider:

− f is a closed proper convex function.

− f is a general extended real-valued proper
function.

• We will see that for closed proper convex func-
tions, the conjugacy operation is symmetric, i.e.,
the congugate of f is a closed proper convex func-
tion, and the conjugate of the conjugate is f .

• Leads to a symmetric/dual Fenchel duality theo-
rem for the case where the functions involved are
closed convex/concave.

• The result can be generalized:

− The convex closure of f , is the function that
has as epigraph the closure of the convex
hull if epi(f) [also the smallest closed and
convex set containing epi(f)].

− The epigraph of the convex closure of f is
the intersection of all closed halfspaces of
�n+1 that contain the epigraph of f .



CONJUGATE FUNCTION THEOREM

• Let f : �n �→ (−∞,∞] be a function, let f̂ be
its convex closure, let g be its convex conjugate,
and consider the conjugate of g,

f̃(x) = sup
λ∈�n

{
λ′x − g(λ)

}
, x ∈ �n

(a) We have

f(x) ≥ f̃(x), ∀ x ∈ �n

(b) If f is convex, then properness of any one of
f , g, and f̃ implies properness of the other
two.

(c) If f is closed proper and convex, then

f(x) = f̃(x), ∀ x ∈ �n

(d) If f̂(x) > −∞ for all x ∈ �n, then

f̂(x) = f̃(x), ∀ x ∈ �n



CONJUGACY OF PRIMAL AND DUAL FUNCTIONS

• Consider the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r.

• We showed in the previous lecture the following
relation between primal and dual functions:

q(µ) = inf
u∈�r

{
p(u) + µ′u

}
, ∀ µ ≥ 0.

• Thus, q(µ) = − supu∈�r

{
−µ′u − p(u)

}
or

q(µ) = −h(−µ), ∀ µ ≥ 0,

where h is the conjugate convex function of p:

h(ν) = sup
u∈�r

{
ν′u − p(u)

}



INDICATOR AND SUPPORT FUNCTIONS

• The indicator function of a nonempty set is

δX(x) =
{ 0 if x ∈ X,
∞ if x /∈ X.

• The conjugate of δX , given by

σX(λ) = sup
x∈X

λ′x,

is called the support function of X.

• X has the same support function as cl
(
conv(X)

)
(by the Conjugacy Theorem).

• If X is closed and convex, δX is closed and con-
vex, and by the Conjugacy Theorem the conjugate
of its support function is its indicator function.

• The support function satisfies

σX(αλ) = ασX(λ), ∀ α > 0, ∀ λ ∈ �n

so its epigraph is a cone. Functions with this prop-
erty are called positively homogeneous.



MORE ON SUPPORT FUNCTIONS

• For a cone C, we have

σC(λ) = sup
x∈C

λ′x =
{

0 if λ ∈ C∗,
∞ otherwise,

i.e., the support function of a cone is the indicator
function of its polar.

• The support function of a polyhedral set is a
polyhedral function that is pos. homogeneous. The
conjugate of a pos. homogeneous polyhedral func-
tion is the support function of some polyhedral set.

• A function can be equivalently specified in terms
of its epigraph. As a consequence, we will see
that the conjugate of a function can be specified
in terms of the support function of its epigraph.

• The conjugate of f , can equivalently be written
as g(λ) = sup(x,w)∈epi(f)

{
x′λ − w

}
, so

g(λ) = σepi(f)(λ,−1), ∀ λ ∈ �n

• From this formula, we also obtain that the con-
jugate of a polyhedral function is polyhedral.
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• Fenchel Duality

• Fenchel Duality Theorems

• Cone Programming

• Semidefinite Programming

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Recall the conjugate convex function of a gen-
eral extended real-valued proper function f : �n �→
(−∞,∞]:

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
, λ ∈ �n.

• Conjugacy Theorem: If f is closed and con-
vex, then f is equal to the 2nd conjugate (the con-
jugate of the conjugate).



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) − f2(x)
subject to x ∈ X1 ∩ X2,

where f1 : �n �→ (−∞,∞] and f2 : �n �→ [−∞,∞).

• Assume that f∗ < ∞.

