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Clóvis C. Gonzaga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

From Lovász ✓ Function and Karmarkar’s Algo-
rithm to Semidefinite Programming
Farid Alizadeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Local Versus Global Conditions in Polynomial
Optimization
Jiawang Nie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Convergence Rate Analysis of Several Splitting
Schemes
Damek Davis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Send your comments and feedback to the Editor:

Shabbir Ahmed
School of Industrial & Systems Engineering
Georgia Tech, Atlanta, GA 30332
sahmed@gatech.edu

Chair’s Column
Suvrajeet Sen

University of Southern California

s.sen@usc.edu

Dear Fellow IOS Members:

It is my pleasure to assume the role of Chair of
the IOS, one of the largest, and most scholarly
groups within INFORMS. This year marks the
Twentieth Anniversary of the formation of the
INFORMS Optimization Section, which started
with 50 signatures petitioning the Board to form
a section. As it stands today, the INFORMS
Optimization Society has matured to become one of
the larger Societies within INFORMS. With seven
active special interest groups, four highly coveted
awards, and of course, its strong presence in every
INFORMS Annual Meeting, this Society is on a
roll. In large part, this vibrant community owes
a lot to many of the past o�cer bearers, without
whose hard work, this Society would not be as
strong as it is today. For the current health of
our Society, I wish to thank my predecessors, and
in particular, my immediate predecessor Sanjay
Mehrotra under whose leadership, we gathered
the momentum for our conferences, a possible new
journal, and several other initiatives. I also take this
opportunity to express my gratitude to Jim Luedtke,
Secretary/Treasurer, whose soft-spoken assurance,
and attention to detail keeps the society humming.
Another person whose support is instrumental to
many communications is our Web Editor: Pietro
Belotti; thanks Pietro.

The major agenda item in the upcoming years
is the possibility of a new journal, sponsored by
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the Society. Because of the growth in a variety
of applications in Communications and Control,
Data Science, and Machine Learning, there has
been an explosive growth in Optimization. This
field has always attracted advanced applications
such as Energy, Finance, Health Care and others.
What is remarkable today is that as the area ma-
tures, many advanced applications are motivating
new optimization concepts, including fundamental
mathematical breakthroughs (e.g., the mathematics
of risk), algorithmic speed-ups and robust software
(e.g., convex, and mixed-integer optimization), as
well as new modeling paradigms (e.g., multi-agent
and data driven optimization). These are but a few
of the promising directions today, and there are too
many more to mention in this column.

Given the above backdrop, it is no surprise that
our Society has shown overwhelming support for a
new INFORMS journal devoted to Optimization.
Exactly what the focus of such a journal should
be is not clear at this point. There are other open
questions, and we hope to resolve them as the year
progresses. Our plan is to start a dialogue using
INFORMS Connect as a platform for discussion,
and we may even hold some meetings at a�liated
conferences, such as at the International Symposium
on Mathematical Programming in Pittsburgh this
summer. Please be on the lookout for our calls at
conferences of these a�liated groups.

Our Society is at the heart of INFORMS, and it
draws tremendous strength from this sense of lead-
ership. There is another source of strength: the
caliber of scholars that the IOS attracts. In or-
der to celebrate the accomplishments of our re-
searchers, the IOS awards four highly coveted prizes:
the Khachiyan Prize, the Farkas Prize, the Young-
Researcher Prize, and the Student-paper Prize. This
newsletter provides a glimpse of the personal stories
of the award winners, and their unique perspectives
on optimization. The awards committees for these
prizes showed impeccable taste in their choices, and
I wish to thank all members of these committees for
their diligence with the process. The winners for
the year 2014 Khachiyan Prize were Dimitris Bert-
sekas (MIT) and Clovis Gonzaga (Federal University
of Santa Catarina, Florianópolis, Brazil). These two

titans of optimization have made multi-faceted con-
tributions.

• Bertsekas was awarded for his pioneering role in
dynamic programming (with uncountable state
spaces, approximate, neuro-dynamic and ap-
proximate dynamic programming), Lagrangean
methods, dual-based bounds for nonconvex
problems, network optimization, and applica-
tions in communications, power, transportation
and others. Moreover his books on many of
these topics have been adopted at many uni-
versities, world-wide.

• Gonzaga for his leadership in interior point
methods (IPM), augmented Lagrangean meth-
ods, on filter methods for constrained non-linear
optimization, and on fast steepest descent meth-
ods. He has recently developed steepest de-
scent algorithms for the minimization of convex
quadratic functions with the same performance
bound as Krylov space methods. He is also the
author of several influential reviews which have
introduced IPMs to scores of young researchers.

The 2014 Farkas’ Prize was awarded to Farid
Alizadeh (Rutgers) who laid the groundwork for
the field of semidefinite programming (SDP), which
has grown quickly and steadily over the past 25
years. The citation continues the description of
his contributions via connections between SDP
and combinatorial optimization, complementarity,
non-degeneracy and algorithmic methodology.

The 2014 Prize for Young Researchers was awarded
to Jiawang Nie (UC - San Diego) for this paper
“Optimality conditions and finite convergence of
Lasserre’s hierarchy,” Mathematical Programming,
Ser. A (2014) 146:97-121, DOI: 10.1007/s10107-013-
0680-x. Prior to this proof of finite convergence, the
existing theory could only establish the convergence
of this family of relaxations in the limit. No proof of
finite convergence had been previously found in spite
of the significant numerical evidence for finite con-
vergence that had been collected over a decade or so.

The winner of the 2014 Student Paper Prize was
Damek Davis (UCLA) for his paper “Convergence
rate analysis of several splitting schemes,” arXiv
preprint arXiv:1406.4834 (2014), with Wotao Yin.
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This paper “makes a very significant contribution
to the theory of optimization by using a rigorous
and unified convergence rate analysis of important
splitting schemes.”

The awards committees for this year have been
appointed, and they are listed elsewhere in this
newsletter. I encourage the optimization community
to identify strong candidates for these awards by
sending forth nominations in each of the categories
mentioned above.

Finally, I wish to welcome our newly elected Vice
Chairs: Aida Khajavirad (Global Optimization),
Warren Powell (Optimization Under Uncertainty),
and Daniel Robinson (Nonlinear Optimization).
They are joining the continuing team of Vice Chairs:
Vladimir Boginski (Network Optimization),John
Mitchell (Linear and Conic Optimization), Imre
Polik (Computational Optimization and Software),
and Juan Pablo Vielma (Integer and Discrete Op-
timization). These individuals are truly the reason
for the strong presence of IOS at the INFORMS
Annual Conferences, and I thank them for their
leadership.

Before I close, I wish to also express my sin-
cere appreciation for the work and leadership of
Shabbir Ahmed. He has taken our newsletter
to a whole new level, and provided it continuity
for the past four years. Such dedication to the
Society is what makes IOS tick. Thank you Shabbir!

I hope my enthusiasm for our society is palpable in
this column, and hope that you will all get involved
in the most vital society within INFORMS. Have a
great summer, and see you all in either Pittsburgh
or Philadelphia.

p.s: For those interested in reading about some new
areas for INFORMS researchers, follow this link
which needs you to login at INFORMS Connect:
http://connect.informs.org/communities/

community-home/librarydocuments/

viewdocument/?DocumentKey=

d7e454e3-1872-4826-900b-7871063a5980

A Journey through
Optimization
Dimitri P. Bertsekas

Lab. for Information and Decision Sciences
Massachusetts Institute of Tech., Cambridge, MA 02139

dimitrib@mit.edu

I feel honored and grateful for being awarded the
Khachiyan Prize. It is customary in such circum-
stances to thank one’s institutions, mentors, and col-
laborators, and I have many to thank. I was fortu-
nate to be surrounded by first class students and col-
leagues, at high quality institutions, which gave me
space and freedom to work in any direction I wished
to go. It is also customary to chart one’s intellectual
roots and journey, and I will not depart from this
tradition.

We commonly advise scholarly Ph.D. students
in optimization to take the time to get a broad
many-course education, with substantial mathemat-
ical content, and special depth in their research area.
Then upon graduation, to use their Ph.D. research
area as the basis and focus for further research, while
gradually branching out into neighboring fields, and
networking within the profession. This is good ad-
vice, which I often give, but this is not how it worked
for me!

I came from Greece with an undergraduate de-
gree in mechanical engineering, got my MS in con-
trol theory at George Washington University in three
semesters, while holding a full-time job in an unre-
lated field, and finished two years later my Ph.D.
thesis on control under set membership uncertainty
at MIT in 1971. I benefited from the stimulat-
ing intellectual atmosphere of MIT’s Electronic Sys-
tems Laboratory (later LIDS), nurtured by Mike
Athans and Sanjoy Mitter, but because of my short
stay there, I graduated with little knowledge beyond
Kalman filtering and linear-quadratic control theory.
Then I went to teach at Stanford in a department
that combined mathematical engineering and oper-
ations research (in which my background was rather
limited) with economics (in which I had no expo-
sure at all). In my department there was little in-
terest in control theory, and none at all in my the-
sis work. Never having completed a first course in
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analysis, my first assignment was to teach to un-
suspecting students optimization by functional an-
alytic methods from David Luenberger’s wonderful
book. The optimism and energy of youth carried
me through, and I found inspiration in what I saw
as an exquisite connection between elegant mathe-
matics and interesting practical problems. Studying
David Luenberger’s other works (including his Non-
linear Programming book) and working next door to
him had a lasting e↵ect on me.

