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LECTURE 1
AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

Convex and Nonconvex Optimization Problems
Why is Convexity Important in Optimization
Lagrange Multipliers and Duality

Min Common/Max Crossing Duality



OPTIMIZATION PROBLEMS

e (GGeneric form:

minimize f(x)
subjectto x € C

Cost function f : ®" — R, constraint set C, e.qg.,

C=Xn{x|hi(z)=0,...,hm(z) =0}
ﬂ{x!gl(x)g(),...,gr(:v)SO}

e Examples of problem classifications:
— Continuous vs discrete
— Linear vs nonlinear
— Deterministic vs stochastic
— Static vs dynamic
e Convex programming problems are those for

which f is convex and C'is convex (they are con-
tinuous problems).

e However, convexity permeates all of optimiza-
tion, including discrete problems.



WHY IS CONVEXITY SO SPECIAL IN OPTIMIZATION?

e A convex function has no local minima that are
not global

e A convex set has a nonempty relative interior

e A convex set is connected and has feasible
directions at any point

e A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

e The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

e Apolyhedral convex setis characterized interms
of a finite set of extreme points and extreme direc-
tions

e A real-valued convex function is continuous and
has nice differentiability properties

e Closed convex cones are self-dual with respect
to polarity

e Convex, lower semicontinuous functions are
self-dual with respect to conjugacy



CONVEXITY AND DUALITY

e A multiplier vector for the problem
minimize f(x)subjectto ¢gi(x) <0,...,9-(z) <0
Isa pu* = (u3,..., ) > 0such that

gj(m)ﬁ(l)r,ljzl ..... rf(aj) mlengcen (ZE,/L)

where L is the Lagrangian function

L(x, ) :f(CC)—l—Z,ujgj(lC), re R ueR.
j=1

e Dual function (always concave)

= inf L
a(p) = inf Lz, p)

e Dual problem: Maximize ¢(u) over u >0



KEY DUALITY RELATIONS

e Optimal primal value

* — lnf xr) = 1nf Su L./,U,
f g (2)<0, j=1,..., rf( ) agegcen'uZ% ( :u)

e Optimal dual value

q* =supq(p) =sup inf L(z,pu)
p>0 p>0 TERT

e We always have ¢* < f* (weak duality - impor-
tant in discrete optimization problems).
e Under favorable circumstances (convexity in the
primal problem, plus ...):

— We have ¢* = f*

— Optimal solutions of the dual problem are

multipliers for the primal problem

e This opens a wealth of analytical and computa-
tional possibilities, and insightful interpretations.

e Note that the equality of “supinf” and “inf sup”
IS a key issue in minimax theory and game theory.



MIN COMMON/MAX CROSSING DUALITY
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e All of duality theory and all of (convex/concave)
minimax theory can be developed/explained interms
of this one figure.

e The machinery of convex analysis is needed
to flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



EXCEPTIONAL BEHAVIOR

e If convex structure is so favorable, what is the
source of exceptional/pathological behavior [like
in (c) of the preceding slide]?

e Answer: Some common operations on convex
sets do not preserve some basic properties.

e Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

e This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
iIn convex optimization (and the favorable charac-
ter of polyhedral sets).



COURSE OUTLINE

1) Basic Concepts (4): Convex hulls. Closure,
relative interior, and continuity. Recession cones.
2) Convexity and Optimization (4): Direc-
tions of recession and existence of optimal solu-
tions. Hyperplanes. Min common/max crossing
duality. Saddle points and minimax theory.

3) Polyhedral Convexity (3): Polyhedral sets.
Extreme points. Polyhedral aspects of optimiza-
tion. Polyhedral aspects of duality.

4) Subgradients (3): Subgradients. Conical ap-
proximations. Optimality conditions.

5) Lagrange Multipliers (3): Fritz John theory.
Pseudonormality and constraint qualifications.

6) Lagrangian Duality (3): Constrained opti-
mization duality. Linear and quadratic program-
ming duality. Duality theorems.

7) Conjugate Duality (3): Fenchel duality the-
orem. Conic and semidefinite programming. Ex-
act penalty functions.

8) Dual Computational Methods (3): Classi-
cal subgradient and cutting plane methods. Appli-
cation in Lagrangian relaxation and combinatorial
optimization.



WHAT TO EXPECT FROM THIS COURSE

Requirements: Homework and a term paper

We aim:

— To develop insight and deep understanding
of a fundamental optimization topic

— To treat rigorously an important branch of
applied math, and to provide some appreci-
ation of the research in the field

Mathematical level:

— Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

— Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

Applications:

— They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models (see
http://www.stanford.edu/boyd/cvxbook.html)

— You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

e These slides are a teaching aid, not a text

e Don’t expect a rigorous mathematical develop-
ment

e The statements of theorems are fairly precise,
but the proofs are not

e Many proofs have been omitted or greatly ab-
breviated

e Figures are meantto convey and enhance ideas,
not to express them precisely

e The omitted proofs and a much fuller discussion
can be found in the “Convex Analysis” textbook



LECTURE 2
LECTURE OUTLINE

Convex sets and functions
Epigraphs
Closed convex functions

Recognizing convex functions



SOME MATH CONVENTIONS

e All of our work is done in R™: space of n-tuples
r=(x1,...,2n)

e All vectors are assumed column vectors

e /7 denotes transpose, so we use x’ to denote a
row vector

e 1’y is the inner product Y " | x;y; of vectors x
and y

e ||z|| = va'x is the (Euclidean) norm of x. We
use this norm almost exclusively

e See Section 1.1 of the textbook for an overview
of the linear algebra and real analysis background
that we will use



CONVEX SETS

5
= F

Convex Sets Nonconvex Sets

e A subset C of R” is called convex if

ar + (1 —a)y € C, Vax,ye C, Vace]|0,1]

e Operations that preserve convexity
— Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

e Cones: Sets (' such that Az € C forall A > 0
and z € C (not always convex or closed)



CONVEX FUNCTIONS

NY

e Let C be a convex subset of k7. A function
f:C — Ris called convex if

flazt(1-a)y) < af(@)+(1-a)f(y), Va,yeC

e If fis a convex function, then all its level sets
{xr e C| f(x) <a}and {x € C | f(x) < a},
where a is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

e The epigraph of a function f : X — |—o0, ] is
the subset of k»*1 given by

epi(f) = {(z,w) |z € X, we R, f(z) <w}

e The effective domain of f is the set

dom(f) ={x e X | f(z) < o0}

e We say that f is properif f(x) < oo for at least
onez € X and f(x) > —oo forall x € X, and we
will call f tmproperif it is not proper.

e Note that f is proper if and only if its epigraph
IS nonempty and does not contain a “vertical line.”

e An extended real-valued function f : X +—
|[—o0, 0] is called lower semicontinuous at a vec-
torx € X if f(z) < liminf,_ o f(xzy) for every
sequence {zy} C X with x; — .

e We say that f is closed if epi(f) is a closed set.



CLOSEDNESS AND SEMICONTINUITY

e Proposition: For a function f : ™ — |—o0, o],
the following are equivalent:

(i) {z | f(x) < a} is closed for every scalar a.
(i) f is lower semicontinuous at all z € R,
(i) f is closed.

A fx)
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e Note that:

— If fislower semicontinuous atall x € dom(f),
it is not necessarily closed

— If fisclosed, dom( f) is not necessarily closed
e Proposition: Let f : X — [—o00,00] be a func-

tion. If dom( f) is closed and f is lower semicon-
tinuous at all x € dom(f), then f is closed.



EXTENDED REAL-VALUED CONVEX FUNCTIONS

I Epig\raph A f(X)vjr?—\

Convex function Nonconvex function

e Let C be a convex subset of it”. An extended
real-valued function f : C' — |—o00, 0] is called
convez if epi(f) is a convex subset of Rn+1.

o If fis proper, this definition is equivalent to
flaz+(1-a)y) < af(x)+(1-a)f(y), Va,yeC

e An improper closed convex function is very pe-
culiar: ittakes an infinite value (oo or —oc) at every
point.



RECOGNIZING CONVEX FUNCTIONS

e Some important classes of elementary convex
functions: Affine functions, positive semidefinite
guadratic functions, norm functions, etc.

e Proposition: Let f; : 7 — (—o0, 0], i € I, be
given functions (I is an arbitrary index set).
(a) The function g : R — (—o0, co] given by

g(x) =M fi(@) + -+ Amfm(x),  Ai>0

IS convex (or closed) if f1,..., f,,, are convex (re-
spectively, closed).
(b) The function g : R — (—o0, co] given by

g(z) = f(Ax)

where A is an m x n matrix is convex (or closed)
if fis convex (respectively, closed).
(c) The function g : R» — (—o0, co] given by
g(z) = sup fi(x)
el
IS convex (or closed) if the f; are convex (respec-
tively, closed).



LECTURE 3
LECTURE OUTLINE

Differentiable Convex Functions
Convex and Affine Hulls
Caratheodory’s Theorem

Closure, Relative Interior, Continuity



DIFFERENTIABLE CONVEX FUNCTIONS

Ny

o Let(C C R» be aconvexsetandlet f: R? — R
be differentiable over k™.

(a) The function f is convex over C' if and only
if

f(z) 2 f(@) + (z =)V f(z), Vr,zeC

(b) If the inequality is strict whenever = # z,
then f is strictly convex over C, i.e., for all
a € (0,1)and x,y € C, with x # y

flaz+ (1 —a)y) <af(z)+(1—a)f(y)



TWICE DIFFERENTIABLE CONVEX FUNCTIONS

e Let C' be aconvex subsetof k» andlet f : ®k? —
R be twice continuously differentiable over &~.

(@) If V2f(x) is positive semidefinite for all x €
C, then f is convex over C.

(b) If V2f(x) is positive definite for all x € C,
then f is strictly convex over C.

(c) If C' is open and f is convex over C, then
V2 f(x) is positive semidefinite for all z € C.

Proof: (a) By mean value theorem, for z,y € C
fW) = f@)+(@y—2) Vi@)+35@y—2) Vi (z+a(y—)) (y—z)

for some « € [0, 1]. Using the positive semidefi-
niteness of V2 f, we obtain

fly) = fl)+ @y —2)Vfi=), Vzyel

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(z) + (y —
x)'V f(x) for all z,y € C with x # y, and we use
the preceding result.



CONVEX AND AFFINE HULLS

e Given aset X C R»:

e A convexr combination of elements of X is a
vector of the form >°" | a;x;, where z; € X, a; >
0, and Zzl a; = 1.

e The conver hull of X, denoted conv(X), is the
intersection of all convex sets containing X (also
the set of all convex combinations from X).

e The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form = + S, where S is a sub-
space). Note that aff( X)) is itself an affine set.

e A nonnegative combination of elements of X is
a vector of the form >~ . «;z;, where z; € X and
a; > 0 for all 3.

e The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:
— It is a convex cone containing the origin.
— It need not be closed.

— If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM

cone(X) X4

(@) (b)

e Let X be a nonempty subset of Rr~.

(a) Every x # 0 in cone(X) can be represented
as a positive combinationof vectors x1, ...,z
from X that are linearly independent.

(b) Every z ¢ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1,...,x, from X such that zo —
x1,...,Tm — x1 are linearly independent.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X ), and let
m be the smallest integer such that = has the
form " | oz, where a; > 0 and z; € X for
all « = 1,...,m. If the vectors x; were linearly
dependent, there would exist A1, ..., A\, with

f: Nixi =0
i=1

and at least one of the )\; is positive. Consider

Z(Oéz' — FAi)xi,

1=1

where 7 is the largest v such that a; — vA; > 0 for
all . This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X — a contradiction. Therefore, z1, ..., Tm,
are linearly independent.

(b) Apply part (a) to the subset of Jy+1

Y ={(z,1) |z € X}



AN APPLICATION OF CARATHEODORY

e The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv (X ) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X)

can be expressed as {Z?ﬂl afx k} where for all

kandi, ok >0, z% € X, and 37" a¥ = 1. Since
the sequence

{(Ozlf,...,aﬁ+1,:6lf,...,a:ﬁ+1)}

IS bounded, it has a limit point
{(041, cee s On41,T1,. .. ,a:n+1)},

which must satisfy >>""'a; = 1, and a; > 0,

z; € X for all i. Thus, the vector 7" oy,

which belongs to conv(X), is a limit point of the
sequence {Z”*f afr ’“} showing that conv(X)
Is compact. Q.E.D.



RELATIVE INTERIOR

e 1z IS a relative interior point of C, if x is an
interior point of C relative to aff(C).

e ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

e Line Segment Principle: If C'is a convex set,
x € ri(C) and T € cl(C), then all points on the line
segment connecting = and z, except possibly 7,
belong to ri(C).

X =0aX+(1-a)X




ADDITIONAL MAJOR RESULTS

e Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) x € ri(C) if and only if every line segment
iIn C' having x as one endpoint can be pro-
longed beyond x without leaving C.

Proof: (a) Assumethat(0 € C. We choose m lin-
early independent vectors z1,...,z, € C, where
m is the dimension of aff (C'), and we let

m m
X{ZC‘%Z@ Zai<1,ai>0,i1,...,m}
1=1 1=1

(b) => is clear by the def. of rel. interior. Reverse:
take any = € ri(C); use Line Segment Principle.




OPTIMIZATION APPLICATION

e A concave function f : " — R that attains its
minimum over a convex set X at an x* € ri(X)
must be constant over X.

aff(X)

Proof: (By contradiction.) Let x € X be such
that f(z) > f(x*). Prolong beyond z* the line
segment x-to-x* to a point x € X. By concavity
of f, we have for some a € (0,1)

fla*) Z af(z) + (1 — a)f(T),

and since f(x) > f(x*), we must have f(z*) >
f(Z) - a contradiction. Q.E.D.



LECTURE 4
LECTURE OUTLINE

e Review of relative interior
e Algebra of relative interiors and closures
e Continuity of convex functions

e Recession cones

khkkkkkkkkhkkhkkkkkkkkkhkkhkkhkkkkkkkkhkkhkkhkkkkkkk

e Recall: = is a relative interior point of C, if x is
an interior point of C' relative to aff(C')

e Three important properties of ri(C') of a convex
set (.

— ri(C') is nonempty
— Line Segment Principle: If x € ri(C') and
z € cl(C), then all points on the line seg-

ment connecting x and =, except possibly z,
belong to ri(C)

— Prolongation Principle: If x € ri(C') and T €
C, the line segment connecting = and x can
be prolonged beyond x without leaving C



A SUMMARY OF FACTS

e The closure of a convex set is equal to the clo-
sure of its relative interior.

e The relative interior of a convex set is equal to
the relative interior of its closure.

e Relative interior and closure commute with Carte-
sian product and inverse image under a linear
transformation.

¢ Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

e Neither closure nor relative interior commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

e Let C' be a nonempty convex set. Then ri(C')
and cl(C') are “not too different for each other.”

e Proposition:
(a) We have cl(C) = cl(xi(C)).
(b) We have ri(C) = ri(cl(C)).

(c) LetC be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.
(i) C and C have the same closure.
(i) ri(C) c C C cl(C).

Proof: (a) Since ri(C) C C, we have cl(ri(C)) C
cl(C). Conversely, let x € cl(C). Let z € ri(C).
By the Line Segment Principle, we have ax + (1 —
a)T € ri(C) for all a € (0, 1]. Thus, T is the limit of
a sequence that lies in ri(C), so T € cl(ri(C)).

x|



LINEAR TRANSFORMATIONS

e Let C be a nonempty convex subset of & and
let A be an m x n matrix.

(a) We have A -ri(C) =ri(A - C).

(b) We have A -cl(C) C cl(A-C). Furthermore,
if C'is bounded, then A -cl(C) =cl(A - C).

Proof: (a)Intuition: Spheres within C' are mapped
onto spheres within A-C (relative to the affine hull).

(b) We have A - cl(C) C cl(A - C), since if a se-
quence {z;} C C converges to some x € cl(C)
then the sequence {Ax;}, which belongsto A-C,
converges to Ax, implying that Ax € cl(A - C).
To show the converse, assuming that C' is
bounded, choose any z € cl(A - C). Then, there
exists a sequence {z;} C C such that Az, — z.
Since C'is bounded, {z\ } has a subsequence that
converges to some z € cl(C'), and we must have
Ax = z. Itfollows that z € A - cl(C). Q.E.D.

Note that in general, we may have

A-int(C) # int(A - C), A-cl(C) #cl(A-C)



INTERSECTIONS AND VECTOR SUMS

e Let C; and (> be nonempty convex sets.
(a) We have

ri(Cy + C2) = ri(Ch) 4 1i(Ca),

CI(C1) —+ CI(CQ) C 01(01 -+ CQ)

If one of C; and (5 is bounded, then

cl(Ch) 4 cl(C2) = cl(Cy + C3)

(b) Ifri(C1) Nri(C2) # G, then
ri(Cl M Cg) — ri(Cl) M I‘i(Cz),

Cl(Cl M Cz) = Cl(Cl) M CI(C2)

Proof of (a): C7 + C; is the result of the linear
transformation (z1, x2) — x1 + x2.

e Counterexample for (b):

Chr={x |z <0}, Co={x |z >0}



CONTINUITY OF CONVEX FUNCTIONS

e If f:R" — R is convex, then it is continuous.

Yk

63 €o

Proof: We will show that f is continuous at 0. By
convexity, f is bounded within the unit cube by the
maximum value of f over the corners of the cube.

Consider sequence r; — 0andthe sequences
Y = Tr/||Tk||cos 2 = —xk/||Tk |00 Then

fzr) < (1= llzklloc) £(0) + llznlloo f (yr)

| o 1
F(0) < o SE g () + o S )

Since ||zx|lso — 0, f(x1) — f(0). Q.E.D.

e Extension to continuity over ri(dom(f)).



RECESSION CONE OF A CONVEX SET

e Given a nonempty convex set C, a vector y is
a direction of recession if starting at any x in C
and going indefinitely along y, we never cross the
relative boundary of C' to points outside C

x+ay e C, VeelC, YVa>0

X+ ay

X/
y
N
Recession Cone Rg

0

Conve§E¥§j;,,———

e Recession cone of C (denoted by R¢): The set
of all directions of recession.

e R is a cone containing the origin.



RECESSION CONE THEOREM

e Let C' be a nonempty closed convex set.

(a) The recession cone R is a closed convex
cone.

(b) A vector y belongs to R¢ if and only if there
exists avector r € C' suchthat x + ay € C
for all o > 0.

(c) Rc contains a nonzero direction if and only
if C'is unbounded.

(d) Therecessionconesof C'andri(C') are equal.

(e) If D is another closed convex set such that
C'ND # O, we have

Renp = Re N Rp
More generally, for any collection of closed
convex sets C;, ¢ € I, where I is an arbitrary

Index set and N;<;C; Is nonempty, we have

RﬂiEIC,L- — mZEIRC,L



PROOF OF PART (B)

e Let y # 0 be such that there exists a vector
xe(Cwithx+ayeCtloralla>0. Wefixxz e C
and a > 0, and we show that x + ay € C. By
scaling y, it is enough to show thatz + y € C.

Llet z. = x+ kyfork =1,2,..., and y, =
(z — @) ||y|l/||zx — Z||. We have

vk e —=z|l y A | T—T

= — + — — —
Iyl llze =2l Iyl Nlze =217 llze =21 llze — 7

so yr — y and ¥ + yr — T + y. Use the convexity
and closedness of C to conclude thatx + y € C.

— 0.



LINEALITY SPACE

e The lineality space of a convex set C', denoted by
Lc, Is the subspace of vectors y such thaty € R¢
and —y € R¢:

Lo = Rg N (—Rc)

e Decomposition of a Convex Set. Let C' be a
nonempty convex subset of ®~. Then,

C:Lc-l-(CﬂLé).

Also, if Lc = R¢, the component C' N L is com-
pact (this will be shown later).




LECTURE 5
LECTURE OUTLINE

e Directions of recession of convex functions

e Existence of optimal solutions - Weierstrass’
theorem

e Intersection of nested sequences of closed sets

e Asymptotic directions

e For a closed convex set C, recall that y is a
direction of recessionif x +ay € C,forall z € C
and o > 0.

X+ay

) /
y
N
Recession Cone R

0

Convex Set C

e Recession cone theorem: If this property is
true forone x € C, itis true for all x € C; also C
is compact iff Rc = {0}.