• Convert problem to

minimize f1(y) − f2(z)
subject to z = y, y ∈ dom(f1), z ∈ dom(−f2),

and dualize the constraint z = y:

q(λ) = inf
y∈�n, z∈�n

{
f1(y) − f2(z) + (z − y)′λ

}
= inf

z∈�n

{
z′λ − f2(z)

}
− sup

y∈�n

{
y′λ − f1(y)

}
= g2(λ) − g1(λ)



FENCHEL DUALITY THEOREM

0 x 0 x

dom(f1)

f1(x)

(- λ,1)

(- λ,1)

Slope = λ

inf {f1(x) - x'λ} = - g1(λ)
x 

sup {f2(x) - x'λ} = - g2(λ)
x

f2(x)

Slope = λ

dom(-f2)

• Assume thatf1 and f2 are convex and concave,
respectively. If either

− The relative interiors of dom(f1) and dom(−f2)
intersect, or

− dom(f1) and dom(−f2) are polyhedral, and
f1 and f2 can be extended to real-valued
convex and concave functions over �n.

Then the geometric multipliers existence theorem
applies and we have

f∗ = max
λ∈�n

{
g2(λ) − g1(λ)

}
,

while the maximum above is attained.



OPTIMALITY CONDITIONS

• There is no duality gap, while (x∗, λ∗) is an
optimal primal and dual solution pair, if and only if

x∗ ∈ dom(f1)∩dom(−f2), (primal feasibility),

λ∗ ∈ dom(g1) ∩ dom(−g2), (dual feasibility),

x∗ = arg max
x∈�n

{
x′λ∗ − f1(x)

}
= arg min

x∈�n

{
x′λ∗ − f2(x)

}
, (Lagr. optimality).

0 x

f1(x)

Slope = λ
g2(λ) - g1(λ)

x*

f2(x)

Slope = λ*

g2(λ*) - g1(λ*)

(- λ*,1)

(- λ,1)

• Note: The Lagrangian optimality condition is
equivalent to λ∗ ∈ ∂f1(x∗) ∩ ∂f1(x∗).



DUAL FENCHEL DUALITY THEOREM

• The dual problem

max
λ∈�n

{
g2(λ) − g1(λ)

}
is of the same form as the primal.

• By the conjugacy theorem, if the functions f1

and f2 are closed, in addition to being convex and
concave, they are the conjugates of g1 and g2.

• Conclusion: The primal problem has an opti-
mal solution, there is no duality gap, and we have

min
x∈�n

{
f1(x) − f2(x)

}
= sup

λ∈�n

{
g2(λ) − g1(λ)

}
,

if either

− The relative interiors of dom(g1) and dom(−g2)
intersect, or

− dom(g1) and dom(−g2) are polyhedral, and
g1 and g2 can be extended to real-valued
convex and concave functions over �n.



CONIC DUALITY I

• Consider the problem

minimize f(x)
subject to x ∈ C,

where C is a convex cone, and f : �n �→ (−∞,∞]
is convex.

• Apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
−∞ if x /∈ C.

We have

g1(λ) = sup
x∈�n

{
λ′x−f(x)

}
, g2(λ) = inf

x∈C

x′λ =

{
0 if λ ∈ Ĉ,

−∞ if λ /∈ Ĉ,

where Ĉ is the negative polar cone (sometimes
called the dual cone of C):

Ĉ = −C∗ = {λ | x′λ ≥ 0, ∀ x ∈ C}



CONIC DUALITY II

• Fenchel duality can be written as

inf
x∈C

f(x) = sup
λ∈Ĉ

−g(λ),

where g(λ) is the conjugate of f .

• By the Primal Fenchel Theorem, there is no
duality gap and the sup is attained if one of the
following holds:

(a) ri(dom(f)) ∩ ri(C) �= Ø.

(b) f can be extended to a real-valued convex
function over �n, and dom(f) and C are
polyhedral.

• Similarly, by the Dual Fenchel Theorem, if f is
closed and C is closed, there is no duality gap
and the infimum in the primal problem is attained
if one of the following two conditions holds:

(a) ri(dom(g)) ∩ ri(Ĉ) �= Ø.

