
1 23

Computational Optimization and
Applications
An International Journal

ISSN 0926-6003
Volume 70
Number 3

Comput Optim Appl (2018) 70:709-736
DOI 10.1007/s10589-018-9990-5

Proximal algorithms and temporal
difference methods for solving fixed point
problems

Dimitri P. Bertsekas

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Comput Optim Appl (2018) 70:709–736
https://doi.org/10.1007/s10589-018-9990-5

Proximal algorithms and temporal difference methods
for solving fixed point problems

Dimitri P. Bertsekas1

Received: 26 January 2017 / Published online: 2 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper we consider large fixed point problems and solution with
proximal algorithms. We show that for linear problems there is a close connection
between proximal iterations, which are prominent in numerical analysis and optimiza-
tion, and multistep methods of the temporal difference type such as TD(λ), LSTD(λ),
and LSPE(λ), which are central in simulation-based exact and approximate dynamic
programming. One benefit of this connection is a new and simple way to accelerate
the standard proximal algorithm by extrapolation towards a multistep iteration, which
generically has a faster convergence rate. Another benefit is the potential for integra-
tion into the proximal algorithmic context of several new ideas that have emerged in the
approximate dynamic programming context, including simulation-based implemen-
tations. Conversely, the analytical and algorithmic insights from proximal algorithms
can be brought to bear on the analysis and the enhancement of temporal difference
methods. We also generalize our linear case result to nonlinear problems that involve
a contractive mapping, thus providing guaranteed and potentially substantial accel-
eration of the proximal and forward backward splitting algorithms at no extra cost.
Moreover, under certain monotonicity assumptions, we extend the connection with
temporal difference methods to nonlinear problems through a linearization approach.

Keywords Proximal algorithm · Temporal differences · Dynamic programming ·
Convex optimization · Fixed point problems

B Dimitri P. Bertsekas
dimitrib@mit.edu

1 Laboratory for Information and Decision Systems, Department of Electrical Engineering and
Computer Science, M.I.T., Cambridge, MA 02139, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-018-9990-5&domain=pdf
http://orcid.org/0000-0001-6909-7208

710 D. P. Bertsekas

1 Introduction

In this paper we focus primarily on systems of linear equations of the form

x = Ax + b, (1.1)

where A is an n×nmatrix and b is a column vector in the n-dimensional space�n . We
denote by σ(M) the spectral radius of a square matrix M (maximum over the moduli
of the eigenvalues of M), and we assume the following.

Assumption 1.1 The matrix I − A is invertible and σ(A) ≤ 1.

We consider the proximal algorithm, originally proposed for the solution of mono-
tone variational inequalities by Martinet [45] (see also the textbook treatments by
Facchinei and Pang [33], Bauschke and Combettes [4], and the author’s [19]). This
algorithm has the form

xk+1 = P(c)xk,

where c is a positive scalar, and for a given x ∈ �n , P(c)x denotes the solution of the
following equation in the vector y:

y = Ay + b + 1

c
(x − y).

Under Assumption 1.1, this equation has the unique solution

P(c)x =
(
c + 1

c
I − A

)−1 (
b + 1

c
x

)
, (1.2)

because the matrix c+1
c I − A is invertible, since its eigenvalues lie within the unit

circle that is centered at c+1
c , so they do not include 0.

When A is symmetric, the system (1.1) is the optimality condition for the mini-
mization

min
x∈�n

{
1

2
x ′Qx − b′x

}
, (1.3)

where Q = I − A and a prime denotes transposition. The proximal algorithm xk+1 =
P(c)xk can then be implemented through the minimization

xk+1 ∈ argmin
x∈�n

{
1

2
x ′Qx − b′x + 1

2c
‖x − xk‖2

}
,

or

xk+1 =
(
1

c
I + Q

)−1 (
b + 1

c
xk

)
.

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 711

In this case, Assumption 1.1 is equivalent to Q being positive definite, with all eigen-
values in the interval (0, 2]. Note, however, that for the minimization problem (1.3),
the proximal algorithm is convergent for any positive semidefinite symmetric Q, as is
well known. Thus Assumption 1.1 is not the most general assumption under which the
proximal algorithm can be applied.1 Still, however, the assumption covers important
types of problems, including the case where A is a contraction with respect to some
norm, as well as applications in dynamic programming (DP for short), to be discussed
shortly.

Let us denote by T the mapping whose fixed point we wish to find,

T x = Ax + b.

We will denote by T � the �-fold composition of T , where � is a positive integer, and
we define addition of a finite number and an infinite number of linear operators in the
standard way. We introduce the multistep mapping T (λ) given by

T (λ) = (1 − λ)

∞∑
�=0

λ�T �+1, (1.4)

where λ is a scalar with 0 < λ < 1. The series defining T (λ) is convergent under
Assumption 1.1, as we will discuss later. A principal aim of this paper is to establish
the relation between the mappings T (λ) and P(c), and the ways in which this relation
can be exploited algorithmically to compute x∗.

The mapping T (λ) has been central in the field that we will refer to as “approximate
DP” (the name “reinforcement learning” is also often used in artificial intelligence,
and the names “neuro-dynamic programming” and “adaptive dynamic programming”
are often used in automatic control, with essentially the same meaning). In particular,
T (λ) is involved in methods for finding a fixed point of the mapping �T (λ), where
� is either the identity or some form of projection onto a low-dimensional subspace
S.2 In the DP context, A is a substochastic matrix related to the Markov chain of a
policy and the equation x = Ax + b is the Bellman equation for the cost function x
of the policy. Equations of the form x = T x are solved repeatedly within the exact
policy iteration method, which generates a sequence of improved cost functions and
associated policies. Equations of the form x = �T (λ)x are solved within a corre-
sponding approximate policy iteration method. Detailed accounts of the approximate
DP context are given in several books, including the ones by Bertsekas and Tsitsiklis

1 It is possible to scale the eigenvalues of Q to lie in the interval (0, 2] without changing the problem, by
multiplying Q and b with a suitable positive scalar. This, however, requires some prior knowledge about
the location of the eigenvalues of Q.
2 In approximate DP it is common to replace a fixed point equation of the form x = F(x)with the equation
x = �

(
F(x)

)
. This approach comes under the general framework of Galerkin approximation, which is

widely used in a variety of numerical computation contexts (see e.g., the books by Krasnoselskii [39] and
Fletcher [34], and the DP-oriented discussion in the paper [68]). A distinguishing feature of approximate
DP applications is that F is a linear mapping and the equation x = �

(
F(x)

)
is typically solved by

simulation-based methods.

123

Author's personal copy

712 D. P. Bertsekas

[7], Sutton and Barto [57], Si et al. [50], Powell [48], Busoniu et al. [1], Szepesvari
[59], Bertsekas [17], Lewis and Liu [42], and Vrabie, Vamvoudakis, and Lewis [63].
Substantial computational experience has been accumulated with this methodology,
and considerable success has been obtained (including prominent achievements with
programs that play games, such as Backgammon, Go, and others, at impressive and
sometimes above human level; see Tesauro [60], Scherrer et al. [36], [52], and Silver
et al. [44], [51]). In challenging approximate DP applications, the dimension of A
is very high, the dimension of the approximation subspace S is low by comparison,
and the large-scale computations involved in calculating the fixed point of �T (λ) are
handled by Monte-Carlo simulation schemes.

