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ON PENALTY AND MULTIPLIER METHODS
FOR CONSTRAINED MINIMIZATION*

DIMITRI P. BERTSEKAS?

Abstract. In this paper we consider a generalized class of quadratic penalty function methods for
the solution of nonconvex nonlinear programming problems. This class contains as special cases both
the usual quadratic penalty function method and the recently proposed multiplier method. We obtain
convergence and rate of convergence results for the sequences of primal and dual variables generated.
The convergence results for the multiplier method are global in nature and constitute a substantial
improvement over existing local convergence results. The rate of convergence results show that the
multiplier method should be expected to converge considerably faster than the pure penalty method.
At the same time, we construct a global duality framework for nonconvex optimization problems. The
dual functional is concave, everywhere finite, and has strong differentiability properties. Furthermore,
its value, gradient and Hessian matrix within an arbitrary bounded set can be obtained by uncon-
strained minimization of a certain augmented Lagrangian.

1. Introduction. One of the most effective methods for solving the con-
strained optimization problem

minimize f(x)
(1)

subject to h,(x)=O, i= 1,..., m,

is the quadratic penalty function method (see, e.g., [6], [12], [13]). This method
consists of sequential unconstrained minimization of the function

(2) f(x) +ck , [h,(x)]2

for an increasing unbounded scalar sequence {ck}. The properties of the method
are well known, and we refer to [6] for an extensive discussion.

Recently a method, often referred to as the multiplier method, has been
proposed and investigated by a number of authors [2]-[5], [7]-[ 11 ], 15]-[ 18] (see
[2] and the survey papers [20], [21] for a more detailed account). In this method,
the function

(3) f(x)+ cyh,(x)+ [h,(x)]
i=1 i=

is minimized over x for a sequence of vectors y (y, , yr)’, and scalars c.
The function above can be interpreted as a Lagrangian function to which a penalty
term has been added. A number of ways of updating of the scalar c have been
proposed. One possibility is to let c increase to infinity in a predetermined
fashion. It is also possible to keep c fixed after a certain index. The distinctive
feature of the method is that after each unconstrained minimization, yielding a
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METHODS FOR CONSTRAINED MINIMIZATION 217

minimizing point xk, the vector yk is updated by means of the iteration

(4) y,+ y, + c,h(x,), i= 1,..., m,

where h(x,) denotes the column vector (hl(x,),"’, h,,(x,))’, (prime throughout
this paper denotes transposition).

The convergence of iteration (4) to a Lagrange multiplier 37 of the problem
has been shown under various assumptions. Global convergence results (i.e.,
results where the starting point y0 is not required to be sufficiently close to ) have
been given for convex programming problems in [17], and in [3], [10], [11]. For
nonconvex problems, the results available [2], [5], assume boundedness of the
penalty parameter sequence {ck} and are local in nature; i.e., convergence has
been shown under the assumption that the initial point yo is within a sufficiently
small neighborhood of . Existing rate of convergence results [2] also assume
boundedness of the sequence {c}.

All the results mentioned above have been obtained by interpreting the
multiplier method as a primal-dual method. In this paper we adopt instead a
penalty function viewpoint. Both the quadratic penalty method and the multiplier
method are imbedded in a more general penalty function algorithm. In this
algorithm, the augmented Lagrangian (3) is minimized for sequences of scalars
{ck} and vectors {y}. The only requirement imposed on the sequence {Yk}is that it
remains within an arbitrary given bounded set S. Thus the quadratic penalty
method is obtained as a special case by taking

c-*co and y=0, ’V’k.

The multiplier method is obtained by updating y via iteration (4), whenever
y, + c,h(x,) S.

Under assumptions which are specified in the next section, we show that for
the general penalty method described above there exist nonnegative scalars c*
and M such that for all c, > c* and y S, we have

(5) IIx <--MI[Y,
and

(6)

where x, y are the optimal solution and Lagrange multiplier vector for problem
(1), x is a point locally minimizing the augmented Lagrangian (3) in a neighbor-
hood of , and yk+l is given in terms of c, y, and x by (4). The result mentioned
above can be used to establish global convergence of the multiplier method, when
S is, for example, an open sphere centered at )7, under the assumption that c > M,
c > c* for all k greater than some index. Furthermore, the result shows that in the
multiplier method, the sequence {[lYk-[[} converges at least linearly if c is
bounded above and superlinearly if c --> co, while in the quadratic penalty method
(yk 0), the convergence rate is much less favorable. A similar (but sharper) rate
of convergence result has been shown in [2] under the assumption that c is
bounded above.D
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2 1 8 DIMITRI P. BERTSEKAS

From the computational point of view, it appears advantageous to carry out
the minimization of the augmented Lagrangian only approximately while increas-
ing the accuracy of the approximation with each minimization. We consider this
case as well, and we obtain estimates similar to (5), (6), for two different
gradient-based termination criteria. The estimates obtained are used in turn to
establish global convergence and rate of convergence results for the correspond-
ing algorithms.

