
Computational Optimization and Applications, 2, (1993), 229-260
@ 1994 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Generic Auction Algorithm for the Minimum
Cost Network Flow Problem

DIMITRI E BERTSEKAS
Department of Electrical Engineering and Computer Science, M.L T., Cambridge, MA 02139

DAVID A. CASTANON
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215

Abstract. In this paper we broadly generalize the assignment auction algorithm to solve linear
minimum cost network flow problems. We introduce a generic algorithm, which contains as special
cases a number of known algorithms, including the e-relaxation method, and the auction algorithm
for assignment and for transportation problems. The generic algorithm can serve as a broadly useful
framework for the development and the complexity analysis of specialized auction algorithms that
exploit the structure of particular network problems. Using this framework, we develop and analyze
two new algorithms, an algorithm for general minimum cost flow problems, called network auction,
and an algorithm for the k node-disjoint shortest path problem.

Keywords: Optimization, network programming, auction, transportation.

1. Introduction

In this paper we discuss algorithms for solution of the classical minimum cost
network flow problem involving a directed graph with node set A; and arc set
A. Each arc (i, j) has a cost coefficient a~j. Letting x~j be the flow of the arc
(i, j) , the problem is

minimize ~ aijxij
(i,j)eA

subject to

(LNF)

x i j - ~ x j i=s i , V i E N , (1)
{jl(i,j)e.A} {j](j,i)e~4}
bij <_ xij <_ clj, V (i, j) e A, (2)

where aij, blj, cij, and 8i are given integers.
We denote by x the vector with elements x~i, (i, j) E .A. We refer to b~j and

cij, and the interval [blj, cij] as theflow bounds and the feasible flow range of arc
(i, j) , respectively. We refer to si as the supply of node i. The constraints (1)
and (2) are called the conservation of flow constraints and the capacity constraints,
respectively. A flow vector satisfying both of these constraints is called feasible,
and if it satisfies just the capacity constraints, it is called capacity-feasible. If
there exists at least one feasible flow vector, problem (LNF) is called feasible

230 BERTSEKAS AND CASTAI~ON

and otherwise it is called infeasible. For a given flow vector x, the divergence
of node i is defined to be the total flow coming out of i minus the total flow
coming into i,

yi = ~ x i i - ~ xj~.
{jl(i,j)eA} {Jl(J,i)eA]

The surplus of node i is defined as the difference between the supply and the
divergence of i,

g~ = s~ - y~. (3)

We assume that there exists at most one arc in each direction between any
pair of nodes, but this assumption is made for notational convenience and can
be easily dispensed with. We denote the numbers of nodes and arcs by N and
A, respectively. We also denote by C the maximum absolute value of the cost
coefficients,

C = max la~jl. (4)
(i,j)sA

We use the following well-known dual problem to (LNF), which involves a
price variable pi for each node i:

maximize q(p)

subject to no constraint on p,

where p is the vector with elements p~, and the dual function q given by

(5)

where

qlj(pl - p j) = min{(a~j + pj -pl)xq[bii < xij <_ cij}. (7)
xij

We henceforth refer to (LNF) as the primal problem, and note that standard
duality results (see e.g., [6, 15, 23, 25]) relate primal-optimal and dual-optimal
solutions via the complementary slackness conditions, and imply that the optimal
primal cost equals the optimal dual cost.

The special structure of the dual cost (6) motivates solution by Gauss-Seidel
relaxation (or coordinate ascent methods). The idea is to choose a single
node i and change its price p~ in a direction of improvement of the dual cost,
while keeping the other prices unchanged. Unfortunately there is a fundamental
problem; the dual cost q is nondifferentiable (piecewise linear), and the relaxation
idea may encounter difficulty at some "corner points," where the dual cost cannot
be improved by changing any single node price.

q(p) = F_, q'J(P' - + Z (6)
(i,j)EA iEAf

GENERIC AUCTION ALGORITHM 231

One way to overcome this difficulty is used in the E-relaxation algorithm first
proposed in [2, 3] (see also [6, 7, 13, 15, 18, 19]). The main idea in the
E-relaxation method is to allow a single price pl to change even if this worsens
the dual cost. When pi is changed, however, it is set to within a given e > 0
of the price that maximizes the dual cost along the ith coordinate. For e small
enough, it can be shown that the algorithm approaches the optimal dual cost
sufficiently accurately to yield a primal-optimal solution.

A similar concept is used in the auction algorithm for assignment problems
([1, 4, 6, 15]). However, while in the e-relaxation algorithm there is at most
one node price change per iteration, the auction algorithm can raise two node
prices simultaneously. In particular, the price of an unassigned person is raised
implicitly through a "bid" as this person is assigned to a "preferred" object, and
then the price of this object is also raised. This simultaneous price rise is an
important feature that, we believe, accounts for the practical effectiveness of the
auction algorithm. Experiments show that the E-relaxation method applied to
the assignment problem, is on the average far slower than the auction algorithm.

The main contribution of this paper is the development and analysis of a general
algorithm which extends the concept of the auction algorithm for assignment
problems by combining a price increase of a node with price increases of several
neighboring nodes. This general algorithm can form the basis for a broad
variety of auction algorithms tailored to the structure of particular problems.
We investigate the termination properties of the generic algorithm for both
feasible and infeasible problems, and we discuss some of the associated worst-
case complexity issues.