A variety of simulation-based methods that involve the mapping T (λ), such as
TD(λ), LSTD(λ), and LSPE(λ), have been proposed in approximate DP. In particular,
the fixed point iteration xk+1 = �T (λ)xk (where � is orthogonal projection with
respect to a weighted Euclidean norm) has been called PVI(λ) in the author’s DP
textbook [17] (PVI stands for Projected Value Iteration). Its simulation-based imple-
mentation is the LSPE(λ) method (LSPE stands for Least Squares Policy Evaluation)
given in joint works of the author with his collaborators Ioffe, Nedić, Borkar, and Yu
[2,5,16,46,67]. The simulation-based matrix inversion method that solves the fixed
point equation x = �T (λ)x is the LSTD(λ) method, given by Bradtke and Barto
[23], and further discussed, extended, and analyzed by Boyan [22], Lagoudakis and
Parr [40], Nedić and Bertsekas [46], Bertsekas and Yu [10,69], and Yu [71,72] (LSTD
stands for Least Squares Temporal Differences). TD(λ), proposed by Sutton [58] in the
approximate DP setting, is a stochastic approximationmethod for solving the equation
x = �T (λ)x . It has the form

xk+1 = xk + γk

(
sample

(
�T (λ)xk

) − xk
)
, (1.5)

where sample
(
�T (λ)xk

)
is a stochastic simulation-generated sample of�T (λ)xk , and

γk is a diminishing stepsize satisfying standard conditions for stochastic iterative
algorithms, such as γk = 1/(k + 1).3 The computation of the samples in Eq. 1.5
involves simulation usingMarkov chains and the notion of temporal differences,which
originated in reinforcement learning with the works of Samuel [53,54] on a checkers-
playing program. Mathematically, temporal differences are residual-type terms of the
form A�(Ax + b − x), � ≥ 0, which can be used to streamline various computations
within the aforementioned methods. We refer to the sources given above for methods
to generate samples of temporal differences in the DP/policy evaluation context, and
to [10] for corresponding methods and analysis within the more general linear fixed
point context of the present paper.

A central observation of this paper, shown in Sect. 2, is that the proximal mapping
P(c) is closely related to the multistep mapping T (λ), where

3 The precise nature of the problem that TD(λ) is aiming to solve was unclear for a long time. The paper
by Tsitsiklis and VanRoy [61] showed that it aims to find a fixed point of T (λ) or �T (λ), and gave a
convergence analysis (also replicated in the book [7]). The paper by Bertsekas and Yu [10] (Section 5.3)
generalized TD(λ), LSTD(λ), and LSPE(λ) to the linear system context of this paper.

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 713

Fig. 1 Relation of the mappings P(c) and T (λ). The mapping P(c) is obtained by interpolation between
T (λ) and the identity. Reversely, T (λ) is an extrapolated form of P(c)

λ = c

c + 1
.

In particular P(c) is an interpolatedmapping between T (λ) and the identity, or reversely,
T (λ) is an extrapolated form of P(c); see Fig. 1. Moreover, we show in Sect. 2 that
under Assumption 1.1, T (λ) has a smaller spectral radius than P(c), and as a result
extrapolation of the proximal iterates by a factor c+1

c results in convergence accelera-
tion at negligible computational cost. We also characterize the region of extrapolation
factors that lead to acceleration of convergence, and show that it is an interval that
contains (1, 1+ 1/c], but may potentially be substantially larger. These facts are new
to the author’s knowledge, and they are somewhat unexpected as they do not seem to
readily admit an intuitive explanation.

Aside from its conceptual value and its acceleration potential, the relation between
P(c) and T (λ) suggests the possibility of new algorithmic approaches for large scale
applications where the proximal algorithm can be used conveniently. In particular, one
may consider the projected proximal algorithm,

xk+1 = �P(c)xk,

which aims to converge to a fixed point of �P(c). The algorithm may be based on
simulation-based computations of �T (λ)x , and such computations have been dis-
cussed in the approximate DP context as part of the LSPE(λ) method (noted earlier),
and the λ-policy iteration method (proposed in [5], and further developed in the book
[7], and the papers [18,55]). The simulation-based methods for computing �T (λ)x
have been adapted to the more general linear equation context in [9,10]; see also [17],
Section 7.3. Another possibility is to use simulation-basedmatrix inversion to solve the
fixed point equation x = �T (λ)x . In the approximate DP context this is the LSTD(λ)
method, which has also been extended to the general linear equations context in [10].

For an overview of how to adapt and transfer algorithms between the TD/approxi-
mate DP and the proximal contexts, we refer to an extended version of this paper
[20]. Our aim there is to highlight the algorithmic possibilities that may allow us to
benefit from the accumulated implementation experience within these contexts. To
this end, we draw on the individual and joint works of the author, Wang and Yu; see

123

Author's personal copy

714 D. P. Bertsekas

[9,10,15,16,64,65,68,69,71,72], and the textbook account of [17], Section 7.3, where
extensions and analysis of TD(λ), LSTD(λ), and LSPE(λ) for solution of the general
linear system x = �T (λ)x were given. This includes criteria for T (λ) and�T (λ) to be a
contraction, error bounds, simulation-based implementations, algorithmic variations,
dealing with singularity or near singularity of �P(c), etc.

Let us also note that sampling and simulation for solution of linear systems have
a long history, starting with a suggestion by von Neumann and Ulam (recounted by
Forsythe and Leibler [35]); see also the papers by Curtiss [25,26], and the survey
by Halton [38]. More recently, work on simulation methods has focused on using
low-order calculations for solving large least squares and other problems. In this
connection we note the papers by Strohmer and Vershynin [56], Censor et al. [24], and
Leventhal and Lewis [41] on randomized versions of coordinate descent and iterated
projectionmethods for overdetermined least squares problems, and the series of papers
by Drineas, Kannan, Mahoney, Muthukrishnan, Boutsidis, and Magdon-Ismail, who
consider the use of simulation methods for linear least squares problems and low-rank
matrix approximation problems; see [3,27–31].

Our acceleration result of Sect. 2 admits an extension to nonlinear fixed point
problems. In particular, in Sect. 3 we show that an extrapolated form of the proximal
algorithm provides increased reduction of the distance to the fixed point over the
standard proximal algorithm, provided the fixed point problem has a unique solution
and involves a nonexpansivemapping (cf.Assumption 1.1). InSect. 3,we also consider
forward–backward splitting algorithms and provide a natural generalization of the
extrapolation ideas. To our knowledge, these are the first simple extensions of the
proximal and forward–backward algorithms for major classes of nonlinear problems,
which guarantee acceleration. Other extrapolation methods, such as the ones of [13]
and [14], Section 2.3.1 (for convex optimization), or [32] (for monotone operator
problems), guarantee convergence but not acceleration, in the absence of additional
prior knowledge.

The convergence theory of temporal difference methods is restricted to linear
systems that satisfyAssumption 1.1. Thus, for nonlinear fixed point problems, the con-
nection of temporal difference and proximal algorithms seems considerably weaker.
To address this situation, we introduce in Sect. 4 algorithmic ideas based on lineariza-
tion whereby T is linearized at each iterate xk , and the next iterate xk+1 is obtained
with a temporal differences-based (exact, approximate, or extrapolated) proximal iter-
ation using the linearized mapping. This approach is similar to Newton’s method for
solving nonlinear fixed point problems, where the linearized system is solved exactly,
rather than approximately (using a single proximal iteration) as in our case.

2 Interpolation and extrapolation formulas

We first review a known result from [10] regarding the multistep mapping T (λ). By
repeatedly applying the formula x = Ax + b, we can verify that

T (λ)x = A(λ)x + b(λ), (2.1)

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 715

where

A(λ) = (1 − λ)

∞∑
�=0

λ�A�+1, b(λ) =
∞∑

�=0

λ�A�b, (2.2)

assuming that the series above are convergent. The following proposition shows that
under Assumption 1.1, T (λ) is well defined by the power series (1− λ)

∑∞
�=0 λ�T �+1

[cf. Eq. (1.4)], and that it is a contraction with respect to some norm.

Proposition 2.1 Let Assumption 1.1 hold and let λ ∈ (0, 1).

(a) The matrix A(λ) and the vector b(λ) are well-defined in the sense that the series
in Eq. (2.2) are convergent.

(b) The eigenvalues of A(λ) have the form

θi = (1 − λ)

∞∑
�=0

λ�ζ �+1
i = ζi (1 − λ)

1 − ζiλ
, i = 1, . . . , n, (2.3)

where ζi , i = 1, . . . , n, are the eigenvalues of A. Furthermore, we have

σ(A(λ)) < 1, lim
λ→1

σ
(
A(λ)

) = 0.

The property σ(A(λ)) < 1 asserted in the preceding proposition, is critical for the
subsequent development and depends on the eigenvalues of A being different than 1
(cf. Assumption 1.1). For an intuitive explanation, note that the eigenvalues of A(λ)

can be viewed as convex combinations of complex numbers from the unit circle at least
two of which are different from each other since ζi �= 1 [the nonzero corresponding
eigenvalues of A and A2 are different from each other, cf. Eqs. (2.2), (2.3)]. As a
result the eigenvalues of A(λ) lie strictly within the interior of the unit circle under
Assumption 1.1.