In 4 we use the results obtained to construct a global duality theory much in
the spirit of the one recently proposed by Rockafellar [18]. However, our dual
functional is continuously differentiable, and its value and gradient can be
calculated by unconstrained minimization of the augmented Lagrangian (3) in a
manner similar to that for convex programming problems. In this way we are able
to interpret multiplier methods as primal-dual methods in a global sense.

For simplicity of presentation, we consider equality constraints only. The
analysis, however, applies in its entirety to inequality constraints as well, since
such constraints can be converted to equality constraints by using (squared) slack
variables. This device, due to Rockafellar 1 6], results in no loss of computational
efficiency and is discussed in 5.

2. A generalized penalty tunction algorithm. Consider the nonlinear pro-
gramming problem

(7)
minimize f(x)

subject to hi(x) O,

The functions f and hi for all are real-valued functions on R" (n-dimensional
Euclidean space). Let .f be an optimal solution of problem (7). We make the
following assumptions concerning the nature of f and hi in an open ball B ($, e) of
radius e > 0 centered at ft.

A. The point together with a unique Lagrange multiplier vector 37
satisfies the standard second order sufficiency conditions for .f to be a
local minimum [12, p. 226], i.e.,

A.1. The functions f, hi, 1,.", m, are twice continuously differentiable
within the open ball B(, e).

A.2. The gradients Vhi(), 1, , m, are linearly independent, and there
exists a unique Lagrange multiplier vector 37 (yl,..., y,,), such that

Vf($) + E iVh,() 0.
i=1

A.3. The Hessian matrix of the Lagrangian Lo(x, y)=f(x) +Y?_- yhi(x),

V2Co(,, Y) V2f(,) +
i=l

is positive definite on the tangent plane corresponding to the con-
straints, i.e.,

w’VZLo(:, 37)w > 0
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METHODS FOR CONSTRAINED MINIMIZATION 219

for all w 6 R" such that

w : 0, w’Vhi() 0, 1, , m.

B. The Hessian matrices V2f, V2h, are Lipschitz continuous within the open
ball B(, e), i.e., for some K>0, we have for all x, x’ B(g, e)

and

]lV2f(x)- Wf(x’)[I Kl[x x’ll

IlV=h,(x)- Vh,(x’)l[ KIIx x’ll,

where ]]. corresponds to the usual Euclidean norm.
Now let S be an arbitrary bounded subset of R ". Consider also for

any scalar c > 0 and any vector y S the augmented Lagrangian function

(8)
C

L(x, y, c) f(x) + y’h(x)+llh(x)ll.
We shall be interested in algorithms of the following general (and imprecise) form:

Step 1. Given ck > 0, yk S, find a (perhaps approximate) minimizing point
x of the function L(x, y, c) defined by (8).

Step 2. Determine c+1 > 0, yk+l e S on the basis of x, y, c according to
some procedure and return to Step 1.

It is easy to verify that for every x R" we have

L(x, y, ck)>=f(x)+ IIh(x)ll=- 
Hence, as c oe, we have L(x, y, c,)-oo for all sequences {y}S, and all
infeasible vectors x. It is, thus, evident that one may devise a penalty function
method based on sequential unconstrained minimization of L(x, yk, c) for any
sequences {c}- oe, {y}c S. This method exhibits the same convergence proper-
ties as the usual quadratic penalty function method [6]. Thus there is no difficulty
in showing convergence of some sort for the general alogrithm described earlier
whenever c oe. The question which is most interesting, however, is to deter-
mine methods of updating y which result in desirable behavior such as acceler-
ated convergence. Before proceeding to a detailed analysis, let us consider a
heuristic geometric argument which shows that it is advantageous to select y as
close as possible to the Lagrange multiplier .

Let p be the primal functional or perturbation function 19] corresponding to
problem (7)

p(u) min f(x)
h(x)=

In the above equation, the minimization is understood to be local within an
appropriate neighborhood of . Also p is defined locally on a neighborhood ofD
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220 DIMITRI P. BERTSEKAS

u O. It is known that

p(O) f()= optimal value of problem (7),

Vp(0) .
Now we can write

min L(x, y, c) min min f(x) + y’h(x) +-][h(x)[I
h(x)=u

or

{ c }minx L(x, y, c) min p(u)+ y’u _[_[[1/[[[2
The above equation can be interpreted geometrically as shown in Fig. 1. Notice
that the addition of (c/2)llul]2 to p(u) has an important convexification effect. It can
be seen from Fig. 1 that as y is closer to the Lagrange multiplier 7, the
corresponding value minx L(x, y, c) is closer to the optimal value of the problem.
This fact will also be brought out by the analysis that follows.

min L (x,y, c) f(
X

--min L(x,y,c)
X

Y- min L(x,O,c)
X

!
!

U FP- 4076

FIG.