Two more formative experiences at Stanford were
studying Terry Rockafellar’s Convex Analysis book
(and teaching a seminar course from it), and most
importantly teaching a new course on dynamic pro-
gramming, for which I studied Bellman’s books in
great detail. My department valued rigorous math-
ematical analysis that could be broadly applied,
and provided a stimulating environment where both
could thrive. Accordingly, my course aimed to com-
bine Bellman’s vision of wide practical applicability
with the emerging mathematical theory of Markov
Decision Processes. The course was an encouraging
success at Stanford, and set me on a good track. It
has survived to the present day at MIT, enriched by
subsequent developments in theoretical and approx-
imation methodologies.

After three years at Stanford, I taught for five
years in the quiet and scholarly environment of the
University of Illinois. There I finally had a chance to
consolidate my mathematics and optimization back-
ground, through research to a great extent. In par-
ticular, it helped a lot that with the spirit of youth,
I took the plunge into the world of the measure-
theoretic foundations of stochastic optimal control,
aiming to expand the pioneering Borel space frame-
work of David Blackwell, in the company of my then
Ph.D. student Steven Shreve.

I changed again direction by moving back to MIT
in 1979, to work in the then emerging field of data
networks and the related field of distributed com-
putation. There I had the good fortune to meet
two colleagues with whom I interacted closely over
many years: Bob Gallager, who coauthored with
me a book on data networks in the mid-80s, and
John Tsitsiklis, who worked with me first while a
doctoral student and then as a colleague, and over
time coauthored with me two research monographs
on distributed algorithms and neuro-dynamic pro-

gramming, and a probability textbook. Working
with Bob and John, and writing books with them
was exciting and rewarding, and made MIT a spe-
cial place for me.

Nonetheless, at the same time I was getting dis-
tracted by many side activities, such as books in
nonlinear programming, dynamic programming, and
network optimization, getting involved in applica-
tions of queueing theory and power systems, and per-
sonally writing several network optimization codes.
By that time, however, I realized that simultane-
ous engagement in multiple, diverse, and frequently
changing intellectual activities (while not recom-
mended broadly) was a natural and exciting mode
of operation that worked well for me, and also had
some considerable benefits. It stimulated the cross-
fertilization of ideas, and provided perspective for
more broadly integrated courses and books. Over
time I settled in a pattern of closely connected ac-
tivities that reinforced each other: focus on an inter-
esting subject to generate content and fill in missing
pieces, teaching to provide a synthesis and to write
class notes, and writing a book to understand the
subject in depth and put together a story that would
make sense to others. Writing books and looking
for missing pieces was an e↵ective way to generate
new research, and working on a broad range of sub-
jects was a good way to discover interconnections,
broaden my perspective, and fight stagnation.

In retrospect I was very fortunate to get into
methodologies that eventually prospered. Dynamic
programming developed perhaps beyond Bellman’s
own expectation. He correctly emphasized the curse
of dimensionality as a formidable impediment in
its use, but probably could not have foreseen the
transformational impact of the advances brought
about by reinforcement learning, neuro-dynamic
programming, and other approximation methodolo-
gies. When I got into convex analysis and opti-
mization, it was an emerging theoretical subject,
overshadowed by linear, nonlinear, and integer pro-
gramming. Now, however, it has taken center stage
thanks to the explosive growth of machine learning
and large scale computation, and it has become the
lynchpin that holds together most of the popular op-
timization methodologies. Data networks and dis-
tributed computation were thought promising when
I got involved, but it was hard to imagine the pro-
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found impact they had on engineering, as well as
the world around us today. Even set membership
description of uncertainty, my Ph.D. thesis subject,
which was totally overlooked for nearly fifteen years,
eventually came to the mainstream, and has con-
nected with the popular areas of robust optimiza-
tion, robust control, and model predictive control.
Was it good judgement or fortunate accident that
steered me towards these fields? I honestly cannot
say. Albert Einstein wisely told us that “Luck is
when opportunity meets preparation.” In my case,
I also think it helped that I resisted overly lengthy
distractions in practical directions that were too spe-
cialized, as well as in mathematical directions that
had little visible connection to the practical world.
An academic journey must have companions to

learn from and share with, and for me these were
my students and collaborators. In fact it is hard
to draw a distinction, because I always viewed my
Ph.D. students as my collaborators. On more than
one occasion, a Ph.D. thesis evolved into a book, as
in the cases of Angelia Nedic and Asuman Ozdaglar,
or into a long multi-year series of research papers
after graduation, as in the cases of Paul Tseng and
Janey Yu. My collaborators were many and I cannot
mention them all, but they were special to me and I
was fortunate to have met them. Thank you all for
sharing this exciting journey with me.

Tamás Terlaky, Dimitri Bertsekas, Clóvis Gonzaga and
Sanjay Mehrotra

Optimizing in the
Third World
Clóvis C. Gonzaga

Department of Mathematics, Federal
University of Santa Catarina, Florianópolis, SC, Brazil

ccgonzaga1@gmail.com

Introduction. In the year of my seventieth birth-
day I was amazed by being awarded the Khachiyan
Prize, for which I thank the committee composed by
Tamás Terlaky (chair), Daniel Bienstock, Immanuel
Bomze and John Birge.

I was born in South Brazil, and raised in Joinville,
Santa Catarina, a small industrial town, formerly a
German settlement. I decided very soon to be an
engineer (I had the knack). A local company insti-
tuted a prize: the student with best grades in Math-
ematics, Physics, Chemistry and Drawing during the
three years of high school accepted in an Engineering
school got a five year scholarship. I won this prize,
and passed the entry exam in the best Engineering
school in the Country, the Technological Institute of
Aeronautics. ITA is a civilian school belonging to
the Air Force, with courses in Electronic, Mechan-
ical, Aeronautical and (nowadays) Computational
Engineering. I studied Electronics, with emphasis
in control and servomechanisms. ITA was founded
in the fifties, organized by a team from MIT. We
lived in the campus supported by the Air Force, in
a very demanding system: with one grade D you are
expelled, a grade C had to be replaced by B during
the vacations (a maximum of five times). Plenty of
jobs were o↵ered to graduates.

I graduated in 1967, and went immediately to the
graduate school of Engineering (COPPE) of the Fed-
eral University of Rio de Janeiro, for an MSc in
Electrical Engineering. COPPE and the Catholic
University of Rio de Janeiro were the first Brazil-
ian graduate schools with MSc and DSc titles in
the American system. It was founded in the sixties
with a substantial support from the Brazilian gov-
ernment. We were pioneers, mostly isolated from the
world, in a time when slide rules were still used, in-
ternet had not been imagined even by science fiction
writers. The school had an IBM 1130 computer with

mailto:ccgonzaga1@gmail.com
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32 Kbytes of memory and no floating point proces-
sor, which allowed you to process your fortran pro-
gram in punched cards once a day.

I was an MSc student with a full time job, tak-
ing care of a TR48 analog computer (young people
do not know what that is), doing maintenance, op-
erating and teaching analog computation. I started
a research on adaptive control and read a text on
identification of a control system, based on a method
called Levenberg-Marquardt (!). I got hooked. By
this time an IBM researcher and Berkeley part time
professor, Jean-Paul Jacob, came to Brazil for a year.
Jean-Paul had a PhD from UC Berkeley, advised by
Lucien Polak, and gave us a short course on non-
linear programming in 1969, the first to be taught
in Brazil. I wrote a dissertation with him, on “re-
duction of optimal control problems to non-linear
programming”. We had by then a group of nine
quite talented students. Jean-Paul proposed to the
University to start a PhD program on Systems En-
gineering in Brazil, and brought Lotfi Zadeh from
Berkeley to organize it. We made an agreement with
UC, and American professors came to Brazil to teach
us advanced courses. Most of us finished the PhD in
Berkeley, but I refused to go abroad.

My doctoral research was done mostly alone. I
worked on two unrelated topics.

Graph search methods. Stephen Coles from
Stanford visited us and taught a course on artificial
intelligence, with emphasis on graph search meth-
ods, especially the A⇤ algorithm for computing min-
imum cost paths using look-ahead heuristics. I used
search methods for the solution of sequential deci-
sion problems, for which at this time electrical engi-
neers knew only dynamical programming. I devised
an algorithm for planning the long term expansion
of power transmission systems, using a partial or-
dering of nodes (a preference relation) for pruning
less promising paths through a graph of system con-
figurations. This was done in a contract with the
Brazilian governmental power systems agency, using
a half million dollars IBM 370 computer with 256K
of memory. The program took two hours of CPU,
and for several years it was used in the actual plan-
ning of the Brazilian interconnected system.

Convex optimization. My main interest was in
continuous optimization. I was the first Brazilian
to teach a full course on non-linear programming,

based on the fresh from press book by Olvi Mangas-
sarian. I read several texts on convex optimization
and point to set mappings, by authors like Rockafel-
lar, Berge, Bertsekas, Geo↵rion. I especially liked
the idea of epsilon-subgradients, and had the idea
of using this concept to assemble subradients of a
function and devise a general method for minimizing
convex functions. I travelled to the US, where Jean-
Paul scheduled interviews with two of my “idols”,
Polak in Berkeley and Geo↵rion in UCLA. I told
them about my ideas, and they asked the obvious
question, about my adviser. I had none, and they
agreed that the idea was great, but unattainable by
a young man isolated in Brazil. Then Phillip Wolfe
came to Brazil, and I was in charge of showing him
some of Rio de Janeiro. I took him to the Sugarloaf,
to Corcovado, to my home, and eventually told him
about what I was doing. He said that he was doing
precisely the same thing. I was delighted – Wolfe
and I had the same ideas! In the following day I
abandoned the topic. The end of this tale was also
frustrating for Wolfe: Claude Lemarechal finished
the bundle method before him, and certainly much
before I would have done it, if ever.