As special cases of the generic algorithm, we develop two new algorithms:
one for the general minimum cost flow problem (LNF), called network auction,
and another for the k node-disjoint shortest path problem. The latter problem
contains as special cases the classical assignment and the shortest path problems.
The new algorithm is similar in structure to the recently proposed auction
algorithm for shortest paths [5, 6], in that it maintains paths that are contracted
or extended at each iteration. However, it requires a positive e, in contrast with
the algorithm of [5, 6], which corresponds to c = 0. We provide computational
results showing that our new k node-disjoint shortest path algorithm outperforms
existing algorithms by a broad margin. This algorithm is also well-suited for
parallelization (see [24] for a related algorithm).

We also develop worst-case complexity bounds for the performance of the
network auction algorithm. The complexity analysis differs significantly from
previous analyses of coordinate ascent methods such as [13, 18, 19] in that
the network auction algorithm includes new classes of iterations (the irregular
nonsaturating 6-pushes discussed in Section 5) which must be bounded. We
also develop a variation of the sweep implementation ([2, 13]). Combined with
appropriate scaling techniques such as cost scaling or E-scaling ([1, 12, 13,
18, 19]) our complexity analysis yields a complexity bound of O(N ~ log(NC'))
running time for the network auction algorithm when implemented using simple

232 BERTSEKAS AND CASTANON

data structures. Although improved polynomial complexity bounds are possible
(the best such bound for the e-relaxation method is O (N A log(N) log(NC)) for an
implementation that uses dynamic trees [19]), the more complex data structures
required are often detrimental to practical performance.

As a special case of our complexity analysis, we obtain the O (N 3 log(NC))
bound for our earlier auction algorithm for transportation problems [9]; no
polynomial complexity analysis was available for this transportation algorithm.
Furthermore, under the assumption that the feasible flow range of all arcs is [0,
1], we can show that the generic algorithm has an O (N A l o g (N C)) running time,
where A is the number of arcs. This bound applies in particular to the new k
node-disjoint shortest path algorithm.

The rest of this paper is organized as follows: in the next section we formulate
the generic auction algorithm and establish its validity. In Section 3, we develop
the network auction algorithm for problem (LNF) based on the generic algorithm.
In Section 4, we give the auction algorithm for the k node-disjoint shortest path
problem, and we show that it is a special case of the network auction algorithm.
Section 5 contains our complexity analysis. Finally, in Section 6 we present
computational results for the k node-disjoint shortest path problem.

2. Basic operations and the generic algorithm

The algorithms of this paper maintain a price vector p, and a capacity-feasible
flow vector x, such that x and p jointly satisfy a relaxed form of the usual
complementary slackness conditions known as e-complementary slackness (e-CS
for short). We say that (x, p) satisfies e-CS if x is capacity-feasible and

xij < cij ~ pi - pj <_ aij + e V (i, j) E fit,

bji < x~i ~ p ~ - p i <_ -a j i + e V (j, i) C A.

(8a)
(8b)

The usefulness of e-CS is due in large measure to the following proposition. A
proof may be found in [2, 6, 13, 15]. Note that the proposition relies on our
assumption that the problem data are integer.

PROPOSITION 1. 1re < 1/N, x is feasible, and (x, p) satisfies e-CS, then x is optimal
for (LNF).

We now define some terminology and computational operations that play a
significant role in our algorithms. Each of these definitions assumes that (x, p)
is a flow-price pair satisfying e-CS, and will be used only in that context.

Definition 1. An arc (i, j) is said to be e+-unblocked if

Pi = Pj -1- aij -I- e, x i j < cij. (9)

GENERIC AUCTION ALGORITHM 233

An arc (j, i) is said to be e - - u n b l o c k e d if

Pi = P j - a j i + e, bji < xjl . (10)

The p u s h list of a node i, denoted Pi, is the (possibly empty) set of arcs (i, j)
that are e+-unblocked, denoted Pi +, and the arcs (j, i) that are c -unb locked ,
denoted P/-.

In all our algorithms, flow is allowed to increase only along e+-unblocked arcs
and is allowed to decrease only along e--unblocked arcs. The next definition
specifies the type of flow changes considered.

Defini t ion 2. For an arc (i, j) [or arc (j, i)] of the push list P~ of node i, let 5
be a scalar such that 0 < 5 <_ eij - xij (0 < 5 <_ xji - bji, respectively). A 5-push
at n o d e i on arc (i, j) [(j, i), respectively] consists of increasing the flow xij by 6
(decreasing the flow xj i by 6, respectively), while leaving all other flows, as well
as the price vector unchanged. A saturating p u s h of node i on arc (/, j) [arc
(j, i), respectively] is a &push with 6 = ei~ - xij (6 = xji - bji, respectively).

The next operation consists of raising the prices of a subset of nodes by the
maximum common increment -y that will not violate e-CS.

Defini t ion 3. A price rise of a nonempty, strict subset of nodes I (i.e., I ~ 0, I
N'), consists of leaving unchanged the flow vector x and the prices of nodes not
belonging to I, and of increasing the prices of the nodes in I by the amount 3'
given by

Imin{S US-}, if S + US- ~- 0,
(11)

7 = [0, if s + u s - ---O,

where S + and S - are the sets of scalars given by

S + = {pj + alj + e - pi[(i, j) E A such that i E I, j ~ I, x;j < cij}, (12)

S - = {pj - aj~ + e - Pd(J, i) e A such that i e 1, j r I, x~ > b~}. (13)

In the case where the subset I consists of a single node {, a price rise of the
singleton set {/} is also referred to as a price rise o f node i. If the price increment
7 of (11) is positive, the price rise is said to be substantive and if 7 = 0, the price
rise is said to be trivial. Every scalar in the sets S + and S - of (12) and (13)
is nonnegative by the e-CS conditions (8a) and (8b), respectively, so we have
"7 _> 0. A trivial price rise changes neither the flow vector nor the price vector;
it is introduced to facilitate the presentation. Note that a price rise of a single
node i is substantive if and only if the set S + U S - is nonempty but the push list
of i is empty.