The preceding argument leads us to the conclusion that the convergence of
the generalized penalty algorithm could be accelerated if, at the kth minimization,
a vector yk, where yk f, were to be used in the augmented Lagrangian (8) in place
of y 0 which is used in the ordinary penalty function method. Such vectors are
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METHODS FOR CONSTRAINED MINIMIZATION 221

readily available. It is easily shown that if x(y, c) minimizes L(x, y, c), then the
vector

y + ch[x(y,c)]

is an approximation to the Lagrange multiplier 37 in the sense that limc_, 37- )7.
Thus we are led to a particular scheme whereby at the end of each minimization,
the vector y is updated by means of the equation above. This iteration is identical
to the one used in the method of multipliers. In the analysis that follows, it is
shown that this iteration leads to a much faster convergence rate than the one of
the ordinary penalty method. Furthermore, in order for the iteration to converge
to , it is not necessary to increase ck to infinity.

PROPOSITION 1. There exists a scalar C*l >---- 0 such that for every c > c*, and
y S, the augmented Lagrangian L(x, y, c) of (8) has a unique minimizing point
x(y, c) with respect to x within some open ball centered at . Furthermore, for some
scalar M1 > 0 we have

(9) I[x(y, c)-2zll=<MIIy- Vc > cT and y S
C

and

(10) IIp(y,c)-fll<= MIly-plI Vc>c*l and yS,
C

where the vector (y, c) R is given by

(1 1) )7(y, c) y + ch[x(y, c)].

The proof of the above proposition is given in the next section. The result of
the proposition has been proved for the case of the pure quadratic penalty method
(y 0) by Polyak [14] under the additional assumption that the Hessian matrix
V2Lo in assumption A.3 is positive definite over the whole space, i.e., local strong
convexity holds. Our proof is based in part on Polyak’s analysis.

Some important conclusions can now be obtained from the result of Proposi-
tion 1. Assuming that 0 e S, we have that in the quadratic penalty method (yk 0),
we obtain convergence if ck--)oc and, furthermore, the sequences
{x(O, c)}, {37(0, c)} converge to x, y, respectively, at least as fast as M,llfll/c . It is
evident, however, from the proposition that a great deal can be gained if the vector
yk is not held fixed but rather is updated by means of the iteration of the multiplier
method

(12) y+l (Y, c)= yk + ch[x(y, c)].

In order to guarantee that the sequence {y} remains bounded, we require that the
updating takes place provided the resulting vector yk+l belongs to the set S.
Otherwise y+l= y, i.e., y is left unchanged. Of course, the choice of S is
arbitrary, and in particular, we can assume that S contains 37 as an interior point.
Under these circumstances, we have that if ck --> oo, then
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222 DIMITRI P. BERTSEKAS

i.e., the sequence {yk} converges to 37 superlinearly. If ck c < oe, where c is
sufficiently large (large enough to ensure that c > M1, c > c* and that y, + ch(x,)
belongs to an open sphere centered at 17 and contained in S), then

lim sup IlY+I- 7[1_<M

i.e., {yk} converges to 7 at least linearly with a convergence ratio inversely
proportional to c

In conclusion, the method of multipliers defined by (12) converges from an
arbitrary starting point within the bounded set S provided ck is sufficiently large
after some index k, 37 is an interior point of S, and the unconstrained minimiza-
tions yield the points x(y, c) for all k->k. In addition, the multiplier method
offers distinct advantages over the quadratic penalty method in that it avoids the
necessity of increasing c to infinity, and furthermore, the estimate of its con-
vergence rate is much more favorable. For example, if c s, s > 1, then for the
penalty method, we have

IIx (o, c)- 1[ M,II;lls-
while in the multiplier method with yo O,

The ratio of the two bounds in the above inequalities is

S

and tends to infinity as k
In order to avoid creating false impressions, it is perhaps worthwhile to

emphasize the fact that the global convergence property of the method of
multipliers concluded above is contingent upon the generation of the points
x(y,, c,), k >= k, by the unconstrained minimization method employed. These
points are, by Proposition 1, well-defined as local minimizing points of L(x, y,, c,)
which are closest to . Naturally L(x, y,, c,) may have other local minimizing
points to which the unconstrained minimization method may be attracted, and
unless after some index the unconstrained minimization method stays in the
neighborhood of the same local minimizing point of problem (7), our convergence
analysis is invalid and there is no reason to believe that the method of multipliers
should do better (or worse) than the penalty method. On the other hand, it should
be noted that the usual practice of using the last point xk of the kth minimization as
the starting point of the (k + 1)-st minimization is helpful in producing sequences
{xk} which are close to one and the same local minimizing point of problem (7).

We now turn our attention to a generalized penalty method where, given c
and y the augmented Lagrangian L(x, y,, c,) of (8) is not minimized exactly, but
rather the minimization process is terminated when a certain stopping criterion is
satisfied. We consider two different stopping criteria. Similar criteria have been
considered in the past in the context of penalty [14] and multiplier methods [2],
[3], [5], [10]. According to the first criterion, minimization of L(x, y,, c,) is
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METHODS FOR CONSTRAINED MINIMIZATION 223

terminated at a point xk satisfying

(13) IIX7L(x, y, c)ll=< /c,
where {3’k} is a bounded sequence with 3 >=0. According to the second criterion
minimization is terminated at a point x satisfying

(14) I]VL(x, y, c)ll--< min {7ffc,

where {y}, {y,} are bounded with y -> 0, y,-> 0.
We have the following proposition, the proof of which is given in the next

section.
PROPOSITION 2. There exists a scalar c* >--_ 0 such that for every c > c* and

y S and every vector a R" with Ilall--< /c, there exists a unique point Xa(y, C)
within some open ball centered at satisfying

(15) VL[xa(y, c), y, c]= a.