(b) g can be extended to a real-valued convex
function over�n, and dom(g) and Ĉ are poly-
hedral.



THE AFFINE COST CASE OF CONIC DUALITY

• Let f be affine, f(x) = c′x, with dom(f) being an
affine set, dom(f) = b+S, where S is a subspace.

• The primal problem is

minimize c′x

subject to x − b ∈ S, x ∈ C.

• The conjugate is

g(λ) = sup
x−b∈S

(λ − c)′x = sup
y∈S

(λ − c)′(y + b)

=
{

(λ − c)′b if λ − c ∈ S⊥,
∞ if λ − c /∈ S⊥,

so the dual problem is

minimize b′λ

subject to λ − c ∈ S⊥, λ ∈ Ĉ.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.



SEMIDEFINITE PROGRAMMING: A SPECIAL CASE

• Consider the symmetric n × n matrices. Inner
product < X, Y >= trace(XY ) =

∑n
i,j=1 xijyij .

• Let D be the cone of pos. semidefinite matrices.
Note that D is self-dual [D = D̂, i.e., < X, Y >≥ 0
for all y ∈ D iff X ∈ D], and its interior is the set
of pos. definite matrices.

• Fix symmetric matrices C, A1, . . . , Am, and vec-
tors b1, . . . , bm, and consider

minimize < C, X >

subject to < Ai, X >= bi, i = 1, . . . , m, X ∈ D

• Viewing this as an affine cost conic problem,
the dual problem (after some manipulation) is

maximize
m∑

i=1

biλi

subject to C − (λ1A1 + · · · + λmAm) ∈ D.

• There is no duality gap if there exists λ such
that C − (λ1A1 + · · · + λmAm) is pos. definite.



LECTURE 23

LECTURE OUTLINE

• Overview of Dual Methods

• Nondifferentiable Optimization

********************************

• Consider the primal problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

assuming −∞ < f∗ < ∞.

• Dual problem: Maximize

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{f(x) + µ′g(x)}

subject to µ ≥ 0.



PROS AND CONS FOR SOLVING THE DUAL

• The dual is concave.

• The dual may have smaller dimension and/or
simpler constraints.

• If there is no duality gap and the dual is solved
exactly for a geometric multiplier µ∗, all optimal
primal solutions can be obtained by minimizing
the Lagrangian L(x, µ∗) over x ∈ X.

• Even if there is a duality gap, q(µ) is a lower
bound to the optimal primal value for every µ ≥ 0.

• Evaluating q(µ) requires minimization of L(x, µ)
over x ∈ X.

• The dual function is often nondifferentiable.

• Even if we find an optimal dual solution µ∗, it
may be difficult to obtain a primal optimal solution.



FAVORABLE STRUCTURE

• Separability: Classical duality structure (La-
grangian relaxation).

• Partitioning: The problem

minimize F (x) + G(y)
subject to Ax + By = c, x ∈ X, y ∈ Y

can be written as

minimize F (x) + inf
By=c−Ax, y∈Y

G(y)

subject to x ∈ X.

With no duality gap, this problem is written as

minimize F (x) + Q(Ax)
subject to x ∈ X,

where
Q(Ax) = max

λ
q(λ, Ax)

q(λ, Ax) = inf
y∈Y

{
G(y) + λ′(Ax + By − c)

}



DUAL DERIVATIVES

• Let

xµ = arg min
x∈X

L(x, µ) = arg min
x∈X

{
f(x) + µ′g(x)

}
Then for all µ ∈ �r,

q(µ) = inf
x∈X

{
f(x) + µ′g(x)

}
≤ f(xµ) + µ′g(xµ)
= f(xµ) + µ′g(xµ) + (µ − µ)′g(xµ)
= q(µ) + (µ − µ)′g(xµ).

• Thus g(xµ) is a subgradient of q at µ.

• Proposition: Let X be compact, and let f and
g be continuous over X. Assume also that for ev-
ery µ, L(x, µ) is minimized over x ∈ X at a unique
point xµ. Then, q is everywhere continuously dif-
ferentiable and

∇q(µ) = g(xµ), ∀ µ ∈ �r



NONDIFFERENTIABILITY OF THE DUAL

• If there exists a duality gap, the dual function
is nondifferentiable at every dual optimal solution
(see the textbook).