The relation between the proximal mapping P(c) and the multistep mapping T (λ)

is established in the following proposition, which is illustrated in Fig. 1.

Proposition 2.2 Let Assumption 1.1 hold, and let c > 0 and λ = c
c+1 . Then:

(a) P(c) is given by

P(c) = (1 − λ)

∞∑
�=0

λ�T �, (2.4)

and can be written as

P(c)x = A
(λ)

x + b
(λ)

, x ∈ �n, (2.5)

123

Author's personal copy

716 D. P. Bertsekas

where

A
(λ) = (1 − λ)

∞∑
�=0

λ�A�, b
(λ) =

∞∑
�=0

λ�+1A�b. (2.6)

(b) We have

T (λ) = T P(c) = P(c)T, (2.7)

and for all x ∈ �n,

P(c)x = (1 − λ)x + λT (λ)x, T (λ)x = −1

c
x + c + 1

c
P(c)x, (2.8)

or equivalently

P(c)x = x + λ
(
T (λ)x − x

)
, T (λ)x = x + c + 1

c

(
P(c)x − x

)
. (2.9)

Proof (a) The inverse in the definition of P(c) [cf. Eq. (1.2)] is written as

(
c + 1

c
I − A

)−1

=
(
1

λ
I − A

)−1

= λ(I − λA)−1 = λ

∞∑
�=0

(λA)�,

where the power series above is convergent by Proposition 2.1(a). Thus, from
Eq. (1.2) and the equation 1

c = 1−λ
λ

,

P(c)x =
(
c + 1

c
I − A

)−1 (
b + 1

c
x

)
= λ

∞∑
�=0

(λA)�
(
b + 1 − λ

λ
x

)

= (1 − λ)

∞∑
�=0

(λA)�x + λ

∞∑
�=0

(λA)�b,

which from Eq. (2.6), is equal to A
(λ)

x + b
(λ)

, thus proving Eq. (2.5).
(b) We have for all x ∈ �n , using Eqs. (2.1), (2.2), (2.5) and (2.6),

T P(c)x = A
(
A

(λ)
x + b

(λ)) + b = (1 − λ)

∞∑
�=0

λ�A�+1x

+
∞∑

�=0

λ�+1A�+1b + b = A(λ)x + b(λ) = T (λ)x,

thus proving the left side of Eq. (2.7). The right side is proved similarly. The
interpolation/extrapolation formulas (2.8) and (2.9) follow by a straightforward

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 717

calculation from Eq. (2.4) and the definition T (λ) = (1 − λ)
∑∞

�=0 λ�T �+1 [cf.
Eq. (1.4)].As an example, the following calculation shows the left side ofEq. (2.9)
[and hence also the equivalent left side of Eq. (2.8)]:

x + λ
(
T (λ)x − x

) = (1 − λ)x + λT (λ)x

= (1 − λ)x + λ

(
(1 − λ)

∞∑
�=0

λ�A�+1x +
∞∑

�=0

λ�A�b

)

= (1 − λ)

(
x +

∞∑
�=1

λ�A�x

)
+

∞∑
�=0

λ�+1A�b

= A
(λ)

x + b
(λ)

= P(c)x .
�

We will now use the extrapolation formulas of Proposition 2.2(b) to construct
interesting variants of the proximal algorithm. The next proposition establishes the
convergence and convergence rate properties of the proximal and multistep iterations,
and shows how the proximal iteration can be accelerated by extrapolation or interpo-
lation.

Proposition 2.3 Let Assumption 1.1 hold, and let c > 0 and λ = c
c+1 . Then the

eigenvalues of A
(λ)

are

θ i = 1 − λ

1 − ζiλ
, i = 1, . . . , n, (2.10)

where ζi , i = 1, . . . , n, are the eigenvalues of A. Moreover, A(λ) and A
(λ)

have the
same eigenvectors. Furthermore, we have

σ(A(λ))

σ (A)
≤ σ(A

(λ)
) < 1, (2.11)

so σ(A(λ)) < σ(A
(λ)

) if σ(A) < 1.

Proof Let ei be an eigenvector of A(λ) corresponding to the eigenvalue θi . By using
the interpolation formula (2.8) and the eigenvalue formula (2.3) for θi , we have

A
(λ)

ei = (1 − λ)ei + λA(λ)ei = (
(1 − λ) + λθi

)
ei

=
(

(1 − λ) + λ
ζi (1 − λ)

1 − ζiλ

)
ei = 1 − λ

1 − ζiλ
ei .

Hence, θ i = 1−λ
1−ζiλ

and ei are the corresponding eigenvalue and eigenvector of A
(λ)

,
respectively.

123

Author's personal copy

718 D. P. Bertsekas

O

A

B C

ζλ

|1 − ζλ|

1

1 − λ0 < |ζλ| ≤ λ
− 1

D

Complex Plane

Fig. 2 Proof of the inequality |θ i | < 1, or equivalently that 1 − λ < |1 − ζλ| for all complex numbers
ζ �= 1 with |ζ | ≤ 1, and λ ∈ (0, 1). We consider the unit circle of the complex plane and the complex
number ζλ, and we note that 0 < |ζλ| ≤ λ < 1. If ζ is in the left-hand side of the plane or on the vertical
axis, we clearly have 1 − λ < 1 ≤ |1 − ζλ|, so it is sufficient to consider the case where ζ �= 0 and the
real part of ζ is positive, which is depicted in the figure. If ζ is real, we have ζ > 0 as well as λ > 0, so
|1 − ζλ| = 1 − ζλ > 1 − λ, and we are done. If ζ is not real, we consider the isosceles triangle OAB
(shaded in the figure), and note that the angles of the triangle bordering the side AB are less than 90◦. It
follows that the angle ABC and hence also the angle ADC shown in the figure is greater than 90◦. Thus
the side AC of the triangle ADC is strictly larger than the side DC. This is equivalent to the desired result
1 − λ < |1 − ζλ|

The proof that σ(A
(λ)

) < 1, or equivalently that |θ i | < 1 for all i , follows from
a graphical argument on the complex plane, which is given in the caption of Fig. 2

[An alternative argument is to observe that A
(λ)

involves a convex combination of
corresponding eigenvalues of the identity and A; cf. Eq. (2.6) and the remark following
Proposition 2.1.]

Finally, from Eqs. (2.3) and (2.10), we have

|θ i | = |θi |
|ζi | , i = 1, . . . , n,

which implies that

|θ i | ≥ |θi |
σ(A)

, i = 1, . . . , n.

By taking the maximum of both sides over i , we obtain the left side of Eq. (2.11). �

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 719

An interesting conclusion can be drawn fromProposition 2.3 about the convergence
and the rate of convergence of the proximal iteration xk+1 = P(c)xk and the multistep
iteration xk+1 = T (λ)xk . Under Assumption 1.1, both iterations are convergent, but
the multistep iteration is faster when A is itself a contraction (with respect to some
norm) and is not slower otherwise; cf. Proposition 2.3(a). In the case where A is not a

contraction [σ(A) = 1] it is possible that σ(A(λ)) = σ(A
(λ)

) (as an example consider
a case where all the eigenvalues ζi have modulus 1).

Even in the case where σ(A(λ)) = σ(A
(λ)

), however, it is possible to accelerate
the proximal iteration by interpolating strictly between P(c)xk and T (λ)xk . This is
shown in the next proposition, which establishes the convergence rate properties of
the extrapolated proximal iteration, and quantifies the range of extrapolation factors
that lead to acceleration.

Proposition 2.4 Let Assumption 1.1 hold, and let c > 0 and λ = c
c+1 . Consider any

iteration that extrapolates from P(c) in the direction of T (λ), i.e.,

xk+1 = (1 − γ)P(c)xk + γ T (λ)xk, γ > 0, (2.12)

and write it in matrix-vector form as

xk+1 = A(λ, γ)xk + b(λ, γ),

where A(λ, γ) is an n × n matrix and b(λ, γ) ∈ �n. The eigenvalues of A(λ, γ) are
given by

θi (γ) = (1 − γ)θ i + γ θi , i = 1, . . . , n, (2.13)

and we have

σ
(
A(λ, γ)

)
< σ(A

(λ)
), (2.14)

for all γ in the interval (0, γmax), where

γmax = max
{
γ > 0

∣∣ ∣∣θi (γ)
∣∣ ≤ θ i , ∀ i = 1, . . . , n

}
.