DIRECTIONS OF RECESSION OF A FUNCTION

e Some basic geometric observations:

— The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

— Along these directions the level sets {z |

f(z) < ~} are unbounded and f is mono-
tonically nondecreasing.

e These are the directions of recession of f.

A
epi(f)
g
QW) <7}
0 Recession
/ @: X1 f(x) <y}




RECESSION CONE OF LEVEL SETS

e Proposition: Let f : " — (—o00, 00| be a closed
proper convex function and consider the level sets
V, ={z | f(z) <~}, where v is a scalar. Then:

(a) Allthe nonempty level sets V., have the same
recession cone, given by

RV»Y — {y ‘ (yvO) < Repi(f)}

(b) Ifone nonempty level set V., is compact, then
all nonempty level sets are compact.

Proof: For all v for which V, is nonempty,

{(@,7) [z €Vy} =epi(f)n{(z,7) |z € R}

The recession cone of the set on the leftis {(y, 0)

y € Ry, }. The recession cone of the set on the
right is the intersection of Repi(f) and the reces-
sion cone of {(z,v) | € ®"}. Thus we have

{(yvo) ‘ (S RV»Y} — {(y70) ’ (y70) S Repi(f)}a

from which the result follows.



RECESSION CONE OF A CONVEX FUNCTION

e For a closed proper convex function f : &7 —
(—o0, 0], the (common) recession cone of the
nonempty level sets V, = {z | f(z) <~}, v € R,
IS the recession cone of f, and is denoted by R ;.

Recession Cone R¢

Level Sets of Convex
Function f

e Terminology:
— y € Ry a direction of recession of f.
— Ly = Rf N (—Ry): the lineality space of f.
— y € L¢: a direction of constancy of f.
— Function ry : R — (—o00, 00| whose epi-
graph is Repi(f): the recession function of f.

e Note: r¢(y) is the “asymptotic slope” of f in the
direction y. In fact, rf(y) = limq—oo Vf(z + ay)'y
if f is differentiable. Also, y € R, iff r¢(y) < 0.



DESCENT BEHAVIOR OF A CONVEX FUNCTION

A fx+ay) A fx+ay)

B |
¥

R J
a¥

(e) (f)

e y is a direction of recession in (a)-(d).

e This behavior is independent of the starting
point x, as long as = € dom(f).



EXISTENCE OF SOLUTIONS - BOUNDED CASE

Proposition: The set of minima of a closed proper
convex function f : " — (—o0, 00] is nonempty

and compact if and only if f has no nonzero direc-

tion of recession.

Proof: Let X* be the set of minima, let f* =
inf,eqnn f(x), and let {11} be a scalar sequence
such that v | f*. Note that

X*=n2, (Xn{z]| flz) <m})

If f has no nonzero direction of recession,
the sets X N {z | f(z) <~} are nonempty, com-
pact, and nested, so X* is nonempty and com-
pact.

Conversely, we have

X+ ={z| f(z) < f*},

so if X* is nonempty and compact, all the level
sets of f are compact and f has no nonzero di-
rection of recession. Q.E.D.



SPECIALIZATION/GENERALIZATION OF THE IDEA

e Important special case: Minimize a real-
valued function f : " — R over a nonempty
set X. Apply the preceding proposition to the ex-
tended real-valued function

00 otherwise.

e The setintersection/compactness argument gen-
eralizes to nonconvex.

Weierstrass’ Theorem: The set of minima of f
over X is nonempty and compact if X is closed,
f is lower semicontinuous over X, and one of the
following conditions holds:

(1) X is bounded.

(2) Some set {z € X | f(z) <~} is nonempty
and bounded.

(3) fiscoercive, i.e., for every sequence {z;} C
X s. 1. ||zg|| — oo, we have limy_, o f(zg) =

.
Proof: In all cases the level sets of f are com-

pact. Q.E.D.



THE ROLE OF CLOSED SET INTERSECTIONS

e A fundamental question: Given a sequence
of nonempty closed sets {S;} in ®» with S 11 C
Sy, for all k, when is Ng2_ .S, nonempty?

e Set intersection theorems are significant in at
least three major contexts, which we will discuss
iIn what follows:

1. Does a function f : " — (—o0,00] attain a
minimum over a set X? This is true iff the in-
tersection of the nonempty level sets {z € X |

f(z) <k} is nonempty.
2. If C'is closed and A is a matrix, is A C' closed?
Special case:

— If C1 and C5 are closed, is C + (> closed?
3. If F'(x, z)isclosed, is f(x) = inf, F(x, z) closed?
(Critical question in duality theory.) Can be ad-
dressed by using the relation

P(epi(F)) C epi(f) C ¢l (P(epi(F))>

where P(-) is projection on the space of (z, w).



ASYMPTOTIC DIRECTIONS

e Given a sequence of nonempty nested closed
sets {Si}, we say that a vector d # 0 is an asymp-
totic direction of {Si} if there exists {xi} s. t.

xr € Sk, xy = 0, Ek=20,1,...

Tl \ d
k]l Il

k|| — oo,

e A sequence {x;} associated with an asymp-
totic direction d as above is called an asymptotic
sequence corresponding to d.

mptotic-Sequence

Asymptotic Direction



CONNECTION WITH RECESSION CONES

e We say that d is an asymptotic direction of a
nonempty closed set S if it is an asymptotic direc-
tion of the sequence {Sx}, where S = S for all
k.

e Notation: The set of asymptotic directions of
S is denoted Ags.

e Important facts:

— The set of asymptotic directions of a closed
set sequence {5} is

mIC;O:OASk:
— For a closed convex set S
As = Rs \ {0}

— The set of asymptotic directions of a closed
convex Set sequence {S} is

sz:ORSk: \ {O}



LECTURE 6
LECTURE OUTLINE

e Asymptotic directions that are retractive
e Nonemptiness of closed set intersections
e Frank-Wolfe Theorem

e Horizon directions

e EXxistence of optimal solutions

e Preservation of closure under linear transfor-
mation and partial minimization

Asymptotic directions of a closed set sequence

Asymptotic Direction



RETRACTIVE ASYMPTOTIC DIRECTIONS

e Consider a nested closed set sequence {Si}.

e An asymptotic direction d is called retractive if
for every asymptotic sequence {z} there exists
an index k£ such that

xr —d € S, VkZE

o {S;} is called retractive if all its asymptotic di-
rections are retractive.

e These definitions specialize to closed convex
sets S by taking S, = S.

o . So o] x

=\

>




SET INTERSECTION THEOREM

o If {S)} is retractive, then N2, Sk is nonempty.
e Key proof ideas:

(a) The intersection N2, Sk is empty iff there is
an unbounded sequence {z} consisting of
minimum norm vectors from the S,..

(b) An asymptotic sequence {z} consisting of
minimum norm vectors from the S;. cannot
be retractive, because such a sequence even-
tually gets closer to 0 when shifted opposite
to the asymptotic direction.

- X4 X5
X0 -—

Asymptotic Sequence

0
—P d

/

Asymptotic Direction



RECOGNIZING RETRACTIVE SETS

e Unions, intersections, and Cartesian produsts
of retractive sets are retractive.

e The complement of an open convex set is re-
tractive.

d o
-0 Xk+1
q k
~-—9
d<—.
X0
S: Closed C: Open, convex

e Closed halfspaces are retractive.
e Polyhedral sets are retractive.

e Sets of the form {z | f;(z) > 0,5 =1,...,r},
where f; : }* — J} Is convex, are retractive.

e Vector sum of a compact set and a retractive
set is retractive.

e Nonpolyhedral cones are not retractive, level
sets of quadratic functions are not retractive.



LINEAR AND QUADRATIC PROGRAMMING

e Frank-Wolfe Theorem: Let
f(x) =2'Qr+c'z, X ={z|ajz+b; <0,j=1,...,7}

where () is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
is finite, there exists a minimum of f of over X.

e Proof (outline): Choose {vi} s.t. v | f*,
where f* is the optimal value, and let

Sk={rxe X |2Qr+ x <y}

The set of optimal solutions is N2, Sk, so it will
suffice to show that for each asymptotic direc-
tion of {Si}, each corresponding asymptotic se-
guence is retractive.

Choose an asymptotic direction d and a cor-
responding asymptotic sequence. Note that X
IS retractive, so for k£ sufficiently large, we have
rr —de X.



PROOF OUTLINE — CONTINUED

e We use the relation 2, Qzy + ¢’z <~y to show
that

dQd<0, a/d<0, j=1,...,r

e Then show, using the finiteness of f* [which
implies f(z + ad) > f* for all x € X], that

(c+2Qxz)'d > 0, VeeX

e Thus,

fler—d) = (zr — d)'Q(xr — d) + ' (x) — d)
= 21’ Qrr + 'z — (c+ 2Qxk)'d + d'Qd
< 2'Qzy, + 'z,

< Yk,

SOx, —deS.. Q.E.D.



INTERSECTION THEOREM FOR CONVEX SETS

Let {C } be a nested sequence of nonempty
closed convex sets. Denote

R = ﬂzO:ORck, L = ﬂzO:OL(jk.

(@) If R = L,then {C}} isretractive,and N2, C
IS nonempty. Furthermore, we have

ﬂzozo(]k = L—I—é,

where C is some nonempty and compact
set.

(b) Let X be a retractive closed set. Assume
that all the sets S, = X N C} are nonempty,
and that

Ax N R C L.

Then, {5}, } is retractive, and N2, Sy, is nonempty.



CRITICAL ASYMPTOTES

e Retractiveness works well for sets with a polyhe-
dral structure, but not for sets specified by convex
guadratic inequalities.

e Key question: Given nested sequences {S; }
and {S7} each with nonempty intersection by it-
self, and with

S; NS # 0, Ek=0,1,...,

what causes the intersection sequence {S; NS¢}
to have an empty intersection?

e The trouble lies with the existence of some “crit-
ical asymptotes.”

skl
d: “Critical Asymptote”



HORIZON DIRECTIONS

e Consider { S} with N2, Sk, # J. Anasymptotic
direction d of {S } is:

(@) A local horizon direction if, for every x €
N2, Sk, there exists a scalar @ > 0 such
that z + ad € N7, Si; for all a > @.

(b) A global horizon direction if for every x € R»
there exists a scalara > O suchthatx+ad €
N2y Sk for all a > @

e Example: (2-D Convex Quadratic Set Se-
quences)

2
Sk ={(x1,x2) | ¥ < 1/k} Sk ={(x1,x2) | X1 - x2 = 1/k}

1% X2

S
k+1 ~

0 X1 Nym

Directions (0,y), y = 0O, Directions (0,y), y >0,
are local horizon directions are global horizon directions
that are retractive




GENERAL CONVEX QUADRATIC SETS

e Let Sy = {z | ’Qz + a’z + b < v}, where
v¢ | 0. Then, if all the sets S, are nonempty,
N2 oSk - ().

e Asymptotic directions: d # 0 such that Qd = 0
and a’d < 0. There are two possibllities:

(a) Qd = 0 and a’d < 0, in which case d is a
global horizon direction.

(b) Qd = 0 and a’d = 0, in which case d is
a direction of constancy of f, and it follows
that d is a retractive local horizon direction.

e Drawing some 2-dimensional pictures and us-
ing the structure of asymptotic directions demon-
strated above, we conjecture that there are no
“critical asymptotes” for set sequences of the form
{SE N S%} when S} and S7 are convex quadratic
sefts.

e This motivates a general definition of noncritical
asymptotic direction.



CRITICAL DIRECTIONS

e Given a nested closed set sequence {5} } with
nonempty intersection, we say that an asymptotic
direction d of {Sk} is noncritical if d is either a
global horizon direction of {S3}, or a retractive
local horizon direction of {5} }.

e Proposition: LetS;, = S;NSZN---NSy, where
{S; } are nested sequence such that

Sy # 0, Vk N2 SI#0, Vi

Assume that all the asymptotic directions of all
{S]} are noncritical. Then N2 Sy, # .

e Special case: (Convex Quadratic Inequal-
ities) Let
Sk = {z| T'Q;x + aix + b; <ql,j= l,...,7}

where {~/} are scalar sequences with v/ | 0. As-
sume that S, # ¢Jis nonempty for all k. Then,
N2 Sk # 9.



APPLICATION TO QUADRATIC MINIMIZATION

o Let
flz) =2'Qx + 'z,

X:{$‘$/R3$+@;$+b3§07 jZl,...,’r},

where ) and R; are positive semidefinite matri-
ces. Ifthe minimal value of f over X is finite, there
exists a minimum of f of over X.

Proof: Let f* be the minimal value, and let v |
f*. The set of optimal solutions is

X*=N2 (X N{z|2Qx + z < i }).

All the set sequences involved in the intersection
are convex quadratic and hence have no critical
directions. By the preceding proposition, X* is
nonenpty. Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATIONS

e Let C' be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC isclosedif Re "N(A) C Lc¢.

(b) A(X NC) is closed if X is a polyhedral set
and

RXﬂRcﬂN(A) C Lc,
(c) AC is closed if C = {z | fi(z) < 0,5 =
1,...,7}+with f;: convex quadratic functions.

Proof: (Outline) Let {yr} C AC with y — 7.
We prove N2 Sk # O, where S, = C' N Ny, and

Ni ={z | Az € Wi}, Wi ={z|llz=7| < lyx—7ll}

b N

|

(.

® Sk

|

y.k+1 Yk

X1

<|

_—
Wi ==

AC



LECTURE 7
LECTURE OUTLINE

e EXxistence of optimal solutions

e Preservation of closure under partial minimiza-
tion

e Hyperplane separation

e Nonvertical hyperplanes

e Min common and max crossing problems

e We have talked so far about set intersection the-
orems that use two types of asymptotic directions:

— Retractive directions (mostly for polyhedral-
type sets)

— Horizon directions (for special types of sets
- .g., quadratic)

e We now apply these theorems to issues of
existence of optimal solutions, and preservation
of closedness under linear transformation, vector
sum, and partial minimization.



PROJECTION THEOREM

e Let C be a nonempty closed convex set in .

(a) For every x € R, there exists a unique vec-
tor Po(x) that minimizes ||z — x| over all
z € C (called the projection of x on C).

(b) For every x € R, a vector z € C'is equal to
Pc(x) if and only if

(y—2)(z—2)<0, Vyel

In the case where C is an affine set, the
above condition is equivalent to

x—z €S+,

where S is the subspace that is parallel to
C.

(c) The function f : R* — C defined by f(z) =
Pc(x) is continuous and nonexpansive, i.e.,

|Po(@)~ Pow)|| < le—yl,  Va.ye R



EXISTENCE OF OPTIMAL SOLUTIONS

e Let X and f : k™ — (—o0, 00| be closed convex
and such that X Ndom( f) # @. The set of minima
of f over X is nonempty under any one of the
following three conditions:

(1) RxNRyf=LxNLy.
(2) Rx N"Rf C Lf, and X is polyhedral.

(3) f* > —oo, and f and X are specified by
convex quadratic functions:

f(x) = 2'Qx + 'z,
X = {:1: | 2'Qjr+alx+b; <0, 5 = 1,...,7‘}.
Proof: Follows by writing
Set of Minima = N (Nonempty Level Sets)

and by applying the corresponding set intersec-
tion theorems. Q.E.D.



EXISTENCE OF OPTIMAL SOLUTIONS: EXAMPLE

Level Sets of Level Sets of
Convex Function f Convex Function f

XZN XZN
K X J X
Constancy[Space L¢ Constancy|[Space Lf\\
= / =
0 X4 0 X

(@)
e Here f(x1,x2) = e®1.

e In (a), X is polyhedral, and the minimum is
attained.

e In (b),
X = {(w1,22) | 27 < x2}

We have Rx N Ry C L, but the minimum is not
attained (X is not polyhedral).



PARTIAL MINIMIZATION THEOREM

o Let F: Rntm — (—o00,00] be a closed proper
convex function, and consider f(x) = inf ,cpm F(x, 2).

e Each of the major set intersection theorems
yields a closedness result. The simplest case is
the following:

e Preservation of Closedness Under Com-
pactness: If there exist z € R, ¥ € & such that
the set

2| F(T,2) <7}

IS nonempty and compact, then f is convex, closed,
and proper. Also, for each =z € dom(f), the set of
minima of F'(x,-) is nonempty and compact.

Proof: (Outline) By the hypothesis, there is no
nonzero y such that (0,y,0) € Repiry. Also, all
the nonempty level sets

{z|F(z,2) <~v}, oehn, yeh,

have the same recession cone, which by hypoth-
esis, is equal to {0}.



HYPERPLANES

Positive Halfspace
{xlax = b}

Hyperplane

Negative Halfspace _
{Xxlax=b}={xlax=ax}

{xlax = b}

e A hyperplane is a set of the form {x | a’x = b},
where a IS nonzero vector in k™ and b is a scalar.

e We say that two sets 1 and Cs are separated
by a hyperplane H = {x | o/x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a’x1 < b < a’zo, Vo, € Ch, Vag € (o,
or a'zo <b<ax, Va1 € Ci, Vay € Oy
e If ¥ belongs to the closure of a set (', a hyper-

plane that separates C' and the singleton set {7}
IS said be supporting C at .



VISUALIZATION

e Separating and supporting hyperplanes:

e A separating {x | a’x = b} that is disjoint from
C1 and (s is called strictly separating:

a’'r1 < b<axs, Ve Cr, Vas € Oy
A
/]
/]
/]
; Co={(€1,E0)1E1>0,E5>0,E1Ep= 1}
/]
/]
/]
/]
/]
/ o
~4
I
7 Cy={E15)1E1 <0}
/]
/]
/]
yd




SUPPORTING HYPERPLANE THEOREM

e Let C be convex and let z be a vector that is
not an interior point of C'. Then, there exists a
hyperplane that passes through x and contains C
In one of its closed halfspaces.

Proof: Take a sequence {x;} that does not be-
long to cl(C) and converges to . Let z; be the
projection of z; on cl(C'). We have forall z € cl(C)

a,x > a) Tk, VeecC),Vk=01,...,

where A — (ik — a:k)/Hﬁ:k — ZCku Le a be a limit
point of {ax }, and take limitas £k — co. Q.E.D.



SEPARATING HYPERPLANE THEOREM

e Let C'; and (2 be two nonempty convex subsets
of k. If C7 and (5 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a # 0 such that

a’'r1 < a'xs, Va1 € Cq, Vay e (s,

Proof: Consider the convex set
01—02:{562—331 ‘ r1 € C1, a2 ECQ}

Since C; and C; are disjoint, the origin does not
belong to C'1 — (2, so by the Supporting Hyper-
plane Theorem, there exists a vector a # 0 such
that

0<az, Vel —CCs,

whichis equivalentto the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

e Strict Separation Theorem: Let C'; and C,
be two disjoint nonempty convex sets. If C is
closed, and (> is compact, there exists a hyper-
plane that strictly separates them.

Co={(E1,E0) &1 >0,E5>0,E4Ep = 1}
/ Cy
i‘l
X

-

3}(@1%2) Ey=0}

@) (o)

Proof: (Outline) Consider the set C; — Cs. Since
C' is closed and (s is compact, C; — (s Is closed.
Since CiNCy = @, 0 §§ Ci — Oy Letxy — o
be the projection of 0 onto C; — C5. The strictly
separating hyperplane is constructed as in (b).

e Note: Any conditions that guarantee closed-
ness of (' — Cy guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C'; — Cs
being closed.



ADDITIONAL THEOREMS

¢ Fundamental Characterization: The clo-
sure of the convex hull of a set C C R is the
intersection of the closed halfspaces that contain
C.

e We say that a hyperplane properly separates C1
and Cy If it separates C'; and C'; and does not fully
contain both 7 and (..

Separating  C4
hyperplane |

Separating
hyperplane

e Proper Separation Theorem: Let C; and (>
be two nonempty convex subsets of . There ex-
Ists a hyperplane that properly separates C'; and
Cs if and only if

I'i(C1) M I’i(CQ) = ()



MIN COMMON / MAX CROSSING PROBLEMS

e We introduce a pair of fundamental problems:
e Let M be a nonempty subset of nt+1

(@) Min Common Point Problem: Consider all
vectors that are common to M and the (n +

1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider “non-
vertical” hyperplanes that contain M in their
“upper” closed halfspace. Find one whose

crossing point of the (n + 1)st axis is maxi-
mum.

w A ) W A Min Common Point w*
Min Common Point w

]

| e
, S / u 0 u
Max Crossing Point g
AN Max Crossing Point q°

\

e We first need to study “nonvertical” hyperplanes.