Furthermore, for some scalar M2 > 0 we have

(16) Ilxo (y, c) gll < M2(IIy 11 / d)1/2
Vc > c*, y S and Ilall--<

and

(17) 1137.(y, c)-Nll <M=(Ily-NII=+x)’/=-
C

where a is given by

(18) Ta (y, c) y + ch[x,(y, c)].

If, in addition, a and x,(y, c) satisfy

(19) Ilall ykllh[x.(y, c)]ll
then we have

(20) Ilx(y, c)- 11--< M(4(’/’) + 1)I/2IIY 3711
C

and

(21) 113L(Y, c)- 711 < M(4(’/’)+-1)’/IIY- 3711
C

Vc > c*, y S and Ilall -< ’,
C

Vc > c* and y S,

Vc > c* and y S.

The proposition above may now be used to establish convergence and rate of
convergence results for the iteration

(22) y+x yk -F Ckh(X).

This iteration takes place if y +ch(x)e S. Otherwise yk/l y, i.e., y is left
unchanged. The point x satisfies either the criterion

(23) I!VL(x.,
or the criterion

(24) IIX7L(x, y, c)ll-< min {3,/c, ,l,llh(x)ll}.D
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224 DIMITRI P. BERTSEKAS

Furthermore, xk is the unique point xa(yk, ck) corresponding to a VL(xk, y, c)
and closest to 2 in accordance with Proposition 2. It is assumed that the
unconstrained minimization algorithm yields such points after a certain index.

It is clear from Proposition 2 that any sequence {x, y} generated by the
iteration (22) and the termination criterion (24) converges to (, 15), provided c is
sufficiently large after a certain index and is an interior point of S. Furthermore,
{yk} converges to f at least linearly when c- c < oo, and superlinearly when
ck- oo. However, for the termination criterion (23), linear convergence cannot be
guaranteed, and in fact an example given in [2] shows that convergence may not be
linear. In addition, for this termination criterion it is necessary to increase c to
infinity in order to achieve global convergence unless {y} is a sequence converg-
ing to zero.

3. Proofs of Propositions 1 and 2.
Proof of Proposition 1. The proof proceeds in two parts. We first prove the

proposition under the following condition:
C. The Hessian matrix of the ordinary Lagrangian function

V2Lo(), Y) V2f() -}- ;iV2h,(Y)
i--1

is a positive definite matrix; i.e., local strong convexity holds.
Subsequently, we extend the result to the general case.

Let C hold. For all x B(Y, e) and any fixed y 6 S, c > 0, consider the auxiliary
variables

(25) p x ,, q y + ch(x) ,
where h(x) is the m-vector with coordinates hi(x), i= 1,..., m. For every
x B(, e) we have

(26) Vf(x) Vf() + Vzf(.)p + rl(p)

(27) Vhi(x) Vh,() + VZhi(:g)p + r(p), 1,..., m,

where rl and r are n-vector valued functions of p satisfying

(28)

r,(0) r(0) =0, 1,..., m,

Vr,(p) VZf(x)- Vzf(.l),
Vr(p) VZh,(x)-VZh,(X), i= 1,..., m.

By the Lipschitz condition assumption B, we have for all Ilpll < ,
(29)

and

(30)

]]Vrl(p)][-< K][pl]

vr2(p)l[ <- K[lpll V 1,. ., m.

Consider now the augmented Lagrangian L(x, y, c) of (8). We have, by (25), (26)D
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METHODS FOR CONSTRAINED MINIMIZATION 225

and (27),

VL(x, y, c) Vf(x) + Vh(x)[y + ch(x)] Vf(y) + Vzf(:)p + r,(p)

+ (qi + fi)[Vh,(X) + VZhi()p + r(p)],
i=1

or equivalently,

(31) VL(x, y, c)= V2L,,(Y, y)p+Vh(X)q+r3(p, q),

where Vh() is the n x m matrix with columns Vhi(Y), and r3(p, q) R" is the
vector defined by

(32) r(p, q)= rl(p)+ Y (qi + 7’)rz(p)+ Z q V h(Y)p.
i=1 i=1

We also have from (25),

q + Y Y= h(x) h(Y) + Vh(X)’p + r4(p),

or equivalently,
1
(7- y)- r4(p),(33) Vh()’p-q -where the function r4:B(O, e)- R satisfies

(34) r4(0) 0, Vr(p) Vh,(x)-Vh,(ff), i= 1,..., m,

and using the Lipschitz condition assumption B,

(35) IlVr(p)ll<-_(Kllpll+llVZh,(x)ll)llpll<=(Ke + ]lVZh,(x)ll)llpll.
Combining now (31) and (33), we have that in order for a point x B(Y, e) to

satisfy VL(x, y, c)= 0 it is necessary and sufficient that the corresponding point
s [p’, q’]’, as given by (25), solves the equation

(36) As + r(s),

where we use the notation

V2Lo(., }7) Vh(/) 0 -r3(p, q)

(37)A s= t= r(s)=

Vh()’
I y- y

-r(p)

and I is the m x m identity matrix. Concerning r(s), we have, from (28), (32), (34)
and (35),

(38) r(0) 0.