Moreover, we have γmax ≥ 1, with equality holding if and only if σ(A) = 1.

Proof The eigenvalue formula (2.13) follows from the interpolation formula

A(λ, γ) = (1 − γ)A
(λ) + γ A(λ),

and the fact that A(λ) and A
(λ)

have the same eigenvectors (cf. Proposition 2.3). For
each i , the scalar

max
{
γ > 0

∣∣ ∣∣θi (γ)
∣∣ ≤ |θ i |

}

123

Author's personal copy

720 D. P. Bertsekas

Fig. 3 Illustration of the proof of Proposition 2.4. The eigenvalues θi (γ) of A(λ, γ) are linear combinations

(with γ > 0) of the eigenvalues θ i and θi = ζi θ i of A
(λ)

and A(λ), respectively, and we have θi ≤ θ i

is the maximum extrapolation factor γ for which θi (γ) has at most as large modulus
as θ i (cf. Fig. 3), and the inequality (2.14) follows. The inequality γmax ≥ 1 follows
from the construction of Fig. 3, since |θi | ≤ |θ i |, θi �= θ i , and γ = 1 corresponds to
the iteration xk+1 = T (λ)xk . Finally, we have γmax = 1 if and only if |θi | = |θ i | for
some i , which happens if and only if |ζi | = 1 for some i , i.e., σ(A) = 1. �

We may implement the extrapolation/interpolation iteration (2.12) by first imple-
menting the proximal iteration xk+1 = P(c)xk and then the multistep iteration
according to

xk+1 = T (λ)xk = xk + c + 1

c

(
P(c)xk − xk

)
.

In thisway, unlessσ(A) = 1 [cf. Eq. (2.11)],we achieve acceleration over the proximal
iteration. We may then aim for greater acceleration by extrapolating or interpolating
between P(c)xk and T (λ)xk with some factor, possibly determined by experimentation
[strict acceleration can always be achieved with γ ∈ (0, 1)]. This provides a simple
and reliable method to accelerate the convergence of the proximal algorithm without

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 721

knowledge of the eigenvalue structure of A beyond Assumption 1.1.4 Conversely, we
may implement the proximal iteration by interpolating the multistep iteration.

Finally, let us show that the multistep and proximal iterates P(c)xk and T (λ)xk
can be computed by solving fixed point problems involving a contraction of modulus
λσ(A).

Proposition 2.5 Let Assumption 1.1 hold, and let c > 0 and λ = c
c+1 . The multistep

and proximal iterates T (λ)xk and P(c)xk are the unique fixed points of the contraction
mappings Wxk and Wxk given by

Wxk x = (1 − λ)T xk + λT x, x ∈ �n,

and

Wxk x = (1 − λ)xk + λT x, x ∈ �n,

respectively.

Proof Clearly Wxk and Wxk are contraction mappings, since they are linear with
spectral radius λσ(A) ≤ λ < 1. To show that T (λ)xk is the fixed point of Wxk , we
must verify that T (λ)xk = Wxk

(
T (λ)xk

)
, or equivalently that

T (λ)xk = (1 − λ)T xk + λT
(
T (λ)xk) = (1 − λ)T xk + λT (λ)(T xk) (2.15)

[here we are applying the formula T
(
T (λ)x) = T (λ)(T x), which is easily verified

using Eqs. (2.1) and (2.2)]. In view of the interpolation formula

(1 − λ)x + λT (λ)x = P(c)x, ∀ x ∈ �n, (2.16)

[cf. Eq. (2.8)], the right-hand side of Eq. (2.15) is equal to P(c)(T xk), which from
the formula T (λ) = P(c)T [cf. Eq. (2.7)], is equal to T (λ)xk , the left-hand side of Eq.
(2.15).

Similarly, to show that P(c)xk is the fixed point ofWxk , wemust verify that P(c)xk =
Wxk (P

(c)xk), or equivalently that

P(c)xk = (1 − λ)xk + λT
(
P(c)xk

)
.

This is proved by combining the formula T (λ) = T P(c) [cf. Eq. (2.7)], and the inter-
polation formula (2.16). �

4 It is well known that the proximal iteration can be extrapolated by a factor of as much as two while
maintaining convergence. This was first shown for the special case of a convex optimization problem in
[13], and then for the general case of finding a zero of a monotone operator in [EcB92]; see also a more
refined analysis, which quantifies the effects of extrapolation, for the case of a quadratic programming
problem, given in [14], Section 2.3.1. However, we are not aware of any earlier proposal of a simple and
general scheme to choose an extrapolation factor that maintains convergence and simultaneously guarantees
acceleration. Moreover, this extrapolation factor, (c + 1)/c, may be much larger than two.

123

Author's personal copy

722 D. P. Bertsekas

The fixed point property of the preceding proposition states that T (λ)x is the unique
solution of the following equation in y:

y = (1 − λ)T x + λT y = (1 − λ)(Ax + b) + λ(Ay + b),

and thus provides an explicit matrix inversion formula for themultistepmapping T (λ):

T (λ)x = (1 − λA)−1(b + (1 − λ)Ax
)
. (2.17)

This formula should be compared with the formula (1.2) for the proximal mapping,
which can be written in terms of λ as

P(c)x = (1 − λA)−1(λb + (1 − λ)x
)
.

The fact that the multistep iterate xk+1 = T (λ)xk is the fixed point of Wxk is
known in exact and approximate DP, and forms the basis for the λ-policy iteration
method, first proposed in [5,7], Section 2.3.1. This is a variant of policy iteration
where policy evaluation is done by performing a single multistep iteration using the
mapping T (λ), where A corresponds to the policy being evaluated. The formula (2.17)
is given and further discussed in [21], Section 4.3.3. In view of our analysis in this
paper, it follows that λ-policy iteration is the approximate version of policy iteration,
where the exact policy evaluation phase of the latter (which is to find the fixed point
of T), is approximated with a single [extrapolated by a factor (c + 1)/c] iteration
of the proximal algorithm. The λ-policy iteration method admits some interesting
simulation-based implementations, which have been discussed in the approximate DP
literature ([18,55]), but will not be discussed further here. Based on Proposition 2.5,
the proximal iteration xk+1 = P(c)xk admits similar implementations.

Proposition 2.5 also suggests the iteration

xk+1 = Vmxk, (2.18)

where Vmxk is obtained bym > 1 iterations of the mappingWxk starting with xk , i.e.,

Vmxk = (Wxk)
mxk,

so Vmxk is an approximate evaluation of T (λ)xk , the fixed point of Wxk . It can be
verified by induction that

Vmxk = (1 − λ)(T xk + λT 2xk + · · · + λm−1Tmxk) + λmTmxk,

and that Vm is a contraction mapping [the preceding formula is given in [7], Prop.
2.7(b), while the contraction property of Vm is proved similar to Prop. 3(a) of [10]].
There is also the similar iteration xk+1 = Vmxk, where Vmxk is obtained by m > 1
iterations of the mapping Wxk starting with xk . This iteration may be viewed as an
iterative approximate implementation of the proximal algorithm that does not require
matrix inversion.

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 723

3 Extensions to nonlinear fixed point problems

In this section we consider the solution of the fixed point problem

x = T (x), (3.1)

where T : �n �→ �n is a possibly nonlinear mapping. The proximal algorithm for
this problem has the form

xk+1 = P(c)(xk), (3.2)

where c is a positive scalar, and for a given x ∈ �n , P(c)(x) solves the following
equation in the vector y:

y = T (y) + 1

c
(x − y). (3.3)

We will operate under assumptions guaranteeing that this equation has a unique solu-
tion, so that P(c) will be well defined as a point-to-point mapping.

We focus on the following extrapolated version of the proximal algorithm (3.2):

xk+1 = E (c)(xk), (3.4)

where

E (c)(x) = x + c + 1

c

(
P(c)(x) − x

)
. (3.5)

When T is linear as in Sect. 1, this algorithm coincides with the multistep method
xk+1 = T (λ)xk (cf. Fig. 1).