I wrote a thesis on graph search methods for solv-
ing sequential decision problems, with application to
the Brazilian transmission system. The results were
nice, but I never tried to publish any journal paper.
No tradition, no advisor, no need to publish.

Berkeley. In 1975 I went to Berkeley for a post-
doc with my “grandfather” Lucien Polak, working on
semi-infinite problems, using cutting sets for solving
control systems design problems. We wrote a nice
paper [10], and I had my first contact with a real
research environment. In my first technical interview
with him, he was in his o�ce with another professor,
unknown to me. Extremely nervous, stuttered “I
read your paper with Prof. Maine, and... and...”.
“Did you find an error?” I said “y-y-yes.” And he
said “Show us. By the way, meet David Maine, from
Imperial College”. Resisting the temptation to faint,
I went to the blackboard and showed the mistake.
He asked if I knew how to do it right, I did, and this
was the beginning of a life-time friendship.

Back to Brazil, I worked on the long term plan-
ning of the operation of hydro-thermal power sys-
tems, using stochastic dynamic programming, and
on the beautiful theory of water value. I went to
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many congresses, met many researchers in discrete
systems, combinatorics and in power planning, but
again published no journal papers. The political sit-
uation in Brazil deteriorated, under a violent mili-
tary dictatorship. Our salaries went down and re-
search activities became irrelevant.

Interior points. In 1985 Lucien Polak invited me
to replace him in UC during a sabbatical year. I got
a visiting professor position, and stayed in Berke-
ley for two and a half years, teaching courses on
automatic control. Karmarkar’s paper had just ap-
peared, and I got very interested. He had studied
with Richard Karp, and was an expert in combina-
torics, complexity theory and linear programming,
with no background in NLP, I believe.

After much e↵ort in rephrasing his quite obscure
method, I saw that it could be reduced to a scaled
steepest descent method applied to his potential
function, and wrote a paper on this. Then I realized
that he had not used the full potential of Newton’s
method, and that it should be possible to improve
his result. I worked day and night, found dozens
of ways of not improving his complexity results, got
very depressed, went to a Chinese restaurant and
the fortune cookie said “You will solve a problem
that will be very important in your life.” I had al-
ready decided for the logarithmic barrier function
(instead of the potential function). I went home and
started dealing with the third derivatives, leading
to the large quadratic convergence region needed to
build the path following method represented by the
inchworm in the figure. Properties of path following
methods had already been obtained by Megiddo and
by Renegar. I presented my result in a workshop or-
ganized by Nimrod Megiddo in Asilomar, California,
in the beginning of 1987, and the paper was pub-
lished in the workshop proceedings. All references
about these early results are in [4].

My life changed instantly. I met all the main
brains in the field, and saw myself in the middle of
the interior point revolution. A bunch of extremely
clever guys like Anstreicher, Adler, Goldfarb, Ko-
jima, McCormick, Megiddo, Mizuno, Monteiro, Ne-
mirovsky, Nesterov, Renegar, Roos, Todd, Vial, Ye
(forgive me if I forgot your name) travelled around
the world like rodeo riders, mounting a new horse in
each congress, with results that became obsolete in
a matter of months. In 1992 I published the state

Figure 1: The inchworm

of the art paper [4] in SIAM Review, later endowed
with the “citation classics award” for the most cited
paper in Mathematics and Computer Sciences writ-
ten by a Brazilian in the 90’s decade.

Back in Rio de Janeiro in 1987 I kept working on
interior point methods, alone in Brazil, sending and
receiving technical reports by regular mail and trav-
elling frequently abroad. Brazil was again learning
how to be a democracy. When computer commu-
nications arrived, science in the third world became
feasible.

I spent 1993 at INRIA in Paris, working with
Frédéric Bonnans [2, 5] and Jean-Charles Gilbert [3],
worked for a semester in TU Delft, in the company
of Roos and Terlaky.

In 1994 I moved back to South Brazil, transferred
(with a group of DSc students) to the Math. De-
partment of the Federal University of Santa Cata-
rina in Florianópolis, a city on a beautiful island
surrounded by 40 beaches, where we have organized
two international workshops (clovisfest 60 and 70,
in 2004 and 2014, with a plan for another one in
2024, maybe...). I worked on linear complementarity
problems, augmented Lagrangian methods, Nesterov
optimal descent methods, filter methods, and lately
on the complexity of descent methods for quadratic
minimization. I wrote papers with my former stu-
dents Hugo Lara [13], Luis C. Matioli [14], Romulo
Castillo [6], Ademir Ribeiro [12, 16], Diane Rossetto
[8], Marcia Vanti [9], Roger Behling [1], Fernanda
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Raupp [15], Marli Cardia, and have a long lasting
collaboration with Elizabeth Karas [7, 8, 9] from the
Federal University of Paraná in Brazil.
I am a member of the Brazilian Academy of Sci-

ences and of TWAS. I am a SIAM fellow, I received
the Great Cross of the Brazilian Order of Scientific
Merit, and now this very prestigious prize in honour
of Leonid Khachiyan.
Now I am retired, leisurely working in Flo-

rianópolis as a voluntary researcher. I thank my
students, old and new [11], for the joy they brought
to my life in these many years.
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From Lovász ✓ Function and
Karmarkar’s Algorithm to
Semidefinite Programming

Farid Alizadeh
School of Business, Rutgers University,

Piscataway, NJ 08854

farid.alizadeh@rutgers.edu

It is truly an honor, and quite an unexpected one,
to be awarded the Farkas Prize, especially consid-
ering the remarkable people who have received this
award in the past.
Below I will give an account of how I was steered

into the study of semidefinite programming from a
brilliant construction by Lovász.

1. The marvelous ✓ function

While studying as a graduate masters student at
the University of Nebraska–Lincoln in 1987, I came
across the little book of Lovász [27] (see also the
earlier [26]). In it there was a derivation of a graph
invariant which was so simple and yet astonishingly
beautiful. Here is the idea: Suppose a graph has a
clique (as subset of vertices all connected to each
other) of size k. Construct a symmetric matrix
A(x), where the i, j entry is 1 if vertices i and j
are connected in the graph or i = j; otherwise set
[A(x)]

ij

= [A(x)]
ji

= x
ij

a real-valued free variable.
Consider this example:

1

5 4

32

The matrix of this graph as described above, and
with x =

�
x14, x15, x24, x35

�
is given by:

A(x)
def
=

0

BBBB@

1 1 1 x14 x15
1 1 1 x24 1
1 1 1 1 x35
x14 x24 1 1 1
x15 1 x35 1 1

1

CCCCA
.

From elementary linear algebra, we know that
the largest eigenvalue of a principal submatrix is
bounded by the largest eigenvalue of the matrix it-
self. So, since the submatrix corresponding to the
vertices of the clique is a k ⇥ k matrix of all ones,
and since the sole nonzero eigenvalue of such ma-
trix is equal to k, it follows that k  �[1]

�
A(x)

�
.

In particular, the size of the largest clique !(G) 
min

x

�[1]

�
A(x)

�
.

What is amazing is that the right hand side of
the inequality, known as the Lovász ✓ function, is
the solution of a convex optimization problem, even
though there are no “neat” formulas for eigenvalues
of a matrix. As a result, the ✓ invariant of a graph
can be estimated in polynomial time by the ellipsoid
method.

2. Karmarkar’s algorithms

Completely independent of the ✓ function I also
got interested in the (then) new Karmarkar’s algo-
rithm for linear programming (LP). While the el-
lipsoid method was known to solve LP’s in polyno-
mial time, it had not proved to be useful in prac-
tice. Karmarkar’s algorithm was both polynomial-
time, and also practical. I read Karmarkar’s pa-
per [24], and subsequently attended the SIAM Op-
timization Conference in Houston in 1987. Many
major players in interior point methods, including
Ilan Adler, Don Goldfarb, Clovis Gonzaga, Naren-
dra Karmarkar, Michael J. Todd and Yinyu Ye were
presenting talks.

Yinyu Ye, Farid Alizadeh and Sanjay Mehrotra

mailto:farid.alizadeh@rutgers.edu
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Right brain meets left brain: Can
we extend Karmarkar’s algorithm
to compute the ✓ function?

Driving back from Houston to Lincoln, and juggling
in my mind what I had learned in the SIAM con-
ference, I thought of a crazy idea: Can we apply
interior point methods to compute the ✓ function?
After transferring to Minnesota in 1988 to study

with late Ben Rosen, I worked on this idea and re-
alized that it was not so crazy after all. Applying
the logarithmic barrier to the optimization problem
characterizing the ✓ function we get:

min
z,x

z � µ
X

i

ln(z � �
i

�
A(x)

�

=min
z,x

z � µ ln
Y

i

⇣
z � �

i

�
A(x)

�⌘

=min
z,x

z � µ lnP
A(x)(z),

where P
A(x)(z) is the characteristic polynomial of

A(x). Now, the last line can be easily computed
using unconstrained optimization techniques based
on Newton’s, or quasi/truncated Newton methods.
Using the array of supercomputers available at Min-
nesota, especially the Cray-2, and the NAG library
optimization software, I could use the above formu-
lation and compute ✓ of graphs with hundreds of
vertices and a few thousand edges.

3. Onward to semidefinite pro-
gramming

In the Spring of 1990 I got hold of the wonderful
book by Grötschel, Lovász and Schrijver [21]. To
my delight an entire chapter was devoted to the ✓
function. A particular “dual” formulation caught
my eye:

✓(G) = max J • Y
s.t. Y

ij

= 0 for all ij edges in G
Y < 0

,

where A • B def
=

P
ij

A
ij

B
ij

, and Y < 0 means Y is
a symmetric positive semidefinite matrix.