• Important nondifferentiable case: When q is
polyhedral, that is,

q(µ) = min
i∈I

{
a′

iµ + bi

}
,

where I is a finite index set, and ai ∈ �r and bi

are given (arises when X is a discrete set, as in
integer programming).

• Proposition: Let q be polyhedral as above,
and let Iµ be the set of indices attaining the mini-
mum

Iµ =
{
i ∈ I | a′

iµ + bi = q(µ)
}

The set of all subgradients of q at µ is

∂q(µ) =

⎧⎨
⎩g

∣∣∣ g =
∑
i∈Iµ

ξiai, ξi ≥ 0,
∑
i∈Iµ

ξi = 1

⎫⎬
⎭



NONDIFFERENTIABLE OPTIMIZATION

• Consider maximization of q(µ) over M = {µ ≥
0 | q(µ) > −∞}
• Subgradient method:

µk+1 =
[
µk + skgk

]+
,

where gk is the subgradient g(xµk), [·]+ denotes
projection on the closed convex set M , and sk is
a positive scalar stepsize.

M

gk

µk

µk + skgk

[µk + skgk]+

µ*

Contours of q



KEY SUBGRADIENT METHOD PROPERTY

• For a small stepsize it reduces the Euclidean
distance to the optimum.

M

gk

µk

µk + skgk

µk+1 = [µk + skgk]+
µ*

< 90o

Contours of q

• Proposition: For any dual optimal solution µ∗,
we have

‖µk+1 − µ∗‖ < ‖µk − µ∗‖,

for all stepsizes sk such that

0 < sk <
2
(
q(µ∗) − q(µk)

)
‖gk‖2



STEPSIZE RULES

• Constant stepsize: sk ≡ s for some s > 0.

• If ‖gk‖ ≤ C for some constant C and all k,

‖µk+1−µ∗‖2 ≤ ‖µk−µ∗‖2−2s
(
q(µ∗)−q(µk)

)
+s2C2,

so the distance to the optimum decreases if

0 < s <
2
(
q(µ∗) − q(µk)

)
C2

or equivalently, if µk belongs to the level set

{
µ

∣∣∣ q(µ) < q(µ∗) − sC2

2

}

• With a little further analysis, it can be shown
that the method, at least asymptotically, reaches
this level set, i.e.

lim sup
k→∞

q(µk) ≥ q(µ∗) − sC2

2



OTHER STEPSIZE RULES

• Diminishing stepsize: sk → 0 with some restric-
tions.

• Dynamic stepsize rule (involves a scalar se-
quence {qk}):

sk =
αk

(
qk − q(µk)

)
‖gk‖2

,

where qk ≈ q∗ and 0 < αk < 2.

• Some possibilities:

− qk is the best known upper bound to q∗: start
with α0 = 1 and decrease αk by a certain
factor every few iterations.

− αk = 1 for all k and

qk =
(
1 + β(k)

)
q̂k,

where q̂k = max0≤i≤k q(µi), and β(k) > 0 is
adjusted depending on algorithmic progress
of the algorithm.
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• Subgradient Methods

• Stepsize Rules and Convergence Analysis

********************************

• Consider a generic convex problem minx∈X f(x),
where f : �n �→ � is a convex function and X is
a closed convex set, and the subgradient method

xk+1 = [xk − αkgk]+ ,

where gk is a subgradient of f at xk, αk is a positive
stepsize, and [·]+ denotes projection on the set X.

• Incremental version for problem minx∈X

∑m
i=1 fi(x)

xk+1 = ψm,k, ψi,k = [ψi−1,k − αkgi,k]+ , i = 1, . . . , m

starting with ψ0,k = xk, where gi,k is a subgradient
of fi at ψi−1,k.



ASSUMPTIONS AND KEY INEQUALITY

• Assumption: (Subgradient Boundedness)

||g|| ≤ Ci, ∀ g ∈ ∂fi(xk)∪∂fi(ψi−1,k), ∀ i, k,

for some scalars C1, . . . , Cm. (Satisfied when the
fi are polyhedral as in integer programming.)