The key fact for our purposes is that

E (c)(x) = T
(
P(c)(x)

)
, ∀ x ∈ �n; (3.6)

see Fig. 4. To prove this, we note that from Eq. (3.3) we have

P(c)(x) + 1

c

(
P(c)(x) − x

) = T
(
P(c)(x)

)
.

Using the form (3.5) of E (c)(x) and the preceding equation, we obtain

E (c)(x) = x + c + 1

c

(
P(c)(x) − x

) = P(c)(x) + 1

c

(
P(c)(x) − x

) = T
(
P(c)(x)

)
,

showing Eq. (3.6).
The form of Eq. (3.6) suggests that the extrapolated iteration (3.4) has faster con-

vergence that the proximal iteration (3.2), within contexts where T is contractive with

123

Author's personal copy

724 D. P. Bertsekas

Fig. 4 Illustration of the extrapolated algorithm (3.4). The proximal iterate P(c)(x), denoted x in the figure,
is extrapolated by 1

c (x − x). From the definition of P(c)(x), the extrapolated iterate is equal to T (x) [cf.
Eq. (3.6)], and its distance to x∗ is strictly smaller than the distance of x when T is a contraction

respect to a suitable norm. In particular, if the solution P(c)(x) of Eq. (3.3) exists and
is unique for all x ∈ �n , and P(c) and T are contractions with respect to the same
norm, then both iterations (3.2) and (3.4) converge to the unique fixed point of T ,
and the extrapolated iteration converges faster. The following proposition provides
specific conditions guaranteeing that this is so.

Proposition 3.1 Assume that T is a contraction mapping with modulus γ ∈ (0, 1)
with respect to a Euclidean norm ‖ · ‖, i.e.,

∥∥T (x1) − T (x2)
∥∥ ≤ γ ‖x1 − x2‖, ∀ x1, x2 ∈ �n . (3.7)

Then the solution P(c)(x) of Eq. (3.3) exists and is unique for all x ∈ �n, and the
mappings P(c) and E (c) are contraction mappings with respect to ‖ · ‖. In particular,
we have

∥∥P(c)(x1) − P(c)(x2)
∥∥ ≤ 1

1 + c(1 − γ)
‖x1 − x2‖, ∀ x1, x2 ∈ �n,

∥∥E (c)(x1) − E (c)(x2)
∥∥ ≤ γ

1 + c(1 − γ)
‖x1 − x2‖, ∀ x1, x2 ∈ �n .

Moreover, every sequence {xk} generated by either the proximal algorithm (3.2) or its
extrapolated version (3.4) converges geometrically to the unique fixed point x∗ of T ,
and the convergence of the extrapolated version is faster in the sense that

∥∥E (c)(x) − x∗∥∥ ≤ γ
∥∥P(c)(x) − x∗∥∥, ∀ x ∈ �n . (3.8)

Proof We first verify that the mapping x �→ x − T (x) satisfies the standard strong
monotonicity assumption under which the proximal mapping is a contraction. In par-
ticular, denoting by 〈·, ·〉 the inner product that defines the Euclidean norm ‖ · ‖, and
using the Cauchy-Schwarz inequality and Eq. (3.7), we have

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 725

〈x1 − x2, x1 − T (x1) − x2 + T (x2)〉
= ‖x1 − x2‖2 − 〈x1 − x2, T (x1) − T (x2)〉
≥ ‖x1 − x2‖2 − ‖x1 − x2‖ · ∥∥T (x1) − T (x2)

∥∥
≥ ‖x1 − x2‖2 − γ ‖x1 − x2‖2
= (1 − γ)‖x1 − x2‖2,

∀ x1, x2 ∈ �n .

This relation shows that the mapping x �→ x − T (x) is strongly monotone and from
standard results, P(c) is well-defined as a point-to-point mapping and we have

∥∥P(c)(x1) − P(c)(x2)
∥∥ ≤ 1

1 + c(1 − γ)
‖x1 − x2‖, ∀ x1, x2 ∈ �n,

(see [49] or [19], Exercise 5.2). In view of Eq. (3.6) and the contraction property of
T , the corresponding contraction property of E (c) and Eq. (3.8) follow. �

3.1 Extrapolation of the forward–backward and proximal gradient algorithms

The forward–backward splitting algorithm applies to the fixed point problem x =
T (x)− H(x), where T is a maximally monotone point-to-set mapping in a Euclidean
space with inner product 〈·, ·〉 defining a Euclidean norm ‖ · ‖, and H is single-valued
and strongly monotone, in the sense that for some scalar β > 0, we have

〈x1 − x2, H(x1) − H(x2)〉 ≥ β‖x1 − x2‖2, ∀ x1, x2 ∈ �n .

The algorithm has the form

xk+1 = P(α)
(
xk − αH(xk)

)
, α > 0,

where P(α) is the proximal mapping corresponding to T ; see Fig. 5. This algorithm
was analyzed at various levels of generality, by Lions and Mercier [43], Gabay [37],
and Tseng [62]. It has been shown to converge to x∗ if α is sufficiently small. For
a minimization problem where H is the gradient of a strongly convex function, it
becomes the popular proximal gradient algorithm; for recent surveys, see Beck and
Teboulle [8], Parikh and Boyd [47], and the author’s textbook [19] (Ch. 6), among
others.

The extrapolated forward–backward algorithm has the form

zk = xk − αH(xk), xk = P(α)(zk),

xk+1 = xk + 1

α
(xk − zk) − H(xk),

and is illustrated in Fig. 6. It can be seen that

xk+1 = T (xk) − H(xk)

123

Author's personal copy

726 D. P. Bertsekas

Fig. 5 Illustration of an iteration of the forward backward algorithm

Slope = −1/α

x∗

y − T (y)

Forward Step

yxk

zk = xk − αH(xk)

xk − T (xk) + H(xk) = 1
α (zk − xk) + H(xk)

Forward-Backward Step

Forward-Backward Step

xk = P (α)(zk)

Extrapolated

xk+1 = T (xk) − H(xk)

−H(y)

Fig. 6 Illustration of the forward backward algorithm with extrapolation

so there is acceleration if the mapping T − H is contractive. In the linear case where
T (x) = Ax +b, H(x) = Bx , where A and B are n×n matrices, the algorithm can be
related to temporal difference methods, and may be implemented using simulation-
based techniques (see [20] for a discussion).

4 Linearized proximal and temporal difference methods for nonlinear
problems

The proximal algorithm (3.2) and its extrapolated version (3.5) cannot be related
to multistep temporal difference algorithms when T is nonlinear, because then the
mapping P(c) does not admit a power series expansion; cf. Eq. (2.4). In this section,

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 727

we consider algorithmic ideas based on linearization whereby T is linearized at each
iterate xk , and the next iterate xk+1 is obtained with a temporal differences-based
(exact, approximate, or extrapolated) proximal iteration using the linearized mapping.
This type of algorithm bears similarity to Newton’s method for solving nonlinear fixed
point problems, the difference being that the linearized system is solved approximately,
using a single proximal iteration, rather than exactly (as in Newton’s method). The
algorithm does not seem to have been considered earlier, to the author’s knowledge,
although related ideas underlie the λ-policy iteration and optimistic policy iteration
methods in DP (see the subsequent discussion).

We focus on the fixed point problem x = T (x) with the i th component of T (x)
having the form

T (i, x) = min
μ(i)∈M(i)

{
a
(
i, μ(i)

)′
x + b

(
i, μ(i)

)}
, x ∈ �n, i = 1, . . . , n, (4.1)

where for each i , M(i) is some set, and a
(
i, μ(i)

)
and b

(
i, μ(i)

)
are a (column) vector

in�n and scalar, respectively, for eachμ(i) ∈ M(i). For a given i , this form of T (i, x)
includes a very broad class of concave functions of x . Moreover, the case where each
T (i, x) is a convex function can be transformed to the concave case through some sign
reversals. Intuition suggests that an algorithmic analysis for more general forms of T
may be possible, but this is beyond the scope of the present paper.