Furthermore, for any s corresponding to an x B(Y, e) we have, by straightfor-
ward calculation from (29), (30), (32), (35) and (37),

(39) IIVr(s)ll <-- ce]lsll,
where c > 0 is a constant depending only on e.
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226 DIMITRI P. BERTSEKAS

The proof now follows the pattern of 14] by showing that (36) has a unique
solution within the domain of definition of s for any y 6 S and c > c*, where c * is a
sufficiently large constant. We make use of the following two lemmas due to
Polyak 14].

LEMMA 1. The matrixA of (37) has an inverse for every c > O. Furthermore, the
inverse is uniformly bounded, i.e., for some M1 > 0 and all c >0,

(40)

LEMMA 2. The equation (36), As + r(s), has a unique solution s* within the
open ball B(O, 8MII/II) n(0, e) for every y S and every c sufficiently large to
guarantee that

Iltll -<min 16Ma’ 8M1

where a, M1 ate as in (39), (40). The solution s* satisfies [Is*[I =< M,Iltll.
Now from Lemma 2 and the definition (25), (36), (37), it follows immediately

that for every y S and c > c*, where c* is a sufficiently large constant, the
equation

(41) VL(x, y, c)=0

has a unique solution x(y, c) within an open ball centered at Y satisfying

(42) Ilx(y, c)- ll 

(43) Ily + ch[x(y, c)]- 37ll--<

Hence, in order to complete the proof of Proposition 1, we only need to show that
for c sufficiently large the point x(y, c) is a local minimum of L(x, y, c). To this
end, it is sufficient to show that 72L[x(y, c), y, c] is positive definite for all y S
and c sufficiently large. Indeed, we have

72L[x(y, c) y, c] V2f[x(y, c)]+ (y’ + ch,[x(y, c)])72h,[x(y, c)]
i=1

+ cVh[x(y, c)]Th[x(y, c)]’.

Now the third term in the above expression is a positive semidefinite matrix.
The sum of the first two terms, in view of (42), (43), is arbitrarily close to the
positive matrix WLo(Y, ) for sufficiently large c. Hence, for all c greater than
some c, V2L[x(y, c), y, c] is positive definite and x(y, c) is a local minimum of
L(x, y, c). Thus Proposition 1 has been proved under condition C.

In order to extend the proof of Proposition 1 to the general case where
condition C is not satisfied, we convert the general nonlinear programming
problem (7) to an equivalent locally convex problem for which condition C is
satisfied. We achieve local convexity by adding a sufficiently high penalty term to
the objective function as first indicated by Arrow and Solow [1].D
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METHODS FOR CONSTRAINED MINIMIZATION 227

It is evident that problem (7) is equivalent for every tx => 0 to the following
problem

(44)

minimize f(x) + llh(x)ll
subject to h,(x) O,

Problem (44) has as an optimal solution and as Lagrange multiplier vector.
Now consider the Hessian with respect to x of the ordinary Lagrangian of problem
(44). We have

(45) V2L,,(,, )= V2Lo(, y)+ tx[Vh(,)Vh(,)’],

where V2Lo(, y) is the Hessian of the ordinary Lagrangian of problem (7). Using
assumption A.3, we have the following easily proved lemma.

LEMMA 3. There exists a scalar tz * > 0 such that for every I >-- tx *, the matrix
V2L(, )) of (45) is positive definite.

The immediate consequence of the above lemma is that problem (44) satisfies
the local convexity condition C for all /z->/z*. We apply now the result of
Proposition 1 as proved under C and with c replaced by c-/z*, to problem (44)
with/z =/z*. We have the following:

There exists c* -> 0 such that for all c -/z* > c*, y S the augmented Lagran-
gian

(46)
L(x, y, c) f(x) + y’h(x) +c2[Ih(x)[I

has a unique unconstrained minimum x(y, c) within some open ball centered at .
From the estimates (9), (10), we obtain that for some constant M> 0,

(47) IIx (y, c) ll

(48) Ill(y, c)- 7 (y, c)ll

where 7 is given by (11) and the vector 6(y, c) R" is given by

(49) 6(y, c)= tx*h[x(y, c)].