NONVERTICAL HYPERPLANES

e A hyperplane in ®»+1 with normal (u, 5) is non-
vertical if 5 # 0.

e ltintersectsthe (n+1)staxisaté = (u/B) u+w,
where (u,w) is any vector on the hyperplane.

(u,0)
—

\ Vertical

Hyperplane

T

u

Nonvertical
Hyperplane

¢ A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

e The epigraph of a proper convex function does
not contain a vertical line, so it appears plausi-
ble that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

e Let C' be a nonempty convex subset of fn+1
that contains no vertical lines. Then:

(a) C' is contained in a closed halfspace of a
nonvertical hyperplane, i.e., there exist i €
R, B € R with 8 =£ 0, and v € R such that
w'u + Bw >~ for all (u,w) € C.

(b) If (w,w) ¢ cl(C'), there exists a nonvertical
hyperplane strictly separating (u,w) and C.

Proof: Notethatcl(C') contains no vert. line [since
C' contains no vert. line, ri(C') contains no vert.

line, and ri(C') and cl(C') have the same recession

cone]. So we just consider the case: C closed.

(a) C' is the intersection of the closed halfspaces
containing C'. If all these corresponded to vertical
hyperplanes, C' would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w)
and C. Ifitis nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small e-multiple of a nonvertical hyperplane con-
taining C' in one of its halfspaces as per (a).



LECTURE 8
LECTURE OUTLINE

e Min Common / Max Crossing problems
e Weak duality

e Strong duality

e Existence of optimal solutions

e Minimax problems

w A . W A Min Common Point w*
Min Common Point w

1

e |
N/ u 0 u
Max Crossing Point g
AN Max Crossing Point q°

/



WEAK DUALITY

e Optimal value of the min common problem:

w* = inf w
(0, w)eM

e Math formulation of the max crossing problem:
Focus on hyperplanes with normals (u, 1) whose
crossing point £ satisfies

£ <w+ pu, vV (u,w) € M

Max crossing problem is to maximize £ subject to
§ < inf(ywyemiw + wug, p € R, or

maximize q(u) 2 inf {w+ p'u}
(w,w)eM

subjectto p € R~.
e Forall (u,w) e M and u € R»,

— inf / < inf — ok
W)= aen W HUES B T

SO maximizing over p € 1", we obtain ¢* < w*.

e Note that ¢ iIs concave and upper-semicontinuous.



STRONG DUALITY

e Question: Under what conditions do we have
g* = w* and the supremum in the max crossing
problem is attained?

"4 T *
Min Common Point w" Min Common Point w
M
- =
. e\ / u 0 u
Max Crossing Point q A
\ Max Crossing Point q \
(@) (b)
w
. . M
Min Common Point w
/ M

Max Crossing Point q°

0 u

(©)



DUALITY THEOREMS

e Assume that w* < oo and that the set

M = {(u, w) | there exists w with w < w and (u,w) € M}

IS convex.

e Min Common/Max Crossing Theorem I. We
have ¢* = w* if and only if for every sequence
{(uk,wk)} C M with up — 0, there holds w* <
lim infr_ o wg.

o Min Common/Max Crossing Theorem II: As-
sume in addition that —oo < w* and that the set

D = {u | there exists w € ® with (u,w) € M}

contains the origin in its relative interior. Then
g* = w* and there exists a vector 1, € 1" such that
q(p) = ¢*. If D contains the origininits interior, the
set of all u € R such that ¢(u) = ¢* is compact.

e Min Common/Max Crossing Theorem III: In-
volves polyhedral assumptions, and will be devel-
oped later.



PROOF OF THEOREM |

e Assume that for every sequence {(ux,wy)} C
M with up — 0, there holds w* < liminfi_. o wg.
If w* = —o0, then ¢* = —oo, by weak duality, so
assume that —oo < w*. Steps of the proof:

(1) M does not contain any vertical lines.
(2) (0,w* —¢€) ¢ cl(M) for any € > 0.

(3) There exists a nonvertical hyperplane strictly
separating (0, w* — ¢) and M. This hyper-
plane crosses the (n + 1)st axis at a vector
(0,6) withw* —e < & <w*, s0w* —e < ¢* <
w*. Since € can be arbitrarily small, it follows
that ¢* = w*.

Conversely, assume that ¢* = w*. Let { (ux,wy)} C
M be such that v, — 0. Then,

q(p) = : ir;f Awtput S wipkplug, Yk Ve R
u,Ww)E

Taking the limit as £ — oo, we obtain g(ux) <
liminfg_. . we, for all p € R, implying that

w* = q* = sup q(p) < liminf wy
LERN k— o0



PROOF OF THEOREM II

e Note that (0, w*) is not a relative interior point
of M. Therefore, by the Proper Separation Theo-
rem, there exists a hyperplane that passes through
(0, w*), contains M in one of its closed halfspaces,
but does not fully contain M, i.e., there exists
(u, B) such that

Bw* < p'u + Bw, V (u,w) € M,

Bw* < sup {p'u+ fw}
(u,w)EM

Since for any (u,w) € M, the set M contains the
halfline {(z,w) | w < w}, it follows that 5 > 0. If
B =0,then 0 < p/uforallu € D. Since 0 € ri(D)
by assumption, we must have p/u = Oforallu € D
a contradiction. Therefore, 3 > 0, and we can
assume that 3 = 1. It follows that

w* < inf {pu+w} =qp) <g*
(uw,w)eM

Since the inequality ¢* < w* holds always, we
must have q(u) = ¢* = w*.



MINIMAX PROBLEMS

Given ¢ : X x Z — R, where X C ®», Z C ™

consider -
minimize sup ¢(z, z)
z2€Z

subjectto =z € X
and . . .

maximize a}g( o(x, 2)

subjectto z € Z.

e Some important contexts:

— Worst-case design. Special case: Minimize
overxr € X

max{ f1(z), ..., fm(z)}

— Duality theory and zero sum game theory
(see the next two slides)

e We will study minimax problems using the min
common/max crossing framework



CONSTRAINED OPTIMIZATION DUALITY

e For the problem

minimize f(x)
subjectto = € X, gi(x) <0, j=1,...,7r

iIntroduce the Lagrangian fungtion
L(z,p) = f(x) + ) pgi(z)
j=1
e Primal problem (equivalent to the original)

in sup L(x, u) =
min - sup (@, 1)

{ f(x) ifg(x) <0,

00 otherwise,
e Dual problem

inf L
el Sl

e Key duality question: Is it true that

sup inf L(x,u) = inf sup L(z,
sup inf, (, 1) i, sup (x, 1)



ZERO SUM GAMES

e Two players: 1st chooses ¢ € {1,...,n}, 2nd
chooses j € {1,...,m}.

e If moves ¢ and j are selected, the 1st player
gives a;; to the 2nd.

e Mixed strategies are allowed: The two players
select probability distributions

r=(T1,...,%Tn), z2=(21,...,2m)

over their possible moves.

e Probability of (¢,5) is z;z;, so the expected
amount to be paid by the 1st player

' Az = Z Qi TiZ;
i,
where A is the n x m matrix with elements a;;.

e Each player optimizes his choice against the
worst possible selection by the other player. So
— 1st player minimizes max, x’ Az
— 2nd player maximizes min, x’ Az



MINIMAX INEQUALITY

e We always have

inf < inf s :
sup inf ¢(z,2) < inf Sup o(, 2)

[for every z € Z, write

inf ¢(z,z) < inf
inf ¢(2,2) < inf Sup ¢(, 2)

and take the sup over z € Z of the left-hand side].

e This is called the minimax inequality. When
it holds as an equation, it is called the minimax
equality.

e The minimax equality need not hold in general.

e When the minimax equality holds, it often leads
to interesting interpretations and algorithms.

e The minimax inequality is often the basis for
interesting bounding procedures.



LECTURE 9
LECTURE OUTLINE

e Min-Max Problems
e Saddle Points

e Min Common/Max Crossing for Min-Max

Given ¢ : X x Z — R, where X C ®n, Z C k™

consider o
minimize sup ¢(z, z)
z€Z

subjectto z € X
and o .

maximize ch o(x, 2)

subjectto z € Z.

e Minimax inequality (holds always)

sup inf ,2) < inf sup ¢(z, 2
gl 42) < Jof sup o)



SADDLE POINTS

Definition: (x*, z*) is called a saddle point of ¢ if
olx*, z) < p(a*, z*) < ¢(x,2%), Vee X, VzeZ

Proposition: (z*, z*) is a saddle point if and only
iIf the minimax equality holds and

x* € arg min sup ¢(x, z), 2z* € argmax inf ¢(x,z) (*)
re€X zcgz z€Z zeX

Proof: If (z*, 2*) is a saddle point, then

inf sup ¢(z,z) < sup ¢(z”,2) = ¢(z”, 27)

reX zcz z€Z
= inf ¢(x,2*) < sup inf ¢(x, 2)

By the minimax inequality, the above holds as an
equality holds throughout, so the minimax equality
and Eqg. (*) hold.

Conversely, if Eq. (*) holds, then

sup inf ¢(z,2) = inf ¢(z,27) < (27, 27)
zezxTEX rzeX

< sup ¢(z*,2z) = inf sup ¢(z, z)
A=A reX ez

Using the minimax equ., (x*, z*) is a saddle point.



VISUALIZATION

Saddle point
(x*,z*)

The curve of maxima ¢(z, 2(x)) lies above the
curve of minima ¢(z(z), z), where

Z(x) = argmax ¢(x, z), z(z) = argmin ¢(z, 2)

Saddle points correspond to points where these
two curves meet.



MIN COMMON/MAX CROSSING FRAMEWORK

e Introduce perturbation functionp : R™ +— [—o00, 00]

p(u) = inf sup{p(z,z) —uw'z}, u € fm
reX ez

e Apply the min common/max crossing framework
with the set M equal to the epigraph of p.

e Application of a more general idea: To evalu-
ate a quantity of interest w*, introduce a suitable
perturbation v and function p, with p(0) = w*.

e Note that w* = inf sup ¢. We will show that:
— Convexity in z implies that M is a convex set.
— Concavity in z implies that ¢* = sup inf ¢.

| w A

infy sup,¢(x,z)

= min common value w"

infy sup,¢(x,z)

= min common value w"

- supzinfy ¢(x,2)

u = max crossing value g~ 0 / u
q(w)

q(u) \ supzinfy ¢(x,2) /

= max crossing value q°

(@) (b)



IMPLICATIONS OF CONVEXITY IN X

Lemma 1: Assume that X is convex and that
for each z € Z, the function ¢(-,2) : X — R is
convex. Then p is a convex function.

Proof: Let

F(CE u) — {SupZEZ{¢(x7Z) _ U/Z} if c X,
| o0 if x ¢ X.

Since ¢(-, z) is convex, and taking pointwise supre-
mum preserves convexity, F' is convex. Since

p(u) = xlen&{gn F(x,u),

and partial minimization preserves convexity, the
convexity of p follows from the convexity of F.
Q.E.D.



THE MAX CROSSING PROBLEM

e The max crossing problem is to maximize q(u)
over i, € ™, where

q(p) = inf w~+ p'u} = inf w+ 1
(1) (u,w)Eepi(p){ pul {(u,w)Ip(u)Sw}{ s
— inf !
nf {p(u) + p'u}

Using p(u) = infyex sup,cz{o(x,2) — vz}, we
obtain

e o
a(p) = inf a}nggg{qb(x,ZHU(u 2)}

e By setting z = 1 in the right-hand side,

inf ¢(x,p) <q(p), Vwpez
reX

Hence, using also weak duality (¢* < w*),

sup inf ¢(z,2) < sup q(p) = ¢*
ZEZLEEX Mé%m

< w* = p(0) ;gxiggcb(xw)



IMPLICATIONS OF CONCAVITY IN Z

Lemma 2: Assume that for each + ¢ X, the
function r, : R™ — (—o0, co] defined by

ro(z) = { —p(x,z) ifze Z,

00 otherwise,

IS closed and convex. Then

C](,u) — {TizEX ¢(:E,/L) :;Z;g’

Proof: (Outline) From the preceding slide,

] <
inf oz, p) <q(p),  VpeZ

We show that q(u) < infyex ¢(x, ) for all p €
Z and q(pu) = —oo for all u ¢ Z, by considering
separately the two cases where € Z and i ¢ Z.

First assume that 1 € Z. Fix z € X, and for
e > 0, consider the point (u, (1) —€), which does
not belong to epi(r,). Since epi(r,) does not con-
tain any vertical lines, there exists a nonvertical
strictly separating hyperplane ...



MINIMAX THEOREM I

Assume that:

(1) X and Z are convex.

(2) p(0) =inf ex sup,c, @(z, 2) < 0.
(3) Foreach z € Z, thefunction ¢(-, z) is convex.
(4)

4) For each x € X, the function —¢(z,-) : Z —
Jt is closed and convex.

Then, the minimax equality holds if and only if the
function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
g* = w* in the min common/max crossing frame-
work. Furthermore, w* < oo by assumption, and
the set M [equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w* = ¢* iff for every sequence
{(ug, wr)} C M with u, — 0, there holds w* <
liminfx . wg. This is equivalent to the lower
semicontinuity assumption on p:

p(0) < liminf p(ug), forall {ug} with up — 0

k— o0



MINIMAX THEOREM li

Assume that:

(1) X and Z are convex.

(2) p(0) = infrex sup,cz ¢(, 2) > —oo.
(3) Foreach z € Z, thefunction ¢(-, z) is convex.
(4)

4) For each x € X, the function —¢(z,-) : Z —
Jt is closed and convex.

(5) O lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in sup, ., inf,c x ¢(z, z) is attained by some
z € Z. [Also the set of z where the sup is attained
is compact if O is in the interior of dom(f).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.



EXAMPLE |

e Let X = {(z1,22) |z >0}and Z = {z € R |
z >0}, and let
¢($7Z) = e VI 4 2wy,

which satisfy the convexity and closedness as-
sumptions. For all z > 0,

inf {e VT1T2 ZQ?l} = 0,

x>0

SO sup, g infz>o ¢(xz,z) = 0. Also, for all x > 0,

J— 1 ifz;1 =0
ig% {6 le} { oo f x1 > 0,

SO inf, >0 sup,>q ¢(x, 2) = 1.

p(u)

p(u) = inf sup{ TVILE2 4 (2 — u)}
" x>0 >0
epi(p

oo if u <0,
1 =<1 ifu=0,

0 ifu>0,




EXAMPLE I

e let X =R, Z={z€R|z>0}, and let
o(x,2) =x + zx2,

which satisfy the convexity and closedness as-
sumptions. For all z > 0,

nf {2 4 727} {—1/(42) if 2 > 0,

zER —00 if z =0,

SO sup, g infzew ¢(x,2) = 0. Also, for all x € R,

0 ifz=0
21 )
ig% R { oo otherwise,

SO inf, ek sup,~q ¢(x, 2) = 0. However, the sup is
not attained.

o) 4

2

p(u) = inf sup{x + zz“ — uz}

e ;>0

_ :{—\/a if u >0,

o0 if uw < 0.

epi(p)

-

c




SADDLE POINT ANALYSIS

e The preceding analysis has underscored the
importance of the perturbation function

= inf F
p(u) = inf F(z,u),

F(z,u) = {Supzez{¢(x,z) —uwz} ifzeX,
| 00 ifx ¢ X.

It suggests a two-step process to establish the
minimax equality and the existence of a saddle
point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verity that the infimum of sup, ., ¢(x, 2) over
x € X, and the supremum of inf,.cx ¢(x, z)
over z € Z are attained, thereby showing
that the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

e Step (1) requires two types of assumptions:

(a) Convexity/concavity/semicontinuity conditions:
— X and Z are convex and compact.

— ¢(+,2): convex for each z € Z, and ¢(«x, -)
IS concave and upper semicontinuous over
Z for each z ¢ X, so that the min com-
mon/max crossing framework is applicable.

— ¢(+, 2) is lower semicontinuous over X, so
that F' is convex and closed (it is the point-
wise supremum over z € Z of closed convex
functions).

(b) Conditions for preservation of closedness by
the partial minimization in

p(w) = inf F(z,u)

e Step (2) requires that either Weierstrass’ Theo-
rem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
IS satisfied.



SADDLE POINT THEOREM
Assume the convexity/concavity/semicontinuity con-
ditions, and that any one of the following holds:
(1) X and Z are compact.

(2) Z is compact and there exists a vectorz € Z
and a scalar v such that the level set {z ¢

X | ¢(x,z) <~} is nonempty and compact.

(3) X iscompactandthere existsavectorx € X
and a scalar v such that the level set {z €

Z | ¢(T,z) >~} is nonempty and compact.

(4) There exist vectorsz € X andz € Z, and a
scalar v such that the level sets

lreX|¢(2,2) <v}, {2€Z]|¢@ 2) >},

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of ¢ is nonempty and compact.
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e Polar cones and polar cone theorem
e Polyhedral and finitely generated cones
e Farkas Lemma, Minkowski-Weyl Theorem

e Polyhedral sets and functions

¢ The main convexity concepts so far have been:

— Closure, convex hull, affine hull, relative in-
terior, directions of recession

— Set intersection theorems

— Preservation of closure under linear trans-
formation and partial minimization

— Existence of optimal solutions
— Hyperplanes, Min common/max crossing du-
ality, and application in minimax

e We now introduce new concepts with important
theoretical and algorithmic implications: polyhe-
dral convexity, extreme points, and related issues.



POLAR CONES

e Given a set (, the cone given by
C*={y|yz<0, Vzel},
is called the polar cone of C.

N

C
o
[ ]
as

@) (b)

e ('* is a closed convex cone, since it is the inter-
section of closed halfspaces.

e Note that
C = (el(C))" = (conv(C))* = (cone(C))”

e Important example: If C is a subspace, C* =
C'L. In this case, we have (C*)* = (C+)L = C.



POLAR CONE THEOREM

e For any cone C, we have (C*)* = cl(conv(C)).
If C'is closed and convex, we have (C*)* = C.

Proof: Consider the case where C'is closed and
convex. For any x € C, we have 'y < 0 for all
y € C*,sothat x € (C*)*, and C C (C*)*.

To prove the reverse inclusion, take z € (C*)*,
and let Z be the projection of z on C, so that
(z —2)(x—2) <0, forall x € C. Taking x = 0
and x = 2%, we obtain (z — 2)’2 = 0, so that
(z—2)'x < Oforallx € C. Therefore, (z—2) € C*,
and since z € (C*)*, we have (z — 2)’z < 0. Sub-
tracting (z —2)’zZ = Oyields ||z — 2||2 < 0. It follows
that z = Z and z € C, implying that (C*)* C C.



POLYHEDRAL AND FINITELY GENERATED CONES

e Acone C C R™is polyhedral, if
C={z]ax<0,j=1,...,1},

where a1, ..., a, are some vectors in k.

e Acone C C Rmis finitely generated, if

( )

C’:<x‘xzz,ujaj,,ujZO,jzl,...,r>
j=1

\

= cone({a1,...,ar}),

where a1, ..., a, are some vectors in R~.

aj




FARKAS-MINKOWSKI-WEYL THEOREMS

Let ai,...,a, be given vectors in i, and let
C = cone({ai,...,ar})
(a) C'is closed and

C*:{y’a’;ygoajzlaar}

(b) (Farkas’ Lemma) We have
{y]a;ng,jzl,...,r}* =C

(There is also a version of this involving sets de-
scribed by linear equality as well as inequality con-
straints.)

() (Minkowski-Weyl Theorem) A cone is polyhe-
dral if and only if it is finitely generated.



PROOF OUTLINE

(a) First show that for C' = cone({a1,...,ar}),

C" = cone({ai,...,a.})" = {y|a;y§0,j=1,---,7“}

If y'a; < 0 for all 7, then v’z < 0 for all x € C,
so C* D {y|djy<0,j=1,...,r}. Conversely,
if y € C* e, if yx < 0 for all z € C, then,
since a; € C, we have y’a; < 0, for all 5. Thus,
C* C {y| a;yg(),jzl,...,r}.

e Showing that C' = cone({a1,...,a,}) is closed
Is nontrivial! Follows from Prop. 1.5.8(b), which
shows (as a special case where ' = Rn) that
closedness of polyhedral sets is preserved by lin-
ear transformations. (The text has two other lines
of proof.)

