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History and Prehistory

Prehistory: Early 1900s - 1949.
Caratheodory, Minkowski, Steinitz, Farkas.
Properties of convex sets and functions.

Fenchel - Rockafellar era: 1949 - mid 1980s.
Duality theory.
Minimax/game theory (von Neumann).
(Sub)differentiability, optimality conditions, sensitivity.

Modern era - Paradigm shift: Mid 1980s - present.
Nonsmooth analysis (a theoretical/esoteric direction).
Algorithms (a practical/high impact direction).
A change in the assumptions underlying the field.



Duality

Two different views of the same object.

Example: Dual description of signals.

A union of points An intersection of hyperplanes
Time domain Frequency domain

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,
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Dual description of closed convex sets
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A union of its points An intersection of halfspaces
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Dual Description of Convex Functions

Define a closed convex function by its epigraph.
Describe the epigraph by hyperplanes.
Associate hyperplanes with crossing points (the conjugate function).
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Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)
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Polyhedral Convexity Template
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Polyhedral Convexity Template
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Polyhedral Convexity Template

Indicator Functions
Support Functions

(−x, 1)

(−y, 1)

rf (x)

y

f̃(x) = sup
y∈"n

{
y′x− h(y)

}

y′x− h(y)

infx∈"n
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α
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1
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α
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1

inf
x∈"n

{f(x)− x′y} = −f!(y),

State sampling according to Markov chain P

(µ, 0)
(a) (b) (c)

(0, 0) X (0, 1) cone(X) conv(X)

xα = αx+(1−α)x C x α ε x S Sα x4 f(x) f(z) αf(x)+ (1−α)f(y)
0 αε

dom(f)

f
(
αx + (1− α)y
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C x y z x1 x2 x3 x4 f(x) f(z) αf(x) + (1− α)f(y) 0

x x∗

αf(x) + (1− α)f(y) C x y f(x) f(z) z = αx + (1 − α)y

f(z) + (y − z)′∇f(z) f(z) + (x− z)′∇f(z)

{
x | f(x) ≤ γ

}

x + α(z − x)

f(x) +
f
(
x + α(z − x)

)
− f(x)

α

e1 e2 e3 e4 yk zk xk xk+1 0
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Fenchel Duality Framework - The Primal Problem
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Primal Description

Dual Description

Values f(x) Crossing points f∗(y)

A union of points An intersection of halfspaces minx

�
f1(x) + f2(x)

�

Abstract Min-Common/Max-Crossing Theorems
Minimax Duality (minmax=maxmin)
Constrained Optimization Duality
Theorems of the Alternative etc
Time domain Frequency domain
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If s ∈ conv(S) then s = s1 + · · · + sm where
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f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem

1



A More Abstract View of Duality

Despite its elegance, the Fenchel framework is somewhat indirect.
From duality of set descriptions, to

duality of functional descriptions, to
duality of problem descriptions.

A more direct approach:
Start with a set, then to

two simple prototype problems dual to each other.

Avoid functional descriptions (a simpler, less constrained framework).
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Ĉ = C + S⊥

Nonvertical Vertical

Hyperplane

Level Sets of f Constancy Space Lf ∩∞k=0Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a′x ≥ b}
Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

σX(y)/‖y‖

x Wk Nk Wk y C2 C C2
k+1 yk AC
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Ĉ = C + S⊥

Min Common Point w∗

Hyperplane

Level Sets of f Constancy Space Lf ∩∞k=0Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a′x ≥ b}
Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

σX(y)/‖y‖

x M M Wk y C2 C C2
k+1 yk AC
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q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem

1

LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.
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Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ %n,
i = 1, . . . , m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . , m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,
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The Modern Era: Duality Coupled with Algorithms

Traditional view: Pre 1990s
LPs are solved by simplex method (G. Dantzig view).
NLPs are solved by gradient/Newton methods (M. Powell view).
Convex programs are special cases of NLPs.
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Modern view: Post 1990s
LPs are often solved by nonsimplex/convex methods.
Convex problems are often solved by the same methods as LPs.
“Key distinction is not Linear-Nonlinear but Convex-Nonconvex" (Rockafellar)
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Methodological Trends

Convex programs and LPs connect around duality and large-scale
piecewise linear problems.

New methods, renewed interest in old methods.
Interior point methods
Subgradient methods
Polyhedral approximation/cutting plane methods
Regularization/proximal methods

Renewed emphasis on complexity analysis.
Nesterov, Nemirovski, and others ...
“Optimal algorithms" (e.g., extrapolated gradient methods)



Synergy Between Duality, Algorithms, and Applications

Duality-based decomposition.
Large-scale resource allocation
Lagrangian relaxation, discrete optimization
Stochastic programming

Conic programming.
Robust optimization
Semidefinite programming

Machine learning.
Support vector machines
l1 regularization/Robust regression/Compressed sensing
Incremental methods



Speculation - What’s Next?

“It is hard to predict, especially about the future" (N. Bohr)

Very large problems/new applications (?)
Problems with network overlays (e.g., smart grids).
Huge data sets in machine learning.

New approaches to large size and complexity (?)
Approximate dynamic programming paradigm (e.g., LP-based dynamic
programming).
Reduced space approximations.
Sampling mechanisms.

Better hardware/better algorithms multiplier effect (?)

A new paradigm shift (?)