Looking at this characterization, I realized that
it resembled the so-called “standard-form” LP:

min{c>x | Ax = b,x � 0}; only the nonnegative or-
thant was replaced by the positive semidefinite cone.
Based on this observation I came up with a strategy
to extend design and analysis of interior point meth-
ods:

1. First, I would focus my attention not on the ✓
function per se, but on a more general optimiza-
tion problem and its dual:

min C •X
s.t. A

i

•X = b
i

X < 0

max b>y
s.t.

P
i

y
i

A
i

+ S = C
S < 0

(This was the time I thought of the term
semidefinite programming (SDP) for this prob-
lem1).

2. Next, I would take one of literally hundreds
of papers on the complexity of various interior
point methods for LP, and try to extend it, word
for word, to SDP.

My intuition was based on the belief that Kar-
markar’s, and other interior point methods did not
rely in significant ways on the combinatorial nature
of linear programming (the way the simplex methods
did, for instance). So techniques for their analysis
should be extensible to more general setting above.

In the meantime, around May of 1990, Yinyu Ye,
who was at the University of Iowa at the time, visited
Minnesota. We had an hour long conversation and
I discussed my project with him. Yinyu was very
interested and encouraged me to pursue the project.
He also suggested that I use one of the algorithms
he had developed, which were based on the Todd-
Ye-Mizuno potential function.

I spent the next few weeks studying Ye’s two pa-
pers [48, 47] which presented two potential reduc-
tion algorithms for linear programming with itera-
tion complexity O

�p
nL

�
. While reading these pa-

pers, I realized that in almost every place that the
vector x

k

(the current estimate for the optimal solu-
tion) occurs as a parameter of a nonlinear function,
that function is symmetric in x

k

. For instance, in

1The term “positive (semi)-definite programming” had
been used much earlier by Dantzig and Cottle to describe a
di↵erent problem: The linear complementarity problem with
a semidefinite matrix[14]. I was not aware of this at the time,
and in any case the term had not caught on.
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the potential function given by c>x� q
P

i

lnx
i

, the
term

P
i

lnx
i

is symmetric. So are expressions like
kx � 1k, where 1 is the vector of all ones, and k · k
corresponds to either the Euclidean norm, the max-
imum (1) norm or the 1-norm. So it was straight-
forward to translate statements involving such func-
tions to SDP. All I had to do was to replace x

k

(in LP) with the eigenvalues of X
k

(in SDP). For
instance, an inequality used by Ye, and earlier by
Karmarkar, was the following: For 0 < x < 1:

X

i

lnx
i

�
X

i

x
i

� n� kx� 1k2
2
�
1� kx� 1k1

� ·

This inequality is easily proved using the Taylor ex-
pansion of ln(1 � x). Now let X be a symmet-
ric matrix and let �

i

(X) be its eigenvalues. Then
0 < �

i

(X) < 1 for all i is equivalent to 0 � X � I.
And the inequality above, upon replacing �

i

(X) for
x
i

, becomes

lnDet(X) � trace(X)� n� kX � Ik
F

2
�
1� ⇢(X � I)

� ,

where ⇢(A) is the spectral radius of A (the largest
eigenvalue norm max

i

|�
i

(X)| for symmetric matri-
ces).
Another key ingredient of LP interior point meth-

ods was some form of linear or projective transforma-
tion that mapped the nonnegative orthant back to it-
self and brought the current interior feasible point x

k

to 1. For instance, a linear transformation achieving
this would be x ! Diag(x

k

)�1x. Typically a num-
ber of identities and inequalities are proved for this
transformed vector, ultimately resulting in a fixed
reduction in a potential function. The analogous
transformation for SDP seemed to be X ! X�1

k

X
which maps the current interior feasible point X

k

to
I, the identity matrix. As in the inequality above,
I could extend all the needed identities and inequal-
ities involving Diag(x

k

)�1x in Ye’s papers to the
spectrum of X�1

k

X. As a result I could prove a fixed
reduction to an analogous matrix potential function.
So my strategy of “word-for-word” turning LP in-
terior point algorithms and their analyses to SDP
seemed to work.
Of course there was a major flaw in all this which

made the whole thing somewhat absurd: While in
LP the transformation x ! Diag(x

k

)�1x mapped

the nonnegative orthant back to itself, the corre-
sponding X ! X�1

k

X did not map the semidefinite
cone to itself; the product of two symmetric matrices
is not even a symmetric matrix in general.

I was stuck on this issue for a few weeks, un-
til I decided to pay a visit to Yinyu and seek his
advice. In summer of 1990, I drove five hours
from Minneapolis to Iowa City. Yinyu was gra-
cious to treat me to pizza, and even more gra-
cious afterwards to listen to my construction and
the dilemma about non-symmetry of X�1

k

X. As
soon as I described the problem, and without hes-
itation, Yinyu proposed that I use instead the trans-

formation: X ! X
�1/2
k

XX
�1/2
k

. The moment he
uttered these words I knew that the problem was

solved. X ! X
�1/2
k

XX
�1/2
k

is an automorphism of
the semidefinite cone. At the same time it has the
same spectrum as X�1

k

X, so all the identities and
inequalities I had already proved for its spectrum
remained valid for this transformation as well.

I should mention here that Yinyu in his earlier
visit to Minnesota also brought to my attention a
preliminary version of Nesterov and Nemirovski’s
monumental work [32] (as an e-book on a floppy,
in 1990!) I did not quite understand the book, but
fortunately there was a workshop in early summer of
1990 in Madison, Wisconsin, in which both Yuri and
Arkadi did also attend. I talked to them about my
work on the ✓ function, and they re-assured me that
their self-concordance theory implied that ✓ can be
estimated in O

�p
n
�
iterations. Based on this dis-

cussion I quickly wrote a paper [2] on randomized
parallel computation of ✓, and became confident that
my “word-for-word” approach had a strong chance
of success.

4. Further research on applica-
tions of SDP

After writing my dissertation [1] and a few papers
based on the research above [3, 4], I spent two years
(1992-1994) as an NSF postdoctoral associate at the
International Computer Science Institute at the Uni-
versity of California–Berkeley. I was extremely priv-
ileged to work with Dick Karp on applications of
combinatorial optimization to molecular biology. I
should also mention my joyful collaboration with
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Andrew Goldberg in implementing the push-relabel
method for the maximum-flow problem on the CM-2
architecture [6].
At this time I also got to know Ilan Adler and

through interactions with him got interested both
in primal-dual algorithms for SDP and also in sec-
ond order cone programming. My interest in SOCP
arose after reading a preliminary version of a paper
of Nemirovski and Scheinberg [31] which essentially
made a “word-for-word” extension of Karmarkar’s
algorithm from LP to SOCP.
In 1994 I moved to RUTCOR at Rutgers Univer-

sity. Below I briefly outline my activities in the past
twenty years:

1994-1998: Primal-Dual algorithms I started
my collaboration with Jean-Pierre Haeberly of
(then) Fordham, and Michael Overton of New York
University. After studying the primal-dual method
of Helmberg et al. [23] we developed our own
method, which computed Newton’s direction for pri-
mal and dual feasibility and the complementarity re-
lation XS+SX

2 = µI [11]; this direction was termed
by the community as the AHO direction. We also
developed SDPpack, the first publicly available soft-
ware package that could solve optimization prob-
lems with any combination of linear, second order
and semidefinite constraints [8]. Later, in a semi-
nal work, Monteiro and Zhang extended the AHO
method by adding an automorphic scaling of the
semidefinite cone [30]. Renato Monteiro showed
that under all such scalings, a “short-step” ap-
proach yields O

�p
n| ln ✏|

�
iteration complexity [29].

The Monteiro-Zhang family includes the fundamen-
tal Nesterov-Todd methods [33, 34] and the Helm-
berg et al. method mentioned above.

1995-1997: Degeneracy in SDP With Jean-
Pierre and Michael, we also studied the notion of
(non)degeneracy and strict complementarity in SDP
[10]. This work was further expanded by Pataki [43],
and Faybusovich [17].

1998-2003: Jordan algebras Through the work
of Güler [22], Faybusovich [17, 16, 18], and bril-
liant texts of Faraut and Korány [15] and Koecher
[28] Euclidean Jordan algebras became accessible to

the optimization community. With Stefan Schmi-
eta we showed that just about anything said about
the Monteiro-Zhang family can be extended verba-
tim to optimization over symmetric cones [44, 45].
We also showed that the word-for-word extension of
Ye’s algorithm in LP can be extended all the way
to symmetric cones [12]. With Yu Xia we extended
the Q method—developed earlier with Haeberly and
Overton [9]—to symmetric cones as well [13].

2008-2014: nonnegative and SOS polynomials
As a result of the work of N. Z. Shor [46], and later
Lassere [25] Parrilo [42, 41] and Nesterov [35], it be-
came evident that the set of polynomials which are
expressible as sum-of-squares (SOS) of other poly-
nomials, is SD-representable. With David Papp, we
studied the notion of sum-of-squares in abstract al-
gebras and, building on the work of Nesterov [35]
and Faybusovich [19] showed SDP-representability
of SOS cones in the most general setting possible
[40]. With RUTCOR students Gabor Rudolf, Nilay
Noyan, David Papp, we showed that the complemen-
tarity conditions for the cone of univariate nonneg-
ative polynomials and its dual, the moment cone,
cannot be expressed by more than four independent
bilinear relations (unlike nonnegative orthant, and
other symmetric cones where complementarity could
be expressed by n bilinear relations). In the process
we introduced the notion of bilinearity rank of cones.
Later, Gowda and Tao showed that bilinearity rank
of a cone is exactly the dimension of the Lie algebra
of its automorphism group [20].