(b) Assume no equalities. Farkas’ Lemma says:
{y]a;yg(),jzl,...,r}* =C
Since by part(a), C* = {y |y <0,j=1,...,r}

and C' is closed and convex, the result follows by
the Polar Cone Theorem.

(c) See the text.



POLYHEDRAL SETS

e Aset P C R» is said to be polyhedral if it is
nonempty and

P:{x\a;aﬁgbj,jzl,...,r},

for some a; € 7 and b; € *.

e A polyhedral set may involve affine equalities
(convert each into two affine inequalities).

Theorem: A set P is polyhedral if and only if
P = Conv({vl, . ,vm}) + C,

for a nonempty finite set of vectors {vi,...,vm}
and a finitely generated cone C.



PROOF OUTLINE

Proof: Assume that P is polyhedral. Then,
P = {a: | a;:cgbj,jzl,...,r},
for some a; and b;. Consider the polyhedral cone
P= {(z,w) ] 0 <w, asr < bjw, j = 1,...,r}

and note that P = {x | (z,1) € P}. By Minkowski-
Weyl, P is finitely generated, so it has the form

( )

(z, w) ‘ 517:2#@'% w:Zdeja pj =05,
\ j=1 j=1

/

A

P =

N\

for some v; and d;. Since w > 0 for all vectors
(x,w) € P, we seethatd; > 0 forall j. Let

Jt =1{j|d; >0}, JO=1{j|d; =0}



PROOF CONTINUED

e By replacing u; by p;/d; forall j € J+,

y

~
|

L jeJtuJo

Z HjVs, W = ZM;aMJZO

jeJt

Since P = {z | (z,1) € P}, we obtain

;

P=Jqx ‘ > ugvg,Zug—lugZW

L jeJtuJjo

Thus,

P = COHV({’Uj | J € J+})+<

e To prove that the vector sum of conv ({vy, .. .

jeJt

/

: 0
\jEJ

> o,

and a finitely generated cone is a polyhedral set,
we reverse the preceding argument. Q.E.D.

pj >0,j€J°

avm})

/



POLYHEDRAL FUNCTIONS

e A function f : R" +— (—o00, 00| iS polyhedral if its
epigraph is a polyhedral set in tn+1,

e Note that every polyhedral function is closed,
proper, and convex.

Theorem: Let f : R — (—o0, 0| be a convex
function. Then f is polyhedral if and only if dom( f)
IS a polyhedral set, and

f(x) = j:rﬁgj%m{a;x + b, }, V x € dom(f),

for some a; € 7 and b; € K.

Proof: Assume that dom(f) is polyhedral and f
has the above representation. We will show that
f is polyhedral. The epigraph of f can be written
as

epi(f) = {(z,w) | z € dom(f)}
N {(z, w) | a’x + b, <w,j=1,...,m}.

Since the two sets on the right are polyhedral,
epi( f) is also polyhedral. Hence f is polyhedral.



PROOF CONTINUED

e Conversely, if f is polyhedral, its epigraph is a
polyhedral and can be represented as the inter-
section of a finite collection of closed halfspaces
of the form {(z,w) | asr+bj < cjwl,j=1,...,r,
where a; € i, and b;,c; € R.

e Since for any (z,w) € epi(f), we have (z,w +
v) € epi(f)forall~ > 0, itfollows thatc; > 0, so by
normalizing if necessary, we may assume without
loss of generality that either ¢; = 0 or ¢; = 1.
Lettingc; = 1forj = 1,...,m, and ¢; = 0 for
j=m+1,...,r, where m is some integer,

epi(f):{(x,w)]a;-a:+bj <w,j=1,...,m,
a;az—l—bjg(),j:m—kl,...,r}.

Thus
dom(f):{ac\a;-a:—l—bjSO,j:m—l—l,...,r},

71=1,...,

flz) = maxm{a;:U +b;}, V x € dom(f)



LECTURE 11
LECTURE OUTLINE

e Extreme points
e Extreme points of polyhedral sets

e Extreme points and linear/integer programming

Recall some of the facts of polyhedral convexity:

e Polarity relation between polyhedral and finitely
generated cones

{z]adx<0,j=1,...,r} = Cone({ah...,ar})*
e Farkas’ Lemma
{z | a;x <0,5=1,...,r}= cone({al,...,ar})

e Minkowski-Weyl Theorem: a cone is polyhedral
iff it is finitely generated. A corollary (essentially):

Polyhedral set P = conv({v1,...,vm}) + Rp



EXTREME POINTS

e A vector x is an extreme point of a convex set C
if x € C' and x cannot be expressed as a convex
combination of two vectors of C', both of which are

different from x.
. - \

Extreme Extreme Extreme
Points Points Points

@ (b) (©

Proposition: Let C be closed and convex. If H
IS a hyperplane that contains C' in one of its closed
halfspaces, then every extreme point of C N H is
also an extreme point of C'.

Proof: Let T € C'" H be a nonextreme
point of C. Then z = ay+ (1 — a)z for
some a € (0,1), y,z € C, with y # «
and z # x. Since T € H, the closed
halfspace containing C' is of the form
{x | a’x > a'x}. Then o'y > a’T and
a’z > a’T, which in view of T = ay +
H (1 — a)z, implies that o’y = a’T and

a’'z = a’x. Thus, y,z € CNH, showing

that = is not an extreme point of CN H.

Extreme
points of CNH



PROPERTIES OF EXTREME POINTS |

Proposition: A closed and convex set has at
least one extreme point if and only if it does not
contain a line.

Proof: If C' contains a line, then this line trans-
lated to pass through an extreme point is fully con-
tained in C' - impossible.

Conversely, we use induction on the dimen-
sion of the space to show that if C' does not contain
a line, it must have an extreme point. True in X,
so assume itis true in k=1, where n > 2. We will
show it is true in R,

Since C' does not contain a line, there must
exist points x € C and y ¢ C. Consider the rela-
tive boundary point z.

The set CNH lies in an (n—1)-dimensional
space and does not contain a line, so it
contains an extreme point. By the pre-

ceding proposition, this extreme point
must also be an extreme point of C.




PROPERTIES OF EXTREME POINTS I

Krein-Milman Theorem: A convex and com-
pact set is equal to the convex hull of its extreme
points.

Proof: By convexity, the given set contains the
convex hull of its extreme points.

Next show the reverse, i.e, every x in a com-
pact and convex set C' can be represented as a
convex combination of extreme points of C'.

Use induction on the dimension of the space.
The result is true in &. Assume it is true for all
convex and compact sets in k»—1. Let C C R~
and xz € C.

If = is another point in C, the points
x1 and xo shown can be represented as

convex combinations of extreme points
of the lower dimensional convex and com-

pact sets CN Hy; and CN Hy, which are
also extreme points of C.




EXTREME POINTS OF POLYHEDRAL SETS

e Let P be a polyhedral subset of . If the set of
extreme points of P is nonempty, then it is finite.

Proof: Consider the representation P = P + C,
where

S

P = Conv({vl, . ,vm})

and C' is a finitely generated cone.

e An extreme point = of P cannot be of the form
T =42+y Where € Pandy # 0, y € C,
since in this case * would be the midpoint of the
line segment connecting the distinct vectors = and
z + 2y. Therefore, an extreme point of P must
belong to P, and since P C P, it must also be an
extreme point of P.

e An extreme point of P must be one of the vectors
v1,...,Um, Since otherwise this point would be ex-
pressible as a convex combination of vy, ..., vp,.
Thus the extreme points of P belong to the finite
set {vi,...,um}. Q.E.D.



CHARACTERIZATION OF EXTREME POINTS

Proposition: Let P be a polyhedral subset of R".
If P has the form

P={z] a;mgbj,jzl,...,r},
where a; and b; are given vectors and scalars,

respectively, then a vector v € P is an extreme
point of P if and only if the set

Av:{a,j‘Cl,;f(}:bj,je{la'”?r}}

contains n linearly independent vectors.

a
33_2




PROOF OUTLINE

If the set A, contains fewer than n linearly inde-
pendent vectors, then the system of equations

a’w =0, Va; €A,
has a nonzero solution w. For small v > 0, we
have v + yw € P and v — yw € P, thus showing
that v is not extreme. Thus, if v is extreme, A,
must contain n linearly independent vectors.
Conversely, assume that A, contains a sub-
set A, of n linearly independent vectors. Suppose
that for some y € P, z € P, and a € (0,1), we
have v = ay + (1 — «)z. Then, for all a; € A,,

bj = aiv = aasy+(l—a)aiz < abj+(1—a)b; = b;

Thus, v, y, and z are all solutions of the system of
n linearly independent equations

asw = by, Va; €A,

Hence, v = y = z, implying that v is an extreme
point of P.



EXTREME POINTS AND CONCAVE MINIMIZATION

e Let C be a closed and convex set that has at
least one extreme point. A concave function f :
C' — R that attains a minimum over C' attains the
minimum at some extreme point of C.

CNH,NH,
(a) (b) ()

Proof (abbreviated): If z* € ri(C) [see (a)], f
must be constant over C, so it attains a minimum
at an extreme point of C. If x* ¢ ri(C), there is a
hyperplane H; that supports C' and contains x*.

If x* € ri(C'N Hy) [see (b)], then f must
be constant over C' N H;y, so it attains a mini-
mum at an extreme point C' N H;. This optimal
extreme point is also an extreme point of C'. If
xz* ¢ ri(C'N Hy), there is a hyperplane H» support-
ing C' N H; through z*. Continue until an optimal
extreme point is obtained (which must also be an
extreme point of C).



FUNDAMENTAL THEOREM OF LP

e Let P be a polyhedral set that has at least
one extreme point. Then, if a linear function is
bounded below over P, it attains a minimum at
some extreme point of P.

Proof: Since the cost function is bounded below
over P, it attains a minimum. The result now fol-
lows from the preceding theorem. Q.E.D.

e Two possible cases in LP: In (a) there is an
extreme point; in (b) there is none.



EXTREME POINTS AND INTEGER PROGRAMMING

e Consider a polyhedral set
P={x| Az =b,c <z <d},

where Aism xn, b € ™, and c¢,d € k™. Assume
that all components of Aand b, ¢, and d are integer.

e Question: Under what conditions do the ex-
treme points of P have integer components?

Definition: A square matrix with integer compo-
nents is unimodular if its determinant is 0, 1, or
-1. A rectangular matrix with integer components
IS totally unimodular if each of its square subma-
trices is unimodular.

Theorem: If A is totally unimodular, all the ex-
treme points of P have integer components.

e Most important special case: Linear network
optimization problems (with “single commodity”
and no “side constraints”), where A is the, so-
called, arc incidence matriz of a given directed
graph.



LECTURE 12
LECTURE OUTLINE

e Polyhedral aspects of duality
e Hyperplane proper polyhedral separation

e Min Common/Max Crossing Theorem under
polyhedral assumptions

e Nonlinear Farkas Lemma

e Application to convex programming



HYPERPLANE PROPER POLYHEDRAL SEPARATION

e Recall that two convex sets (' and P such that
ri(C)Nri(P) = 0

can be properly separated, i.e., by a hyperplane
that does not contain both C' and P.

e If P is polyhedral and the slightly stronger con-
dition

ri(C)NP =0
holds, then the properly separating hyperplane

can be chosen so that it does not contain the non-
polyhedral set C' while it may contain P.

Separating

S
Separating hyperplane

hyperplane

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



MIN COMMON/MAX CROSSING TH. - SIMPLE

e Consider the min common and max crossing
problems, and assume that:

(1) The set M is defined in terms of a convex
function f : R™ — (—o0, oo], an r x m matrix
A, and a vector b € R

M = {(u,w) | for some (z,w) € epi(f), Az —b < u}
(2) Thereisan ™ € ri(dom(f))s.t. Ax — b <0.
Then ¢* = w* and there is a u > 0 with ¢g(u) = ¢*.

e We have M = epi(p), where p(u) = inf g, —p<y f(T).
e We have w* = p(0) = infa,_p<o f(2).

b ow kow

f(x) <w

M = epi(p)

—_ 0
Ax-b <0 X

Ax-b =<u



PROOF

e Consider the disjoint convex sets

Cr = {(z,v) | flx) <v}

Cz * ng{(m,w*)|Am—b§0}

B
X

e Since (), is polyhedral, there exists a separating
hyperplane not containing C1, i.e., a (¢, 5) # (0,0)

Bw*+E&'z < pv+&x, V(x,v) € C1, Vz with Az—b <0,

inf {ﬁv+§’x}< sup {ﬁv+§’x}

(z,v)eCy (x,v)eCy

Because of the relative interior point, 3 # 0, so
we may assume that 3 = 1. Hence

* / < : f /
S fwr ey s it fe

The LP on the left has an optimal solution z*.



PROOF (CONTINUED)

o Leta) betherowsof A,and J = {j | a,z* = b;}.
We have

&'y <0, VyWitha}ySO,VjEj,

so by Farkas’ Lemma, there exist p; > 0,7 € J,
such that { = » ;7 pja;. Defining p; = 0 for

j ¢ J, we have
¢ =Apand p/'(Az* —b) =0, so&z* = u'b
e Hence from w*+&/z* < inf(w,w)EGPi(f){w—l—f/ZU},
* < inf "(Az — b
A A
< inf {w+ p'(Az —b)}

— (z,w)€epi(f),
Ax—b<u

< inf w~+ u'u
B (fc,w)GePi(f),ueﬂ?”{ H }
Ax—b<u

= inf {w+pu}l = < q~.
(u,w)eM{ pul=q(pu) <gq

Since generically ¢* < wx, it follows that ¢q(u) =
g =w*. Q.E.D.



NONLINEAR FARKAS’ LEMMA

o Let C C k™ be convex, and f : C' — R and
i C— R, 5 =1,...,r, be convex functions.
Assume that

f(x) >0, VeeF={zeC|g(x) <0},

and one of the following two conditions holds:

(1) O is in the relative interior of the set
D = {u| g(z) < uforsome z € C}.

(2) Thefunctionsg;,j =1,...,r, areaffine, and
F' contains a relative interior point of C.

Then, there exist scalars p; 20,5=1,...,r,s.t
v)+ Y wigi(x) >0, VazeC

e Reduces to Farkas’ Lemma if C' = &, and f
and g; are linear.



VISUALIZATION OF NONLINEAR FARKAS’ LEMMA

{(9(x),f(x) I x € C} ; {(g(x),f(x) I x € C} K(g).f(x) I x e C}

(@) (b) ©
e Assuming that for all z € C with g(x) < 0, we
have f(x) > 0, etc.

e The lemma asserts the existence of a nonver-
tical hyperplane in *7+1, with normal (u, 1), that
passes through the origin and contains the set

{(9(2), f(z)) |z € C}

in its positive halfspace.

e Figures (a) and (b) show examples where such
a hyperplane exists, and figure (c) shows an ex-
ample where it does not.



PROOF OF NONLINEAR FARKAS’ LEMMA

e Apply Min Common/Max Crossing to

M = {(u,w) | thereisz € C's. t. g(z) < wu, f(z) < w}

e Under condition (1), Min Common/Max Cross-
ing Theorem |l applies: 0 € ri(D), where

D = {u | there exists w € R with (u,w) € M}

e Under condition (2), Min Common/Max Cross-
ing Theorem Il applies: g(x) < 0 can be written
as Axr — b <0.

e Hence for some .*, we have w* = sup, q(u) =
q(p*), where q(p) = inf(y wyenm{w + p'u}. Using
the definition of M,

q(p1) = {infwec{f(fl?) + > kigi(x) ) ifp >0,
— 0 otherwise,

s0 y* > 0 and infeec { f@) + 30, M;fgj(x)} -
w* > 0.



EXAMPLE

e Here C =R, f(z) = z. In the example on the
left, g is given by g(z) = e=* — 1, while in the
example on the right, g is given by g(x) = 2.

e In both examples, f(x) > 0 for all x such that
g(z) < 0.

e Onthe left, condition (1) of the Nonlinear Farkas
Lemma is satisfied, and for u* = 1, we have

flz)+p*glx) =z +e=*—-12>0, Vel

e On theright, condition (1) is violated, and for ev-
ery u* > 0, the function f(z) + p*g(z) = v + p*a?
takes negative values for = negative and suffi-
ciently close to 0.



APPLICATION TO CONVEX PROGRAMMING

Consider the problem

minimize f(x)
subjectto x € F = {xe(]\gj(x) <0, jzl,.--ﬂ“}

where C C R™ is convex, and f : C — R and
g; : C'— Jt are convex. Assume that f* is finite.

e Replace f(x) by f(x)— f* and apply the nonlin-
ear Farkas Lemma. Then, under the assumptions
of the lemma, there exist p; =0, such that

f* < fl@)+ ) wigix), VzecC
j=1

Since F' C C'and p3g;j(z) < Oforallz € F,

( )

f* < inf S f(x)+ > pigi(x) p < inf f(z) = f*
j=1 )

reF reF

\

Thus equality holds throughout, and we have
4 3

fr=inf  flz)+ > pig(x)
j=1

xeC

-~

\ y,



CONVEX PROGRAMMING DUALITY - OUTLINE

e Define the dual function

( )

() = inf { f(x) +Zuj9j(x)

xeC

N

\ /

and the dual problem max,,>o q(u).
e Note that for all x > 0and z € C' with g(x) <0

() < f(z) + ngj(w) < f(=)

Therefore, we have the weak duality relation

* = su < inf r) = f*
q MZISQ('LL)_xGC,g(:c)SO flx)=f

e If we can use Farkas’ Lemma, there exists u* >
0 that solves the dual problem and ¢* = f*.

e Thisis soif (1) there exists T € C with g;(7) < 0
for all 5, or (2) the constraint functions g; are affine
and there is a feasible point in ri(C).



LECTURE 13
LECTURE OUTLINE

e Directional derivatives of one-dimensional con-
vex functions

e Directional derivatives of multi-dimensional con-
vex functions

e Subgradients and subdifferentials

e Properties of subgradients



ONE-DIMENSIONAL DIRECTIONAL DERIVATIVES

e Three slopes relation for a convex f : R — R:

i) - 69 sops = 12-10)

! slope = y-x | 7Ty

fly) — f(x) < f(z) = f(x) < f(z) = f(y)

Yy —x Z—x z—y

e Right and left directional derivatives exist

fle+a) - f(z)

fr(z) =lim -
- (2) = lim f(z) = flz —a)

a0 8



MULTI-DIMENSIONAL DIRECTIONAL DERIVATIVES

e Foraconvex f: Rh"— R

oy g S (@ ay) = (@)
f(ajvy)_glfol o ’

IS the directional derivative at x in the direction y.
e Exists for all x and all directions.

e fis differentiable at = if f/(x;y) is a linear func-
tion of y denoted by

f'(x;y) = Vf(x)y,

where V f(x) is the gradient of f at x.

e Directional derivatives can be defined for ex-
tended real-valued convex functions, but we will
not pursue this topic (see the textbook).



SUBGRADIENTS

e Let f: R” — R be a convex function. A vector
d € R" is a subgradient of f ata point x € R~ if

f(z) > f(z) + (z — z)d, V z e R

e dis a subgradient if and only if
f(z) = 2/d > f(x) — 2'd, VzekRn
SO d is a subgradient at « if and only if the hyper-

plane in k»+1 that has normal (—d, 1) and passes
through (z, f(z)) supports the epigraph of f.

iz
(%, f(x))
(-d, 1)
)
Z




SUBDIFFERENTIAL

e The set of all subgradients of a convex function
f at x is called the subdifferential of f at x, and is
denoted by 0f(x).

e Examples of subdifferentials:

f(x) . xI f(x) = max{cx, (1/2)(x? - 1)}




PROPERTIES OF SUBGRADIENTS |

e Of(x)is nonempty, convex, and compact.

