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OUTLINE

Convexity issues in optimization
Historical remarks

Our treatment of the subject
— Math rigor enhanced by visualization
— Unification and intuition enhanced by geometry

Three unifying lines of analysis
— Common geometrical framework for duality and minimax

— Unifying framework for existence of solutions and duality
gap analysis
— Unification of Lagrange multiplier theory using an

enhanced Fritz John theory and the notion of
pseudonormality




WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION I

A convex function has no local minima that are
not global

« A nonconvex function can be “convexified”
while maintaining the optimality of its minima

« A convex set has nonempty relative interior
- A convex set has feasible directions at any point
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION Ii

 The existence of minima of convex functions
iIs conveniently characterized using directions
of recession

- A polyhedral convex set is characterized by its
extreme points and extreme directions
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WHY IS CONVEXITY
IMPORTANT IN OPTIMIZATION il

« A convex function is continuous and has nice
differentiability properties

- Convex functions arise prominently in duality

- Convex, lower semicontinuous functions are
self-dual with respect to conjugacy
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SOME HISTORY

Late 19th-Early 20th Century:

— Caratheodory, Minkowski, Steinitz, Farkas

40s-50s: The big turning point
— Game Theory: von Neumann
— Optimization-related convexity: Fenchel
— Duality: Fenchel, Princeton group (Gale, Kuhn, Tucker)

60s-70s: Consolidation
— Rockafellar

80s-90s: Extensions to honconvex optimization
and nonsmooth analysis
— Clarke, Mordukovich, Rockafellar-Wets




ABOUT THE BOOKS

Convex Analysis and Optimization, by D. P.
Bertsekas, with A. Nedic and A. Ozdaglar
(March 2003 - extends to nonconvex analysis)

Convex Optimization Theory, by D. P.
Bertsekas (more narrowly/deeply focused on
convexity - to appear in 2007-08)

Aims to make the subject accessible through
unification and geometric visualization

Unification is achieved through several new
lines of analysis




NEW LINES OF ANALYSIS

| A unified geometrical approach to convex programming
duality and minimax theory

— Basis: Duality between two elementary geometrical problems

Il A unified view of theory of existence of solutions and
absence of duality gap

— Basis: Reduction to basic questions on intersections of closed
sets

lll A unified view of theory of existence of Lagrange
multipliers/constraint qualifications

— Basis: The notion of constraint pseudonormality, motivated by a
new set of enhanced Fritz John conditions




I
MIN COMMON/MAX CROSSING
DUALITY
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GEOMETRICAL VIEW OF

DUALITY
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ANALYTICAL APPROACH

- Prove theorems about the geometry of M
— Conditions on M that guarantee w* = g*
— Conditions on M that guarantee existence of a max
crossing hyperplane
- Specialize the min common/max crossing
theorems to duality and minimax theorems

- Special choices of M apply to:
— Constrained optimization problem
— Minimax (zero-sum game) problem
— Others (e.g., Fenchel duality framework)
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CONVEX PROGRAMMING
DUALITY

- Primal problem:

min f(x) subjectto xeXand g;(x)=<0, j=1,...,r
- Dual problem:

max q(u) subjectto u=0

where the dual function is

q(w) = inf,ex L(x,p) = inf, o {f(x) + wa(x)}
- Optimal primal value = inf,_, sup,_, L(x,u)
* Optimal dual value = sup,_, inf,, L(x,u)

- Min common/max crossing framework:

p(u) = Inf,cx gix=uj T(X); M = epi(p)
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VISUALIZATION
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MINIMAX / ZERO SUM GAME
THEORY ISSUES

- Given a function ®(x,z), where xeX and zeZ,
under what conditions do we have

inf_ sup, ®(x,z) = sup,inf, P(x,z)

- Assume convexity/concavity, semicontinuity
of &

- Min common/max crossing framework:

p(u) = inf sup, {®(x,2) - u’'z}

M = epigraph of p
inf,sup, ® = Min common value
sup.,inf, ® = Max crossing value
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VISUALIZATION
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TWO ISSUES IN CONVEX
PROGRAMMING AND MINIMAX

When is there no duality gap ( in convex
programming), or inf sup = sup inf (in
minimax)?

When does an optimal dual solution exist (in

convex programming), or the sup is attained (in
minimax)?

Min common/max crossing framework shows
that
— 1st question is a lower semicontinuity issue
— 2nd question is an issue of existence of a nonvertical
support hyperplane (or subgradient) at the origin

Further analysis is needed for more specific
answers
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GRAPHICAL VIEW
(ASSUMING CONVEXITY)
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- Existence of nonvertical support plane (dual solution)
- No duality gap (semicontinuity issue)
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|
UNIFICATION OF EXISTENCE
AND NO DUALITY GAP ISSUES
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INTERSECTIONS OF NESTED
FAMILIES OF CLOSED SETS

- We will connect two basic problems in optimization
— Attainment of a minimum of a function f over a set X
— Existence of a duality gap

- The 1st question is a set intersection issue:

The set of minima is the intersection of the nonempty
level sets {xeX | f(x) =y}

- The 2nd question is a lower semicontinuity issue:

When is the function
p(u) = inf, F(x,u)

lower semicontinuous, assuming F(x,u) is convex and
lower semicontinuous?