2003-2011: Shape-constrained statistical esti-
mation With my colleague at Rutgers, Jonathan
Eckstein, and former students Gabor Rudolf and Ni-
lay Noyan, we applied SDP to estimate the (nonneg-
ative) arrival rate of nonhomogeneous Poisson pro-
cesses, and used our approach to estimate arrival
rate of e-mails [5]. And with David Papp we esti-
mated the two dimensional arrival rate of accidents
in New Jersey Turnpike as a function of both time
and millage post [39]. Also with David we used sim-
ilar techniques for shape constrained regression and
probability density estimation [40].
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5. Final word

I am fortunate to have been associated with great
mentors, colleagues, and students throughout the
years. Early in my career, my advisor at Nebraska,
David Klarner, sparked the love of algorithms in me.
And Ben Rosen at Minnesota had the confidence to
agree to support me after just a ten minute conver-
sation.
Michael Overton, who had already extensively

studied eigenvalue optimization [36, 38, 37], did sub-
stantial hand-holding in the early stages of my in-
vestigation. I also had stimulating discussions both
in person and by e-mail with Arkadi Nemirovski and
Yuri Nesterov (who read the first drafts of my disser-
tation and pointed out several sloppy errors). Laci
Lovász was gracious and encouraged me to pursue
my ideas about the ✓ function and its e�cient com-
putation. Gene Golub was kind in allowing me to
use Stanford student o�ces, and also having many
discussions about numerical stability of eigenvalue
optimization algorithms.
Over the years discussions with Stephen Boyd,

Gabor Pataki, Mutakuri Ramanna, Michel Goe-
mans, David Williamson and Garud Iyengar were
very fruitful. In addition, I had a great sabbatical
leave at Columbia IEOR department during calen-
dar year of 2001. A result of this visit was a very
satisfying collaboration with Don Goldfarb which re-
sulted in our paper on SOCP [7].
Finally, I should acknowledge the great pleasure

I have had to work with (former) graduate students
Reuben Sattergren, Stefan Schmieta, Yu Xia, Ga-
bor Rudolf, Nilay Noyan, David Papp, and RUT-
COR and Rutgers MSIS (current) graduate students
Marta Cavaleiro, Mohammad Ranjbar and Deniz
Seyed Eskandani.
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This paper briefly reviews the relationship be-
tween local and global optimality conditions in [15].
Consider the polynomial optimization problem

8
<

:

min f(x)
s.t. h

i

(x) = 0 (i = 1, . . . ,m1),
g
j

(x) � 0 (j = 1, . . . ,m2),
(1)

where f, h1, . . . , hm1 , g1, . . . , gm2 are real polynomi-
als in x := (x1, . . . , xn). For convenience, denote

h := (h1, . . . , hm1), g := (g1, . . . , gm2)

and g0 := 1. Let K be the feasible set of (1). When
there are no equality (resp., inequality) constraints,
the tuple h = ; and m1 = 0 (resp., g = ; and
m2 = 0).

The problem (1) can be treated as a general non-
linear program. By classical nonlinear optimiza-
tion methods, we can typically get a Karush-Kuhn-
Tucker (KKT) point of (1). Theoretically, it is NP-
hard to check whether a KKT point is a local min-
imizer or not. However, it is often not too hard to
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do that in practice. This is because there exist stan-
dard conditions ensuring local optimality. On the
other hand, it is often much harder to get a global
minimizer. In practice, sometimes we may be able to
get a global optimizer, but it is typically hard to ver-
ify the global optimality. A major reason for this is
lack of easily checkable global optimality conditions
in nonlinear programming theory.
Local and global optimality conditions are pre-

sumably very di↵erent, except special cases like con-
vex optimization. For general nonconvex optimiza-
tion, little is known about global conditions. How-
ever, for polynomial optimization, this is possible
by using representations of nonnegative polynomi-
als. Interestingly, global optimality conditions are
closely related to the local ones, which was discov-
ered in the paper [15].

1. Local Optimality Conditions

Let u be a local minimizer of (1) and

J(u) := {j1, . . . , jr}

be the index set of active inequality constraints. If
the constraint qualification condition (CQC) holds
at u, i.e., the gradient vectors

rh1(u), . . . ,rh
m1(u),rg

m1(u), . . . ,rg
jr(u)

are linearly independent, then there exist Lagrange
multipliers �1, . . . ,�m1 and µ1, . . . , µm2 satisfying

rf(u) =
m1X

i=1

�
i

rh
i

(u) +
m2X

j=1

µ
j

rg
j

(u), (2)

µ1g1(u) = · · · = µ
m2gm2(u) = 0,

µ1 � 0, . . . , µ
m2 � 0.

�
(3)

The equation (2) is called the first order optimality
condition (FOOC), and (3) is called the complemen-
tarity condition. If it further holds that

µ1 + g1(u) > 0, . . . , µ
m2 + g

m2(u) > 0, (4)

then the strict complementarity condition (SCC)
holds at u. The strict complementarity is equiva-
lent to µ

j

> 0 for every j 2 J(u). Let L(x) be the
Lagrange function

L(x) := f(x)�
m1X

i=1

�
i

h
i

(x)�
X

j2J(u)
µ
j

g
j

(x).

Clearly, (2) implies the gradient r
x

L(u) = 0. The
polynomials f, h

i

, g
j

are smooth functions. Thus,
under the constraint qualification condition, the sec-
ond order necessity condition (SONC) holds:

vTr2
x

L(u)v � 0 8 v 2 G(u)?. (5)

In the above, G(u) denotes the Jacobian of the active
constraining polynomials

G(u) = Jacobian
⇣
h1, . . . , hm1 , gj1 , . . . , gjr

⌘���
x=u

and G(u)? denotes the null space of G(u). If it holds
that

vTr2
x

L(u)v > 0 for all 0 6= v 2 G(u)?, (6)

then the second order su�ciency condition (SOSC)
holds at u. The relations among the above condi-
tions can be summarized as follows: if CQC holds
at u, then (2), (3) and (5) are necessary conditions
for u to be a local minimizer, but they may not be
su�cient; if (2), (3), (4) and (6) hold at u 2 K, then
u is a strict local minimizer of (1). We refer to [1,
Section 3.3] for such classical results.

Mathematically, CQC, SCC and SOSC are su�-
cient for local optimality, but may not be necessary.
However, for generic cases, they are su�cient and
necessary conditions. This is a major conclusion of
[15]. Denote by R[x]

d

the set of real polynomials in x
and with degrees at most d. Let [m] := {1, . . . ,m}.
The following theorem is from [15].

Theorem 1. Let d0, d1, . . . , dm1 , d
0
1, . . . , d

0
m2

be posi-
tive integers. Then there exist a finite set of nonzero
polynomials '1, . . . ,'L

, which are in the coe�cients
of polynomials f 2 R[x]

d0, h
i

2 R[x]
di (i 2 [m1]),

g
j

2 R[x]
d

0
j
(j 2 [m2]) such that if

'1(f, h1, . . . , hm1 , g1, . . . , gm2) 6= 0,
...

'
L

(f, h1, . . . , hm1 , g1, . . . , gm2) 6= 0,

then CQC, SCC and SOSC hold at every local min-
imizer of (1).

Theorem 1 implies that the local conditions CQC,
SCC and SOSC hold at every local minimizer in the
space of input polynomials with given degrees, ex-
cept a union of finitely many hypersurfaces. So,
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they hold in an open dense set in the space of in-
put polynomials. Therefore, CQC, SCC and SOSC
can be used as su�cient and necessary conditions in
checking local optimality, for almost all polynomial
optimization problems. This fact was observed in
nonlinear programming.

2. A global optimality condition

Let u be a feasible point for (1). By the definition,
u is a global minimizer if and only if

f(x)� f(u) � 0 8x 2 K. (7)

Typically, it is quite di�cult to check (7) directly.
In practice, people are interested in easily checkable
conditions ensuring (7). For polynomial optimiza-
tion, this is possible by using sum-of-squares type
representations.
Let R[x] be the ring of real polynomials in x :=

(x1, . . . , xn). A polynomial p 2 R[x] is said to
be sum-of-squares (SOS) if p = p21 + · · · + p2

k

for
p1, . . . , p

k

2 R[x]. A su�cient condition for (7) is
that there exist polynomials �1, . . . ,�m1 2 R[x] and
SOS polynomials �0,�1, . . . ,�m2 2 R[x] such that

f(x)� f(u) =
m1X

i=1

�
i

(x)h
i

(x) +
m2X

j=0

�
j

(x)g
j

(x). (8)

The equality in (8) is a polynomial identity in the
variables of x. Note that for every feasible point x
in (1), the right hand side in (8) is always nonneg-
ative. This is why (8) ensures that u is a global
minimizer. The condition (8) was investigated by
Lasserre [6]. It was a major tool for solving the op-
timization problem (1) globally. We call (8) a global
optimality condition for (1).
People wonder when the global optimality condi-

tion holds. The representation of f(x)� f(u) in (8)
was motivated by Putinar’s Positivstellensatz [16],
which gives SOS type certificates for positive or non-
negative polynomials on the set K. Denote

hhi := h1R[x] + · · ·+ h
m1R[x],

which is the ideal generated by the polynomial tu-
ple h. Let ⌃[x] be the set of all SOS polynomi-
als in R[x]. The polynomial tuple g generates the
quadratic module:

Q(g) := ⌃[x] + g1⌃[x] + · · ·+ g
m2⌃[x].