Let M be the Cartesian product M(1) × · · · × M(n). Given a vector μ =(
(μ(1), . . . , μ(n)

) ∈ M , the matrix whose i th row is the vector a
(
i, μ(i)

)′ is denoted
by Aμ and the vector whose i th component is b

(
i, μ(i)

)
is denoted by bμ. We denote

by Tμ the linear mapping given by

Tμx = Aμx + bμ.

Our notation here and later is inspired by notation widely used in DP and policy
iteration contexts, where i corresponds to state, the components x(i) of x correspond
to cost at state i , μ(i) corresponds to control at state i , M(i) corresponds to the
control constraint set at state i , μ corresponds to policy, Aμ and bμ correspond to the
transition probability matrix and cost per stage vector for policy μ, Tμ is the mapping
that defines Bellman’s equation for the policy μ, and T is the mapping that defines
Bellman’s equation for the corresponding Markovian decision problem.

We consider the following algorithm. At the typical iteration, given the cur-
rent iterate xk , we find μk(i) that attains the minimum over μ(i) ∈ M(i) of
a
(
i, μ(i)

)′
xk +b

(
i, μ(i)

)
, i = 1, . . . , n, and let μk = (

μk(1), . . . , μk(n)
)
(the attain-

ment of the minimum will be assumed in what follows). We obtain xk+1 via the
multistep (extrapolated proximal) iteration

xk+1 = T (λ)
μk

xk, (4.2)

123

Author's personal copy

728 D. P. Bertsekas

Fig. 7 Illustration of the linearized multistep algorithm (4.2)–(4.3), and its proximal version. At the current

iterate xk , we linearize T and find the proximal iterate x̄k = P(c)
μk xk that aims to find the fixed point xμk

of the linearized mapping Tμk . We can then find the multistep iterate by extrapolation T (λ)
μk xk = Tμk x̄k =

x̄k + 1
c (x̄k − xk); [cf. Eq. (4.2)]. Alternatively, T (λ)

μk xk can be found by a temporal differences-based
calculation. Note the similarity with the form of Newton’s method that finds xμk , the unique fixed point
of Tμk , i.e., the iteration xk+1 = xμk . Newton’s method is generally faster but may require much more
overhead than the linearized proximal or multistep iteration

where for a given λ ∈ (0, 1), T (λ)
μk is the multistep mapping corresponding to the linear

mapping Tμk ,

Tμk x = Aμk x + bμk , x ∈ �n; (4.3)

cf. Eq. (1.4). The algorithm is illustrated in Fig. 7, together with its proximal version.
Note that a

(
i, μk(i)

)
is the gradient of T (i, ·) at xk if T (i, ·) is differentiable, and

otherwise it is a subgradient of T (i, ·) at xk . This justifies the terms “linearization”
and “linearized mapping.”

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 729

The algorithm (4.2)–(4.3) is related to theλ-policy iterationmethod forDPproblems
where {μk} is the sequence of generated policies and the fixed point equation x = Tμk x
corresponds to Bellman’s equation for the policyμk (see the discussion and references
given at the end of Section 2). The algorithm admits several variations where T (λ)

μk is
replaced in Eq. (4.2) by an approximation; for example the iteration (2.18) or the
iteration

xk+1 = P(c)
μk

xk, (4.4)

where P(c)
μk is the proximal mapping corresponding to Tμk . Another related possibility

is the iteration

xk+1 = Tm
μk
xk,

where Tm
μk

is the composition of Tμk with itselfm times (m ≥ 1). This is related to the
optimistic policy iteration method of DP; see [7,17], or [21], Section 2.5.

Let us say that a vector μ ∈ M is proper if the mapping Tμ has a unique fixed point
within �n , denoted by xμ, and we have T k

μx → xμ for all x ∈ �n . Equivalently, μ is
proper if and only if Aμ has eigenvalues strictly within the unit circle. Ifμ is not proper
it is called improper. The names “proper” and “improper” relate to notions of proper
and improper policies in DP and stochastic shortest path problems in particular; see
[6,7,17]. Note that for proper μ the algorithmic results of Section 2 come into play.
In particular, the multistep and proximal iterations xk+1 = T (λ)

μ xk and xk+1 = P(c)
μ xk

all converge to xμ starting from any x0 ∈ �n .
We will assume the following.

Assumption 4.1 (a) For all x ∈ �n and i = 1, . . . , n, the minimum over M(i) in
Eq. (4.1) is attained.

(b) For all μ ∈ M , the matrix Aμ has nonnegative components.
(c) There exists at least one proper vector, and for each improper vector μ and

x ∈ �n , at least one component of the sequence {T k
μx} diverges to +∞.

Assumption 4.1(a) is needed to ensure that the algorithm is well defined. Assump-
tion 4.1(b) implies a monotonicity property typically encountered in DP problems,
whereby we have for all μ ∈ M ,

Tμx ≤ Tμy ∀ x, y ∈ �n such that x ≤ y, (4.5)

as well as

T x ≤ T y ∀ x, y ∈ �n such that x ≤ y. (4.6)

[The relation (4.6) follows from the relation (4.5) by first taking the infimum of the
left side to obtain T x ≤ Tμy and then by taking again the infimum over μ ∈ M .] This
monotonicity assumption can be replaced by a sup-norm contraction assumption on
Aμ, but this requires substantial algorithmic modifications that will be the subject of
a separate report. Assumption 4.1(c) is satisfied in particular if all μ ∈ M are proper.

123

Author's personal copy

730 D. P. Bertsekas

We have the following proposition, which ensures that under Assumption 4.1 the
algorithm is well defined.

Proposition 4.1 Let Assumption 4.1 hold. Then:

(a) If for some vectors μ ∈ M and x ∈ �n we have Tμx ≤ x, then μ is proper.
(b) A sequence {xk, μk} generated by the algorithm (4.2)–(4.3) starting from an

initial x0 ∈ �n such that x0 ≥ T (x0) is well defined, and for all k, the vectors
μk are proper. Moreover, the sequence {xk} is monotonically nonincreasing.

Proof (a) By the monotonicity of Tμ [cf. Eq. (4.5)], we have T k
μx ≤ x for all k, so

if μ were improper, Assumption 4.1(c) would be violated.
(b) We first note that for all x and μ ∈ M , we have

x ≥ Tμx ⇒ Tμx ≥ T (λ)
μ x ≥ Tμ · T (λ)

μ x, (4.7)

and by part (a), μ is proper. This follows from the power series expansion

T (λ)
μ x = (1 − λ)(Tμx + λT 2

μx + λ2T 3
μx + · · ·),

and the fact that x ≥ Tμx implies that Tμx ≥ Tm
μ x ≥ Tm+1

μ x for all m ≥ 1.
Moreover we have

T (λ)
μ x ≥ xμ, (4.8)

which follows by taking the limit as m → ∞ in the relation

m∑
τ=0

λt T t+1
μ x ≥ 1 − λm+1

1 − λ
Tm+1

μ x .

By the definition of the algorithm, we have x0 ≥ T (x0) = Tμ0x0, so by part (a),
μ0 is proper. Since from Eqs. (4.7) and (4.8),

x0 ≥ Tμ0x0 ≥ T (λ)
μ0

x0 = x1 ≥ xμ0 ,

it follows that x1 ∈ �n . Continuing this argument for all k, the result follows. �
As noted earlier, for each proper μ, the mapping Tμ has a unique fixed point

xμ ∈ �n .We introduce the componentwise minimum vector x̂ , which has components
x̂(i) given by

x̂(i) = inf
μ:proper xμ(i), i = 1, . . . , n, (4.9)

where xμ(i) is the i th component of the vector xμ.

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 731

Proposition 4.2 Let Assumption 4.1 hold and assume that T has at least one fixed
point within �n. Then:

(a) The vector x̂ of Eq. (4.9) belongs to �n, and is the unique fixed point of T within
�n.

(b) Asequence {xk}generatedby thealgorithm (4.2) starting froman initial condition
x0 such that x0 ≥ T (x0) is monotonically nonincreasing and converges to x̂ .

Proof (a) Let x∗ ∈ �n be a fixed point of T within �n . We will show that x∗ = x̂ .
Indeed, using also the monotonicity of Tμ and T [cf. Eqs. (4.5) and (4.6)], we
have for every m ≥ 1 and μ ∈ M

x∗ = Tmx∗ ≤ Tm
μ x∗ ≤ lim

m→∞ Tm
μ x∗ = xμ.