234 BERTSEKAS AND CASTANON

The generic algorithm to be described shortly consists of a sequence of 5-push,
and price rise operations. The following lemma lists some properties of these
operations that are important in the context of the algorithm.

LEMMA 1. Let (x, p) be a flow-price pair satisfying e-CS.

(a) The flow-price pair obtained following a 6-push or a price rise operation satisfies
e-CS.

(b) Let I be a subset of nodes with positive total surplus, that is, ~ e I g~ > O. Then
if the sets o f scalars S + and S - of (12) and (13) are empty, problem (LNF) is
infeasible.

Proof. (a) By the definition of e-CS, the flow of an e+-unblocked and an e--
unblocked arc can have any value within the feasible flow range. Since a 5-push
only changes the flow of an e+-unblocked or e--unblocked arc, it cannot result
in violation of e-CS. If p and p~ are the price vectors before and after a price
rise operation of a set I, respectively, we have that for all arcs (i, j) with i E I,
and j E I or with i f / I and j r I, the e-CS condition (8) is satisfied by (x, pl)
since it is satisfied by (x, p) and we have pl - pj = p~ - p~. For arcs (i, j) with
i E I, j ~ I and xij < clj we have, using (11) and (12),

so condition (Sa) is satisfied. Similarly, using (11) and (13), it is seen that for
all arcs (j, i) with i E I, j r I and xji > bji, condition (8b) is satisfied.

(b) Since the sets S + and S- are empty,

xij = c~j, V (i , j) E . A w i t h i E I , j ~ I ,

xji = bji, V (i, j) E .4 with i E I, j ~ i.

Using the definition (3) of surplus, we have

0 < Z g , = Z s , - Z x , j+
i c l iEI {(i, j)CAliCI, jf[l}

and by combining (14)-(16), it follows that

o < E s ~ - E c ~ + E

(14)

(15)

E xji, (16)
{(j, i)E AIiEI, jf[I)

bji.
~I {(i,j)e.4I~eI, jer) {(j,0eAt~e~,jex)

For a feasible vector, si is equal to the divergence of i, so the above relation
implies that the sum of the divergences of nodes in I exceeds the capacity of the
cut [I, Af - I], which is a contradiction. Therefore, the problem is infeasible. []

The generic algorithm

Suppose that problem (LNF) is feasible, and consider a pair (x, p) satisfying
e-CS. Suppose that for some node i we have g~ > 0. There are two possibilities:

GENERIC AUCTION ALGORITHM 235

(a) The push list of i is nonempty, in which case a 6-push at node i is possible.
(b) The push list of i is empty, in which case the set S + U S- corresponding to

the set I = {i} via (12) and (13) is nonempty, since the problem is feasible
[cf. Lemma l(b)]. Therefore, from (11)-(13), a price rise of node i will be
substantive.

Thus, if 9i > 0 for some i and the problem is feasible, then either a 6-push or a
substantive price rise is possible at node i. Furthermore, since following a price
rise at a node i, the push list of i will be nonempty [cf. (11)-(13)], for a feasible
problem a 6-push is always possible at a node i with yi > 0, possibly following a
price rise at i.

The preceding observations motivate a method, called generic algorithm, which
uses a fixed positive value of e, and starts with a pair (x, p) satisfying e-CS.
The algorithm terminates when 91 < 0 for all nodes i; otherwise it continues to
perform iterations. Each iteration consists of a sequence of 6-pushes and price
rises, including at least one 6-push, as described below.

~pical iteration of the generic algorithm

Perform in sequence and in any order a finite number of 6-pushes and price
rises; there should be at least one 6-push but not necessarily at least one price
rise. Furthermore:

(1) Each 6-push should be performed at some node i with gi > 0, and the flow
increment 6 must satisfy 6 < g/.

(2) Each price rise should be performed on a set I with 9~ >- 0 for all i E I.

The price rise operations of the generic algorithm may involve several nodes;
however, in the special case where only one node is involved in each price rise,
the generic algorithm can be further specified to obtain the e-relaxation method,
as shown in [8]. Similarly, for assignment and transportation problems, the
auction algorithms of [1, 4, 9] are also special cases of the generic algorithm; for
a detailed discussion of these equivalences, the reader is referred to [8]. Note
that the generic algorithm can be further specified to obtain many new variations
of auction algorithms for different classes of LNF problems, as discussed in
subsequent sections.

The following proposition establishes the validity of the generic algorithm.

PROPOSITION 2. Assume that the minimum cost flow problem (LNF) is feasible. I f
the increment 6 o f each 3-push is integer, then the generic algorithm terminates with
a pair (z, p) satisfying c-CS. The flow vector x is feasible, and is optimal if ~ < 1/N.

Proof. We first make the fol!owing observations.

236 BERTSEKAS AND CASTANON

(a) The algorithm preserves e-CS; this is a consequence of Lemma 1.
(b) The prices of all nodes are monotonically nondecreasing during the algorithm.
(c) Once a node has nonnegative surplus, its surplus stays nonnegative thereafter.