If there exists a polynomial p 2 hhi + Q(g) such
that the set {x 2 Rn : p(x) � 0} is compact,
then hhi + Q(g) is said to be archimedean. The
archimedeanness of hhi+Q(g) implies the compact-
ness of K, while the reverse is not necessary. How-
ever, when K is compact, we can always add a re-
dundant condition like R�kxk22 � 0 to the tuple g so
that hhi+Q(g) is archimedean. Hence, archimedean-
ness of hhi + Q(g) is almost equivalent to the com-
pactness of K. Putinar’s Positivstellensatz [16] says
that if hhi + Q(g) is archimedean, then every poly-
nomial which is strictly positive on K belongs to
hhi+Q(g) (cf. [16]).

The global optimality condition (8) is equivalent
to the membership

f(x)� f(u) 2 hhi+Q(g).

When u is a global minimizer of (1), the polynomial

f̃(x) := f(x)� f(u)

is nonnegative on K, but not strictly positive on
K. This is because u is always a zero point of f̃
on K. So, Putinar’s Positivstellensatz itself does
not imply the global optimality condition (8). In-
deed, there are counterexamples that (8) may not
hold. For instance, when f is the Motzkin polyno-
mial x21x

2
2(x

2
1+x22�3x23)+x63 and K is the unit ball,

then (8) fails to hold.
However, the global optimality condition (8) holds

for almost all polynomials f, h
i

, g
j

, i.e., it holds in
an open dense set in the space of input polynomials.
This is a major conclusion of [15]. The ideal hhi is
said to be real if every polynomial in R[x] vanish-
ing on the set {x 2 Rn : h(x) = 0} belongs to hhi
(cf. [2]). This is a general condition. For instance,
if hhi is a prime ideal and h has a nonsingular real
zero, then hhi is real (cf. [2]). As pointed out earlier,
when the feasible set K is compact, we can gener-
ally assume that hhi + Q(g) is archimedean. Inter-
estingly, the local conditions CQC, SCC and SOSC
imply the global optimality condition (8), under the
archimedeanness of hhi+Q(g). The following theo-
rem is a consequence of the results in [15].

Theorem 2. Assume that the ideal hhi is real and
the set hhi +Q(g) is archimedean. If the constraint
qualification condition, strict complementarity con-
dition, and second order su�ciency condition hold



18 INFORMS Optimization Society Newsletter

at every global minimizer of (1), then the global op-
timality condition (8) holds.

Proof. At every global minimizer u of f on K,
the CQC, SCC and SOSC conditions implies that
the boundary hessian condition holds at u, by
Theroem 3.1 of [15]. The boundary hessian con-
dition was introduced by Marshall [11] (see Condi-
tion 2.3 of [15]). Let f

min

be the global minimum
value of (1). Denote V = {x 2 Rn : h(x) = 0}. Let
I(V ) be the set of all polynomials vanishing on V .
By Theorem 9.5.3 of [10] (also see Theorem 2.4 of
[15]), we have

f(x)� f
min

2 I(V ) +Q(g).

Because hhi is real, hhi = I(V ) and

f(x)� f(u) 2 hhi+Q(g).

So, the global optimality condition (8) holds.

By Theorem 1, the local conditions CQC, SCC
and SOSC hold generically, i.e., in an open dense set
in the space of input polynomials. Therefore, the
global optimality condition (8) also holds generically,
when hhi is real and hhi+Q(g) is archimedean.

3. Lasserre’s hierarchy

Lasserre [6] introduced a sequence of semidefinite
relaxations for solving (1) globally, which is now
called Lasserre’s hierarchy in the literature. It can
be desribed in two equivalent versions. One version
uses SOS type representations, while the other one
uses moment and localizing matrices. They are dual
to each other, as shown in [6]. For convenience of
description, we present the SOS version here. For
each k 2 N (the set of nonnegative integers), denote
the sets of polynomials (note g0 = 1)

hhi2k :=

(
m1X

i=1

�
i

h
i

�����
each �

i

2 R[x]
and deg(�

i

h
i

)  2k

)
,

Q
k

(g) :=

8
<

:

m2X

j=0

�
j

g
j

������
each �

j

2 ⌃[x]
and deg(�

j

g
j

)  2k

9
=

; .

Note that hhi2k is a truncation of hhi and Q
k

(g) is
a truncation of Q(g). The SOS version of Lasserre’s
hierarchy is the sequence of relaxations

max � s.t. f � � 2 hhi2k +Q
k

(g) (9)

for k = 1, 2, . . . ,. The problem (9) is equivalent to
a semidefinite program (SDP). So it can be solved
as an SDP by numerical methods. For instance, the
software GloptiPoly 3 [3] and SeDuMi [18] can be
used to solve it. We refer to [7, 9, 10] for recent work
in polynomial optimization.

Let f
min

be the minimum value of (1) and f
k

de-
note the optimal value of (9). It was shown that
(cf. [6])

· · ·  f
k

 f
k+1  · · ·  f

min

.

When hhi+Q(g) is archimedean, Lasserre [6] proved
the asymptotic convergence

f
k

! f
min

as k ! 1.

If f
k

= f
min

for some k, Lasserre’s hierarchy is said
to have finite convergence. It is possible that the
sequence {f

k

} has only asymptotic, but not finite,
convergence. For instance, this is the case when f
is the Motzkin polynomial x21x

2
2(x

2
1 + x22 � 3x23) + x63

and K is the unit ball [12, Example 5.3]. Indeed,
such f always exists whenever dim(K) � 3, which
can be implied by [17, Prop. 6.1]. However, such
cases do not happen very much. Lasserre’s hierarchy
often has finite convergence in practice, which was
demonstrated by extensive numerical experiments in
polynomial optimization (cf. [4, 5]).

A major conclusion of [15] is that Lasserre’s hier-
archy almost always has finite convergence. Specif-
ically, it was shown that Lasserre’s hierarchy has
finite convergence when the local conditions CQC,
SCC and SOSC are satisfied, under the archimedean-
ness. The following theorem is shown in [15].

Theorem 3. Assume that hhi + Q(g) is
archimedean. If the constraint qualification,
strict complementarity and second order su�-
ciency conditions hold at every global minimizer
of (1), then Lasserre’s hierarchy of (9) has finite
convergence.

By Theorem 1, the local conditions CQC, SCC
and SOSC at every local minimizer, in an open dense
set in the space of input polynomials. This im-
plies that, under the archimedeanness of hhi+Q(g),
Lasserre’s hierarchy has finite convergence, in an
open dense set in the space of input polynomials.
That is, Lasserre’s hierarchies almost always (i.e.,
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generically) have finite convergence. This is a major
conclusion of [15].
If one of the assumptions in Theorem 3 does not

hold, then {f
k

} may fail to have finite convergence.
The counterexamples were shown in §3 of [15]. On
the other hand, there exists other non-generic con-
ditions than ensures finite convergence of {f

k

}. For
instance, if h has finitely many real or complex zeros,
then {f

k

} has finite convergence (cf. [8, 14]).
Since the minimum value f

min

is typically not
known, a practical concern is how to check f

k

= f
min

in computation. This issue was addressed in [13].
Flat truncation is generally a su�cient and neces-
sary condition for checking finite convergence.
For non-generic polynomial optimization prob-

lems, it is possible that the sequence {f
k

} does not
have finite convergence to f

min

. People are inter-
ested in methods that have finite convergence for
minimizing all polynomials over a given set K. The
Jacobian SDP relaxation proposed in [12] can be ap-
plied for this purpose. It gives a sequence of lower
bounds that have finite converge to f

min

, for every
polynomial f that has a global minimizer over a gen-
eral set K.
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Our paper [12] is concerned with the following un-
constrained minimization problem:

minimize
x2H

f(x) + g(x) (1)

where H is a Hilbert space and f, g : H ! (�1,1]
are closed, proper, and convex functions. Through
duality, the results generalize to the problem:

minimize
x2H1,y2H2

f(x) + g(y) subject to Ax+By = 0,

(2)

where A : H1 ! G and B : H2 ! G are linear
mappings and H1,H2, and G are Hilbert spaces. At
first this decomposition of the objective into two
functions may seem superfluous, but it captures the
motivation of operator-splitting methods: the whole
convex problem may be as complicated as you wish,
but it can be decomposed into two or more (possibly)
simpler terms.
The above decomposition suggests that we try to

minimize the complicated objective f+g by alterna-
tively solving a series of subproblems related to min-
imizing f and g separately. The following strongly
convex optimization problem is one of the main sub-
problems we use:

prox
f

(x) := argmin
y2H f(y) +

1

2
ky � xk2,

where the input x will encode some information
about f + g, so the subproblem will not just min-
imize f alone. It turns out that many functions
arising in machine learning, signal processing, and
imaging have simple or closed form proximal oper-
ators [7, 20, 4, 16], which is why operator-splitting
algorithms are so e↵ective for large-scale problems.
Since von Neumann devised the method of al-

ternating projections [24], several operator splitting
methods have been proposed [18, 21, 23] to solve a

variety of decomposable problems [6, 14, 8, 9, 25, 5].
Although splitting methods are observed to per-
form well in practice, their convergence rates were
unknown for many years; this is a big limita-
tion for practitioners. Without convergence rates,
practitioners cannot predict practical performance,
compare competing methods without implementing
both, or understand why methods perform well on
nice problems but are slow on other problems of the
same size. The award winning manuscript [12], and
follow up work [13, 10, 11] resolves these issues for a
variety of splitting algorithms.