20

PRESERVATION OF
SEMICONTINUITY UNDER
PARTIAL MINIMIZATION

- 2nd question also involves set intersection
- Key observation: For p(u) = inf, F(x,u), we have
Closure(P(epi(F))) D epi(p) D P(epi(F))

where P(:) is projection on the space of u. So if
“““““ ti~~ —=~~grves closedness, F is I.s.c.

)

Given C, when is P(C) closed?

If y, is a sequence in P(C) that
converges to y, we must show
+ that the intersection of the C,
- IS nonempty




UNIFIED TREATMENT OF
EXISTENCE OF SOLUTIONS
AND DUALITY GAP ISSUES

Results on nonemptiness of intersection
of a nested family of closed sets
(use of directions of recession)

No duality gap results

In convex programming inf sup ® = sup inf ®

Existence of minima of
f over X
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THE ROLE OF QUADRATIC
FUNCTIONS

Results on nonemptiness of intersection
of sets defined by quadratic inequalities

If f is bounded below over X,
the min of f over X is attained

If the optimal value is finite,
there is no duality gap

I-i"eeX%‘"meﬁnite
programmlng

Quadratic
programming

programming
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i
LAGRANGE MULTIPLIER
THEORY / PSEUDONORMALITY
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LAGRANGE MULTIPLIERS

- Problem (smooth, honconvex):
Min f(x)
subject to xeX, h,(x)=0, i=1,...,m

- Necessary condition for optimality of x* (case
X = R"): Under some “constraint qualification”,

we have
VI(x*) + Z,A,Vhi(x*) =0
for some Lagrange multipliers A,
- Basic analytical issue: What is the
fundamental structure of the constraint set

that guarantees the existence of a Lagrange
multiplier?



25

EXAMPLE WITH
NO LAGRANGE MULTIPLIERS

- Standard constraint qualifications (case X = R"):
— The gradients Vh,(x*) are linearly independent
— The functions h, are affine
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ENHANCED FRITZ JOHN
CONDITIONS

If x* is optimal, there exist p, = 0 and A;, not all
0, such that

wo VF(X*) + Z, A\, Vhi(x*) =0

and a sequence {xk} with xk — x* and such that
f (xk) < f(x*) for all k,
A hi(xK) >0 for all i with \,= 0 and all k

NOTE: If u, > 0, the A, are Lagrange multipliers
with a special sensitivity property (they
indicate the direction in which constraints
must be violated to effect cost improvement)
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PSEUDONORMALITY

- A feasible point x* is pseudonormal if one cannot find
A\; and a sequence {x*} with x* — x* such that

S AVh(x*) =0, ZAh(x¥)>0 forall k

- Pseudonormality at x* ==> p, =1 in the F-J conditions
(so there exists a “special”’ Lagrange multiplier)
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. To visualize:
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hj: Affine

- / ~ Map an ¢ -ball around x*
onto the constraint space
Mot Pseudonorma Tg - {h(X)l lIx-x*1l < 8}
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INFORMATIVE LAGRANGE
MULTIPLIERS

- The Lagrange multipliers obtained from the
enhanced Fritz John conditions have a special
sensitivity property:

They indicate the constraints to violate In
order to improve the cost

« We call such multipliers informative

- Proposition: If there exists at least one
Lagrange multiplier vector, there exists one
that is informative
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THE STRUCTURE OF THE
THEORY FOR X = R"

in. Independen - Mangasarian
Constraint Lmea_r Frogmovitz
Gradients Constraints Condition

.14/

Pseudonormality

I

Existence of
Lagrange
Multipliers

i

Existence of
Informative
Multipliers




30

EXTENSIONS/CONNECTIONS
TO NONSMOOTH ANALYSIS

« F-J conditions for an additional constraint xeX
- The stationarity condition becomes

- (ny VF(x*) + Z,\,Vh(x*)) € (normal cone of X at x*)

- X is called regular at x* if the normal cone is equal to the

polar of its tangent cone at x* (example: X convex)

- If Xis not regular at x*, the Lagrangian may have

negative slope along some feasible directions

- Regularity is the fault line beyond which there is no

satisfactory Lagrange multiplier theory
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THE STRUCTURE OF THE
THEORY FOR X: REGULAR

New Mangasarian Slater
Fromovitz-Like o~
Condition Condition

\/

Pseudonormality

I

Existence of
Lagrange
Multipliers

i

Existence of
Informative
Multipliers
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EXTENSIONS

- Enhanced Fritz John conditions and
pseudonormality for convex problems, when
existence of a primal optimal solution is not
assumed

- Connection of pseudonormality and exact
penalty functions

- Connection of pseudonormality and the
classical notion of quasiregularity



33

CONCLUDING REMARKS

Optimization is becoming a universal
tool in applications

Convexity is the “soul” of optimization
Geometry is the “soul” of convexity

Very few simple geometric ideas are
sufficient to unify/clarify most of
convex optimization

Theoretical research on convexity is
still active