• Key Lemma: For all y ∈ X and k,

||xk+1−y||2 ≤ ||xk−y||2−2αk

(
f(xk)−f(y)

)
+α2

kC2,

where

C =
m∑

i=1

Ci

and Ci is as in the boundedness assumption.

• Note: For any y that is better than xk, the dis-
tance to y is improved if αk is small enough:

0 < αk <
2
(
f(xk) − f(y)

)
C2



PROOF OF KEY LEMMA

• For each fi and all y ∈ X, and i, k

||ψi,k − y||2 = ||[ψi−1,k − αkgi,k]+ − y||2
≤ ||ψi−1,k − αkgi,k − y||2
≤ ||ψi−1,k − y||2 − 2αkg′i,k(ψi−1,k − y) + α2

kC2
i

≤ ||ψi−1,k − y||2 − 2αk

(
fi(ψi−1,k) − fi(y)

)
+ α2

kC2
i

By adding over i, and strengthening,

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk

(
f(xk) − f(y)

)
+ 2αk

m∑
i=1

Ci||ψi−1,k − xk|| + α2
k

m∑
i=1

C2
i

≤ ||xk − y||2 − 2αk

(
f(xk) − f(y)

)
+ α2

k

⎛
⎝2

m∑
i=2

Ci

⎛
⎝i−1∑

j=1

Cj

⎞
⎠ +

m∑
i=1

C2
i

⎞
⎠

= ||xk − y||2 − 2αk

(
f(xk) − f(y)

)
+ α2

k

(
m∑

i=1

Ci

)2

= ||xk − y||2 − 2αk

(
f(xk) − f(y)

)
+ α2

kC2.



STEPSIZE RULES

• Constant Stepsize αk ≡ α:

− By key lemma with f(y) ≈ f∗, it makes progress

to the optimal if 0 < α <
2
(
f(xk)−f∗

)
C2 , i.e., if

f(xk) > f∗ +
αC2

2

• Diminishing Stepsize αk → 0,
∑

k αk = ∞:

− Eventually makes progress (once αk becomes
small enough). Can show that

lim inf
k→∞

f(xk) = f∗

• Dynamic Stepsize αk = f(xk)−fk

C2 where fk = f∗

or (more practically) an estimate of f∗:

− If fk = f∗, makes progress at every iteration.
If fk < f∗ it tends to oscillate around the
optimum. If fk > f∗ it tends towards the
level set {x | f(x) ≤ fk}.



CONSTANT STEPSIZE ANALYSIS

• Proposition: For αk ≡ α, we have

lim inf
k→∞

f(xk) ≤ f∗ +
αC2

2
,

where C =
∑m

i=1 Ci (in the case where f∗ = −∞,
we have lim infk→∞ f(xk) = −∞.)

• Proof by contradiction. Let ε > 0 be s.t.

lim inf
k→∞

f(xk) > f∗ +
αC2

2
+ 2ε,

and let ŷ ∈ X be such that

lim inf
k→∞

f(xk) ≥ f(ŷ) +
αC2

2
+ 2ε

For all k large enough, we have

f(xk) ≥ lim inf
k→∞

f(xk) − ε

Add to get f(xk)−f(ŷ) ≥ αC2/2+ ε. Use the key
lemma for y = ŷ to obtain a contradiction.



COMPLEXITY ESTIMATE FOR CONSTANT STEP

• For any ε > 0, we have

min
0≤k≤K

f(xk) ≤ f∗ +
αC2 + ε

2

where

K =

⌊(
d(x0, X∗)

)2

αε

⌋

• By contradiction. Assume that for 0 ≤ k ≤ K

f(xk) > f∗ +
αC2 + ε

2

Using this relation in the key lemma,

(
d(xk+1, X

∗)
)2 ≤

(
d(xk, X∗)

)2

− 2α
(
f(xk) − f∗)+α2C2

≤
(
d(xk, X∗)

)2 − (α2C2 + αε) + α2C2

=
(
d(xk, X∗)

)2 − αε.

Sum over k to get
(
d(x0, X∗)

)2 − (K + 1)αε ≥ 0.



