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OUTLINE

• Convexity issues in optimization
• Historical remarks
• Our treatment of the subject

– Math rigor enhanced by visualization
– Unification and intuition enhanced by geometry

• Three unifying lines of analysis
– Common geometrical framework for duality and minimax
– Unifying framework for existence of solutions and duality

gap analysis
– Unification of Lagrange multiplier theory using an

enhanced Fritz John theory and the notion of
pseudonormality
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION I

•  A convex function has no local minima that are
not global
•  A nonconvex function can be “convexified” 
while maintaining the optimality of its minima
•  A convex set has nonempty relative interior
•  A convex set has feasible directions at any point

Convex set

Nonconvex set
Feasible
Directions
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION II
• The existence of minima of convex functions

is conveniently characterized using directions
of recession

• A polyhedral convex set is characterized by its
extreme points and extreme directions
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION III

• A convex function is continuous and has nice
differentiability properties

• Convex functions arise prominently in duality
• Convex, lower semicontinuous functions are

self-dual  with respect to conjugacy
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SOME HISTORY

• Late 19th-Early 20th Century:
– Caratheodory, Minkowski, Steinitz, Farkas

• 40s-50s: The big turning point
– Game Theory: von Neumann
– Optimization-related convexity: Fenchel
– Duality: Fenchel, Princeton group (Gale, Kuhn, Tucker)

• 60s-70s: Consolidation
– Rockafellar

• 80s-90s: Extensions to nonconvex optimization
and nonsmooth analysis

– Clarke, Mordukovich, Rockafellar-Wets
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ABOUT THE BOOKS

• Convex Analysis and Optimization, by D. P.
Bertsekas, with A. Nedic and A. Ozdaglar
(March 2003 - extends to nonconvex analysis)

• Convex Optimization Theory, by D. P.
Bertsekas (more narrowly/deeply focused on
convexity - to appear in 2007-08)

• Aims to make the subject accessible through
unification and geometric visualization

• Unification is achieved through several new
lines of analysis
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NEW LINES OF ANALYSIS

I A unified geometrical approach to convex programming
duality and minimax theory

– Basis: Duality between two elementary geometrical problems

II A unified view of theory of existence of solutions and
absence of duality gap

– Basis: Reduction to basic questions on intersections of closed
sets

III A unified view of theory of existence of Lagrange
multipliers/constraint qualifications

– Basis: The notion of constraint pseudonormality, motivated by a
new set of enhanced Fritz John conditions
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I
MIN COMMON/MAX CROSSING

DUALITY



10

Convex Analysis and Optimization, D. P. Bertsekas

GEOMETRICAL VIEW OF
DUALITY
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ANALYTICAL APPROACH

• Prove theorems about the geometry of M
– Conditions on M that guarantee w* = q*
– Conditions on M that guarantee existence of a max

crossing hyperplane

• Specialize the min common/max crossing
theorems to duality and minimax theorems

• Special choices of M apply to:
– Constrained optimization problem
– Minimax (zero-sum game) problem
– Others (e.g., Fenchel duality framework)
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CONVEX PROGRAMMING
DUALITY

• Primal problem:
min f(x)    subject to    x∈X and gj(x)≤0, j=1,…,r

• Dual problem:
max q(µ)  subject to    µ≥0
where the dual function is
 q(µ) = infx∈X L(x,µ) = infx∈X {f(x) + µ’g(x)}

• Optimal primal value = infx∈X supµ≥0 L(x,µ)
• Optimal dual value = supµ≥0 infx∈X L(x,µ)
• Min common/max crossing framework:

 p(u) = infx∈X, gj(x)≤uj f(x),         M = epi(p)
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VISUALIZATION
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MINIMAX / ZERO SUM GAME
THEORY ISSUES

• Given a function Φ(x,z), where x∈X and z∈Z,
under what conditions do we have

 infxsupz Φ(x,z) = supzinfx Φ(x,z)
• Assume convexity/concavity, semicontinuity

of Φ
• Min common/max crossing framework:

p(u) = infxsupz {Φ(x,z) - u’z}
M = epigraph of p

infxsupz Φ = Min common value
supzinfx Φ = Max crossing value
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VISUALIZATION

infxsupz Φ = Min common value
supzinfx Φ = Max crossing value
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TWO ISSUES IN CONVEX
PROGRAMMING AND MINIMAX

• When is there no duality gap ( in convex
programming), or inf sup = sup inf (in
minimax)?

• When does an optimal dual solution exist (in
convex programming), or the sup is attained (in
minimax)?

• Min common/max crossing framework shows
that

– 1st question is a lower semicontinuity issue
– 2nd question is an issue of existence of a nonvertical

support hyperplane (or subgradient) at the origin
• Further analysis is needed for more specific

answers
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GRAPHICAL VIEW
(ASSUMING CONVEXITY)

 - Existence of nonvertical support plane (dual solution)
- No duality gap (semicontinuity issue)
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II
UNIFICATION OF EXISTENCE

AND NO DUALITY GAP ISSUES



19

Convex Analysis and Optimization, D. P. Bertsekas

INTERSECTIONS OF NESTED
FAMILIES OF CLOSED SETS

• We will connect two basic problems in optimization
– Attainment of a minimum of a function f over a set X
– Existence of a duality gap

• The 1st question is a set intersection issue:
The set of minima is the intersection of the nonempty
level sets {x∈X | f(x) ≤ γ}

• The 2nd question is a lower semicontinuity issue:
When is the function

p(u) = infx F(x,u)
lower semicontinuous, assuming F(x,u) is convex and
lower semicontinuous?
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PRESERVATION OF
SEMICONTINUITY UNDER
PARTIAL MINIMIZATION

• 2nd question also involves set intersection
• Key observation: For p(u) = infx F(x,u), we have

 Closure(P(epi(F))) ⊃ epi(p) ⊃ P(epi(F))
where P(.) is projection on the space of u. So if
projection preserves closedness, F is l.s.c.