Proof: Consider the min common/max crossing
framework with

M ={(u,w)|ue R, flx+u) <w}

Min common value: w* = f(x). Crossing value
function is g(u) = inf(y, wyemiw + p'u}. We have
w* = g* = q(p) iff f(z) = inf, e {w+ p'u}, or

flz) < f(x+u) + pu, VueRn

Thus, the set of optimal solutions of the max cross-
iIng problem is precisely —0f(x). Use the Min
Common/Max Crossing Theorem Il: since the set

D = {u | there exists w € R with (u,w) € M} = R~
contains the origin in its interior, the set of op-

timal solutions of the max crossing problem is
nonempty, convex, and compact. Q.E.D.



PROPERTIES OF SUBGRADIENTS I

e Forevery z € it”, we have

' x; 'd, Vye R
f(x;y) = JLax y'd, Y

e f is differentiable at x with gradient V f(x), if
and only if it has V f(z) as its unique subgradient
at x.

o If f=0aifi+ - -+amfm,Wherethe f; : *» — R
are convex and «; > 0,

0f(x) = a10fi(z) +- -+ + amdfm(z)

e Chain Rule: If F(x) = f(Ax), where A is a
matrix,

OF(z) = A'0f(Az) = {A'g | g € Of(Az))

e Generalizes to functions F(z) = ¢(f(z)), where
g 1S smooth.



ADDITIONAL RESULTS ON SUBGRADIENTS

e Danskin’s Theorem: Let Z be compact, and
¢ : R x Z — R be continuous. Assume that
®(-, z) is convex and differentiable for all z € Z.
Then the function f : ®™ — R given by

f(z) = max ¢(z, z)

z€ /4

IS convex and for all 2

Of (x) = conv{V.d(z,2) | z € Z(z)}

e The subdifferential of an extended real valued
convex function f : R — (—o0, co] is defined by

Of (x) = {d | f(z) > f(x)+ (z—x)'d, V z € 9?”}

e Of(x), is closed but may be empty at rela-
tive boundary points of dom(f), and may be un-
bounded.

e Of(x)is nonempty at all z € ri(dom(f)), and

it is compact if and only if z € int(dom(f)). The
proof again is by Min Common/Max Crossing |l.



LECTURE 14
LECTURE OUTLINE

e Conical approximations
e Cone of feasible directions
e Tangent and normal cones

e Conditions for optimality
e A basic necessary condition:

— If * minimizes a function f(x) over z € X,
then for every y € R7, o* = 0 minimizes
g(a) = f(x + ay) over the line subset

{a|lx+ay e X}

e Special cases of this condition (f: differen-
tiable):

— X =Rn: Vf(z*) =0.

— Xisconvex: Vf(z*) (x—x*) >0, Vo € X.

e We will aim for more general conditions.



CONE OF FEASIBLE DIRECTIONS

e Consider a subset X of )t and a vector z € X.

e A vector y € R" is a feasible direction of X at x
if there exists an @ > 0 such that z + ay € X for
all a € [0, @].

e The set of all feasible directions of X at x is
denoted by Fx (x).

e I'x(x) is a cone containing the origin. It need
not be closed or convex.

e If X is convex, Fx(x) consists of the vectors of
the form a(z — ) witha > 0and z € X.

e Easy optimality condition: If x* minimizes a
differentiable function f(x) over x € X, then

Vf(x*)y >0, Vye Fx(x*)

e Difficulty: The condition may be vacuous be-
cause there may be no feasible directions (other
than 0), e.g., take X to be the boundary of a circle.



TANGENT CONE

e Consider a subset X of )t and a vector z € X.

e Avectory € Rrissaidtobe a tangentof X at x if
either y = 0 or there exists a sequence {z;} C X
such that x; # « for all k£ and

Tk — T Y

ek =zl [yl

Lk — T,

e The set of all tangents of X at x is called the
tangent cone of X at x, and is denoted by T'x (z).

Ball of

e yis atangentof X at z iff there exists {z)} C X
with x;, — x, and a positive scalar sequence {ay, }
such that oy, — 0 and (xx — z)/ar — v.



EXAMPLES

(1,2)

e In (a), X is convex: The tangent cone Tx (x) is
equal to the closure of the cone of feas. directions

Fx(aj)

e In (b), X is nonconvex: Tx(x) is closed but
not convex, while F'x(x) consists of just the zero
vector.

e Ingeneral, Fx(z) C Tx(x).
e For X: polyhedral, Fx(x) = Tx(x).



RELATION OF CONES

e Let X be a subset of R" and let «z be a vector
iIn X. The following hold.

(a) T'x(x) is a closed cone.
(b) cl(Fx(z)) C Tx(x).

(c) If X is convex, then Fx(x) and Tx (x) are
convex, and we have

cl(Fx(z)) =Tx(x)

Proof: (a) Let {y.} be a sequence in T'x () that
converges to some y € R». We show that y <

(b) Every feasible direction is atangent, so F'x (z) C
Tx (x). Since by part (a), Tx (z) is closed, the re-
sult follows.

(c) Since X is convex, the set F'x(x) consists of
the vectors of the form a(z — x) with o« > 0 and
z € X. Verify definition of convexity ...



NORMAL CONE

e Consider subset X of ®” and a vector = € X.

e Avector z € R is said to be a normalof X at x
if there exist sequences {zx} C X and {z;} with

Tp — T, 2 — 2, 2k € Tx (xp)*, Vk

e The set of all normals of X at z is called the
normal cone of X at x and is denoted by Nx (x).

e Example:

e Nx(x) is “usually equal” to the polar T'x (x)*,
but may differ at points of “discontinuity” of T'x (x).



RELATION OF NORMAL AND POLAR CONES

e We have Tx (x)* C Nx(x).

e When Nx(z) = T'x (z)*, we say that X is regular
at x.

e If X is convex, then for all x € X, we have
z € Tx(x)* if and only if 2/(z—z) <0, Vze X

Furthermore, X is regular at all z € X. In partic-
ular, we have

Tx(a?)* = Nx(a?), Tx(x) = Nx(a?)*

e Note that convexity of T'x(x) does not imply
regularity of X at x.

e Important fact in nonsmooth analysis: If X is
closed and regular at z, then

Tx(w) — Nx(w)*

In particular, Tx (x) is convex.



OPTIMALITY CONDITIONS I

o Let f: K" — R be a smooth function. If z* is a
local minimum of f over a set X C R, then

Vf(x*)y >0, VyeTx(x*)

Proof: Lety € Tx(z*) with y # 0. Then, there
exist {¢x} C R and {zx} C X such that x; # x*
forall k£, &, — 0, xp, — x*, and

(e — x*)/|lzk — 2% = y/llyll + &
By the Mean Value Theorem, we have for all k
flxr) = f(x*) + V(@) (zr — %),

where z Is a vector that lies on the line segment
joining x; and x*. Combining these equations,

flar) = f@*) + (lzk — 2/ [ly )V F (Zr) Y,

where yr. = y + ||y||&. If Vf(z*)'y < 0, since
T, — x* and y, — vy, for sufficiently large k,
Vi@r)yr < 0and f(xx) < f(x*). This con-
tradicts the local optimality of x*.



OPTIMALITY CONDITIONS II

e Let f: R” — R be a convex function. A vector
x* minimizes f over a convex set X if and only if
there exists a subgradient d € 0 f(x*) such that

d'(x—x*) >0, VeeX

Proof: If forsome d € 0f(z*) and all z € X, we
have d’'(x — x*) > 0, then, from the definition of a
subgradient we have f(z)— f(x*) > d'(x — x*) for
allz € X. Hence f(x) — f(xz*) > 0forall x € X.

Conversely, suppose that x* minimizes f over
X. Then, x* minimizes f over the closure of X,
and we have

fl(z*;z—x*) = sup d'(z—z*)>0,Vz e cl(X)
deof(x*)

Therefore,

inf sup d'(zx—x*)=0
zecl(X)N{z|||z—=z*|| <1} deof(z*)

Apply the saddle point theorem to conclude that
“infsup=supinf” and that the supremum is attained
by some d € Of(x*).



OPTIMALITY CONDITIONS Il

e Let x* be alocal minimum of a function f : ®» —
R over a subset X of k. Assume that the tangent
cone Tx (x*) is convex, and that f has the form

f(x) = fi(z) + fa(x),

where f; Is convex and fs2 is smooth. Then

—V fa(a*) € Of1(a*) + Tx (z*)*

e The convexity assumption on T'x (z*) (which is
implied by regularity) is essential in general.

e Example: Consider the subset of 2

X = {(331,:172) ’ L1X2 = O}

ThenT'x (0)* = {0}. Take f to be any convex non-
differentiable function for which z* = 0 is a global
minimum over X, but z* = 0 is not an uncon-
strained global minimum. Such a function violates
the necessary condition.



LECTURE 15
LECTURE OUTLINE

e Intro to Lagrange multipliers

e Enhanced Fritz John Theory

e Problem

minimize f(x)
subjectto z € X, hi(z)=0,...,An(x)=0
gl(x) 7"'797”( )go

where f, hi, g; : " — R are smooth functions,
and X is a nonempty closed set

e Main issue: What is the structure of the con-
straint set that guarantees the existence of La-
grange multipliers?



DEFINITION OF LAGRANGE MULTIPLIER

e Letz* bealocalminimum. Then A* = (A}, ..., \%)
and p* = (uf, ..., ur) are Lagrange multipliers if

Wi =0, V 7 with g;(z*) < 0,
VaoL(x*, M, u*)y >0, VyeTx(x*),

where L is the Lagrangian function
L(x, A p) = +Z>\h )+ > pigs(x)
j=1

e Note: When X = Rn, then Tx (x*) = R» and
the Lagrangian stationarity condition becomes

V(@) + SN Vhi(at) + 3w Vs () =0

i=1 j=1



EXAMPLE OF NONEXISTENCE

OF A LAGRANGE MULTIPLIER

Minimize

f(x) = a1+ 2

subject to the two constraints
hi(xz) = (z1+1)24+2%2—-1=0,

ho(x) = (21 —2)2+25—4=0



CLASSICAL ANALYSIS

e Necessary condition at a local minimum x*:

—Vf(x*) e T(x*)*

e Assume linear equality constraints only

hi(z) = alx — by, i=1,...,m,

e The tangent cone is
T(x*)={y|ay=0,i=1,...,m}

and its polar, T'(x*)*, is the range space of the ma-
trix having as columns the a;, so for some scalars
Ai

Vi) +» Aai=0
1=1



QUASIREGULARITY

e |f the h; are nonlinear AND
T(x*)=A{y | Vhi(x*)y=0,1=1,...,m} (%)
similarly, for some scalars A}, we have

Vf(x*)+ Z MNVhi(x*) =0
i=1
e Eq. (%) (called quasiregularity) can be shown to
hold if the Vh;(z*) are linearly independent

e Extension to inequality constraints: If quasireg-
ularity holds, i.e.,

T(z") ={y | Vhi(z")'y =0, Vg;(z")'y <0, Vj € A(a")}
where A(x*) | gi(x*) = 0}, the condition

= U
—Vf(xz*) € T(z*)*, by Farkas’ lemma, implies
p; =0Vj¢ Az )and

f(x*) —|—Z)\*Vh (x*) —|—Z,u Vgi(z*) =



FRITZ JOHN THEORY

e Back to equality constraints. There are two
possibilities:
— Either Vh;(z*) are linearly independent and

Vi(@*)+ ) ArVhi(z*) =0

1=1

— or for some A\F (not all 0)
> AfVhi(az*) =0
1=1

e Combination of the two: There exist 1, > 0 and
AT, ..., Al (not all 0) such that

pgV [ (%) + ) A Vhi(z*) =0

1=1

e Question now becomes: When is pf # 07



SENSITIVITY (SINGLE LINEAR CONSTRAINT)

e Perturb RHS of the constraint by Ab. The min-
Imum is perturbed by Az, where a’ Ax = Ab.

e If \* is Lagrange multiplier, V f(z*) = —\*a,

Acost = Vf(z*) Ax+o(||Ax||) = = *a’ Az+o(||Ax||

e S0 Acost = —A*Ab + o(||Ax|), and up to first
order we have

Acost

A =
Ab




EXACT PENALTY FUNCTIONS

e Consider

Fe(z) = f(z) +c (Z hi(z)| + Zgj(w))

e A local min z* of the constrained opt. problem
Is typically a local minimum of F., provided c is
larger than some threshold value.

A Fo(x) A
X/ <
~ f(x) / f(x)
<— g(X) <0 —> \4— g(x)<0—:
X X X X
/
v
1) 9%
(a) (b)

e Connection with Lagrange multipliers.



OUR APPROACH

e Abandon the classical approach — it does not
work when X # R,

e Enhance the Fritz John conditions so that they
become really useful.

e Show (under minimal assumptions) that when
Lagrange multipliers exist, there exist some that
are informative in the sense that pick out the “im-
portant constraints” and have meaningful sensi-
tivity interpretation.

e Use the notion of constraint pseudonormality as
the linchpin of a theory of constraint qualifications,
and the connection with exact penalty functions.

e Make the connection with nonsmooth analysis
notions such as regularity and the normal cone.



ENHANCED FRITZ JOHN CONDITIONS

If z* is a local minimum, there exist pf, 13, - . ., 17,
satisfying the following:

(i) — (MSVf(x*)JrZu;ngj(w*)) € Nx (z*)

g=1

() po, p13y,--., ¢ > 0andnot all 0
(iii) If
J={j#0]|p; >0}

IS nonempty, there exists a sequence {z*} C
X converging to x* and such that for all &,

flak) < fz*),  gj(a*) >0, Vjel

g7 e4) = o (miygs () ) ¥ ¢

jE€J
e The last condition is stronger than the classical

gi(x*) =0, VieJ



LECTURE 16
LECTURE OUTLINE

e Enhanced Fritz John Conditions
e Pseudonormality

e Constraint qualifications

e Problem

minimize f(x)
subjectto z € X, hi(z)=0,...,An(x)=0
g1(z) <0,...,9-(x) <0
where f, hi, g; : I — RN are smooth functions,
and X Is a nonempty closed set.

e To simplify notation, we will often assume no
equality constraints.



DEFINITION OF LAGRANGE MULTIPLIER

e Consider the Lagrangian function

L(x, A p) = +Z>\h )+ > pigi(x)
=1

Let z* be a local m|n|mum. Then )\*_and p* are
Lagrange multipliers if for all 5,

pr >0,  pi=0if gj(z*) <O,

and the Lagrangian is stationary at z*, i.e., has
> 0 slope along the tangent directions of X at z*
(feasible directions in case where X is convex):

VaL(z*, A, p*)'y 20, Vye Tx(z)

e Note 1: If X = Rn, Lagrangian stationarity
means V,L(x*, \*, u*) = 0.

e Note 2: If X is convex and the Lagrangian
Is convex in z for 4 > 0, Lagrangian stationarity
means that L(-, A\*, u*) is minimized over z € X
at x*.



ILLUSTRATION OF LAGRANGE MULTIPLIERS

(Tx(x)) Level Sets

Level Sets
of f

e (a) Case where X = Rn: —V f(x*) is in the
cone generated by the gradients Vg;(xz*) of the
active constraints.

e (b) Case where X # Rr: —V f(x*) is in the
cone generated by the gradients Vg;(x*) of the
active constraints and the polar cone T'x (z*)*.



ENHANCED FRITZ JOHN NECESSARY CONDITIONS

If z* is a local minimum, there exist p, 13, - . ., 17,
satisfying the following:

(i) — ( oV f(z¥) +Zu Vg, x*)) € Nx(z*)

(i) pg,pi,...,pur > 0andnotall 0
(i) If
J={j#0]|u;>0}

is nonempty, there exists a sequence {z*} C
X converging to x* and such that for all &,

f(xk) < f(x*), gi(xk) >0, Vjel,

g7 (24) = o (ming,(a4)) . Vi J

ged

e Note: Inthe classical Fritz John theorem, con-
dition (iii) is replaced by the weaker condition that

pi=0, VY jwith gj(z*) <0



GEOM. INTERPRETATION OF LAST CONDITION

(Tx(x)) Level Sets

Level Sets
of f

(a) (b)

e Note: Multipliers satisfying the classical Fritz
John conditions may not satisfy condition (iii).

e Example: Startwith any problem miny,,y—¢ f(7)
that has alocal min-Lagrange multiplier pair (x*, A*)
with Vf(z*) £ 0 and Vh(z*) # 0. Convert it to

the problem miny, ;) <o, —h(z)<o0 f(x). The (ug, p*)
satisfying the classical FJ conditions:

po =0, pi =ps; F00r ug >0, (ug) 1 (pi—p3) = A*
The enhanced FJ conditions are satisfied only for

po >0, pup = A /ug, p3 =0 or pug >0, uy =0, py = —=A"/pg



PROOF OF ENHANCED FJ THEOREM

e We use a quadratic penalty function approach.
Let g;r(x) = max{0, g;(z)}, and for each k, con-
sider

P?‘

1

1 k _ _ _ ek |]2
min F*(z) 2; g; (2))" + 5llw — z*]]
where S = {z | ||x — x*|| < €}, and € > 0 is such
that f(z*) < f(x) for all feasible x with x € §.

Using Weierstrass’ theorem, we select an optimal
solution x*. For all k, F*(x*) < Fk(z*), or

Flk)+ 5 (6 @) + ke — o2 < f(a)

Since f(z*) is bounded over X N S, g (z*) — 0,
and every limit point = of {z*} is feasible. Also,
f(xk) + (1/2)||zk — z*||2 < f(x*) for all &k, so

F@) + Sl - 2|2 < f(a)

e Since x € S and 7 is feasible, we have f(z*) <
f(z), so x = x*. Thus ¥ — z*, and z* is an
interior point of the closed sphere S for all large .



PROOF (CONTINUED)

e For k large, we have the necessary condition
—V Fk(xk) € Tx (x%)*, which is written as

( —l_ZCj vgj ':U —Z )) ETx(QIZ‘k)*,

where (¥ = kg (z*). Denote

o = |1+ (D2 = W=, G>0

\

Dividing with 6%,

( Vf(:ck)—FZ,M Vg;(x ;k(xkx*)> ETX(mk)*

Since by construction (1§)2+> " _; (%)% = 1, the

sequence {uk, % ... prl is bounded and must
contain a subsequence that converges to some
limit {ug, 17, ..., p5}. This limit has the required
properties ...



CONSTRAINT QUALIFICATIONS

Suppose there do NOT exist 1, . . ., -, satisfying:

(i) —> -1 1;Vgj(z*) € Nx(z*).
(i) p1,...,u- > 0andnotall 0.

e Then we must have pf > 0 in FJ, and can take
py = 1. Sothere exist u7, ..., ur, satisfying all the
Lagrange multiplier conditions except that:

- <Vf<:c*> ¥ Zu§ng(fE*)) € Nx(a*)

j=1

rather than —(-) € T'x(x*)* (such multipliers are
called R-multipliers).

e If X isregular at z*, R-multipliers are Lagrange
multipliers.

e LICQ (Lin. Independence Constr. Qual.):
There exists a unique Lagrange multiplier vector
if X = R" and z* is a reqular point, i.e.,

{Vg;(z*) | j with g;(z*) = 0}

are linearly independent.



PSEUDONORMALITY

A feasible vector z* is pseudonormal if there are

NO scalars u1,...,ur-, and a sequence {x*} C
Xsuch that:

() — (37— 15V 95(2")) € Nx ()

(i) w; >0,forallj=1,...,r,and p; = 0 for all
J & Alz*).

(iii) {x*} converges to z* and

> wigi(ak) >0, Vk
j=1

e From Enhanced FJ conditions:
— If z* is pseudonormal there exists an R-multiplier
vector.

— If in addition X is regular at x*, there exists
a Lagrange multiplier vector.



GEOM. INTERPRETATION OF PSEUDONORMALITY |

e Assume that X = Rkn»

ju2 Au2 Ju2

<£E§ m Eén SR .

Pseudonormal Pseudonormal Not Pseudonormal
Vg;: Linearly Indep. gj: Concave

e Consider, for a small positive scalar ¢, the set
T. = {g(x) | l|lz - 2*| < ¢}

e z* is pseudonormal if and only if either

— (1) the gradients Vg,(x*), j = 1,...,r, are
linearly independent, or

— (2) for every n > 0 with 4 # 0 and such
that > ._, u;Vgj(x*) = 0, there is a small
enough ¢, such that the set T, does not cross
into the positive open halfspace of the hyper-
plane through 0 whose normal is . This is
true if the g; are concave [then p/g(z) is max-
imized at z* so p/g(z) < 0 for all z € Rn].