The reason is that a g-push at a node i cannot drive the surplus of i below
zero (since g < gi), and cannot decrease the surplus of neighboring nodes.

(d) If at some time a node has negative surplus, its price must have never been
increased up to that time, and must be equal to its initial price. This is
a consequence of (e) above and of the assumption that only nodes with
nonnegative surplus can be involved in a price rise.

Suppose, to arrive at a contradiction, that the algorithm does not terminate.
Then, since there is at least one g-push per iteration, an infinite number of
&pushes must be performed at some node m on some arc (m, n) or some arc
(n, m). For concreteness, assume it is arc (m , n); a similar argument applies
if the arc is (n, m). Since for each g-push, g is integer, an infinite number of
&pushes must also be performed at the opposite end node n of the arc (m, n).
This means that arc (m, n) becomes alternately e+-unblocked with gm> 0 and
e--unblocked with 9,~ > 0 an infinite number of times, which implies that pm and
pn must increase by amounts of at least 2e an infinite number of times. Thus
we have p,,~ ---* cc and p~ ~ ec, while either g m > 0 or gn > 0 at the start of an
infinite number of 6-pushes.

Let N ~ be the set of nodes whose prices increase to e~; this set includes the
nodes m and n. To preserve e-CS, we must have, after a sufficient number of
iterations,

xi j = c~j for all (i, j) E A with i E Af ~, j ~ A/"~~ (17)

xj~ = bjl for all (j, i) e A with i E A f~, j r A f~. (18)

After some iteration, by (d) above, every node in Af ~ must have nonnegative
surplus, so the sum of surpluses of the nodes in Af ~ must be positive at the start
of the g-pushes where either g,,~ > 0 or g,~ > 0. It follows using the argument of
the proof of Lemma l(b) [cf. (14)-(16)] that

0 < ~ s ~ - ~ c~j + ~ bj~.
ie .h[~~ { (i , j) e A l i E A f ~ , j C A f ~ } { (j , i) e A l i E A f ~ , j f A f ~ }

For any feasible vector, the above relation implies that the sum of the divergences
of nodes in Af ~ exceeds the capacity of the cut [A/"r162 Af-Af~], which is impossible.
It follows that there is no feasible flow vector, contradicting the hypothesis. Thus
the algorithm must terminate. Since upon termination we have gi _< 0 for all i
and the problem is assumed feasible, it follows that g~ = 0 for all i. Hence the
final flow vector x is feasible and by (a) above it satisfies e-CS together with the
final p. By Proposition 1, if e < 1 / N , x is optimal. []

The example of Figure 1 shows how the generic algorithm may never terminate

GENERIC AUCTION ALGORITHM 237

S 1= 0 S2= 0
(~ Cost =0 :>f : -~_ Cost =0

s 3 =1

C/~~st =0 ~

S 4 = -1

Flow range: [0,1]

Figure I. Example of a feasible problem where the generic algorithm does not terminate, if it does
not perform at least one 6-push per iteration. Initially, all flows and prices are zero. Here, the first
iteration raises the price of node 1 by E. Subsequent iterations consist of a price rise of node 2 by
an increment of 2e followed by a price rise of node 1 by an increment of 2e.

even for a feasible problem, if we do not require that it performs at least one
6-push per iteration.

Dealing with infeasibility

Let us consider now what happens when the problem is infeasible. Assume that
the generic algorithm is operated so that for each 6-push, 6 is integer. Then
there are three possibilities:

(a) The algorithm terminates with 9~ < 0 for all i and 9~ < 0 for at least one i,
in which case infeasibility is detected.

(b) The algorithm finds a subset of nodes I such that ~ e ~ 9i > 0, and the sets
of scalars S + and S- of (12) and (13) are empty [cf. Lemma l(b)], in which
case infeasibility is again detected.

(c) The algorithm performs an infinite number of iterations and, consequently,
an infinite number of 5-pushes.

In case (c), from the proof of Proposition 2 it can be seen that the prices of
the nodes involved in an infinite number of 6-pushes will diverge to infinity. The
following proposition gives a bound on the total price change of a node for a
feasible problem. When this bound is violated, infeasibility is established.

PROPOSITION 3. Suppose that the generic algorithm is applied to a feasible minimum
cost f low problem with initial prices p~ i. Then in the course of the algorithm, the
price pi o f any node i with 9i > 0 satisfies

Pi - p~ < (N - 1)(C + e) + maxp ~ - minp ~ (19)
-- jeAf "/ j~Af a

where C = max(i,j)~ A [aij].

2 3 8 B E R T S E K A S A N D C A S T A / q O N

Proof. Let x ~ be a feasible flow vector and let (x, p) be a flow-price pair
generated by the algorithm prior to its termination. Suppose that gi > 0 for
some i. Then by using the conformal realization theorem (see e.g. [6, 25]) on
the flow vector x - x ~ we conclude that there exists a node s such that g, < 0,

0 and a simple path H starting at 8 and ending at i such that z~j - x~ > 0 for all
0 (i, j) E H + and xi~ - xij < 0 for all (i, j) E H - , where H + and H - are the sets

of forward and backward arcs of H, respectively. By e-CS we have

p j "1- aij <_ p~ + e, V (i, j) E H +,

P i < P j + a l j + e , V (i , j) E H - .

Adding these conditions along H, we obtain

p, - p8 _< (g - 1)(C + e).