From the equation above and (47), it follows that for some constant B > 0

(50)

Combining the inequalities (47), (48) and (50), we have

(51) IIx(y, c)- 11 <Mlly -Yll
C--/X
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228 DIMITRI P. BERTSEKAS

and

]l(y, c)- 371l <
M,,yll 11 +I](Y, c)ll

(52)

c-/x*
Let M, > 0 and c* _-> c* +/x* > 0 be any constants such that

(53)
M------_ ,

_
Vcc.

c- c- c

Then the desired estimates (9) and (10) follow immediately from (51), (52) and
(53), and the proposition is completely proved. Q.E.D.

Proof of Proposition 2. The proof of Proposition 2 follows similar lines as the
proof of Proposition 1. Again we assume first that C holds. For an y a R" with

llal /c, we have in place of (36)the equation

(54) As ta + r(s),

where A, s, r(s) are as in (37) and ta is given by

(55) ta

Now from Lemma 2 with ta in place of and using the fact that {y} is bounded and
l}al] <- y/c, we obtain for some M2 > 0 and all y e S, c _-> c2", where c2" is a suffi-
ciently large positive scalar (cf. (42) and (43)),

(56) ],x,,<y,c) yI,<__M2(II,_c:I{_ + ’la )1/2 M2(II’ 1’2 "" //)1/2C
and

(57) II;. (y, c)- 711 M_ (IIY -I1= + Ilall)/ M2(IlY-I}=+YD/=

which are the relations to be proved.
Now assume, in addition, that a and x,(y, c) satisfy

(58) Ilall=< y,l]h[x (y,

Then we have, from (56), (57) and (58),

(59) IlXa(y, C) "ll M2(IIY:112 ),/2<=

and

)
1/2

(60) II3L(y, c)-Tll--<Mz [lY-Yll’---+(’v’,,))-llhfxo(y, c)]ll
C

D
ow

nl
oa

de
d 

01
/2

7/
17

 to
 1

8.
9.

61
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



METHODS FOR CONSTRAINED MINIMIZATION 229

Using (18), the last relation is written as

_< +(r,)=llh[x(y, c)]ll
from which

)
1/2

cllh[x.(y, c)]ll--<M IlY yll+(%)llh[x.(y c)]ll
C

(M2 )---+ 1 IIY 3711+ M=%llh[x.(y, c)]ll.

Thus, finally, we have

C +M2IIh[xo(y, c)]ll--<
For c _-> (1 + 2y,)M2, the inequality above yields

(61) IIh[x(y, c)311
211y- NIl

C

Substitution of (61) in (59) and (60) yields

and

1137. (y, c)- 3711
M2(1 + 4(3/’)2)’/211Y 3711

which are the desired estimates. Thus Proposition 2 is proved under condition C.
The extension to the general case is entirely similar to the corresponding exten-
sion in Proposition 1 and is omitted. Q.E.D.

4. A global duality framework for the method of multipliers. In this section
we utilize the results of 2 to construct a duality framework for problem (7). In
contrast with past formulations for nonconvex problems (see, e.g., [5], [12]), the
framework is global in nature (at least in as much as the dual variables are
concerned). By this we mean that the dual functional is an everywhere defined
real-valued concave function. The theory is similar in spirit with the one recently
proposed by Rockafellar 18] under weaker assumptions, and the one of Buys [5]
which is local in nature. Our construction, however, is more suitable to the
analysis of algorithms since in our case the dualfunctional has strong differentiabil-
ity properties. Furthermore, its value and derivatives within an arbitrary open
bounded set may be computed by unconstrained local minimization of the
augmented Lagrangian. In this way the iteration of the multiplier method can be
interpreted as a gradient iteration in a global sense.

For any vector u R’, consider the minimization problem

(62)
min fix).
h(x)=u
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230 DIMITRI P. BERTSEKAS

Now by applying the implicit function theorem to the system of equations

Vf(x) + E y,Vh,(x) 0, h,(x) u,, 1,..., m,
i=1

and using assumption A, we have the following lemma.
LEMMA 4. Under assumption A, there exist positive scalars and 6 such that

for every u with Ilul[ < problem (62) has a unique solution x(u) within the open ball
B(2, 6) with a Lagrange multiplier y(u) satisfying Ily(u)- Nil < . Furthermore, the
functions x(u), y(u) are continuously differentiable within the open ball B(O, t) and
satisfy x(O)= , y(O)= .

We define now the primal functional p B(O,)R by means of

(63) p(u) min f(x) f[x(u)].
h(x)=u
xB(x,$)

It follows from the implicit function theorem that

(64) Vp(u) =-y(u), u B(O, ),

and, since y(u) is continuously ditterentiable, we have that p is twice continuously
differentiable on B(0,/3). Without loss of generality, we assume that the Hessian
matrix of p is uniformly bounded on B(0,/3).

Now for any c >-0, consider the function

p(u)=p(u)+
c

It is clear that for c sufficiently large, the Hessian matrix of p is positive definite on
B(0,/3), and hence pc is strictly convex on B(0, ). We define for such c the dual
unctional d R - R by means of

/ c
(65) d(y)= inf p(u)+ Ilull inf {pc(u)+y’u}

.(o,)
y U

We note that this way of defining the dual functional is not unusual, since it
corresponds to a perturbation function taking the value p(u) on B(0, ) and
+ oo outside B(0, ).