GEOM. INTERPRETATION OF PSEUDONORMALITY II

e Assume that X and the g; are convex, so that

- (Z ujVQj(x*)) € Nx(x*)

ifandonly if z* € argmingex > ., p1j9; (). Pseu-
donormality holds if and only if for every hyper-
plane with normal ;. > 0 that passes through the
origin and supports the set G = {g(x) | = € X},
contains G in its negative halfspace.

X : pseudonormal X : pseudonormal
(Slater criterion) (Lineari’?/ criterion)

u G={gx) IxeX}

gm. LY

x": not pseudonormal

A

" G={gx) IxEX}
H
fﬁX M




SOME MAJOR CONSTRAINT QUALIFICATIONS

CQ1: X = R, and the functions g, are concave.
CQ2: There exists a y € Nx (x*)* such that

Vgi(x*)y <0, Vje Alx¥)

e Special case of CQ2: The Slater condition (X
IS convex, g; are convex, and there exists z € X
s.t. g;() < 0 for all j).

e CQ2isknown asthe (generalized) Mangasarian-
Fromowitz CQ. The version with equality constraints:

(a) There does not exist a nonzero vector A =
(A1,..., Am) such that

zm: )\th@(I*) c Nx (CC*)

1=1
(b) There exists a y € Nx (x*)* such that

Vhi(x*)y =0, Vi, Vgj(z*)y <0, Vj € A(z*)



CONSTRAINT QUALIFICATION THEOREM

e If CQ1 or CQ2 holds, then x* is pseudonormal.

Proof: Assume that there are scalars u;, j =
1,...,r, satisfying conditions (i)-(iii) of the defini-
tion of pseudonormality. Then assume that each
of the constraint qualifications is in turn also sat-
isfied, and in each case arrive at a contradiction.

Case of C'Q)1: By the concavity of g;, the condition
> 1 1;Vgj(z*) = 0, implies that z* maximizes
u' g(x) over x € R, SO

wglx) < pglzr) =0, VoreRr
This contradicts condition (iii) [arbitrarily close to
z*, there is an x satisfying > ’_, 11;9;(x) > 0].

Case of CQ2: We must have p; > 0 for at least
one j, and since p; > 0 for all 5 with p; = 0 for
j ¢ A(z*), we obtain

ZMngj(x*)’y <0,

j=1
for the vector y of Nx (x*)* that appears in CQ2.



PROOF (CONTINUED)

Thus,
- ZMngj(x*) ¢ (Nx(a*)*)"

Since Nx (z*) C (Nx(z*)*)",
—Z,Lijgj(ﬂj*) ¢ Nx(z*)

a contradiction of conditions (i) and (ii)). Q.E.D.

e If X = Rn, CQ2 is equivalent to the cone
{y | Vgj(z*)y <0, 5 € A(x*)} having nonempty
interior, which (by Gordan’s theorem) is equivalent
to conditions (i) and (ii) of pseudonormality.

e Note that CQ2 can also be shown to be equiv-
alent to conditions (i) and (ii) of pseudonormality,
even when X # Rn, as long as X is regular at
x*. These conditions can in turn can be shown in
turn to be equivalent to nonemptiness and com-
pactness of the set of Lagrange multipliers (which
is always closed and convex as the intersection of
a collection of halfspaces).



LECTURE 17
LECTURE OUTLINE

e Sensitivity Issues
e Exact penalty functions

e Extended representations

Review of Lagrange Multipliers

e Problem: min f(x) subjecttox € X,andg;(z) <
0,7=1,...,r.

e Key issue is the existence of Lagrange multipli-
ers for a given local min z*.

e Existence is guaranteed if X is regular at x*
and we can choose p§ = 1 in the FJ conditions.

e Pseudonormality of =* guarantees that we can
take n = 1 in the FJ conditions.

e We derived several constraint qualifications on
X and g; that imply pseudonormality.



PSEUDONORMALITY

A feasible vector z* is pseudonormal if there are
NO scalars u1,...,ur-, and a sequence {x*} C
Xsuch that:

() — (37— 15V 95(2")) € Nx ()

(i) w; >0,forallj=1,...,r,and p; = 0 for all
j & Alz*) ={j | gj(z*) = 0}.

(iii) {x*} converges to z* and

> wigi(ak) >0,  Vk
j=1

e From Enhanced FJ conditions:
— If x* is pseudonormal, there exists an R-
multiplier vector.

— If in addition X is regular at x*, there exists
a Lagrange multiplier vector.



EXAMPLE WHERE X IS NOT REGULAR

| %2

e We have

Tx(af*) = X, Tx(ilf*)* = {O}, Nx(aj‘*) = X

Let h(z) = z2 = 0 be a single equality constraint.
The only feasible point x* = (0,0) is pseudonor-
mal (satisfies CQ2).

e There exists no Lagrange multiplier for some
choices of f.

e For each f, there exists an R-multiplier, i.e., a
A* such that —(V f(x*) + A*Vh(z*)) € Nx(z*) ...
BUT for f such that there is no L-multiplier, the
Lagrangian has negative slope along a tangent
direction of X at z*.



TYPES OF LAGRANGE MULTIPLIERS

e Informative: Those that satisfy condition (iii)
of the FJ Theorem

e Strong: Those that are informative if the con-
straints with n; = 0 are neglected

e Minimal: Those that have a minimum number
of positive components

e Proposition: Assume that T'x (z*) is convex.
Then the inclusion properties illustrated in the fol-
lowing figure hold. Furthermore, if there exists
at least one Lagrange multiplier, there exists one
that is informative (the multiplier of min norm is
informative - among possibly others).

Strong
CE oD

Lagrange multipliers




SENSITIVITY

¢ Informative multipliers provide a certain amount
of sensitivity.

e They indicate the constraints that need to be
violated [those with p% > 0 and g;(z*) > 0] in
order to be able to reduce the cost from the optimal

value [f(zF) < f(z*)].

e The L-multiplier x* of minimum norm is informa-
tive, but it is also special; it provides quantitative
sensitivity information.

e More precisely, let d* € T'x (x*) be the direction
of maximum cost improvement for a given value of
norm of constraint violation (up to 1st order; see
the text for precise definition). Then for {z*} C X
converging to x* along d*,we have

fah Zu]gg (%) + o([|lz* — z*|)

e In the case where there is a unique L-multiplier
and X = Rk, this reduces to the classical inter-
pretation of L-multiplier.



EXACT PENALTY FUNCTIONS

e Exact penalty function

where c is a positive scalar, and
g; (z) = max{0, g; ()}

e We say that the constraint set C' admits an exact
penalty at a feasible point z* if for every smooth
f for which x* is a strict local minimum of f over
C, there is a ¢ > 0 such that z* is also a local
minimum of F. over X.

e The strictness condition in the definition is es-
sential.

Main Result: If z* € C is pseudonormal, the
constraint set admits an exact penalty at =*.



PROOF NEEDS AN INTERMEDIATE RESULT

e Firstuse the (generalized) Mangasarian-Fromovitz
CQ to obtain a necessary condition for a local min-
imum of the exact penalty function.

Proposition: Let x* be a local minimum of F,. =
f+c>2i_1 g, over X. Then there exist uf, ..., u7
such that

— [ V() +cZu Vgj(z*) | € Nx(z*),

pr=1 ifg;j(z*) >0, pi=0 ifg;(z*) <O,
€ [0,1] ifgij(x*)=0

Proof: Convert minimization of F.(x) over X to
minimizing f(x) +c)_;_, v; subject to

x € X, g;i(x) <wj, 0<w;, j=1,...,r



PROOF THAT PN IMPLIES EXACT PENALTY

e Assume PN holds and that there exists a smooth
f such that z* is a strict local minimum of f over
C', while z* is not a local minimum over z € X of
Fo=f+kY  _, g forallk=1,2,...

e Let ¥ minimize F} over all x € X satisfying
|z — z*|| < € (where € is s.t. f(x*) < f(z) for
all z € X with x # 0 and ||z — x*|| < €). Then
xk # x*, xk is infeasible, and

Fy(zk) = f(x*) + kY gf (ak) < f(a*)

j=1
S0 g (z*) — 0 and limit points of z* are feasible.

e Can assume z* — x*, SO ||aF — x*|| < € for
large k, and we have the necessary conditions

- (;Vﬂxk) ' ;ungk)) € Nx(ah)

where p = 1if g;(2*) > 0, u¥ = 0if g;(z*) < 0,
and p% € [0,1] if gj(a*) = 0.



PROOF CONTINUED

e We can find a subsequence {u* }rcx such that
for some j we have % = 1 and g;(z*) > 0 for all
k € KC. Let i be a limit point of this subsequence.
Then u # 0, 4 > 0, and

—> 1;Vgj(z*) € Nx(z*)
j=1
[using the closure of the mapping « — Nx (z)].

o Finally, for all & € K, we have p%g;(z*) > 0
for all j, so that, for all £ € K, pjg;(«%) > 0 for
all . Since by construction of the subsequence
{1*}rex, we have forsome jandallk € K, p% = 1
and g;(z*) > 0, it follows that for all £ € K,

> uigi(ak) >0
j=1

This contradicts the pseudonormalityof z*. Q.E.D.



EXTENDED REPRESENTATION

e X can often be described as

X ={z|gj(x) <0, j=r+1,...,7}

e Then C can alternatively be described without
an abstract set constraint,

C={z]gj(z) <0, j=1,...,7}

We call this the extended representation of C.
Proposition:

(a) If the constraint set admits Lagrange multi-
pliers in the extended representation, it ad-
mits Lagrange multipliers in the original rep-
resentation.

(b) If the constraint set admits an exact penalty
In the extended representation, it admits an
exact penalty in the original representation.



PROOF OF (A)

e By conditions for case X = R there exist
ui, ..., us satisfying

f(x*) ‘|‘ZM Vygj(a*) =

p;>0,vj=01,....,F, ;=0 Yj¢A@)
where

For y € Tx(z*), we have Vg;(x*)'y < 0 for all
j=r+1,....,7 with j € A(z*). Hence

(vm*) ¢ Zu;'fvgm*)) y>0, VyeTx(),

g=1

and the p7, j = 1,...,r, are Lagrange multipliers
for the original representation.



THE BIG PICTURE

X =RnN

Constraint Qualifications
CQ1-CQ4

Y

Pseudonormality

X #RN and Regular

Quasiregularity

Admittance of an Exact
Penalty

\/

Constraint Qualifications
CQ5, CQ6

Y

Pseudonormality

Y

Admittance of an Exact
Penalty

Y

Admittance of Informative
Lagrange Multipliers

Admittance of Informative
Lagrange Multipliers

A

Y

Admittance of Lagrange
Multipliers

X #RN

A

Y

Admittance of Lagrange
Multipliers

Constraint Qualifications
CQ5, CQ6

Y

Pseudonormality

Y

Admittance of an Exact
Penalty

\i

Admittance of R-multipliers




LECTURE 18
LECTURE OUTLINE

Convexity, geometric multipliers, and duality
Relation of geometric and Lagrange multipliers
The dual function and the dual problem

Weak and strong duality

Duality and geometric multipliers



GEOMETRICAL FRAMEWORK FOR MULTIPLIERS

e We start an alternative geometric approach to
Lagrange multipliers and duality for the problem

minimize f(x)
subjectto z € X, gi(x) <0,...,9-(x) <0

e \We assume nothing on X, f, and g;, except
that

—00 < f* = inf f(x) < o0
T
gj(w)SO,jzl,...,'r'

e A vector u* = (uf,...,us) is said to be a geo-
metric multiplier if u* > 0 and

fr= inf L(z, u*),

where
L(z,p) = f(z) + p'g(z)

e Note that a G-multiplier s associated with the
problem and not with a specific local minimum.



VISUALIZATION

w A
S
(0,f%)
of .
(b)
A
W
S
0,f*
/( )
-
0 z

Set of pairs (g(x),f(x)) corresponding to x
that minimize L(x, u*) over X

© (d)

e Note: A G-multiplier solves a max-crossing
problem whose min common problem has optimal

value f*.



EXAMPLES: A G-MULTIPLIER EXISTS

min f(x) =Xq -Xo

A
T st g(X)=x4 +Xo-1=<0

S ={(g(x).f(x)) I x EX}

-~ xeX ={(x1,X0) | X1 = 0, X5 = O}

(@)

AN

A
(u*,1) / min f(x) = (1/2) (x42 +xo2)
)\S (g ) Ixexy St 9x=xg-1<0
> xeX = R2
(1,00 O
(b)
A

min f(x) = x4l +Xo

st g(x)=x4=0
S ={(g(X),f(X)) l Xf X} XEX = {(X1 ,X2) I X2 = 0}

(©




EXAMPLES: A G-MULTIPLIER DOESN’T EXIST

A

S ={(g(x),f(x)) I x €X}

min f(x) = x
st. gx)=x2=<0
- xeX =R
(0,f*) = (0,0) /
(a)
A
S= ) | X min f(x) =-x
e Ho00.Hea) Ix X} st gx)=x-12=<0
(-1/2,0')/ \ - xeX ={0,1}
(0,f*) = (0,0)
(b)
®(1/2,-1)

e Proposition: Let u* be a geometric multiplier.
Then z* is a global minimum of the primal problem
if and only if z* is feasible and

x* = argal;réigfll)(x,u*), pigi(z*) =0, j=1,...,r



RELATION BETWEEN G- AND L- MULTIPLIERS

e Assume the problem is convex (X closed and
convex, and f and g; are convex and differen-
tiable over ), and z* is a global minimum. Then
the set of L-multipliers concides with the set of
G-multipliers.

e For convex problems, the set of G-multipliers
does not depend on the optimal solution x* (it is
the same for all z*, and may be nonempty even if
the problem has no optimal solution x*).

¢ In general (for nonconvex problems):

— Set of G-multipliers may be empty even if the
set of L-multipliers is nonempty. [Example
problem: ming—o(—x2)]

— “Typically” there is no G-multiplier if the set
{(u,w) | for some z € X, g(z) < u, f(z) <w}

IS nonconvex, which often happens if the
problem is nonconvex.

— The G-multiplier idea underlies duality even
if the problem is nonconvex.



THE DUAL FUNCTION AND THE DUAL PROBLEM

e The dual problem is

maximize q(u)
subjectto p > 0,

where ¢ is the dual function

q(up) = inf L(z,p),  Vp€R

e Note: The dual problem is equivalent to a max-
crossing problem.

A
(w,1) S ={(g(x),f(x)) | x EX}

Optimal
Dual Value

Support points £ —"
correspond to minimizers -\\ q(u) = ianL(x,u)
X E

of L(x,u) over X
>
=N

H={@zw)lw+ u'z=b}"



WEAK DUALITY

e The domainof ¢ is
Dy = {p|q(p) > —o0}

e Proposition: g is concave, i.e., the domain D,
IS a convex set and ¢ is concave over D,,.

e Proposition: (Weak Duality Theorem) We
have
g < f*

Proof: Forall u > 0, and z € X with g(z) < 0,
we have

— <
q(n) = inf L(z,p) < f(= +Zuggg < f(x),

SO

* = su < inf )= f*
q M>pOQ(u)_$€X,g($)Sof() f



DUAL OPTIMAL SOLUTIONS AND G-MULTIPLIERS

Proposition: (a) If ¢* = f*, the setof G-multipliers
IS equal to the set of optimal dual solutions.

(b) If ¢* < f*, the set of G-multipliers is empty (so
if there exists a G-multiplier, ¢* = f*).

Proof: By definition, u* > 0 is a G-multiplier if
f* = q(p*). Since g(p*) < ¢* and g* < f*,

p* > 0is a G-multiplier iff q(p*) = ¢* = f*

e Examples (dual functions for the two problems
with no G-multipliers, given earlier):

a4 min (x) = x
st g(x)=x2<0
xeX =R
f*=0
u . oy _ -1/(4w) if u>0
q(u)_xnénR{X-*-MX} {-oo if u<O
(@)
a(w) &
min f(x) =-x
st gx)=x-12=<0
xeX ={0,1}
f*=0 1

g(uw)= min {-x+u(x-1/2)}=min{ - w2, u/2 -1}

E x€{0,1}
/\ (b)




DUALITY AND MINIMAX THEORY

e The primal and dual problems can be viewed in
terms of minimax theory:

Primal Problem <=> inf sup L(z, u)
reX u>0

Dual Problem <=> sup inf L(z, u)
u>0 reX

e Optimality Conditions: (z*, u*)is anoptimal
solution/G-multiplier pair if and only if

Primal Feasibility),
Dual Feasibility),
Lagrangian Optimality),

r* e X, g(x*)

l/l/*
T* = arg 91;%1)1(1 L(x, pu*

,u;“g](a:*):(), j:17°°°7’r7

)

(
(
(
(Compl. Slackness).

e Saddle Point Theorem: (z*,u*) is an opti-
mal solution/G-multiplier pair if and only if x* € X,

p* > 0, and (z*,u*) is a saddle point of the La-
grangian, in the sense that

Lz ,p) < L(x*,u*) < L(x,pu*), Ve e X, 4 >0



A CONVEX PROBLEM WITH A DUALITY GAP

e Consider the two-dimensional problem

minimize f(x)
subjectto z; <0, re X ={x|xz >0}

where
f(x) = e vrir2, VaoeX,

and f(x) is arbitrarily defined for = ¢ X.

e fis convex over X (its Hessian is positive defi-
nite in the interior of X), and f* = 1.

e Also, for all © > 0 we have

q(p) = inf {e=vT¥2 4z} =0,

x>0

since the expression in braces is nhonnegative for
x > 0 and can approach zero by taking x; — 0
and x1x2 — oo. It follows that ¢* = 0.



INFEASIBLE AND UNBOUNDED PROBLEMS

z A

min f(x) = 1/x
S.t. g(X):x <0
xeX ={x | x>0}

f*=oo, q*=oo

z A
min f(x) = x
KZ | st gX)=x2<0
/S Rl X>>O} xeX={xIx>0}
0N "
f* = 00, q* =0
(b)
z A
S={gWfx)Ixexy M) =x+x
={(Z’W)|Z>O} s.t. g(X)=X1 <0
- x € X ={(x4,xg) Ix1 >0}
0 \"j - N
© flow, "=




LECTURE 19
LECTURE OUTLINE

e Linear and quadratic programming duality
e Conditions for existence of geometric multipliers

e Conditions for strong duality

e Primal problem: Minimize f(z) subjecttoz € X,
and gi(z) < 0,...,g-(x) < 0 (assuming —oco <
f* < o0). ltis equivalentto inf,cx sup,~q L(z, 1)

e Dual problem: Maximize ¢(u) subject to 1 > 0,
where ¢(u) = infyex L(x, ). It is equivalent to

sup,, > infzex L(z, p1).

e 11* is ageometric multiplierif and only if f* = ¢*,
and p* is an optimal solution of the dual problem.

e Question: Under what conditions f* = ¢* and
there exists a geometric multiplier?



LINEAR AND QUADRATIC PROGRAMMING DUALITY

e Consider a LP or positive semidefinite QP under
the assumption

—00 < f* < o

e We know from Chapter 2 that

—00 < f*< oo = thereis an optimal solution z*

e Since the constraints are linear, there exist L-
multipliers corresponding to z*, SO we can use
Lagrange multiplier theory.

e Since the problem is convex, the L-multipliers
coincide with the G-multipliers.

e Hence there exists a G-multiplier, f* = ¢* and
the optimal solutions of the dual problem coincide
with the Lagrange multipliers.



THE DUAL OF A LINEAR PROGRAM
e Consider the linear program
minimize c'x
subjectto eix =d;, i=1,...,m, x>0
e Dual function

¢
n

.
q(\) = aljf>l% \ Z (Cj — Z >\7;€z'j> x; + Z Aid; ¢
= i=1 i=1 )

(/=1

o If¢; —> " Nie;; > 0 for all 5, the infimum
is attained for z = 0, and ¢(\) = >0, Aidi. |f
cj — > 1 Aieij < 0 for some j, the expression in
braces can be arbitrarily small by taking x; suff.
large, so ¢(\) = —oo. Thus, the dual is

m
maximize Z Nid;

1=1

subject to Z)\iezj < ¢y, 17=1,...,n.
1=1



THE DUAL OF A QUADRATIC PROGRAM

e Consider the quadratic program
minimize 1lz/Qx + c'x
subjectto Ax < b,

where () is a given n x n positive definite symmet-
ric matrix, A is a given r x n matrix, and b € Q"
and c € it™ are given vectors.

e Dual function:

q(p) = inf {32'Qr + 'z + p'(Az — b)}
rehm

The infimum is attained for z = —Q—1(c + A’u),
and, after substitution and calculation,

q(p) = =3 AQ 1A p— W (b+ AQ~1c) — /@ e
e The dual problem, after a sign change, is
minimize 1u/'Pu+t'u
subjectto p > 0,
where P = AQ-1A’andt =b+ AQ1c.