Since s has negative surplus, its price has not yet changed (p~ = pO), so by
subtracting p0 from both sides of the above relation, we conclude that

p , _ p O < (N _ l) (C + e) + p 0 _ p 0 < (y _ l) (C + e) + m ~ p ~ ~ []
- - - - j e . N j eAf J

The conclusion is that when the problem is feasible, the generic algorithm will
terminate with a feasible x and a pair (x, p) satisfying ~-CS, as per Proposition 2,
and when the problem is infeasible, the generic algorithm will detect infeasibility
via one of the three tests (a)-(c) above, combined with the bound of (19).

An alternative way to deal with infeasibility is to introduce some artificial arcs
to guarantee that the problem is feasible. Each artificial arc should have zero
lower flow bound and high cost coefficient. The cost coefficient of each artificial
arc should be high enough so that, for a feasible problem, its flow starts and
stays at zero in the course of the algorithm. By using the bound of the preceding
proposition, we can select the cost coefficients to be high enough so that in
the case where the original problem is feasible, the artificial arcs never become
e+-unblocked, and their flow stays at zero.

3. The network auction algorithm

The network auction algorithm described in this section is a particular variation
of the generic algorithm. The algorithm starts an iteration from a node i with
positive surplus and tries to exhaust the push list of i in preparation for a price
rise. However, as it does so, it collects information from neighboring nodes that
can be used to effect a price rise involving i and some of its neighbor nodes.
The potential advantage here is that the corresponding price increment may be
larger, thereby saving some iterations; furthermore, a price rise can be performed
before the push list of i is exhausted.

To describe the typical iteration of the network auction algorithm, we need
some definitions and a new operation. The reject capacity r~ of node i is defined as

GENERIC AUCTION ALGORITHM 239

0,

({J I(~, j)er? } {Jl(J, Oee,- }

if the push list P~ is empty,

otherwise. (20)

Thus, r~ is the sum of the residual capacities of the arcs of the push list P~.

Definition 4. A reject operation at node i consists of performing a saturating push
on each of the arcs in the push list of i.

Note that in a reject operation at node i, the push list of i is emptied and the
total amount of flow "pushed away" from i is equal to the reject capacity ri.

The network auction iteration uses a subset L of neighbor nodes of i, which
is empty at the start of the iteration. The nodes in L are the ones whose push
list is emptied during the iteration through a reject operation. As a result, the
prices of all nodes in L can be increased at the end of the iteration. This will
occur regardless of whether the price of i is also increased. The price increase
of the nodes in L, however, often has the beneficial effect of allowing a larger
price increase for i than would otherwise be possible.

Typical iteration of the network auction algorithm

Step 0: (Select node) Select a node i with gi > 0. If no such node exists,
terminate the algorithm; else set L = 0 and go to Step 1.
Step 1: (Select push list arc) Let P ' be the set of arcs of the push list of
i whose end node opposite to i does not belong to L. If P ' is empty go to
Step 3; else select an arc a from P ' and go to Step 2.
Step 2: (&push) Let j be the end node of arc a, which is opposite to i. If
rj < gj, perform a reject operation at node j , set L := L u {j}, and go to
Step 1. Else let

/ m i n { r j - gi, - xid} if a = (i, j) , g j, c4j

6 = (mi n{ r j gj, gi, x j i - bji} if a (j, i).
(21)

If 6 = r d - g j , perform a &push of i on arc a, perform a reject operation at
node j , and set L := L U {j}; else just perform a &push of i on arc a. If as a
result of these operations we obtain g; = 0 go to Step 3; else go to Step 1.
Step 3: (Price rise) Perform a price rise of the set {i} u L. Then, if L ~a 0,
perform a price rise of L. Then, i f g i = 0 stop; else set L = 0 and go to
Step 1.

240 BERTSEKAS AND CASTANON

An alternative form of Step 3 is the following: Perform a price rise of the set
{i} U L. Then, if L ~ 0, sequentially perform a price rise of each of the nodes
in L. Then, if 9i = 0 stop; else set L = ~ and go to Step 1.

It can be shown that the above alternative form of Step 3 leads to larger
price rises for transportation problems than the first form, because for bipartite
graphs, there is no arc joining any pair of nodes in L. Therefore, the alternative
form of Step 3 is preferable for bipartite problems, or more generally, in cases
where for most iterations there is no arc connecting any two nodes of L.

We can show that the network auction algorithm is a special case of the generic
algorithm. Indeed each iteration consists of g-pushes, reject operations, and price
rises, and the 6 increments of all 6-pushes are positive integers. From (21) it is
seen that g < 9i, while we have rj < 9j whenever a node j enters the set L and a
reject operation is performed at j; this means that following a 6-push or a reject
operation, the surplus of the corresponding node is nonnegative, so condition (1)
of the generic algorithm is satisfied. Note also that the argument of the proof of
Proposition 2 can be adapted to show that the number of 6-pushes per iteration
is finite. Furthermore, since we have 91 > 0 at the start and 9~ = 0 at the end of
an iteration, it follows that at least one g-push must occur before the iteration
can stop.