By taking the infimum of the right side over μ ∈ M , we obtain x∗ ≤ x̂ . For
the reverse inequality, let μ∗ be such that x∗ = T x∗ = Tμ∗x∗. Using Proposi-
tion 4.1(a), it follows that μ∗ is proper, so that x∗ is the unique fixed point of
Tμ∗ , i.e., x∗ = xμ∗ ≥ x̂ . Thus x∗ = x̂ and the proof of part (a) is complete.

(b) From the relations (4.7) and (4.8), and the definition of the algorithm we have

xk ≥ T (xk) = Tμk xk ≥ T (λ)
μk

xk = xk+1 ≥ xμk ≥ x̂, k = 0, 1, (4.10)

It follows that xk ↓ x∞, where x∞ is a real-valued n-dimensional vector [since
x̂ ∈ �n by part (a)].

Next we show that x∞ is a fixed point of T . Indeed, from the relation xk ≥ T (xk)
[cf. Eq. (4.10)], we have xk ≥ T (x∞) for all k, so that x∞ ≥ T (x∞). Also we note
that from the relation T (xk) ≥ xk+1 we have

lim
k→∞ T (xk) ≥ x∞.

Moreover for all μ ∈ M , in view of the linearity of Tμ, we have

Tμx∞ = lim
k→∞ Tμxk ≥ lim

k→∞ T (xk).

By combining the preceding two relations, we obtain Tμx∞ ≥ x∞, so by taking the
infimumoverμ ∈ M , we have T (x∞) ≥ x∞. This relation, combinedwith the relation
x∞ ≥ T (x∞) shown earlier, proves that x∞ is a fixed point of T within �n . From part
(a) it follows that x∞ = x̂ . �

We can also prove results that are similar to the preceding proposition, but where
the nonnegativity Assumption 4.1(b) and the condition x0 ≥ T (x0) are replaced by
alternative conditions. For example, linearization algorithms for finding a fixed point
of T are given in the author’s monograph [21], Section 2.6.3, under just the assumption
that all the matrices Aμ, μ ∈ M , are contractions with respect to a common weighted
sup-norm (see also the papers by Bertsekas and Yu [11,12,70], which relate to the dis-
counted DP and stochastic shortest path contexts). These algorithms, however, do not

123

Author's personal copy

732 D. P. Bertsekas

use proximal iterations. Another possibility, which involves randomization between
proximal iterates involving T (λ)

μk and nonproximal iterates involving Tμk is given in
Section 5.2 of the extended version of this paper [20]. In any case, an initial vector x0
with x0 ≥ T (x0) [cf. the assumption of part (b)] may be obtained in some important
cases by adding sufficiently large scalars to the components of some given vector x .
For example, suppose that for some μ, the mapping Tμ is a sup-norm contraction.
Then given any x ∈ �n , it can be shown that the vector x0 with components x(i) + r
satisfies x0 ≥ Tμx0 ≥ T (x0), provided that the scalar r is sufficiently large.

The proof of Proposition 4.2(b) shows that even without a guarantee of existence
of a fixed point of T within �n , we have xk ↓ x∞, where x∞ is a vector that may have
some infinite components. For an example of this type, consider the one-dimensional
problem of finding a fixed point of the mapping

T (x) = min
μ∈(0,1]

{
(1 − μ2)x − μ

}
.

Then Assumption 4.1 is satisfied, we have xμ = −1/μ, x̂ = −∞, xk ↓ x̂ starting
from any x0 ∈ �, while T has no real-valued fixed point.

To see what may happen when there are improper μ and Assumption 4.1(c) is not
satisfied, consider the mapping T given by

T (x) = min{1, x},

which is of the form (4.1) but has multiple fixed points. Here there are two vectors μ.
One is μ̂ with Tμ̂x = 1, which is proper, and the other is μ̄ with Tμ̄x = x , which is
improper but does not satisfy Assumption 4.1(c).

5 Concluding remarks

A principal aim of this paper has been to show that proximal and multistep tempo-
ral difference methods for linear fixed point problems are closely related, and their
implementations can benefit from each other, in both the exact and the approximate
simulation-based setting. In particular, within the context of DP, the TD(λ) algorithm
for exact policy evaluation, can be written as the stochastic proximal algorithm

xk+1 = xk + γk

(
sample

(
P(c)xk

) − xk
)
,

for solving the linear Bellman equation x = T x corresponding to a policy [in view
of Eq. (1.5), and taking into account the fact that (T (λ)xk − xk) is the product of
(P(c)xk − xk) with the scalar 1/λ, where λ = c

c+1 ; cf. Fig. 1]. Our Assumption 1.1 is
satisfied in broad classes of linear fixed point problems, including problems involving
a contraction, and policy evaluation in exact and approximate DP.

Aside from the conceptual and analytical value of the connection between proximal
and temporal difference methods, we have shown that under our assumptions, a tangi-
ble improvement of the proximal algorithm is possible at no cost. This improvement

123

Author's personal copy

Proximal algorithms and temporal difference methods for… 733

is obtained by a simple extrapolation of the proximal iterate, and provides a guar-
anteed acceleration of convergence (not just guaranteed convergence, like alternative
extrapolation schemes). Moreover, this improvement carries over to nonlinear fixed
point problems. In addition, our methodology extends naturally to forward–backward
splitting and proximal gradient algorithms.

To extend the connection between proximal and temporal difference algorithms,
we have also introduced some new proximal-like algorithms for nonlinear fixed point
problems. These algorithms are based on linearization, bear a resemblance with New-
ton’s method, and admit temporal differences-based implementations.

Some computational experience with the use of simulation to solve large linear
systems, beyond those arising inDP,will be helpful in quantifying the potential benefits
of the ideas of this paper and its extended version [20]. Also an interesting question
is how to generalize the methods of this paper from the linear equation context to the
solution of linear variational inequalities, possibly with a large number of constraints,
where both the proximal algorithm andmultistep DP-type methods have been applied;
see the papers [15,66].

References

1. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Program-
ming Using Function Approximators. CRC Press, New York (2010)

2. Bertsekas, D.P., Borkar, V.S., Nedić, A.: Improved temporal difference methods with linear function
approximation. In: Si, J., Barto, A., Powell,W.,Wunsch, D. (eds.) Learning andApproximate Dynamic
Programming. IEEE Press, New York (2004)

3. Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal column-based matrix reconstruction.
SIAM J. Comput. 43, 687–717 (2014)

4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer, New York (2011)

5. Bertsekas, D.P., Ioffe, S.: Temporal differences-based policy iteration and applications in neuro-
dynamic programming. Laboratory for Information and Decision Systems Report LIDS-P-2349, MIT
(1996)

6. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems. Math. OR 16, 580–
595 (1991)

7. Bertsekas,D.P., Tsitsiklis, J.N.:Neuro-DynamicProgramming.AthenaScientific,Belmont,MA(1996)
8. Beck, A., Teboulle, M.: Gradient-based algorithms with applications to signal-recovery problems. In:

Eldar, Y., Palomar, D. (eds.) Convex Optimization in Signal Processing and Communications, pp.
42–88. Cambridge University Press, Cambridge (2010)

9. Bertsekas, D.P., Yu, H.: Solution of large systems of equations using approximate dynamic program-
ming methods. Laboratory for Information and Decision Systems Report LIDS-P-2754, MIT (2007)

10. Bertsekas, D.P., Yu, H.: Projected equation methods for approximate solution of large linear systems.
J. Comput. Appl. Math. 227, 27–50 (2009)

11. Bertsekas, D.P., Yu, H.: Asynchronous distributed policy iteration in dynamic programming. In: Pro-
ceedings of Allerton Conference on Communication, Control and Computing, Allerton Park, Ill, pp.
1368–1374 (2010)

12. Bertsekas, D.P., Yu, H.: Q-learning and enhanced policy iteration in discounted dynamic programming.
Math. OR 37, 66–94 (2012)

13. Bertsekas, D.P.: On the method of multipliers for convex programming. IEEE Trans. Auton. Control
20, 385–388 (1975)

14. Bertsekas, D.P.: ConstrainedOptimization andLagrangeMultiplierMethods, p. 1997.Academic Press,
New York (1982). (Republished by Athena Scientific, Belmont, MA)