RECALL NONLINEAR FARKAS’ LEMMA

Let C C R be convex, and f : C' — R and
i C— R, 5 =1,...,r, be convex functions.
Assume that

f(x) >0, VeeF={zeC|g(x) <0},

and one of the following two conditions holds:

(1) Ois in the relative interior of the set
D = {u| g(z) < uforsome z € C}.

(2) Thefunctionsg;,j =1,...,r, areaffine, and
F' contains a relative interior point of C.

Then, there exist scalars u;f >0,9=1,...,r,s.1

r)+ Y wigi(x) >0, VazeC
=1



APPLICATION TO CONVEX PROGRAMMING

Consider the problem
minimize f(x)
subjectto z € C, g¢gi(z) <0, 5=1,...,r,

where C, f : C — X, and g; : C — it are convex.
Assume that the optimal value f* is finite.

e Replace f(x) by f(z) — f* and assume that the
conditions of Farkas’ Lemma are satisfied. Then
there exist 17 > 0 such that

f*< fl@)+ ) wlgix), VzeC
j=1

Since F' C C'and pjg;j(z) < Oforallz € F,

( )

f* < inf < f(z)+ ) wigj(x) p < inf f(x) = f*
j=1 )

reF reF

\

Thus equality holds throughout, we have
kX — 9 x/

fr=inf {f(z) +p'g(@)},

and p* is a geometric multiplier.



STRONG DUALITY THEOREM |
Assumption : (Convexity and Linear Constraints)
f* is finite, and the following hold:

(1) X = PN C, where P is polyhedral and C'is
CONVex.

(2) The cost function f is convex over C' and the
functions g; are affine.

(3) There exists a feasible solution of the prob-
lem that belongs to the relative interior of C'.

Proposition : Underthe above assumption, there
exists at least one geometric multiplier.

Proof: If P = R the result holds by Farkas. If
P # R», express P as

P={z|dxz—b;<0,j=r+1,...,p}

Apply Farkas to the extended representation, with

F={reCladz—-b;<0,j=1,...,p}

Assert the existence of geometric multipliers in
the extended representation, and pass back to the
original representation. Q.E.D.



STRONG DUALITY THEOREM I

Assumption : (Linearand Nonlinear Constraints)
f* is finite, and the following hold:

(1) X = PN, with P: polyhedral, C': convex.

(2) The functions f and g;, j = 1,...,7, are
convex over C, and the functions g;, j =
r+1,...,r, are affine.

(3) There exists a feasible vector z such that
gi(x) <Oforallj=1,...,7.

(4) There exists a vector that satisfies the lin-
ear constraints [but not necessarily the con-
straints ¢g;(z) <0, j =1,...,7] and belongs
to the relative interior of C'.

Proposition : Underthe above assumption, there
exists at least one geometric multiplier.

Proof: If P = R™ and there are no linear con-
straints (the Slater condition), apply Farkas. Oth-
erwise, lump the linear constraints within X, as-
sert the existence of geometric multipliers for the
nonlinear constraints, then use the preceding du-
ality result for linear constraints. Q.E.D.



THE PRIMAL FUNCTION

¢ Minimax theory centered around the function

p(u) = inf sup{L(x, p) — p'u}
reX 0u>0

e Properties of p around u = 0 are critical in an-
alyzing the presence of a duality gap and the ex-
Istence of primal and dual optimal solutions.

e p is known as the primal function of the con-
strained optimization problem.

e \We have
sup { L(z, ) — pw'uf

- = ig%{f(w) +p/(g9(x) —u) }
_ {f(ﬂf) if g(z) < u,

00 otherwise.
e SO

p(u) = inf f(z)

g(z)<u

and p(u) can be viewed as a perturbed optimal
value [note that p(0) = f*].



CONDITIONS FOR NO DUALITY GAP

e Apply the minimax theory specializedto L(x, ).

e Assume that f* < oo, and that X is convex, and
L(-, i) is convex over X for each . > 0. Then:

— p IS convex.

— Thereis noduality gap ifand only if p is lower
semicontinuous at u = 0.

e Conditions that guarantee lower semicontinuity
at u = 0, correspond to those for preservation of
closure under partial minimization, e.g.:

— f* < 00, X is convex and compact, and for
each p > 0, the function L(-, 1), restricted to
have domain X, is closed and convex.

— Extensions involving directions of recession
of X, f, and g;, and guaranteeing that the
minimization in p(u) = inf .ex f(x) is (ef-

g(z)<u

fectively) over a compact set.

e Under the above conditions, there is no duality
gap, and the primal problem has a nonempty and
compact optimal solution set. Furthermore, the
primal function p is closed, proper, and convex.



LECTURE 20
LECTURE OUTLINE

e The primal function
e Conditions for strong duality
e Sensitivity

e Fritz John conditions for convex programming

e Problem: Minimize f(x) subjectto x € X, and
gi(z) <0,...,9-(x) <0 (assuming —oo < f* <
o). Itis equivalent to inf e x sup,,~q L(z, ).

e The primal function is the perturbed optimal
value

p(u) = inf sup{L(z,p) — wu} = inf f(z)

a:EX e X
p=0 g(z)<u

e Note that p(u) is the result of partial minimization
over X of the function F(z,u) given by

F(z,u) = {f(x) if x € X and g(z) < u,

00 otherwise.



PRIMAL FUNCTION AND STRONG DUALITY

\ S ={g).f(x)) | x e X} Q S ={@(x).100) 1 x € X}
\ p) r ﬂ P
r - Z

- -
0 U o u

e Apply min common-max crossing framework
with set M = epi(p), assuming p is convex and
—00 < p(0) < oc.

e There is no duality gap if and only if p is lower
semicontinuous at u = 0.

e Conditions that guarantee lower semicontinuity
at u = 0, correspond to those for preservation
of closure under the partial minimization p(u) =
inf zex f(:l?), e.g..

g(z)<u

— X Is convex and compact, f, g;: convex.

— Extensions involving the recession cones of

X, f, gj.
— X =Rn, f,g;: convex quadratic.



RELATION OF PRIMAL AND DUAL FUNCTIONS

e Consider the dual function ¢. For every u > 0,
we have

q(p) = nf {f(z) +p'g(x)}

= inf f(z) + p'g(z)}

 {(uz)|zeX, g(z)<u, j=1,...,r}

— lﬂf x) + Iy
{(u,x)|xeX, g(x)<u} {f( ) H }

= inf inf  {f(x)+ p'u}.

ueER” e X, g(x)<u

e Thus

a(p) = inf {p(u) +p'uf,  Vp=0

Aw

S={(9(x).f(x)) I x € X}

- a) =infulp) + wuy U



SUBGRADIENTS OF THE PRIMAL FUNCTION

(w*1) r\ S ={(g(x),f(x)) | x € X}

0

e Assume that p is convex, p(0) is finite, and p is
proper. Then:

— The set of G-multipliers is —0p(0) (negative
subdifferential of p at w = 0). This follows
from the relation

q(p) = inf {p(u) + p'uj

— If the origin lies in the relative interior of the
effective domain of p, then there exists a G-
multiplier.

— If the origin lies in the interior of the effec-
tive domain of p, the set of G-multipliers is
nonempty and compact.



SENSITIVITY ANALYSIS |

e Assume that p is convex and differentiable.
Then —Vp(0) is the unique G-multiplier p*, and
we have

. 9p(0)

= Y

e Let u* be a G-multiplier, and consider a vector
u; of the form

ul = (0,...,0,7,0,...,0)

where ~ is a scalar in the jth position. Then

lim < —u* < lim
~10 v =H = ~10 v

Thus —u* lies between the left and the right slope
of p in the direction of the jth axis starting at u = 0.



SENSITIVITY ANALYSIS I

e Assume that p is convex and finite in a neighbor-
hood of 0. Then, from the theory of subgradients:

— 0p(0) is nonempty and compact.

— The directional derivative p/(0;y) is a real-
valued convex function of y satisfying

'(0;y) = max gy’
p'(0;y) [ ax y'g

e Consider the direction of steepest descent of p
at0, i.e., the g that minimizes p’ (0; y) over ||y|| < 1.
Using the Saddle Point Theorem,

p’(0;7) = min p’(0;y) = min max 3'g= max min
lyl <1 ly]|<1 gedp(0) g€0p(0) [yl <1

e The saddle point is (g*,%), where g* is the
subgradient of minimum norm in dp(0) and § =
—g*/|lg*||. The min-max value is —||g*||.

e Conclusion: If u* is the G-multiplier of mini-
mum norm and p* # 0, the direction of steepest
descent of p at 0 is y = p*/||u*||, while the rate
of steepest descent (per unit norm of constraint
violation) is ||*||.



FRITZ JOHN THEORY FOR CONVEX PROBLEMS

e Assume that X is convex, the functions f and
g; are convex over X, and f* < oco. Then there
exist a scalar u and a vector pu* = (uj,...,ur)
satisfying the following conditions:

() pof* =infoex{psf(z) +p'g(x)}.
(i) i >0forallj=0,1,... 7
() wph, 1, ..., pur are not all equal to O.

M ={(u,w) | there is an x € X such that g(x) =< u, f(x) < w}

w4 S ={(g(x),f(x)) I x X}

(w*,up*) ﬂ\
C

O ——o

o
u

e |f the multiplier . can be proved positive, then
p* /s is a G-multiplier.

e Under the Slater condition (there exists T € X
s.t. g() < 0), puf cannot be O; if it were, then
0 = infex p*'g(x) for some p* > 0 with p* # 0,
while we would also have ;*'g(T) < 0.



FRITZ JOHN THEORY FOR LINEAR CONSTRAINTS

e Assume that X is convex, f is convex over X,
the g, are affine, and f* < co. Then there exist a
scalar nfy and a vector pu* = (uj, ..., us ), satisfy-
Ing the following conditions:

() pgf* = infeex {psf(x) +p*'g(z)}.

(i) i >0forallj=0,1,... 7

() wph, 1, ..., pur are not all equal to O.
)

(iv) If the index set J = {j # 0 | u} > 0} is
nonempty, there exists a vector x € X such
that f(z) < f* and pu*'g(Z) > 0.

e Proof uses Polyhedral Proper Separation Th.
e Can be used to show that there exists a geomet-

ric multiplier if X = PN C, where P is polyhedral,
and ri(C') contains a feasible solution.

e Conclusion: The Fritz John theory is suffi-
ciently powerful to show the major constraint qual-
ification theorems for convex programming.

e The text has more material on pseudonormality,
informative geometric multipliers, etc.
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e Fenchel Duality
e Conjugate Convex Functions
e Relation of Primal and Dual Functions

e Fenchel Duality Theorems



FENCHEL DUALITY FRAMEWORK

e Consider the problem

minimize fi(x) — fa(x)
subject to x € X1 N Xo,

where f; and f, are real-valued functions on &,
and X; and X, are subsets of k.

e Assume that f* < oc.

e Convert problem to

minimize fi(y) — f2(2)
subject to z =y, y € Xq, 2z € Xo,

and dualize the constraint z = y:

g\ = _inf {fi(y) — f2(2) + (z —y)'A]

yeXi,ze€Xo
= inf {#/A— fa(2)} — sup {¥'A — fi(y)}
z€Xo ye Xy

= g2(A) — g1(N)



CONJUGATE FUNCTIONS

e The functions gi(\) and g2(\) are called the
conjugate conver and conjugate concave functions
corresponding to the pairs (f1, X1) and ( fa2, X2).

e An equivalent definition of g; is
g1(A) = sup {&’'A - fi(z)},

rER™

where f; is the extended real-valed function

~ ) fAi(e) ifx e Xy,
fl(x)_{oo if x ¢ X;.

e We are led to consider the conjugate convex
function of a general extended real-valued proper
function f : R — (—o0, o0]:

g(\) = sup {2'X — f(x)}, A€ R,

rERMT

e Conjugate concave functions are defined through
conjugate convex functions after appropriate sign
reversals.



VISUALIZATION

g(\) = sup {2'X — f(x)}, A € R

rERMT

inf{f(x) - xXA}=-g(\)
X

(@)

\

Conjugate of
conjugate of f

f(x) = sup {x% - g(A)}



EXAMPLES OF CONJUGATE PAIRS

g(A)steugn{w’A f@)}, fla )Z/\Seugn{w’k—g(k)}

if A =
A 1) = ax- ho(r)= Eolif A #O;
Slope = a
/
pre--t
| :
O/ﬁla X 0 o A
X = (- 0. o0
=
_ _f0 i <1
A f(x) = Ix Agn) = o i Dl
e e
0 X 1 0 1 A
X=(- 00, )
b f(x) = (c/2)x2 hg0) = (172002
e e
0 X 0 A
X = (- o0, )




CONJUGATE OF THE CONJUGATE FUNCTION

e [woO cases to consider:
— fis a closed proper convex function.

— f is a general extended real-valued proper
function.

o We will see that for closed proper convex func-
tions, the conjugacy operation is symmetric, i.e.,
the congugate of f 1s a closed proper conver func-
tion, and the conjugate of the conjugate is f.

e Leadsto a symmetric/dual Fenchel duality theo-
rem for the case where the functions involved are
closed convex/concave.

e The result can be generalized:

— The convex closure of f, is the function that
has as epigraph the closure of the convex
hull if epi(f) [also the smallest closed and
convex set containing epi( f)].

— The epigraph of the convex closure of f is
the intersection of all closed halfspaces of
Rn+1 that contain the epigraph of f.



CONJUGATE FUNCTION THEOREM

o Let f: R" — (—o0, 0| be a function, let f be
its convex closure, let g be its convex conjugate,
and consider the conjugate of g,

~

f(z) = sup {Nz —g(\)}, r € R
AERT

(a) We have

fx) > f(x), VzeRr

(b) If f is convex, then properness of any one of
f, g, and f implies properness of the other
two.

(c) If f is closed proper and convex, then
flz)=f(x), VazeRn

A

(d) If f(z) > —oco forall z € R, then

f(z) = f(x), VaeRn



CONJUGACY OF PRIMAL AND DUAL FUNCTIONS

e Consider the problem
minimize f(x)

subjectto = € X, gi(x) <0, j=1,...,r

e We showed in the previous lecture the following
relation between primal and dual functions:

a(p) = inf {p(u) +wup,  Vu=0.

e Thus, (i) = —sup,epr{—1'u — p(u)} or
q(p) = =h(=p),  Vp=0,

where h is the conjugate convex function of p:

h(v) = sup {v/u—p(u)}



INDICATOR AND SUPPORT FUNCTIONS

e The indicator function of a nonempty set is

[0 ifze X,
5X($)_{oo if x ¢ X.

e The conjugate of 6x, given by

ox(A) = sup Nz,
reX

Is called the support function of X.

e X hasthe same support function as cl(conv(X))
(by the Conjugacy Theorem).

e |f X is closed and convex, ¢x is closed and con-
vex, and by the Conjugacy Theorem the conjugate

of its support function is its indicator function.

e The support function satisfies

ox(al) = aox (M), Va>0,V\eRn

So its epigraph is a cone. Functions with this prop-

erty are called positively homogeneous.



MORE ON SUPPORT FUNCTIONS

e For acone C, we have

{0 if \ € C*,

p— / —
oc(A) = sup N oo otherwise,

xcC
l.e., the support function of a cone is the indicator
function of its polar.

e The support function of a polyhedral set is a
polyhedral function thatis pos. homogeneous. The
conjugate of a pos. homogeneous polyhedral func-
tion is the support function of some polyhedral set.

e A function can be equivalently specified in terms
of its epigraph. As a consequence, we will see
that the conjugate of a function can be specified
in terms of the support function of its epigraph.

e The conjugate of f, can equivalently be written
as g(\) = Sup(x’w)@pi(f){x’)\ — w}, SO
g()\) = Uepi(f)(>\7 —1), Ve Rn

e From this formula, we also obtain that the con-
jugate of a polyhedral function is polyhedral.
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e Fenchel Duality
e Fenchel Duality Theorems
e Cone Programming

e Semidefinite Programming

e Recall the conjugate convex function of a gen-
eral extended real-valued proper function f : &» —
(—o0, o0]:

g(\) = sup {z'\ — f(z)}, A € R

rEPRM

e Conjugacy Theorem: If f is closed and con-
vex, then f is equal to the 2nd conjugate (the con-
jugate of the conjugate).



FENCHEL DUALITY FRAMEWORK

e Consider the problem

minimize fi(x) — fa(x)
subject to x € X1 N Xo,

where f; : R — (—oo0,00]and fa : R — [—00, 00).
e Assume that f* < oc.

e Convert problem to

minimize fi(y) — f2(2)
subject to z =y, y € dom(f1), 2z € dom(—f2),

and dualize the constraint z = y:

gA) = _inf  {fi(y) — f2(2) + (z —y)' A}

yeR”, zeR”
A A

= g2(A) —1(N)



FENCHEL DUALITY THEOREM

AN \
Slope = A |
i : - -
<2 // - X X
/\ dom(f4)

IQf {f1 (X) - X')\.} =- g1 ()\.)

e Assume thatf, and f» are convex and concave,
respectively. If either

— Therelative interiors of dom( f1 ) and dom(— f2)
Intersect, or

— dom( f1) and dom(— f2) are polyhedral, and
f1 and fo can be extended to real-valued
convex and concave functions over f~.

Then the geometric multipliers existence theorem
applies and we have

fr = max{g2(A) — g1 (V) },

while the maximum above is attained.



OPTIMALITY CONDITIONS

e There is no duality gap, while (x*, A*) is an
optimal primal and dual solution pair, if and only if

x* € dom( f1)Ndom(— f2), (primal feasibility),

A* € dom(g1) Ndom(—g2), (dual feasibility),
r* = arg i’ré%%{x’)\* - fl(x)}

= arg méiRn {a/A* — fa(x)}, (Lagr. optimality).
reken

9oM) - 9¢(n) _§

"/

: -

O/ X* / X
f

e Note: The Lagrangian optimality condition is
equivalent to A\ € df1(x*) NI fi(z*).




DUAL FENCHEL DUALITY THEOREM

e The dual problem

max {g2(}) — g1(\)}

is of the same form as the primal.

e By the conjugacy theorem, if the functions f;
and f> are closed, in addition to being convex and
concave, they are the conjugates of g; and g-.

e Conclusion: The primal problem has an opti-
mal solution, there is no duality gap, and we have

min { f1(z) — fo(z)} = sup {g2(\) — g1(N)},

If either

— Therelative interiors of dom(g; ) and dom(—g2)
Intersect, or

— dom(g;) and dom(—g2) are polyhedral, and
g1 and ¢g» can be extended to real-valued
convex and concave functions over R".



CONIC DUALITY I

e Consider the problem

minimize f(x)
subjectto x € C,

where C'is a convex cone, and f : R — (—o0, o0
IS convex.

e Apply Fenchel duality with the definitions

fi(z) = f(z), f2(m):{(ioo :Ii;g

We have

{0 if A e C,

g1(A) = sup {)\x f(:c)} g2(\) = inf ')\ = Coo NGO

rERM xeC

where C is the negative polar cone (sometimes
called the dual cone of C):

A

C=-C={N|2’A>0,Vze(l}



CONIC DUALITY Ii

e Fenchel duality can be written as

inf f(z) = sup —g(}),
xeC reC

where g()\) is the conjugate of f.

e By the Primal Fenchel Theorem, there is no
duality gap and the sup is attained if one of the
following holds:

(a) ri(dom(f)) Nri(C) # .

(b) f can be extended to a real-valued convex
function over ®*, and dom(f) and C are
polyhedral.

e Similarly, by the Dual Fenchel Theorem, if f is
closed and C' is closed, there is no duality gap
and the infimum in the primal problem is attained
if one of the following two conditions holds:

() ri(dom(g)) Nri(C) # O.