Regarding price rises, we note that they involve nodes with nonnegative surplus,
thereby satisfying condition (2) of the generic algorithm. To show that the number
of substantive price rises per iteration is finite, note that with each substantive
price rise, the reject capacity of either node i or a neighbor node of i (belonging
to L) is increased by an integer amount. It follows that the number of substantive
price rises per iteration cannot be infinite, since the reject capacity of each node
is bounded and the number of g-pushes per iteration is finite. Finally, regarding
the number of trivial price rises per iteration, we note that the first price rise in
Step 3 involving the set {i} U L will be trivial only if the modified push list P'
(cf. Step 1) is nonempty (the push lists of all nodes in L are empty following
the reject operation in Step 2), in which case we must have 9~ = 0 and the
iteration will stop at that visit to Step 3. Therefore with each visit to Step 3
except at most one, there will be at least one substantive price rise. Since the
number of substantive price rises is finite, it follows that the number of visits to
Step 3 is finite, implying that the number of trivial price rises is also finite. Thus,
the network auction algorithm is a special case of the generic algorithm and
performs at least one g-push per iteration. Therefore, Proposition 2 guarantees
the termination of the algorithm with an optimal flow vector obtained if e < 1/N.

Note that if the first price rise involving the set {i} u L in Step 3 is trivial and L
is nonempty, the subsequent price rise in Step 3 (or price rises, if the alternative
form of Step 3 is used) involving the set L will be substantive, since following
the reject operation in Step 2, the push lists of all the nodes in L are empty.
Thus, with each visit to Step 3 for which the set L nonempty, there is a price
increase of all the nodes of L. Practical experience, as well as the complexity
analysis of the next section, suggest that high frequency and large size of price

GENERIC AUCTION ALGORITHM 241

rises is a good performance indicator, so the extra work needed to compute the
set L may be compensated by the associated extra price rises.

4. An algorithm for the k node-disjoint shortest path problem

In this section we consider a generalization of the single origin/single destination
shortest path problem, where instead of a single path, we seek k node-disjoint
paths that minimize a linear cost. An example is a three-dimensional assignment
problem, involving the optimal choice of k disjoint ordered triplets, where the cost
of a triplet (i, j , m) is separable of the form aij + ajra. We derive a specialized
version of the network auction algorithm for this problem. Note that in the
literature the term k shortest path problem has been used somewhat differently;
it refers to finding the shortest, second shortest, etc., up to kth shortest path
between an origin and a destination [17].

Suppose that we are given a graph with node set N', arc set A, and integer
arc costs a~. In this section, by a path P we mean either a single node i
(in which case we say that P is a trivial path), or else a sequence of arcs
(i l , i2), (i2, i3), . . . , (ira-l, ira). If the nodes i l , im are distinct we say that
the path is simple. We refer to il as the starting node of P and to im as the
terminal node of P; if P is trivial, its unique node is viewed as both the starting
and the terminal node of P. The cost ofa nontrivialpath P is the sum of the costs
of its arcs. By a cycle we mean a sequence of arcs (h, i2), (i2, i3), . . . , (ira-l, q) .
If the nodes is, . . . im_~ are distinct we say that the cycle is simple.

Let s and t be given nodes called the origin and the destination, respectively.
We assume that:

(a) 8 has no incoming arcs, t has no outgoing arcs, and (s, t) is not an arc.
Furthermore, each node except for t has at least one outgoing arc. (These
assumptions are convenient for stating the algorithm but do not involve a
loss of generality.)

(b) The cost of each cycle is positive.

For a given positive integer k, we want to find k nontrivial simple paths
P1, P2, . . . , Pk that start at a, terminate at t, and satisfy the following conditions:

(a) The paths are node-disjoint, that is, any pair of paths from the set {P1, P2 ,
Pk} shares no node other than 8 and t.

(b) The sum of the costs of P1, Pz,. . . , Pk is minimal.

It is possible to view this problem as a special case of the minimum cost flow
problem (LNF) by replacing each node i other than s and t with two nodes
i § and i- , which are connected with a zero cost arc (i+, i -) , and by replacing
each arc (i, j) with the arc (i - , j+) of cost ai~, as shown in Figure 2. All arcs

242 BERTSEKAS AND CASTAINON

C o s t a i]1

Figure Z Converting the k node-disjoint shortest path problem to a minimum cost flow problem with
all arcs having feasible flow range [0, 1]. Each node i is split into the two nodes i + and i - , which
are connected with a unit capacity and zero cost arc. Each arc (i, j) is replaced by an arc (i - , j +)
of cost aij.

have feasible flow range [0, 1]. The supply of the origin is k, the supply of the
destination is -k , and the supply of every other node is zero.

The following algorithm can be obtained by applying in a particular way
the network auction algorithm to the above minimum cost flow problem. In
particular, there will be price rises of pairs or triplets of nodes [either i + and
i-, or i- and j+ where (i, j) is an arc, or i +, i- , and j+ where (i, j) is an arc].
These two-node or three-node price rises are almost as easy as single node price
rises, and the algorithm is far more efficient than what would be obtained by
straightforward use of the e-relaxation method.

To simplify the presentation, we will describe the algorithm from first principles,
and we will indicate more precisely the connections with the network auction
algorithm later. We first introduce a price and flow vector structure, and
a corresponding definition of e-CS, which are adapted to the k node-disjoint
shortest path problem. This form of e-CS is somewhat more restrictive than the
form given in Section 2.

e-CS for the k node-disjoint shortest path problem

The subsequent k node-disjoint shortest path algorithm maintains the following:

(a) Two prices p+ and p~- for each node i ~ s, t, which satisfy

p[<_p+, V i e s , t; (22)

these prices correspond to the constituent nodes i + and i- referred to earlier.
(b) A price p2 for the origin and a price p~" for the destination, which are

specified in terms of the remaining prices by the equations

p~ = min{z[z > asj + p+ + e for k or more arcs (s, j)}, (23)

p~ = max{zlait + z < pr + e for k or more arcs (i, t)}. (24)

GENERIC AUCTION ALGORITHM 243

(c) A set of simple paths P1, . . . , Pm and a set of simple cycles 6'1, . . . , Cn, which
are all node-disjoint, and a flow vector x such that for all arcs (i, j)

{ 10 if (i, J) bel~ t~ ~ ~ the paths

xij = P1, . . . , Pm or cycles C1, . . . , C,~, (25)

otherwise.