Analyzing convergence rates of splitting methods
is challenging because the classical objective error
analysis breaks down. Here, the objective no longer
monotonically decreases; in some cases, they can be
completely useless. For example, finding a point in
the intersection of sets C1 and C2 can be formulated
as Problem (1) with f = ◆

C1 and g = ◆
C2 . Notice

that the objective function f + g is finite (and equal
to 0) only at a solution x 2 C1 \ C2. The Douglas-
Rachford splitting method (which is a special case of
the Peaceman-Rachford splitting method (see Equa-
tion 3)) produces a sequence of points converging
to a solution. In general, all points in the sequence
have an infinite objective value, but the limit point
has a zero objective value! Thus, we must take a dif-
ferent approach to analyze operator-splitting meth-
ods: we first prove convergence rates for the fixed-
point residual associated to a nonexpansive map-
ping, which implies bounds for certain subgradients
that we use to bound the objective function.
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A sketch of the upper complexity proof.

A key property used in our analysis is the firm non-
expansiveness of prox

f

, which means that 2prox
f

�
IH is nonexpansive, i.e., 1-Lipschitz continuous [1,
Proposition 4.2]. Because the composition of two
nonexpansive operators remains nonexpansive, this
property implies that the Peaceman-Rachford op-
erator TPRS := (2prox

f

� I) � (2prox
g

� I) is
nonexpansive [18]. Thus, the Krasnosel’skĭı-Mann
(KM) [17, 19] iteration with damping by � 2 (0, 1)

zk+1 = (1� �)zk + �TPRS(z
k) k = 0, 1, . . . (3)

will weakly converge to a fixed point of TPRS when-
ever one exists [1, Theorem 5.14]. We are interested
in fixed-points z⇤ of TPRS because they immediately
yield minimizers through the relation prox

g

(z⇤) 2
argmin(f + g) [1, Theorem 25.6]. Furthermore, the
sequence (prox

g

(zj))
j�0 weakly converges to a min-

imizer of f + g when one exists [22].
For any nonexpansive mapping T : H ! H, the

fixed-point residual (FPR) kTz � zk measures how
“close” z is to being a fixed point. A key result in
our paper establishes the convergence rate of this
quantity:

Theorem 4. Let � 2 (0, 1). For any nonexpansive
map T : H ! H with nonempty fixed-point set, we
have

kTzk � zkk = o

✓
1p
k + 1

◆

where z0 2 H and for all k � 0, zk+1 = (1� �)zk +
�Tzk.

Roughly, this theorem follows by showing (kzj+1�
zjk2)

j�0 is monotonic and summable. The conver-
gence then follows from the following simple lemma:

Lemma 5. Let (a
j

)
j�0 ✓ R++ be a monotonic down

and summable sequence. Then a
k

= o(1/(k + 1)).

Proof. (k + 1)a2k  a2k + · · ·+ a
k

k!1! 0.

We already mentioned that the convergence rate of
the fixed-point residual would play a role in bound-
ing subgradients associated to the relaxed PRS al-
gorithm. Using some basic convex analysis, Figure 1
“expands” a single iteration of Algorithm 3 into a
series of “subgradient steps.”

z TPRS(z)z+

xg = proxg(z)

z0

xf = proxf (z
0)

�erg(xg)

�erg(xg) �erf(xf )

�erf(xf )

xf � xg

Figure 1: A single iteration of the relaxed PRS al-
gorithm. Note that z+ = (1/2)z+(1/2)TPRS(z) and
erg(x

g

) 2 @g(x
g

) and erf(x
f

) 2 @f(x
f

).

A few identities immediately follow from Figure 1:

z+ � z = x
f

� x
g

= �(erg(x
g

) + erf(x
f

)) (4)

Note that whenever TPRS(z) = z, we have x⇤ :=
x
f

= x
g

and erg(x⇤)+ erf(x⇤) = 0, so x⇤ = prox
g

(z)
is optimal for Problem 1. With this identity and
Theorem 4, we get the following result:

Theorem 6. Suppose that (zj)
j�0 is generated by

Algorithm 3. For all k � 0, with xk
g

, erg(xk
g

), xk
f

, and
erf(xk

f

) defined as in Figure 3, we have

kxk
f

� xk
g

k2 = kerg(xk
g

) + erf(xk
f

)k2 = o

✓
1

k + 1

◆
.

By applying the basic inequality h(y) � h(x) +
herh(x), y � xi on f and g, we obtain the next theo-
rem.

Theorem 7. Suppose that (zj)
j�0 is generated by

Algorithm (3). Let x⇤ be a minimizer of f + g. For
all k � 0, let xk

g

and xk
f

be defined as in Figure 3.
Then

|f(xk
f

) + g(xk
g

)� f(x⇤)� g(x⇤)| = o

✓
1p
k + 1

◆
.

Furthermore, when f is Lipschitz continuous, we
have

0  (f + g)(xk
g

)� (f + g)(x⇤) = o

✓
1p
k + 1

◆
.
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Theorem 7 shows that the relaxed PRS algorithm
is strictly faster than the slowest performing first-
order (subgradient) methods. Splitting methods are
known to perform well in practice, so it is natural
to suspect that this is not the best we can do. The
following section shows that this intuition is partially
true.

Acceleration through averaging.

Can we improve upon the worst-case o(1/
p
k + 1)

complexity in Theorem 7? The following example
gives us some insight into how we might improve.

Figure 2: The relaxed PRS algorithm (� = 1/2) ap-
plied to the intersection of two lines L1 and L2 (the
horizontal axis and the line through the origin with
slope .2). Formally, g = ◆

L1 and f = ◆
L2 are the in-

dicator functions of L1 and L2. The left side (red) is
the actual trajectory of the DRS algorithm (i.e., the
sequence (zj)

j�0). The right side (blue) is obtained

through averaging zk := (1/(k + 1))
P

k

i=0 z
i.

Figure 2 replaces the k-th iterate zk generated by
Algorithm (3) with the averaged, or ergodic, iter-
ate zk := (1/(k + 1))

P
k

i=0 z
i. It is clear that, at

least initially, the ergodic iterate outperforms the
standard, or nonergodic, iterate because of cancella-
tion induced from averaging the spiraling sequence.
In actuality, the nonergodic iterate eventually sur-
passes the nonergodic iterate and converges linearly
with rate ⇡ 0.9806 [2], but this example gives us an
idea of why averaging can help.
Inspired by Figure 2, we introduced the following

averaging scheme for relaxed-PRS to obtain a faster
O(1/(k + 1)) worst-case convergence rate.

Theorem 8. Suppose that (zj)
j�0 is generated by

Algorithm (3). Let x⇤ be a minimizer of f + g. For
all k � 0, let xk

g

and xk
f

be defined as in Figure 3.

Furthermore, let xk
g

:= (1/(k+1))
P

k

i=0 x
i

g

and xk
f

:=
(1/(k + 1))

P
k

i=0 x
i

f

. Then

|f(xk
f

) + g(xk
g

)� f(x⇤)� g(x⇤)| = O

✓
1

k + 1

◆
.

Furthermore, when f is Lipschitz continuous, we
have

0  (f + g)(xk
g

)� (f + g)(x⇤) = O

✓
1

k + 1

◆
.

The rate O(1/(k + 1)) is a big improvement over
the o(1/

p
k + 1) rate from Theorem 7. However, it

is not clear that averaging will always result in faster
practical performance. Indeed, consider the follow-
ing basis pursuit problem:

minimize
x2Rd

kxk1 subject to: Ax = b (5)

where A 2 Rm⇥d is a matrix and b 2 Rm is a vec-
tor. We can apply the relaxed PRS algorithm to
this problem by setting g(x) = kxk1 and f(x) =
◆{y|Ay=b}(x) where ◆

C

denotes the {0,1}-valued in-
dicator function of a set C.

Figure 3: The objective error of the basis pursuit
problem (5)

Figure 3 shows a numerical experiment on the
basis-pursuit problem. Three things are clear: (i)
the nonergodic iterate is highly oscillatory as sug-
gested early; (ii) the performance of the nonergodic
iterate eventually surpasses the ergodic iterate; (iii)
the ergodic iterate eventually converges with rate ex-
actly O(1/(k + 1)) and no faster. This situation is
typical, and suggests that averaging is not necessar-
ily a good idea in all scenarios. Nevertheless obtain-
ing xk

g

is a nearly costless procedure, so it never hurts
to average.
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✓1 ✓2✓2L L L L· · · · · ·

Figure 4: This graph shows 5 iterations of relaxed PRS applied to an infinite direct sum of examples similar
to the one shown in Figure 2. The angles (✓

j

)
j�0 are converging to 0. The black and blue dots coincide in

the first component. The infinite vectors of black (on tip of spiral), blue (on horizontal axis), and magenta
(on non horizontal line) dots are the vectors z5, x5

g

, and the projection of x5
g

onto the non horizontal line,
respectively. The objective functions in Theorem 9 are as follows: g is the indicator of the horizontal axis
and f is the distance function to the non horizontal line. Thus, g(x5

g

) = 0 and f(x5
g

) is the distance between
the blue and magenta dots.

The worst-case nonergodic rate is sharp.

