CONVEX OPTIMIZATION:
A SELECTIVE OVERVIEW

Dimitri Bertsekas
M.I.T.

Taiwan
May 2010
OUTLINE

• Convexity issues in optimization
• Common geometrical framework for duality and minimax
• Unifying framework for existence of solutions and duality gap analysis
• Use of duality in algorithms
SOME HISTORY

- Late 19th-Early 20th Century:
 - Caratheodory, Minkowski, Steinitz, Farkas
- 40s-50s: The big turning point
 - Game Theory: von Neumann
 - Optimization-related convexity: Fenchel
 - Duality: Fenchel, Princeton group (Nash, Gale, Kuhn, Tucker)
- 60s-70s: Consolidation
 - Rockafellar
- 80s-90s: Extensions to nonconvex optimization and nonsmooth analysis
 - Clarke, Mordukovich, Rockafellar-Wets
- 2000- … Rejuvenation: Many applications of large scale optimization using duality; resource allocation, combinatorial optimization, machine learning
WHY IS CONVEXITY IMPORTANT IN OPTIMIZATION

- A convex function has **no local minima** that are not global
- A nonconvex function can be “convexified” while maintaining the optimality of its minima
WHY IS CONVEXITY IMPORTANT IN OPTIMIZATION II

- A polyhedral convex set is characterized by its extreme points and extreme directions.
- Minima of linear functions over constraint sets can be found among extreme points.
WHY IS CONVEXITY IMPORTANT IN OPTIMIZATION III

• A real-valued convex function is continuous and has nice differentiability properties

• Convex functions arise prominently in duality (a different but equivalent view of the same object)
DUAL DESCRIPTION OF CONVEX SETS

Primal description: Points Dual description: Hyperplanes

Convex Analysis and Optimization, D. P. Bertsekas
CONJUGACY: DUAL DESCRIPTION OF CONVEX FUNCTIONS

\[\inf_{x \in \mathbb{R}^n} \{ f(x) - x'y \} = -f^*(y) \]

Primal description: Values \(f(x) \)
Dual description: Crossing points \(f^*(y) \)
CONJUGATE FUNCTION PAIRS

\[f^*(y) = \sup_{x \in \mathbb{R}^n} \{ x'y - f(x) \} \]
\[f^{**}(x) = \sup_{y \in \mathbb{R}^n} \{ y'x - f^*(y) \} \]

Conjugacy theorem:

\[f^{**} = f \]
Fenchel Duality

\[
\min_x \{ f_1(x) + f_2(x) \} = \max_y \{ f_1^*(y) + f_2^*(-y) \}
\]
MIN COMMON/MAX CROSSING DUALITY

Nonconvex

Convex
No duality gap

Convex
Duality gap

Convex Analysis and Optimization, D. P. Bertsekas
A MAJOR ANOMALY OF CONVEX SETS

• Linear transformations and vector sums need not preserve closure of convex sets

• Source of duality gap

• Nice sets: Polyhedral, or convex and compact
Convex Analysis and Optimization, by D. P. Bertsekas, with A. Nedic and A. Ozdaglar (March 2003 - extends to nonconvex analysis - available in China)

Convex Optimization Theory, by D. P. Bertsekas (short, more narrowly/deeply focused on convexity 2009 - with algorithms www supplement)

Convex Optimization Algorithms (in preparation)
I
MIN COMMON/MAX CROSSING DUALITY
GEOMETRICAL VIEW OF DUALITY
ANALYTICAL APPROACH

Abstract Geometric Framework (Set M)

Min-Common/Max-Crossing Theorems

Special choices of M

Minimax Duality ($\text{MinMax} = \text{MaxMin}$)

Constrained Optimization Duality

Theorems of the Alternative etc
CONVEX PROGRAMMING
DUALITY

• Primal problem:
\[
\min f(x) \quad \text{subject to} \quad x \in X \text{ and } g_j(x) \leq 0, \ j=1,\ldots,r
\]

• Dual problem:
\[
\max q(\mu) \quad \text{subject to} \quad \mu \geq 0
\]
where the dual function is
\[
q(\mu) = \inf_{x \in X} \{ f(x) + \mu^\prime g(x) \}
\]

• Consider common/max crossing framework:
\[
M = \text{epi}(p), \quad p(u) = \inf_{x \in X, g_j(x) \leq u_j} f(x)
\]
MINIMAX / ZERO SUM GAME
THEORY ISSUES

• Given a function \(\Phi(x,z) \), where \(x \in X \) and \(z \in Z \), under what conditions do we have

\[
\inf_x \sup_z \Phi(x,z) = \sup_z \inf_x \Phi(x,z)
\]

