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OUTLINE!

•  Convexity issues in optimization!
•  Common geometrical framework for duality 

and minimax!
•  Unifying framework for existence of solutions 

and duality gap analysis!
•  Use of duality in algorithms!
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SOME HISTORY!

•  Late 19th-Early 20th Century: !
–  Caratheodory, Minkowski, Steinitz, Farkas!

•  40s-50s: The big turning point!
–  Game Theory: von Neumann!
–  Optimization-related convexity: Fenchel !
–  Duality: Fenchel, Princeton group (Nash, Gale, Kuhn, Tucker)!

•  60s-70s: Consolidation!
–  Rockafellar!

•  80s-90s: Extensions to nonconvex optimization and 
nonsmooth analysis!
–  Clarke, Mordukovich, Rockafellar-Wets!

•  2000- … Rejuvenation: Many applications of large scale 
optimization using duality; resource allocation, 
combinatorial optimization, machine learning!
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WHY IS CONVEXITY 
IMPORTANT IN OPTIMIZATION I!

•   A convex function has no local minima that are 
not global!

•   A nonconvex function can be “convexified” !                    
while maintaining the optimality of its minima!
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WHY IS CONVEXITY 
IMPORTANT IN OPTIMIZATION II!
•  A polyhedral convex set is characterized by its 

extreme points and extreme directions!
•  Minima of linear functions over constraint sets 

can be found among extreme points !
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WHY IS CONVEXITY IMPORTANT 
IN OPTIMIZATION III!

•  A real-valued convex function is continuous and has nice 
differentiability properties!

•  Convex functions arise prominently in duality (a different 
but equivalent view of the same object)!
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DUAL DESCRIPTION OF  
CONVEX SETS!
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CONJUGACY: DUAL 
DESCRIPTION OF 

CONVEX FUNCTIONS!
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CONJUGATE FUNCTION PAIRS!
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FENCHEL DUALITY!
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MIN COMMON/MAX CROSSING 
DUALITY!

Nonconvex!
Convex!
No duality gap!

Convex!
Duality gap!
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A MAJOR ANOMALY OF 
CONVEX SETS!

•  Linear transformations and vector sums need 
not preserve closure of convex sets!

•  Source of duality gap!
•  Nice sets: Polyhedral, or convex and compact!
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BOOKS!

•  Convex Analysis and Optimization, by D. P. Bertsekas, 
with A. Nedic and A. Ozdaglar (March 2003 - extends to 
nonconvex analysis - available in China)!

•  Convex Optimization Theory, by D. P. Bertsekas (short, 
more narrowly/deeply focused on convexity 2009 - with 
algorithms www supplement)!

•  Convex Optimization Algorithms (in preparation)!
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I  
MIN COMMON/MAX CROSSING 

DUALITY!
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GEOMETRICAL VIEW OF 
DUALITY!
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ANALYTICAL APPROACH!
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CONVEX PROGRAMMING 
DUALITY!

•  Primal problem: !
! min f(x)    subject to    x∈X and gj(x)≤0, j=1,…,r!
•  Dual problem:!
! max q(µ)  subject to    µ≥0!
! where the dual function is!

!  q(µ) = infx∈X {f(x) + µʼg(x)}!

•  Consider common/max crossing framework:!
! ! M = epi(p),! ! p(u) = infx∈X, gj(x)≤uj f(x) ! ! !
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MINIMAX / ZERO SUM GAME 
THEORY ISSUES!

•  Given a function Φ(x,z), where x∈X and z∈Z, 
under what conditions do we have!

 ! ! infxsupz Φ(x,z) = supzinfx Φ(x,z)!
•  Assume convexity/concavity, semicontinuity  of 
Φ	



•  Min common/max crossing framework: !
! M = epigraph of p !

! p(u) = infxsupz {Φ(x,z) - uʼz}!
! infxsupz Φ = Min common value!
! supzinfx Φ = Max crossing value (can be shown)!
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II  
UNIFICATION OF EXISTENCE 

AND NO DUALITY GAP ISSUES!
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INTERSECTIONS OF NESTED 
FAMILIES OF CLOSED SETS!

•  We will connect two basic problems in optimization!
–  Attainment of a minimum of a function f over a set X!
–  Existence of a duality gap!

•  The 1st question is a set intersection issue: !
! The set of minima is the intersection of the nonempty 

level sets {x∈X | f(x) ≤ γ}!
•  The 2nd question is also a set intersection issue (but 

not obvious). It is related to another fundamental 
question: !

! When is the function!
! ! f(x) = infz F(x,z)!
! lower semicontinuous, assuming F(x,z) is convex and 

lower semicontinuous? !
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VISUALIZATION OF PARTIAL 
MINIMIZATION f(x)=infz F(x,z)  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PRESERVATION OF 
SEMICONTINUITY UNDER 

PARTIAL MINIMIZATION!
•  Key observation: For f(x) = infz F(x,z), we have !
!  ! !
! where P(.) is projection on the space of z. So 

if projection preserves closedness, f is l.s.c.!

Given C, when is P(C) closed?!

If yk is a sequence in P(C) that !
converges to y, we must show !
that the intersection of the Ck !
is nonempty!

-!
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UNIFIED TREATMENT OF 
EXISTENCE OF SOLUTIONS AND 

DUALITY GAP ISSUES !
Results on nonemptiness of intersection!

of a nested family of closed sets!
(use of directions of recession)!

No duality gap results!
In convex programming! inf sup Φ = sup inf Φ!

Existence of minima of!
f over X!
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III  
PROBLEM STRUCTURES AND 

ALGORITHMS  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SEPARABLE PROBLEMS &  
DECOMPOSITION!

Dual function calculated by decomposition!
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DISCRETE/INTEGER LP!

Typically there is duality gap!

Solution of dual problem provides a lower bound !

Use in Lagrangian relaxation and branch-and-bound!

Dual problem is nondifferentiable/polyhedral!
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ADDITIVE COST PROBLEMS!

•  Huge number m of terms!
•  This is a common structure:!

–  Dual problems of separable problems !
–  Expected values (e.g. in stochastic programming) have this 

structure!
•  Calculation of gradient or subgradient of the sum is very 

time consuming!
•  Need for an incremental algorithmic approach!

–  Move x along the gradient/subgradient of a single component fi!
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LARGE NUMBER OF 
CONSTRAINTS!

•  Calls for approximation of the constraint set!
•  Outer approximation!
•  Inner approximation!
•  Inner and outer approx are dual to each other!
•  An alternative: Penalty approach converts to a 

minimization of a large sum!
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CLASSES OF ALGORITHMS!

•  Descent methods!
– Subgradient methods and incremental versions!
– Optimal algorithms (gradient methods with extrapolation) - 

Nesterovʼs methods!

•  Approximation methods!
– Cutting plane!
– Simplicial decomposition!
– Proximal and bundle method!

–  Interior point methods!

•  All these methods rely on convexity concepts!
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CONCLUDING REMARKS!

• Optimization has become a universal 
tool in applications!

• Convexity is the “soul” of optimization!
• Geometry is the “soul” of convexity!
• Very few simple geometric ideas are 

sufficient to unify/clarify most of 
convex optimization!

• Theoretical/algorithmic research on 
convex optimization is still very active!
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Thank you!!