The function d of (65) has the following properties which we state as a
proposition.

PROPOSITION 3. Under assumption A, for every c for which the Hessian matrix

ofp is positive definite on B(O, ), we have the following:
(a) The function d is a real-valued, everywhere continuously differentiable

concave function. Furthermore, it is twice continuously differentiable on the open set

(b) For any y A, the infimum in (65) is attained at a unique point uy
B(0, ), and we have Vd(y)= uy, V2d(y)=-[Wp(uy)]-.

(c) The function d has a unique maximizingpoint, the Lagrange multiplier .
Proof. (a) Consider the closure [19, 7] of the convex function taking the

value p(u) on B(0, ) and + outside B(0, ). The closure is essentially strictly
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METHODS FOR CONSTRAINED MINIMIZATION 231

convex [19, 26], and its effective domain is a compact set. Hence its conjugate
convex function is real-valued and continuously differentiable [19, Thm. 26.3].
Since this conjugate is simply -dc(-y), we have that de is everywhere finite and
continuously differentiable. Also by the conjugacy relation between pc and de, we
have

(66)

where

Vcl[-Vp,(u)] u Vu (o, ),

Vp[Vd(y)]-- -y Vy A,

A {YIY -Vp(u), u e B(0,/3)} {ylVdc(y)= u, u e B(0,/3)}.

The set on the right above is open by the continuity of Vdc, thus implying that the
set A is open. Now let 37 be any point in A and let fi Vdc()7). We have that
fi B(0,/3) and

vp(a) -f.

Applying the implicit function theorem in the equation above, we have that there
exists an open ball B(y, A)cA and a continuously differentiable function
u(. B(7, )-* B(0,/3) such that u()= a and

Vp[u(y)] -y.

It follows from (66) that

v,(y) u(y) Vy n(f, x).

Since u(y) is continuously differentiable on B(37, A), so is Vd(y). Hence d is twice
continuously differentiabte at y. Since )7 is an arbitrary point in A, we have that d
is twice continuously differentiable on A, which was to be proved.

(b) The fact that for y e A the infimum in (65) is attained at a unique point is
evident from the argument above. The formula V2dc(y)---[V2pc(uy)]-1 follows
from (66).

(c) We have, by (66) and the fact that Vpc(0)=-y,

Vdc() O,

and hence 37 is a maximizing point of de. It is a unique maximizing point by the
differentiability of pc. Q.E.D.

We now proceed to show that the value and the derivatives of the dual
functional d can be obtained by local minimization of the augmented Lagrangian
L(x, y, c) of (8) provided c is sufficiently large. Let S be any open bounded subset
of R ". Then for any y S, by Proposition 1, we have that for c sufficiently large,

Ilx (y, c) 11- < ,
C

MIlY-IIIll(Y, c)- 711 < ,D
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232 DIMITRI P. BERTSEKAS

where

(y, c) y + ch[x(y, c)], a h[x(y, c)].

Furthermore, we have

Vf[x(y, c)]+ 37’(y, c)Vhi[x(y, c)]= 0.
i=l

It follows from the implicit function theorem and Lemma 4 that x(y, c) is the
unique minimizing point in problem (62) when u ft. This implies

p(fi) =fix(y, c)], X7p(a) =-(y, c)=-y
and therefore

Vpc(a)+y=O.

Hence y A, fi attains the infimum in the right-hand side of (65), and by part (b) of
Proposition 3,

Vdc(y) fi h[x(y, c)], V2dc(y) =-[Wpc(fi)]-1.

Furthermore,

de(y) p(a)+ y’fi + llt/ll
=fix(y, c)] + y’h[x(y, c)] +llh[x(y, c)]ll= min L(x, y, c),

where the minimization above is understood to be local in the sense of Proposition
1. In addition, a straightforward calculation [5], [12] yields

(67) D(y) Wd(y)=-Vh[x(y, c)]’{WL[x(y, c), y, c]}-IVh[x(y, c)],

where Vh[x(y,c)] is the nm matrix having as columns the gradients
Vhi[x(y, c)], 1,. , m, and WL denotes the Hessian matrix of the augmented
Lagrangian L with respect to x. Thus we have proved the following proposition.

PrOPOSITION 4. Let S be any open bounded subset ofR m, and let assumptions
A and B hold. Then there exists a scalar c* >-0 such that for every y S and every
c > c*, the dual functional dc satisfies

de(y) =fix(y, c)]+ y’h[x(y, c)]+
c

12211h[x(Y’ c)]l min L(x, y, c)

Vdc(y)=h[x(y,c)],

where x(y, c) is as in Proposition 1. Furthermore, dc is twice continuously differenti-
able on S and X72d(y) is given by (67).