Given C, when is P(C) closed?

If yk is a sequence in P(C) that 
converges to y, we must show 
that the intersection of the Ck 
is nonempty

-
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UNIFIED TREATMENT OF
EXISTENCE OF SOLUTIONS
AND DUALITY GAP ISSUES

Results on nonemptiness of intersection
of a nested family of closed sets
(use of directions of recession)

No duality gap results
In convex programming inf sup Φ = sup inf Φ

Existence of minima of
f over X
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THE ROLE OF QUADRATIC
FUNCTIONS

Results on nonemptiness of intersection
of sets defined by quadratic inequalities

Linear
programming Semidefinite

programming
Quadratic

programming

If f is bounded below over X,
the min of f over X is attained

If the optimal value is finite,
there is no duality gap
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III
LAGRANGE MULTIPLIER

THEORY / PSEUDONORMALITY
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LAGRANGE MULTIPLIERS

• Problem (smooth, nonconvex):
Min f(x)
subject to x∈X,     hi(x)=0,  i = 1,…,m

• Necessary condition for optimality of x* (case
X = Rn): Under some “constraint qualification”,
we have

∇f(x*) + ΣI λi∇hi(x*) = 0
for some Lagrange multipliers λi

• Basic analytical issue: What is the
fundamental structure of the constraint set
that guarantees the existence of a Lagrange
multiplier?
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EXAMPLE WITH
NO LAGRANGE MULTIPLIERS

• Standard constraint qualifications (case X = Rn):
– The gradients ∇hi(x*) are linearly independent
– The functions hi are affine
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ENHANCED FRITZ JOHN
CONDITIONS

If x* is optimal, there exist µ0 ≥ 0 and λi, not all
0, such that


    µ0 ∇f(x*) + Σi λi∇hi(x*) = 0

 and a sequence {xk} with xk → x* and such that

    f (xk) < f(x*) for all k,

    λi hi(xk) > 0  for all i with λi ≠ 0  and all k


 NOTE: If µ0 > 0, the λi are Lagrange multipliers
with a special sensitivity property (they
indicate the direction in which constraints
must be violated to effect cost improvement)
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PSEUDONORMALITY

• A feasible point x* is pseudonormal if one cannot find
λi and a sequence {xk} with xk → x* such that


    Σi λi∇hi(x*) = 0,      Σi λi hi(xk) > 0   for all k

• Pseudonormality at x* ==> µ0 = 1 in the F-J conditions
(so there exists a “special” Lagrange multiplier)

To visualize:

Map an ε -ball around x*
onto the constraint space
Tε = {h(x)| ||x-x*|| < ε}
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INFORMATIVE LAGRANGE
MULTIPLIERS

• The Lagrange multipliers obtained from the
enhanced Fritz John conditions have a special
sensitivity property:
They indicate the constraints to violate in
order to improve the cost

• We call such multipliers informative

• Proposition: If there exists at least one
Lagrange multiplier vector, there exists one
that is informative
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THE STRUCTURE OF THE
THEORY FOR X = Rn

Lin. Independent
Constraint
Gradients

Pseudonormality

Linear
Constraints

Mangasarian
Fromovitz
Condition

Existence of
Informative
Multipliers

Existence of
Lagrange
Multipliers
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EXTENSIONS/CONNECTIONS
TO NONSMOOTH ANALYSIS

• F-J conditions for an additional constraint x∈X
• The stationarity condition becomes

- (µ0 ∇f(x*) + ΣI λi∇hi(x*)) ∈  (normal cone of X at x*)

• X is called regular at x* if the normal cone is equal to the
polar of its tangent cone at x* (example: X convex)

• If X is not regular at x*, the Lagrangian may have
negative slope along some feasible directions

• Regularity is the fault line beyond which there is no
satisfactory Lagrange multiplier theory
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THE STRUCTURE OF THE
THEORY FOR X: REGULAR

Pseudonormality

New Mangasarian
Fromovitz-Like

Condition

Existence of
Informative
Multipliers

Existence of
Lagrange
Multipliers

Slater
Condition
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EXTENSIONS

• Enhanced Fritz John conditions and
pseudonormality for convex problems, when
existence of a primal optimal solution is not
assumed

• Connection of pseudonormality and exact
penalty functions

• Connection of pseudonormality and the
classical notion of quasiregularity
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CONCLUDING REMARKS

• Optimization is becoming a universal
tool in applications

• Convexity is the “soul” of optimization
• Geometry is the “soul” of convexity
• Very few simple geometric ideas are

sufficient to unify/clarify most of
convex optimization

• Theoretical research on convexity is
still active