• Assume convexity/concavity, semicontinuity of \(\Phi \)

• Min common/max crossing framework:

\[
M = \text{epigraph of } \Phi
\]

\[
p(u) = \inf_x \sup_z \{ \Phi(x,z) - u'z \}
\]

\[
\inf_x \sup_z \Phi = \text{Min common value}
\]

\[
\sup_z \inf_x \Phi = \text{Max crossing value} \quad \text{(can be shown)}
\]
II
UNIFICATION OF EXISTENCE AND NO DUALITY GAP ISSUES
INTERSECTIONS OF NESTED FAMILIES OF CLOSED SETS

• We will connect two basic problems in optimization
 – Attainment of a minimum of a function f over a set X
 – Existence of a duality gap

• The 1st question is a set intersection issue:
 The set of minima is the intersection of the nonempty level sets $\{x \in X \mid f(x) \leq \gamma\}$

• The 2nd question is also a set intersection issue (but not obvious). It is related to another fundamental question:
 When is the function
 \[f(x) = \inf_z F(x,z) \]
 lower semicontinuous, assuming $F(x,z)$ is convex and lower semicontinuous?
VISUALIZATION OF PARTIAL MINIMIZATION \(f(x) = \inf_z F(x,z) \)
PRESERVATION OF SEMICONTINUITY UNDER PARTIAL MINIMIZATION

- Key observation: For \(f(x) = \inf_z F(x,z) \), we have

\[
P\left(\text{epi}(F)\right) \subset \text{epi}(f) \subset \text{cl}\left(P\left(\text{epi}(F)\right)\right)
\]

where \(P(\cdot) \) is projection on the space of \(z \). So if projection preserves closedness, \(f \) is l.s.c.

Given \(C \), when is \(P(C) \) closed?

If \(y_k \) is a sequence in \(P(C) \) that converges to \(y \), we must show that the intersection of the \(C_k \) is nonempty.
Results on nonemptiness of intersection of a nested family of closed sets (use of directions of recession)

- No duality gap results in convex programming
- $\inf \sup \Phi = \sup \inf \Phi$

Existence of minima of f over X
III
PROBLEM STRUCTURES AND ALGORITHMS
SEPARABLE PROBLEMS & DECOMPOSITION

\[
\text{minimize} \quad \sum_{i=1}^{n} f_i(x_i) \\
\text{subject to} \quad a_j^T x \leq b_j, \quad j = 1, \ldots, r, \\
\text{maximize} \quad \sum_{i=1}^{n} q_i(\mu) - \sum_{j=1}^{r} \mu_j b_j \\
q_i(\mu) = \inf_{x_i \in \mathbb{R}} \left\{ f_i(x_i) + x_i \sum_{j=1}^{r} \mu_j a_{ji} \right\} \\
\text{subject to} \quad \mu \in \mathbb{R}^r,
\]

Dual function calculated by decomposition
Typically there is duality gap

Solution of dual problem provides a lower bound

Use in Lagrangian relaxation and branch-and-bound

Dual problem is nondifferentiable/polyhedral
ADDITIVE COST PROBLEMS

\[f(x) = \sum_{i=1}^{m} f_i(x) \]

- Huge number \(m \) of terms
- This is a common structure:
 - Dual problems of separable problems
 - Expected values (e.g. in stochastic programming) have this structure
- Calculation of gradient or subgradient of the sum is very time consuming
- Need for an incremental algorithmic approach
 - Move \(x \) along the gradient/subgradient of a single component \(f_i \)
LARGE NUMBER OF CONSTRAINTS

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad a_j^t x \leq b_j, \quad j = 1, \ldots, r,
\end{align*}
\]

- Calls for approximation of the constraint set
- Outer approximation
- Inner approximation
- Inner and outer approx are dual to each other
- An alternative: Penalty approach converts to a minimization of a large sum

\[
\text{minimize} \quad f(x) + c \sum_{j=1}^{r} P(a_j^t x - b_j)
\]
CLASSES OF ALGORITHMS

• Descent methods
 – Subgradient methods and incremental versions
 – Optimal algorithms (gradient methods with extrapolation) - Nesterov’s methods

• Approximation methods
 – Cutting plane
 – Simplicial decomposition
 – Proximal and bundle method
 – Interior point methods

• All these methods rely on convexity concepts
CONCLUDING REMARKS

- Optimization has become a universal tool in applications
- Convexity is the “soul” of optimization
- Geometry is the “soul” of convexity
- Very few simple geometric ideas are sufficient to unify/clarify most of convex optimization
- Theoretical/algorithmic research on convex optimization is still very active
Thank you!