15. Bertsekas, D.P.: Temporal difference methods for general projected equations. IEEE Trans. Autom.
Control 56, 2128–2139 (2011)

123

Author's personal copy

734 D. P. Bertsekas

16. Bertsekas, D.P.: Approximate policy iteration: a survey and some new methods. J. Control Theory
Appl. 9(2011), 310–335 (2011)

17. Bertsekas, D.P.: Dynamic Programming and Optimal Control: Approximate Dynamic Programming,
vol. II, 4th edn. Athena Scientific, Belmont, MA (2012)

18. Bertsekas, D.P.: λ-policy iteration: a review and a new implementation. In: Lewis, F., Liu, D. (eds.)
Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. IEEE Press,
New York (2012)

19. Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont, MA (2015)
20. Bertsekas, D.P.: Proximal algorithms and temporal differences for large linear systems: extrapolation,

approximation, and simulation. Laboratory for Information and Decision Systems Report LIDS-P-
3205, MIT (2016)

21. Bertsekas, D.P.: Abstract Dynamic Programming, 2nd edn. Athena Scientific, Belmont, MA (2018).
http://web.mit.edu/dimitrib/www/home.html

22. Boyan, J.A.: Technical update: least-squares temporal difference learning. Mach. Learn. 49, 1–15
(2002)

23. Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference learning. Mach.
Learn. 22, 33–57 (1996)

24. Censor, J., Herman, G.T., Jiang, M.: A note on the behavior of the randomized Kaczmarz algorithm of
Strohmer and Vershynin. J. Fourier Anal. Appl. 15, 431–436 (2009)

25. Curtiss, J.H.: A theoretical comparison of the efficiencies of two classical methods and a Monte
Carlo method for computing one component of the solution of a set of linear algebraic equations. In:
Proceedings of Symposium on Monte Carlo Methods, pp. 191–233 (1954)

26. Curtiss, J.H.: A Monte Carlo methods for the iteration of linear operators. Uspekhi Mat. Nauk 12,
149–174 (1957)

27. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices I: approximating
matrix multiplication. SIAM. J. Comput. 35, 132–157 (2006)

28. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Calo algorithms for matrices II: computing a
low-rank approximation to a matrix. SIAM. J. Comput. 36, 158–183 (2006)

29. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for L2 regression and applica-
tions. In: Proceedings 17th Annual SODA, pp. 1127–1136 (2006)

30. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error CUR matrix decompositions. SIAM
J. Matrix Anal. Appl. 30, 844–881 (2008)

31. Drineas, P.,Mahoney,M.W.,Muthukrishnan, S., Sarlos, T.: Faster least squares approximation. Numer.
Math. 117, 219–249 (2011)

32. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

33. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer, New York (2003)

34. Fletcher, C.A.J.: Computational Galerkin Methods. Springer, New York (1984)
35. Forsythe, G.E., Leibler, R.A.: Matrix inversion by a Monte Carlo method. Mathematical Tables and

Other Aids to Computation 4, 127–129 (1950)
36. Gabillon, V., Ghavamzadeh, M., Scherrer, B.: Approximate dynamic programming finally performs

well in the game of tetris. In: Advances in Neural Information Processing Systems, pp. 1754–1762
(2013)

37. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowin-
ski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value
Problems. North-Holland, Amsterdam (1983)

38. Halton, J.H.: A retrospective and prospective survey of the Monte Carlo method. SIAM Rev. 12, 1–63
(1970)

39. Krasnoselskii, M.A., et al.: Approximate Solution of Operator Equations. Wolters-Noordhoff Publi-
cation, Groningen (1972). Translated by D. Louvish

40. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res. 4, 1107–1149 (2003)
41. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and condi-

tioning. Math. Oper. Res. 35, 641–654 (2010)
42. Lewis, F.L., Liu, D. (eds.): Reinforcement Learning and Approximate Dynamic Programming for

Feedback Control. Wiley, Hoboken, NJ (2013)

123

Author's personal copy

http://web.mit.edu/dimitrib/www/home.html

Proximal algorithms and temporal difference methods for… 735

43. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.
Anal. 16, 964–979 (1979)

44. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep reinforcement learning.
Nature 518, 529–533 (2015)

45. Martinet, B.: Regularisation d’ Inequations Variationnelles par Approximations Successives. Rev.
Francaise Inf. Rech. Oper. 4, 154–158 (1970)

46. Nedić, A., Bertsekas, D.P.: Least squares policy evaluation algorithms with linear function approxi-
mation. Discrete Event Dyn. Syst. Theory Appl. 13, 79–110 (2003)

47. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)
48. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley,

New York (2007)
49. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14,

877–898 (1976)
50. Si, J., Barto, A., Powell, W., Wunsch, D. (eds.): Learning and Approximate Dynamic Programming.

IEEE Press, New York (2004)
51. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, S.,

et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489
(2016)

52. Scherrer, B., Ghavamzadeh, M., Gabillon, V., Lesner, B., Geist, M.: Approximate modified policy
iteration and its application to the game of tetris. J. Mach. Learn. Res. 16, 1629–1676 (2015)

53. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3,
210–229 (1959)

54. Samuel, A.L.: Some studies in machine learning using the game of checkers. II–recent progress. IBM
J. Res. Dev. 11, 601–617 (1967)

55. Scherrer, B.: Performance bounds for λ-policy iteration and application to the game of tetris. J. Mach.
Learn. Res. 14, 1181–1227 (2013)

56. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J.
Fourier Anal. Appl. 15, 262–278 (2009)

57. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge, MA (1998)
58. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44 (1988)
59. Szepesvari, C.: Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, San Rafael

(2010)
60. Tesauro, G.J.: TD-gammon, a self-teaching backgammon program, achieves master-level play. Neural

Comput. 6, 215–219 (1994)
61. Tsitsiklis, J.N., Van Roy, B.: An analysis of temporal-difference learning with function approximation.

IEEE Trans. Autom. Control 42, 674–690 (1997)
62. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and varia-

tional inequalities. SIAM J. Control Optim. 29, 119–138 (1991)
63. Vrabie, D., Vamvoudakis, K.G., Lewis, F.L.: Optimal adaptive control and differential games by rein-

forcement learning principles. The Institution of Engineering and Technology, London (2013)
64. Wang,M., Bertsekas, D.P.: Stabilization of stochastic iterative methods for singular and nearly singular

linear systems. Math. Oper. Res. 39, 1–30 (2013)
65. Wang, M., Bertsekas, D.P.: Convergence of iterative simulation-based methods for singular linear

systems. Stoch. Systems 3, 39–96 (2014)
66. Wang, M., Bertsekas, D.P.: Incremental constraint projection methods for variational inequalities.

Math. Program. 150, 321–363 (2015)
67. Yu, H., Bertsekas, D.P.: Convergence results for some temporal difference methods based on least

squares. IEEE Trans. Auton. Control 54, 1515–1531 (2006)
68. Yu, H., Bertsekas, D.P.: Error bounds for approximations from projected linear equations. Math. Oper.

Res. 35, 306–329 (2010)
69. Yu, H., Bertsekas, D.P.: Weighted Bellman equations and their applications in dynamic programming.

Laboratory for Information and Decision Systems Report LIDS-P-2876, MIT (2012)
70. Yu,H., Bertsekas,D.P.:Q-learning and policy iteration algorithms for stochastic shortest path problems.

Ann. Oper. Res. 208, 95–132 (2013)

123

Author's personal copy

736 D. P. Bertsekas

71. Yu, H.: Convergence of least squares temporal difference methods under general conditions. In: Pro-
ceedings of the 27th ICML, Haifa, Israel (2010)

72. Yu, H.: Least squares temporal difference methods: an analysis under general conditions. SIAM J.
Control Optim. 50, 3310–3343 (2012)

123

Author's personal copy

	Proximal algorithms and temporal difference methods for solving fixed point problems
	Abstract
	1 Introduction
	2 Interpolation and extrapolation formulas
	3 Extensions to nonlinear fixed point problems
	3.1 Extrapolation of the forward–backward and proximal gradient algorithms

	4 Linearized proximal and temporal difference methods for nonlinear problems
	5 Concluding remarks
	References