Although averaging can improve the rate of conver-
gence of relaxed PRS, we observed in Figure 3 that
the nonergodic iterate can perform better than the
ergodic iterate. Does this mean that our conver-
gence rate in Theorem 7 can be improved? It turns
out that the answer is no, at least in infinite dimen-
sional problems:

Theorem 9. There is a Hilbert space H and two
closed, proper, and convex functions f, g : H !
(�1,1] such that f is Lipschitz continuous and the
following holds: for all " > 0, there is an initial point
z0 2 H and a stepsize � 2 R++ with

(f + g)(xk
g

)� (f + g)(x⇤) = ⌦

✓
1

(k + 1)1/2+"

◆

where (zj)
j�0 is generated by Algorithm (3) with � =

1/2 and x⇤ is the unique minimizer of f + g.

The example that proves the sharpness of our
o(1/

p
k + 1) rate is shown in Figure 4. The proof

of Theorem 9 is technical and involves estimating an
oscillatory integral, so we cannot get into the details
in this brief article.

Follow up work.

In a later paper [13], we show that relaxed PRS
and ADMM automatically adapt to the regularity
of Problems 1 and 2. For example, we show that for
all minimizers x⇤ of f + g, the “best” objective error

satisfies

min
i=0,··· ,k

�
(f + g)(xi

g

)� (f + g)(x⇤)
�
= o

✓
1

k + 1

◆

whenever f is di↵erentiable and rf is Lipschitz con-
tinuous. Thus, relaxed PRS obtains the same rate of
convergence as the forward-backward splitting algo-
rithm (also called ISTA) [3], which requires knowl-
edge of the Lipschitz constant of rf to ensure con-
vergence (or a suitable line search procedure). The
paper also includes general conditions for linear con-
vergence, linear convergence of feasibility problems
with nice intersection, and convergence rates un-
der strong convexity assumptions. Finally, the pa-
pers [10, 11] prove convergence rates for a wide class
of algorithms that are significantly more powerful
than relaxed PRS and ADMM.

Conclusion.

The results of our paper show that the relaxed PRS
method is nearly as slow as the subgradient method
(Theorem 9). This is unexpected because split-
ting methods tend to perform well in practice. We
can get around this issue by computing the ergodic
sequence (Theorem 8) and testing whether it has
a smaller objective value than the nonergodic se-
quence. This procedure is essentially costless, but it
tends to perform worse in practice (Figure 3). In the
paper, we include several other complexity results
including the first example of arbitrarily slow con-
vergence for the Douglas-Rachford splitting method.
We also analyze extensions of Problem (1) and get
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similar results for the alternating direction method
of multipliers (ADMM) [15].
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[25] Băng Công Vũ. A splitting algorithm for dual mono-
tone inclusions involving cocoercive operators. Ad-
vances in Computational Mathematics, 38(3):667–
681, 2013.

Nominations for Society
Prizes Sought

The Society awards four prizes annually at the IN-
FORMS annual meeting. We seek nominations (in-
cluding self-nominations) for each of them, due by
July 15, 2015. Details for each of the prizes, includ-
ing eligibility rules and past winners, can be found
by following the links from http://www.informs.

org/Community/Optimization-Society/Prizes.
Each of the four awards includes a cash amount

of US$1,000 and a citation plaque. The award win-
ners will be invited to give a presentation in a special
session sponsored by the Optimization Society dur-
ing the INFORMS annual meeting in Philadelphia,
PA in November 2015 (the winners will be respon-
sible for their own travel expenses to the meeting).
Award winners are also asked to contribute an ar-
ticle about their award-winning work to the annual
Optimization Society newsletter.

Nominations, applications, and inquiries for each
of the prizes should be made via email to the corre-
sponding prize committee chair.

The Khachiyan Prize is awarded for outstand-
ing lifetime contributions to the field of optimization
by an individual or team. The topic of the con-
tribution must belong to the field of optimization
in its broadest sense. Recipients of the INFORMS
John von Neumann Theory Prize or the MPS/SIAM
Dantzig Prize in prior years are not eligible for the
Khachiyan Prize. The prize committee for this year’s
Khachiyan Prize is as follows:

• Ilan Adler (Chair)
adler@ieor.berkeley.edu

• Michael Ball

• Don Goldfarb

• Werner Römisch

The Farkas Prize is awarded for outstanding con-
tributions by a mid-career researcher to the field of
optimization, over the course of their career. Such
contributions could include papers (published or
submitted and accepted), books, monographs, and
software. The awardee will be within 25 years of
their terminal degree as of January 1 of the year of

http://www.informs.org/Community/Optimization-Society/Prizes
http://www.informs.org/Community/Optimization-Society/Prizes
mailto:adler@ieor.berkeley.edu
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the award. The prize may be awarded at most once
in their lifetime to any person. The prize committee
for this year’s Farkas Prize is as follows:

• Ariela Sofer (Chair)
asofer@gmu.edu

• Jon Lee

• Sanjay Mehrotra

• Zelda Zabinski

The Prize for Young Researchers is awarded
to one or more young researcher(s) for an outstand-
ing paper in optimization. The paper must be pub-
lished in, or submitted to and accepted by, a refereed
professional journal within the four calendar years
preceding the year of the award. All authors must
have been awarded their terminal degree within eight
calendar years preceding the year of award. The
prize committee for this year’s Prize for Young Re-
searchers is as follows:

• Nick Sahinidis (Chair)
sahinidis@cmu.edu

• Dan Bienstock

• Sam Burer

• Andrew Schaefer

The Student Paper Prize is awarded to one or
more student(s) for an outstanding paper in opti-
mization that is submitted to and received or pub-
lished in a refereed professional journal within three
calendar years preceding the year of the award. Ev-
ery nominee/applicant must be a student on the first
of January of the year of the award. All coauthor(s)
not nominated for the award must send a letter indi-
cating that the majority of the nominated work was
performed by the nominee(s). The prize committee
for this year’s Student Paper Prize is as follows:

• Mohit Tawarmalani (Chair)
mtawarma@purdue.edu

• Fatma Kilinç-Karzan

• Warren Powell

• Uday Shanbhag

Nominations of Candidates
for Society O�cers Sought

Sanjay Mehtotra will complete his term as Most-
Recent Past-Chair of the Society at the conclusion of
the 2015 INFORMS annual meeting. Suvrajeet Sen
is continuing as Chair through 2016. Jim Luedtke
will also complete his term as Secretary/Treasurer
at the conclusion of the INFORMS meeting. The
Society is indebted to Sanjay and Jim for their work.

We would also like to thank four Society Vice-
Chairs who will be completing their two-year terms
at the conclusion of the INFORMS meeting: Imre
Pólik, Juan Pablo Vielma, John Mitchell, and
Vladimir Boginski.

Finally, we thank the Newsletter Editor, Shabbir
Ahmed, who is also stepping down this year.

We are currently seeking nominations of candi-
dates for the following positions:

• Chair-Elect

• Secretary/Treasurer

• Vice-Chair for Computational Optimization
and Software

• Vice-Chair for Integer and Discrete Optimiza-
tion

• Vice-Chair for Linear and Conic Optimization

• Vice-Chair for Network Optimization

• Newsletter Editor

Self nominations for all of these positions are encour-
aged.

To ensure a smooth transition of the chairmanship
of the Society, the Chair-Elect serves a one-year term
before assuming a two-year position as Chair; thus
this is a three-year commitment. As stated in the
Society Bylaws, “The Chair shall be the chief admin-
istrative o�cer of the OS and shall be responsible for
the development and execution of the Society’s pro-
gram. He/she shall (a) call and organize meetings of
the OS, (b) appoint ad hoc committees as required,
(c) appoint chairs and members of standing com-
mittees, (d) manage the a↵airs of the OS between
meetings, and (e) preside at OS Council meetings
and Society membership meetings.”

mailto:asofer@gmu.edu
mailto:sahinidis@cmu.edu
mailto:mtawarma@purdue.edu
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The Secretary/Treasurer serves a two-year
term. According to Society Bylaws, “The Secre-
tary/Treasurer shall conduct the correspondence of
the OS, keep the minutes and records of the Society,
maintain contact with INFORMS, receive reports of
activities from those Society Committees that may
be established, conduct the election of o�cers and
Members of Council for the OS, make arrangements
for the regular meetings of the Council and the
membership meetings of the OS. As treasurer,
he/she shall also be responsible for disbursement of
the Society funds as directed by the OS Council,
prepare and distribute reports of the financial condi-
tion of the OS, help prepare the annual budget of the
Society for submission to INFORMS. It will be the
responsibility of the outgoing Secretary/Treasurer
to make arrangements for the orderly transfer of
all the Society’s records to the person succeeding
him/her.” The Secretary/Treasurer is allowed to
serve at most two consecutive terms; as Jim Luedtke
is now completing his second term, the OS must
elect a new Secretary/Treasurer this cycle.
Vice-Chairs also serve a two-year term. Accord-

ing to Society Bylaws, “The main responsibility of
the Vice Chairs will be to help INFORMS Local Or-
ganizing committees identify cluster chairs and/or
session chairs for the annual meetings. In general,
the Vice Chairs shall serve as the point of contact
with their sub-disciplines.”
The Newsletter Editor is appointed by the Society

Chair. The Newsletter Editor is responsible for edit-
ing this newsletter, which is produced in the spring
each year. Although this is not an elected position,
nominations for this position are being sought at this
time for consideration by the chair.
Please send your nominations or self-nominations

to Jim Luedtke (jrluedt1@wisc.edu), including
contact information for the nominee, by June 1,
2015. Online elections will begin in mid- June, with
new o�cers taking up their duties at the conclusion
of the 2015 INFORMS annual meeting.

Optimization groups at Princeton and Rutgers
will be hosting the 2016 IOS Conference, and
Warren Powell will serve as the General Chair.
Stay tuned for more information.

mailto:jrluedt1@wisc.edu
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