We require that out of the paths/'1 , P , , exactly k are nontrivial and start
at the origin, and at most k are nontriviat and terminate at the destination.
Furthermore, a trivial path consisting of a single node, say i, belongs to the
set {P1 P~} if and only if i ~ s, t, p~- < p~, and no nontrivial path from
{P1 , Pro} or cycle from {C1, . . . , C.} passes through i. (Note that the
triplet (x, p+, p-) specifies completely the paths /1, -.-, Pm and the cycles
C1, . . . , Cn based on the above requirements.)

We say that the triplet (x, p+, p-) satisfies e-CS for the k node-disjoint shortest
path problem if the above conditions hold and in addition

p~ ~_ aij + p+ -- e, V (i, j) such that xi3 = 1, (26a)

p~- _< aij + p+ + e, V (i, j) such that xij = 0. (25b)

For a triplet (x, p+, p-) satisfying e-CS, we say that one of the corresponding
paths P1, . . . , Pm is active if it terminates at a node other than the destination.
Note that a trivial path consisting of a single node i ~ s, t is active if and
only if p~- < p~-. Note also that if there are no active paths, then in view of the
requirement that out of the paths /'1, ---, Pro, exactly k are nontrivial and start
at the origin, and no more than k are nontrivial and terminate at the destination,
the paths 191, . . . , Pm must be k in number, must all start at s, and must all terminate
at t, thereby yielding a feasible solution of the k node-disjoint shortest path problem.

The following proposition gives the basis for the subsequent algorithm.

PROPOSITION 4. Suppose that the triplet (x, p+, p-) satisfies e-CS. Then ire < I /N,
there are no simple cycles corresponding to (x, p+, p-). I f in addition none of the
corresponding paths PI, . . . , Pm is active, then these paths constitute an optimal
solution of the k node-disjoint shortest path problem.

Proof. If C is a simple cycle corresponding to (x, p+, p-), then for every arc
(/, j) of C we must have xi~ = 1, and from (22) and (26),

p+ > p; >_ a~j + p+ - e.

By adding this reiation over all arcs of C, we obtain

Cost o f t = E aij < _ (g - 1) e .
(i,j)~c

244 BERTSEKAS AND CASTA/~ON

Since the arc costs are integer and e < 1/N, it follows that the cost of C is
less or equal to zero, which contradicts our assumption that all cycle costs are
positive.

If in addition there are no active paths, the vector x is a feasible solution that
together with the price vector (p+, p-) satisfies e-CS for the associated minimum
cost flow problem, el. Figure 2. The optimality proof for x is obtained by
adapting the proof of Proposition 1 (see e.g., [6] or [15]) and by using the fact
p+ > p~- for all i ~ s, t. We omit the details. []

The k node-disjoint shortest path algorithm starts each iteration with a triplet
(x, p+, p-) satisfying e-CS. The algorithm terminates if there is no active path.
Otherwise, the algorithm selects an active path, and either contracts it by deleting
its terminal node, or extends it by connecting its terminal node to another node;
also the triplet (x, p+, p-) and at most one other of the corresponding paths
and cycles are modified while maintaining e-CS. As a result of the iteration, the
path may get eliminated (if it consists of a single node or arc and is contracted)
or may stop being active (if it joins a path that terminates at the destination).
The number of active paths then decreases by one. It is also possible that the
number of active paths stays the same as a result of the iteration.

To start the algorithm, we need an initial triplet (x, p+, p-) satisfying e-CS.
One way to obtain such a triplet is as follows:

Standard initialization

Set x~ = 0 for all arcs (i, j), select p+ arbitrarily for all i ~ 8, set

Pi- = min { +pi ' {jl(i,minj)e.aI{aiJ+P~'}+e} , V i e s ; (27)

and set p~- and p~ according to (23) and (24); then select k nodes j such that
(s, j) E A and p~- _> ass + P+ + e, and for all these nodes, set xsj = 1 and
p~- = p~- - asj + e; then set xlt = 1 for all nodes arcs (i, t) with p~- > a~ + p~- + e.

Contraction and extension operations

We now describe the operations of contraction and extension of an active path.
Let (x, p+, p-) be a triplet satisfying e-CS, and let P1, . . . , Pm and C1, . . . , Cn
be the corresponding simple paths and cycles. Suppose that P is an active path
with terminal node i.

A contraction operation for P can be performed in one of the following
two circumstances:

(a) P consists of just node i and

G E N E R I C AUCTION A L G O R I T H M 245

p+ < min { a i ~ + p + } + e , (28)
{Jl(~, j)e.4}- ~

in which case the contraction consists of setting

p+ =p~- = min { a i j + P + } + e . (29)
{jI(i,j)EA}

(In this case P is eliminated as a path.)
(b) P has a final arc, say (r, i), and

p ; - a~-~ < min {alj + p+ }, (30)
{JI(i,j)EA}

in which case the contraction consists of setting

p+ = p[= min {aij + p; } + e,
{Jl(i, j) eA}

deleting the final arc (r, i) from P, and setting xTi = 0. If r is the origin
node s, the following additional operations are executed: the price P2 is
set to the value given by (23) (this value may be higher than the previous
value of P2 since p+ was just increased); also an arc (s, n) is found such
that xs~ = 0 and P2 = a~n + p+ + e, and its flow x~n is set to 1, while the
flow of each incoming arc (r, n) with r r s is set to zero. (This creates a
new nontrivial path starting at the origin, to replace the path P consisting of
the arc (s, i) that was eliminated through the contraction.) Following these
changes, the price p+ of each node n with x,,~ = 1 is set to P2 - as,~ + e.