(b) g can be extended to a real-valued convex
function over 1», and dom(g) and C' are poly-
hedral.



THE AFFINE COST CASE OF CONIC DUALITY

e Let f be affine, f(z) = ¢’x, with dom( f) being an
affine set, dom(f) = b+ S, where S'is a subspace.

e The primal problem is

minimize c'x

subject to x—b€ S, xe(C.
e The conjugate is

g(A) = sup (A —c)z =sup(A—c)(y+D)

r—besS yes
A= fAN—ce St
| oo ifA—cd¢ S+,

so the dual problem is

minimize b’'\

subject to A—ce SL, XeC.

e The primal and dual have the same form.

e If C is closed, the dual of the dual yields the
primal.



SEMIDEFINITE PROGRAMMING: A SPECIAL CASE

e Consider the symmetric n x n matrices. Inner
product < X, Y >=trace(XY) = >/ _| zi;yij-

e Let D be the cone of pos. semidefinite matrices.
Note that D is self-dual [D = D, i.e., < X,Y >> 0
forall y € D iff X € D], and its interior is the set
of pos. definite matrices.

e Fix symmetric matrices C', A1, ..., A, and vec-
tors b1, ..., bsn, and consider

minimize < C, X >
subject to < A4;, X >=b;, 1=1,....m, X €D

e Viewing this as an affine cost conic problem,
the dual problem (after some manipulation) is

maximize Z b; \;
i=1
subject to C' — (MA1+ -+ Andm) € D.

e There is no duality gap if there exists A such
that C' — (A A1+ -+ - + A A IS pOs. definite.
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e Overview of Dual Methods

¢ Nondifferentiable Optimization

kkkkkkkhkkkkkkkkkkhkkhkkkkkkkkkhkkhkkkkkkk

e Consider the primal problem

minimize f(x)

subjectto x € X, gi(x) <0, jg=1,...

assuming —oo < f* < oo.

e Dual problem: Maximize

q(p) = nf Lz, p) = inf {f(z) +w'g(z)}

subject to u > 0.



PROS AND CONS FOR SOLVING THE DUAL

e [he dual is concave.

e The dual may have smaller dimension and/or
simpler constraints.

e If there is no duality gap and the dual is solved
exactly for a geometric multiplier p*, all optimal
primal solutions can be obtained by minimizing
the Lagrangian L(x, u*) over x € X.

e Even if there is a duality gap, q(pr) is a lower
bound to the optimal primal value for every p > 0.

e Evaluating ¢(u) requires minimization of L(z, u)
over z ¢ X.

e The dual function is often nondifferentiable.

e Even if we find an optimal dual solution p*, it
may be difficult to obtain a primal optimal solution.



FAVORABLE STRUCTURE

e Separability: Classical duality structure (La-
grangian relaxation).

e Partitioning: The problem

minimize F(x) + G(y)
subjectto Ar+ By=¢, z€ X, yeY

can be written as

minimize F inf
© <:B) T By:cil}Q:U,yGY G(y)

subjectto x € X.

With no duality gap, this problem is written as
minimize F(z)+ Q(Ax)
subjectto x € X,

where
Q(Az) = maxq(\, Az)

g\, Az) = inf {G(y) + N(Az + By — ¢) }

yey



DUAL DERIVATIVES

o Let

— L — /
ty = argmin L(z, p) = arg min{ f(«) + p'g(z) }

Then for all 7 € R,

q() = inf {f(x) +7g(x)}

< flzw) + 1 g(zp)
= fou) + wglz,) + (72— p)g(x,)
=q(p) + (7 — ) g(xpu).

e Thus g(x,) is a subgradient of q at p.

e Proposition: Let X be compact, and let f and
g be continuous over X. Assume also that for ev-
ery u, L(x, 1) is minimized over x € X at a unique
point z,,. Then, q is everywhere continuously dif-
ferentiable and

Va(p) =g(xp),  VpeRr



NONDIFFERENTIABILITY OF THE DUAL

e If there exists a duality gap, the dual function
IS nondifferentiable at every dual optimal solution
(see the textbook).

e Important nondifferentiable case: When ¢ is
polyhedral, that is,

q(p) = min{ajp + b},

where I is a finite index set, and a; € R" and b;
are given (arises when X is a discrete set, as in
integer programming).

e Proposition: Let ¢ be polyhedral as above,
and let I, be the set of indices attaining the mini-
mum

In=1i€l|ap+bi=qp)}
The set of all subgradients of ¢q at 1 is

aQ(M):<g‘g—Z§zau€zZO Zgz:1>

vel, vel,




NONDIFFERENTIABLE OPTIMIZATION

e Consider maximization of ¢q(u) over M = {u >
0 q(p) > —oo}
e Subgradient method:

pk+t = [k 4 Skgkr_’

where g* is the subgradient g(x ), [-]* denotes
projection on the closed convex set M, and s* is
a positive scalar stepsize.

Contours of g

™

M




KEY SUBGRADIENT METHOD PROPERTY

e For a small stepsize it reduces the Euclidean
distance to the optimum.

Contours of g

e Proposition: For any dual optimal solution p*,
we have

Jph L — px|| < ||k — x|,

for all stepsizes sk such that

2(q(p*) — q(p*))
lg%|2

0 < sk <



STEPSIZE RULES

e Constant stepsize: sk = s for some s > 0.

o If ||g*|| < C for some constant C and all &,

|kt — |2 < ||k —p*||2—2s (q(p*)—q(pk)) +s2C2,

so the distance to the optimum decreases if

2(q(p*) — q(p*))

0<s< 2

or equivalently, if i~ belongs to the level set
sC?
{u | q(p) < q(p*) — 7}

e With a little further analysis, it can be shown
that the method, at least asymptotically, reaches
this level set, i.e.

s(C'?2

lilin sup g(u*) = q(p*) — ==



OTHER STEPSIZE RULES

e Diminishing stepsize: s — 0 with some restric-
tions.

e Dynamic stepsize rule (involves a scalar se-
quence {qg*}):

ak (gk — q(u*))
g% ||2 ’

where ¢k ~ ¢* and 0 < of < 2.

sk =

e Some possibilities:

— g% is the best known upper bound to ¢*: start
with ¥ = 1 and decrease o by a certain
factor every few iterations.

— akf =1 for all kK and

¢k = (1+ B(k))d",

where ¢¥ = maxg<;< q(p*), and g(k) > 0is
adjusted depending on algorithmic progress
of the algorithm.



LECTURE 24
LECTURE OUTLINE

e Subgradient Methods
e Stepsize Rules and Convergence Analysis
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e Consider ageneric convex problem min,cx f(x),
where f : " — 3 is a convex function and X is
a closed convex set, and the subgradient method

Tk4+1 = [Ilfk — Oékgk]+ ;

where g;. is a subgradient of f at x, o is a positive
stepsize, and |-]* denotes projection on the set X.

e Incremental version for problem mingex >, fi(x)

Tl = Um ks, Vik = |Vi—1k — Oékgz‘,k]+ ,t=1,...,m

starting with ¢y , = x, Where g; j Is a subgradient
of fi aty;_1 k.



ASSUMPTIONS AND KEY INEQUALITY

e Assumption: (Subgradient Boundedness)

g|| < s, Vgedfi(xp)Uofi(i—1k), Vi, k,

for some scalars C4, ..., C,,. (Satisfied when the
f; are polyhedral as in integer programming.)

e Key Lemma: Forall y € X and &,
|2k 1=yl1? < [|lve—ylP—20k (f (v1)— f (y)) +aZ C2,
where

C = ici
1=1

and C; is as in the boundedness assumption.

e Note: For any y that is better than zi, the dis-
tance to y is improved if o, is small enough:

2(f(zx) — f(y))
02

0 <o <



PROOF OF KEY LEMMA

e Foreach f;andally € X, and ¢, k

ik —yl|? = ||[[Yie1.6 — argik]™ — yl|?

Vi—1,k — ki k — Y||?

Vi—1.k — Y||? — 2akg£,k(¢i—1,k —y) + a;C?
i1k — Y|12 — 200 (fi(Wim1,k) — fi(y)) + aiC?

By adding over i, and strengthening,

IA A

IA

Nzer1 — yl12 < ||lze — |12 — 20k (f(zk) — f(v))
+ 2a, Z Cillti—1,x — zr|| + of ZC’E
=1 =1

< |z — yl1? = 20 (f (z) — f())



STEPSIZE RULES

e Constant Stepsize oy = «:
— Bykeylemmawith f(y) ~ f*, it makes progress

2(f(zr)—f*)

ok e, if

to the optimal If 0 < o <

flag) > f*+ 5
e Diminishing Stepsize a,, — 0, ), o = 00:

— Eventually makes progress (once a; becomes
small enough). Can show that

liminf f(xg) = f*

k— o0

e Dynamic Stepsize oy, = L“5 2% where f;, = f*

or (more practically) an estimate of f*:
— If fi = f*, makes progress at every iteration.
If fi < f* it tends to oscillate around the
optimum. If f, > f* it tends towards the
level set {z | f(x) < fr}.



CONSTANT STEPSIZE ANALYSIS

e Proposition: For ar = «, we have

2
liminf f(zg) < f* + g,
k— o0 2
where C = Y7 . C; (in the case where f* = —oo,
we have liminfy_ . f(xr) = —00.)

e Proof by contradiction. Let ¢ > 0 be s.t.

2

likminff(a:k) > f* 4 OéT + 2e,

and let § € X be such that

2
liminf f(xr) > f(9) + % + 2e¢

k— 00

For all £ large enough, we have
f(xr) > liminf f(xg) — €

k— o0

Addtoget f(xx) — f(y) > aC?/2+ €. Use the key
lemma for y = ¢ to obtain a contradiction.



COMPLEXITY ESTIMATE FOR CONSTANT STEP

e For any e > 0, we have

2
min fa) < ot OO
where
K = [(d(%»X*))ZJ
Qe
e By contradiction. Assume thatfor0 < k£ < K
flax) > o4 ST

Using this relation in the key lemma,

(al(x/rﬁLl,X*))2 < (al(az:;.c,X*))2 — 2a(f(:vk) — f*)+oz2C2

2

< (d(xk,X*)) — (a°C? + ae) + a°C”

2

— (d(xk,X*)) — «e.

Sum over k to get (d(a;O,X*))2 — (K + 1)ae > 0.



CONVERGENCE FOR OTHER STEPSIZE RULES

e (Diminishing Step): Assume that

k— o0

o0
ap > 0, lim ap =0, Zak:oo
k=0

Then,
liminf f(xr) = f*

k— oo

If the set of optimal solutions X * is nonempty and
compact,

lim d(xg, X*) =0, lim f(xg) = f*

k— o0 k— o0

e (Dynamic Stepsize with f, = f*): If X* is
nonempty, ;. converges to some optimal solution.



DYNAMIC STEPSIZE WITH ESTIMATE

e Estimation method:

lev :
— 1min f XTq) — (S
k 0<5<k ( J) o

and ¢y Is updated according to

5 _ /05k if f(xk—Fl) < flev,
ST max{ 86,6} if f(zra1) > fi,

where 9, (3, and p are fixed positive constants with
g<landp> 1.

e Here we essentially “aspire” to reach a tar-
get level that is smaller by ¢, over the best value
achieved thus far.

e \We can show that

inf f(z) < f*+9

£>0

(or infy>q f(xg) = f*if f* = —00).



LECTURE 25
LECTURE OUTLINE

e Incremental Subgradient Methods

e Convergence Rate Analysis and Randomized
Methods

khkkkkkkkkkkkhkkhkkhkkkkkkkkhkkhkkhkkkkkkkkkk

e Incremental subgradient method for problem
mingex >, fi(z)

+ .
Tl = Um ks, Vik = Vi1 k— kil ,i=1,....m

starting with ¢ , = z, Where g; 1, Is a subgradient
of f; at ;1 k.

e Key Lemma: Forall y € X and k&,
k41 —=yl1? < o=yl 220 (f(zr)— f(y)) +ai C?,
where C =>"", C; and

Ci = Sl;p{HgH | g € Ofi(xr) UDSfi(i1,k) ]



CONSTANT STEPSIZE

e For ap = o, we have

2
liminf f(25) < J* + O

e Sharpness of the estimate:
— Consider the problem

M
mgnZC'o(]:B + 1|+ 2]z + |z — 1))
1=1

with the worst component processing order

e Lower bound on the error. There is a problem,
where even with best processing order,

amC§

< liminf f(xg)

k— 00

fe+

where
Co = max{C1,...,Cn}



COMPLEXITY ESTIMATE FOR CONSTANT STEP

e Forany e > 0, we have

aC? + €
. o
0£€?Kf($k)_f +

o [(d(xo,X*))zJ

843

where




RANDOMIZED ORDER METHODS

T = [T — ang(wr, 2)]

where wy, Is arandom variable taking equiprobable
values from the set {1,...,m}, and g(wg, z) is a
subgradient of the component f,_ at x:.

e Assumptions:

(a) {wx} is a sequence of independent random
variables. Furthermore, the sequence {wy}
IS independent of the sequence {x }.

(b) The set of subgradients {g(wk,zx) | k =

0,1,...} is bounded, i.e., there exists a pos-
itive constant Cy such that with prob. 1

g(wr, zx)|| < Co, VE>0
e Stepsize Rules:
— Constant: a, = o
— Diminishing: >, ax = oo, >, (ag)2 < oo
— Dynamic



RANDOMIZED METHOD W/ CONSTANT STEP

e With probability 1

osz’2
75 < f* | 0
ér;{;) (mk) 2

(with infz>o f(zr) = —oo when f* = —o0).

Proof: By adapting key lemma, for all y € X, k

zr1=yl1? < llzr—yl12=20(fur (2r) = fur, (1)) +02CF

Take conditional expectation with 7, = {xo, ..., zx}

E{llzgr —yl1? | Fr} < |lox — yl|?
—zaE{f% k) — fur (1) | Fi} + 202

= ||lzx — y||* — 2042 fz T) (y)) + a2C¢

= [Jox — ]2 - %a(f(wk) - 1(y) + 02},

where the first equality follows since wy takes the
values 1, ..., m with equal probability 1/m.



PROOF CONTINUED |

e Fix v > 0, consider the level set L., defined by

2 C?
va{xeX\f(a:)<f*+;+omé 0}

and let y, € L, be such that f(y,) = f* +
Define a new process {z} as follows

1
~s
- A _'_ -f A
Tl = I — aglwk, k)| if 2k & Ly,

Yy otherwise,

where 2o = x9. We argue that {Z;} (and hence
also {x}) will eventually enter each of the sets
L.

Using key lemma with y = y.,, we have

E{llZe+1 — gyl 1? | Fi} < Mk — yyl[? — 2,

where



PROOF CONTINUED I

o If 2, ¢ L., we have

_204

2 = m(f(ii‘k)—f(yv)) — a2Cp
2 1
_2_a<f*+g+am00 _f*__>_a208
m Y 2 Y
_ 20
_mfy'

Hence, as long as & ¢ L., we have

20
E Y — 2 | F < ||, — 2 _
UlZkar = w0 | Fr} < l2k — yy ] .

This, cannot happen for an infinite number of it-
erations, so that z;, € L., for sufficiently large k.
Hence, in the original process we have

2  am(C?
érzlof(rvk)_f LR

with probability 1. Letting v — oo, we obtain
infr>o f(2x) < f*+amC3/2. Q.E.D.



CONVERGENCE RATE

o Let o, = « in the randomized method. Then,
for any positive scalar ¢, we have with prob. 1

amC? + ¢
. < "y 0
Ogllﬁléle(mk)_f + , :

where N is a random variable with

m(d(ﬂfo, X*>)2

e

E{N} <

e Compare w/the deterministic method. Itis guar-
anteed to reach after processing no more than

2

m(d(xo,X*))

843

K =

components the level set

{x \ fla) < fr+ 2 (2?0“}



BASIC TOOL FOR PROVING CONVERGENCE

e Supermartingale Convergence Theorem:
Let Y., Zi., and Wi, £k = 0,1,2, ..., be three se-
guences of random variables and let Fi, k =
0,1,2,..., be sets of random variables such that
Fir C Fryq forall k. Suppose that:

(a) The random variables Yy, Z,, and W, are
nonnegative, and are functions of the ran-
dom variables in F..

(b) For each k, we have

E{Yis1 | Fr} <Yi — Zi + Wi
(c) There holds Y.~ W) < oo.

Then, >~ , Z, < oo, and the sequence Y;, con-
verges to a nonnegative random variable Y, with
prob. 1.

e Can be used to show convergence of random-
ized subgradient methods with diminishing and
dynamic stepsize rules.



LECTURE 26
LECTURE OUTLINE

e Additional Dual Methods
e Cutting Plane Methods

e Decomposition
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e Consider the primal problem

minimize f(x)

subjectto = € X, gi(x) <0, j=1,...

assuming —oco < f* < oo.

e Dual problem: Maximize

q(u) = inf L(z, p) = inf 1 f(z) + p'g(2)}

subjectto e M ={u|pu >0, q(n) > —oc}.



CUTTING PLANE METHOD

e kthiteration, after u* and g? = g(z,:) have been
generated for: =0,...,k — 1: Solve

max QF (1)

where

Q pw) =, _min ¢+ (p = p')'g'y

Set

ko k
pht = argmax QF (1)

=Y




POLYHEDRAL CASE

— - / )
q(p) = min{ajp + b}

where [ is a finite index set, and a; € R" and b;
are given.

e Then subgradient g* in the cutting plane method
IS a vector a,= for which the minimum is attained.

e Finite termination expected.




CONVERGENCE

e Proposition: Assume that the min of (). over
M is attained and that the sequence ¢* is bounded.
Then every limit point of a sequence {u*} gener-
ated by the cutting plane method is a dual optimal
solution.

Proof: ¢*is a subgradient of ¢ at u*, so
q(?) + (n — p)'g* > q(p),  VupeM,

QF(p*) > Qk(p) > q(p), VYpeM. (1)

e Suppose {u”}x convergesto u. Then, i € M,
and from (1), we obtain for all £ and ¢ < k,

q(pt) + (uk — pt)' gt > QF(u*) > Q* (1) > q(iz)
o Takethelimitas: — o0,k —o0,7¢€ K,k € K,

’ Oy
k%g,rieKQ (uk) = q(1n)

Combining with (1), ¢(i1) = max,,enr q(1)-



LAGRANGIAN RELAXATION

e Solving the dual of the separable problem
J
minimize ij(a:j)
j=1
J
subjectto z; € X;, j=1,... Z — b.

e Dual function is

Mk‘

q(\) = min {fj(x;) + NAjz;} — Nb

1:1336X

Q.
I

|
MK‘

{£i(zi(N) + NAjzi(A\)} — Nb

1

Q.
I

where z;(\) attains the min. A subgradient at ) is

J
g =Y Ajz;(X) -
j=1



DANTSIG-WOLFE DECOMPOSITION

e D-W decomposition method is just the cutting
plane applied to the dual problem max) g(\).

o At the kth iteration, we solve the “approximate
dual”

Ak:argin%EXQk( )= Omm {q (AD)+(A=X")g }
cRr 1=0,...,

e Equivalent linear program in v and A

maximize v
subjectto v < g(A¥) + (A = Xi)gi, i=0,...,k—1

The dual of this (called master problem) is

minimize Zgz — X' gi)
k-1 k-1
subjectto » ¢i=1, ) ¢&igi=0,
1=0 1=0

>0, 1=0,....k—1,



DANTSIG-WOLFE DECOMPOSITION (CONT.)

e [he master problem is written as

k—1 J k—1
subjectto » &i=1, ) A (Z giazj()\i)> = b,
=1 i=0

1=0
>0 i=0,... k—1.

e The primal cost function terms f;(x;) are ap-
proximated by

k—1
> &ifi(zi(N))
1=0

e \ectors z; are expressed as

k—1
> gii(A)
1=0



GEOMETRICAL INTERPRETATION

e Geometric interpretation of the master problem
(the dual of the approximate dual solved in the
cutting plane method) is inner linearization.

A

X0.0): X(2) K03 )

» - S
X

e This is a “dual” operation to the one involved
in the cutting plane approximation, which can be
viewed as outer linearization.