It is now clear that the iteration of the method of the multipliers can be
written, for c sufficiently large,

y+ y + cVd,(y),

and hence can be viewed as a fixed step size gradient iteration for maximizing the
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METHODS FOR CONSTRAINED MINIMIZATION 233

dual functional de. Thus one may obtain a tight rate of convergence result by
utilizing a known result on gradient methods. This result, however, is rather
uniformative since it involves the eigenvalues of the matrix Dc of (67) which
strongly depend on c. A modified version of this result which is more amenable to
proper interpretation is given in [2], together with an analysis of the convergence
rate aspects of the method of multipliers in the presence of inexact minimization.

The primal-dual interpretation of the multiplier method suggests also several
possibilities for modification of the basic iteration. One such modification was
suggested in [2], [3]. Another interesting possibility rests on the fact that when
second derivatives are calculated during the unconstrained minimization cycle,
then one obtains the Hessian matrix Dc of (67) in addition to the gradient 7d.
Thus it is possible to carry out a Newton iteration aimed at maximizing d in place
of the gradient iteration corresponding to the method of multipliers. It is also
possible to use a variable metric method for maximization of d. Such possibilities
have already been suggested by Buys [5], who in addition provided some local
convergence results. It is to be noted, however, that for large scale problems
arising, for example, in optimal control, where the number of primal and dual
variables may easily reach several hundreds or even thousands, such modifications
do not seem to be attractive. This is particularly so since the simple gradient
iteration already has excellent convergence rate.

5. Treatment of inequality constraints. As pointed out in the Introduction,
inequality constraints may be treated in a simple way by introducing slack
variables. Indeed, the problem

(68)
min f(x)

gj(x)=<o, j= 1,---,r

is equivalent to the equality constrained problem

(69)
min j(x),

gj(x)+z=O, j= 1,"’,r

where z1," , Zr represent additional variables.
Now assume that (, y) is an optimal solution-Lagrange multiplier pair for

problem (68) satisfying the following second order sufficiency conditions for
optimality (which include strict complementarity).

A’. The functions f, gj, j 1,..., r, are twice continuously differentiable
within an open ball B(, e). The gradients Vg(Y.),jJ(), with J(f)
={jlg(x)=O}, are linearly independent. We have V/(x)
+=, 7’7g(y) 0 and yJ => 0 with yJ > 0 if and only if j J(Y). Further-
more,

for all w - 0 such that w’Vg(2) 0 for all ] e J().
Then it is easy to show that (i, an optimal solution

of problem (69) satisfying (together with ) assumption A and hence it is covered
by the theory of 2 and 3 provided the Lipschitz assumption B is also satisfied.
Thus one may use the multiplier method for solving problem (69) instead of
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234 DIMITRI P. BERTSEKAS

problem (68). On the other hand, slack variables need not be present explicitly in
the computations, since the minimization of the augmented Lagrangian,

t (x, z, y, c) f(x)+
j=l

can be carried out first with respect to z1," ", z,, yielding

(x, y, c)= min L(x, z, y, c)

1
[max (0, yJq-Cgj(X))]2--(yJ)

The optimal values of zj are given in terms of x, y, c by

(70) z.(x, y, c) max [0, y/c g(x)], j 1, , r.

Now minimization of/_(x, y, c) with respect to x yields a vector x(y, c), and the
multiplier method iteration in view of (70) takes the form

+ c)]+ z [x(y, c), y, c]]
(71)

max [0, y+ cg[x(y, c)]], j 1, , r.

Also in view of (70), the stopping criterion (14) takes the form

IlV/(x, y, c)]l<_-min Y y max ---, g(x)
j=l Ck

Thus there is no difference in treating equality or inequality constraints, at least
within the second order sufficiency assumption framework of this paper.

6. Conclusions. In this paper we provided an analysis of multiplier methods
by imbedding them within a general class of penalty function methods. The
viewpoint adopted yields strong global convergence results. Furthermore, it
provides a fair basis for comparison of multiplier methods with pure penalty
function methods. This comparison conclusively demonstrates the superiority of
multiplier over penalty methods. The global duality theory obtained has many
similarities with the duality theory associated with multiplier methods for convex
programming. In addition, it provides a framework within which multiplier
methods can be viewed as primal-dual methods in a global sense.

Notes added in proof. The results of this paper have been presented at the
1973 IEEE Decision and Control Conference, San Diego, Calif., Dec. 1973 and
at the SIGMAP Symposium on Nonlinear Programming, Madison, Wis., April
1974. They were reported without proofs in [4] and in Nonlinear Programming 2,
O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds., Academic Press, New
York, 1975, pp. 165-191.

While this paper was under review, results similar as those of Propositions 1
and 2 appeared in B. T. Polyak and N. V. Tret’yakov, The Method of Penalty
Estimates for Conditional Extremum Problems, U.S.S.R. Comput. Math. and
Mathematical Phys., 13(1974), pp. 42-58.D
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METHODS FOR CONSTRAINED MINIMIZATION 235

Generalized versions of Propositions 1 and 2, involving augmented Lagran-
gians with nonquadratic penalty functions and adjusting essentially the same
proof as the one given here, are provided in D. P. Bertsekas, Multiplier Methods:
A Survey, Preprints of IFAC 6th Triennial World Congress, Part IB, Boston,
Mass., Aug. 1975.
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