CONVERGENCE FOR OTHER STEPSIZE RULES

• (Diminishing Step): Assume that

αk > 0, lim
k→∞

αk = 0,
∞∑

k=0

αk = ∞

Then,
lim inf
k→∞

f(xk) = f∗

If the set of optimal solutions X∗ is nonempty and
compact,

lim
k→∞

d(xk, X∗) = 0, lim
k→∞

f(xk) = f∗

• (Dynamic Stepsize with fk = f∗): If X∗ is
nonempty, xk converges to some optimal solution.



DYNAMIC STEPSIZE WITH ESTIMATE

• Estimation method:

f lev
k = min

0≤j≤k
f(xj) − δk,

and δk is updated according to

δk+1 =
{

ρδk if f(xk+1) ≤ f lev
k ,

max
{
βδk, δ

}
if f(xk+1) > f lev

k ,

where δ, β, and ρ are fixed positive constants with
β < 1 and ρ ≥ 1.

• Here we essentially “aspire” to reach a tar-
get level that is smaller by δk over the best value
achieved thus far.

• We can show that

inf
k≥0

f(xk) ≤ f∗ + δ

(or infk≥0 f(xk) = f∗ if f∗ = −∞).
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• Incremental Subgradient Methods

• Convergence Rate Analysis and Randomized
Methods

********************************

• Incremental subgradient method for problem
minx∈X

∑m
i=1 fi(x)

xk+1 = ψm,k, ψi,k = [ψi−1,k − αkgi,k]+ , i = 1, . . . , m

starting with ψ0,k = xk, where gi,k is a subgradient
of fi at ψi−1,k.

• Key Lemma: For all y ∈ X and k,

||xk+1−y||2 ≤ ||xk−y||2−2αk

(
f(xk)−f(y)

)
+α2

kC2,

where C =
∑m

i=1 Ci and

Ci = sup
k

{
||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)

}



CONSTANT STEPSIZE

• For αk ≡ α, we have

lim inf
k→∞

f(xk) ≤ f∗ +
αC2

2

• Sharpness of the estimate:

− Consider the problem

min
x

M∑
i=1

C0

(
|x + 1| + 2|x| + |x − 1|

)

with the worst component processing order

• Lower bound on the error. There is a problem,
where even with best processing order,

f∗ +
αmC2

0

2
≤ lim inf

k→∞
f(xk)

where
C0 = max{C1, . . . , Cm}



COMPLEXITY ESTIMATE FOR CONSTANT STEP

• For any ε > 0, we have

min
0≤k≤K

f(xk) ≤ f∗ +
αC2 + ε

2

where

K =

⌊(
d(x0, X∗)

)2

αε

⌋



RANDOMIZED ORDER METHODS

xk+1 =
[
xk − αkg(ωk, xk)

]+
where ωk is a random variable taking equiprobable
values from the set {1, . . . , m}, and g(ωk, xk) is a
subgradient of the component fωk at xk.

• Assumptions:

(a) {ωk} is a sequence of independent random
variables. Furthermore, the sequence {ωk}
is independent of the sequence {xk}.

(b) The set of subgradients
{
g(ωk, xk) | k =

0, 1, . . .
}

is bounded, i.e., there exists a pos-
itive constant C0 such that with prob. 1

||g(ωk, xk)|| ≤ C0, ∀ k ≥ 0

• Stepsize Rules:

− Constant: αk ≡ α

− Diminishing:
∑

k αk = ∞,
∑

k(αk)2 < ∞
− Dynamic



RANDOMIZED METHOD W/ CONSTANT STEP

• With probability 1

inf
k≥0

f(xk) ≤ f∗ +
αmC2

0

2

(with infk≥0 f(xk) = −∞ when f∗ = −∞).

Proof: By adapting key lemma, for all y ∈ X, k

||xk+1−y||2 ≤ ||xk−y||2−2α
(
fωk(xk)−fωk(y)

)
+α2C2

0

Take conditional expectation withFk = {x0, . . . , xk}

E
{
||xk+1 − y||2 | Fk

}
≤ ||xk − y||2

− 2αE
{
fωk(xk) − fωk(y) | Fk

}
+ α2C2

0

= ||xk − y||2 − 2α

m∑
i=1

1
m

(
fi(xk) − fi(y)

)
+ α2C2

0

= ||xk − y||2 − 2α

m

(
f(xk) − f(y)

)
+ α2C2

0 ,

where the first equality follows since ωk takes the
values 1, . . . , m with equal probability 1/m.



PROOF CONTINUED I

• Fix γ > 0, consider the level set Lγ defined by

Lγ =
{

x ∈ X | f(x) < f∗ +
2
γ

+
αmC2

0

2

}

and let yγ ∈ Lγ be such that f(yγ) = f∗ + 1
γ .

Define a new process {x̂k} as follows

x̂k+1 =
{ [

x̂k − αg(ωk, x̂k)
]+

if x̂k /∈ Lγ ,
yγ otherwise,

where x̂0 = x0. We argue that {x̂k} (and hence
also {xk}) will eventually enter each of the sets
Lγ .

Using key lemma with y = yγ , we have

E
{
||x̂k+1 − yγ ||2 | Fk

}
≤ ||x̂k − yγ ||2 − zk,

where

zk =
{

2α
m

(
f(x̂k) − f(yγ)

)
− α2C2

0 if x̂k /∈ Lγ ,
0 if x̂k = yγ .



PROOF CONTINUED II

• If x̂k /∈ Lγ , we have

zk =
2α

m

(
f(x̂k) − f(yγ)

)
− α2C2

0

≥ 2α

m

(
f∗ +

2
γ

+
αmC2

0

2
− f∗ − 1

γ

)
− α2C2

0

=
2α

mγ
.

Hence, as long as x̂k /∈ Lγ , we have

E
{
||x̂k+1 − yγ ||2 | Fk

}
≤ ||x̂k − yγ ||2 −

2α

mγ

This, cannot happen for an infinite number of it-
erations, so that x̂k ∈ Lγ for sufficiently large k.
Hence, in the original process we have

inf
k≥0

f(xk) ≤ f∗ +
2
γ

+
αmC2

0

2

with probability 1. Letting γ → ∞, we obtain
infk≥0 f(xk) ≤ f∗ + αmC2

0/2. Q.E.D.



CONVERGENCE RATE

• Let αk ≡ α in the randomized method. Then,
for any positive scalar ε, we have with prob. 1

min
0≤k≤N

f(xk) ≤ f∗ +
αmC2

0 + ε

2
,

where N is a random variable with

E
{
N

}
≤ m

(
d(x0, X∗)

)2

αε

• Compare w/ the deterministic method. It is guar-
anteed to reach after processing no more than

K =
m

(
d(x0, X

∗)
)2

αε

components the level set

{
x

∣∣∣ f(x) ≤ f∗ +
αm2C2

0 + ε

2

}



BASIC TOOL FOR PROVING CONVERGENCE

• Supermartingale Convergence Theorem:
Let Yk, Zk, and Wk, k = 0, 1, 2, . . ., be three se-
quences of random variables and let Fk, k =
0, 1, 2, . . ., be sets of random variables such that
Fk ⊂ Fk+1 for all k. Suppose that:

(a) The random variables Yk, Zk, and Wk are
nonnegative, and are functions of the ran-
dom variables in Fk.

(b) For each k, we have

E
{
Yk+1 | Fk

}
≤ Yk − Zk + Wk

(c) There holds
∑∞

k=0 Wk < ∞.

Then,
∑∞

k=0 Zk < ∞, and the sequence Yk con-
verges to a nonnegative random variable Y , with
prob. 1.

• Can be used to show convergence of random-
ized subgradient methods with diminishing and
dynamic stepsize rules.



LECTURE 26

LECTURE OUTLINE

• Additional Dual Methods

• Cutting Plane Methods

• Decomposition

********************************

• Consider the primal problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

assuming −∞ < f∗ < ∞.

• Dual problem: Maximize

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{f(x) + µ′g(x)}

subject to µ ∈ M = {µ | µ ≥ 0, q(µ) > −∞}.



CUTTING PLANE METHOD

• kth iteration, after µi and gi = g
(
xµi

)
have been

generated for i = 0, . . . , k − 1: Solve

max
µ∈M

Qk(µ)

where

Qk(µ) = min
i=0,...,k−1

{
q(µi) + (µ − µi)′gi

}
Set

µk = arg max
µ∈M

Qk(µ)

M

q(µ)

µ1µ0 µ2µ3 µ*

µ

q(µ0) + (µ − µ0)'g(x   )µ0

q(µ1) + (µ − µ1)'g(x   )µ1



POLYHEDRAL CASE

q(µ) = min
i∈I

{
a′

iµ + bi

}
where I is a finite index set, and ai ∈ �r and bi

are given.

• Then subgradient gk in the cutting plane method
is a vector aik for which the minimum is attained.

• Finite termination expected.

M

q(µ)

µ1µ0 µ2µ3

µ

µ*µ4 =



CONVERGENCE

• Proposition: Assume that the min of Qk over
M is attained and that the sequence gk is bounded.
Then every limit point of a sequence {µk} gener-
ated by the cutting plane method is a dual optimal
solution.

Proof: gi is a subgradient of q at µi, so

q(µi) + (µ − µi)′gi ≥ q(µ), ∀ µ ∈ M,

Qk(µk) ≥ Qk(µ) ≥ q(µ), ∀ µ ∈ M. (1)

• Suppose {µk}K converges to µ̄. Then, µ̄ ∈ M ,
and from (1), we obtain for all k and i < k,

q(µi) + (µk − µi)′gi ≥ Qk(µk) ≥ Qk(µ̄) ≥ q(µ̄)

• Take the limit as i → ∞, k → ∞, i ∈ K, k ∈ K,

lim
k→∞, k∈K

Qk(µk) = q(µ̄)

Combining with (1), q(µ̄) = maxµ∈M q(µ).



LAGRANGIAN RELAXATION

• Solving the dual of the separable problem

minimize
J∑

j=1

fj(xj)

subject to xj ∈ Xj , j = 1, . . . , J,
J∑

j=1

Ajxj = b.

• Dual function is

q(λ) =
J∑

j=1

min
xj∈Xj

{
fj(xj) + λ′Ajxj

}
− λ′b

=
J∑

j=1

{
fj

(
xj(λ)

)
+ λ′Ajxj(λ)

}
− λ′b

where xj(λ) attains the min. A subgradient at λ is

gλ =
J∑

j=1

Ajxj(λ) − b



DANTSIG-WOLFE DECOMPOSITION

• D-W decomposition method is just the cutting
plane applied to the dual problem maxλ q(λ).

• At the kth iteration, we solve the “approximate
dual”

λk = arg max
λ∈�r

Qk(λ) ≡ min
i=0,...,k−1

{
q(λi)+(λ−λi)′gi

}

• Equivalent linear program in v and λ

maximize v

subject to v ≤ q(λi) + (λ − λi)′gi, i = 0, . . . , k − 1

The dual of this (called master problem) is

minimize
k−1∑
i=0

ξi
(
q(λi) − λi′gi

)

subject to
k−1∑
i=0

ξi = 1,
k−1∑
i=0

ξigi = 0,

ξi ≥ 0, i = 0, . . . , k − 1,



DANTSIG-WOLFE DECOMPOSITION (CONT.)

• The master problem is written as

minimize
J∑

j=1

(
k−1∑
i=0

ξifj

(
xj(λi)

))

subject to
k−1∑
i=0

ξi = 1,
J∑

j=1

Aj

(
k−1∑
i=0

ξixj(λi)

)
= b,

ξi ≥ 0, i = 0, . . . , k − 1.

• The primal cost function terms fj(xj) are ap-
proximated by

k−1∑
i=0

ξifj

(
xj(λi)

)

• Vectors xj are expressed as

k−1∑
i=0

ξixj(λi)



GEOMETRICAL INTERPRETATION

• Geometric interpretation of the master problem
(the dual of the approximate dual solved in the
cutting plane method) is inner linearization.

0

Xj

fj(xj)

xj

xj(λ
0) xj(λ

1)xj(λ
2) xj(λ

3)

• This is a “dual” operation to the one involved
in the cutting plane approximation, which can be
viewed as outer linearization.