A n extension operation for P is performed only if a contraction is not possible.
Then we find a node ji such that

j ~ = a r g min {a i j+p+} ,
{Jl(i,J)~A}

and we a, so find

in{jlj~j,,(i,j)~A}{ai j + p+} + e if i has two or more outgoing
arcs,

W i =
if (i, ji) is the only outgoing

arc from i,

= [p ~ - a~i + e if P has a final arc (r, i),
vi

t P I' if P consists of just node i.

We then distinguish three cases, depending on whether j~ is the destination
node, and whether an arc connecting the origin with Ji is part of a current path
(x j, = 1).

(a) If Jl r t and xsj, = 0, the prices p+ and p~- are set to

246 BERTSEKAS AND CASTANON

- - = vi, p~ min{vi, wi} .

Furthermore, the price p+ is set to

p~ = min{vi, w~} - aij~ + e, (31)

while the arc (i, j~) is added to P and its flow is set to 1; also the flow of
any incoming arc (n, ji) with n ~ i and xnj, = 1 is set to 0 (this could make
n the terminal node of an active path).

(b) If jl ~ t and zsj~ = 1, all the operations of the preceding case (a) are
performed, including setting xsi, to 0. The following additional operations
are then executed to create a new nontrivial path starting at the origin,
replacing the path P = (s , j i) that was just eliminated [cf. case (b) of the
contraction operation]: the price p~- is set to the value given by (23); also
an arc (s, n) is found such that xsn = 0 and p~- = a~n + p+ + e, and its flow
Xsn is set to 1, while the flow of each incoming arc (r, n) with r ~ s is set
to zero. Following these changes, the price p+ of each node n with x~,~ = 1
is set to p ; - ash + E.

(c) If jl = t, the prices p+ and p~- are set to

p+ = v~, p~- = min{vl, w l) ,

and the arc (i, t) is added to P, while its flow is set to 1. If as a result, the
number of paths terminating at t is k + 1, the price p~ is set to the value given
by (24), and an arc (n, t) is found such that xnt = 1 and p~ = pg - ant + ~,
and its flow xnt is set to 0.]This eliminates a nontrivial path terminating
at the destination, and since P was extended by arc (i, t), the number of
nontrivial paths terminating at the destination is maintained at k.]

Note that in an extension operation it is possible that the extension node j i is
already part of P; then by setting xij, = 1, a cycle C is obtained that consists of
the portion of P between ji and i and the arc (i, j l) . In this case, if ji is the
starting node of P, the active path P is replaced by the cycle C, and the number
of active paths is reduced by one. Otherwise, the portion of P up to but not
including j~ may become an active path.

By examining the nature of the contraction and extension operation, it is
straightforward to verify the following:

(a) At the start of each iteration, the triplet (x, p+, p -) satisfies E-CS.
(b) A contraction or extension that does not change the flow of any of the

outgoing arcs from the origin is equivalent to an iteration of the network
auction algorithm applied to the associated minimum cost flow problem
described earlier.

(c) A contraction or extension that changes the flow of an outgoing arc from the
origin [cf. case (b) of a contraction or case (b) of an extension] is equivalent

GENERIC AUCTION ALGORITHM 247

to two iterations of the network auction algorithm: an iteration starting at
node i followed by an iteration starting at the origin.

k node-disjoint shortest path algorithm

Our algorithm starts each iteration with a triplet (z, p+, p-), and corresponding
simple paths and cycles P1, P~, C1, . . . , C,~ satisfying e-CS.

Typical iteration of the k node-disjoint shortest path algorithm

Select an active path P. If no such path exists, terminate the algorithm; else if a
contraction is possible for P [that is, if the corresponding condition (28) or (30)
holds] perform the contraction, and otherwise perform an extension of P.

Figure 3 illustrates the algorithm for a simple example. From our earlier
discussion, it is seen that the algorithm is a special case of the network auction
algorithm. By using Proposition 2, it follows that for a feasible problem, the
algorithm terminates, and by Proposition 4, the feasible solution obtained at
termination is optimal if e < 1/N.

It is interesting to note that a k x k assignment problem can be converted to a k
node-disjoint shortest path problem by adding an origin node s, which is connected
with each person node with a zero cost arc, and by also adding a destination
node t, which is connected to each object node with a zero cost arc. It can be
verified that when the algorithm of this section is specialized to this problem, it
becomes equivalent to the auction algorithm for the assignment problem.

For another interesting connection, consider the case k = 1. Then the problem
becomes a single origin/single destination shortest path problem. It can be verified
that when the algorithm of this section is specialized to this problem but with
the important difference that e = 0, it becomes equivalent to a recently proposed
auction algorithm for shortest paths [5, 6].

5. Complexity analysis

In this section, we derive a bound on the order of time required by a simple
implementation of the network auction algorithm. Our analysis parallels a
corresponding analysis of the E-relaxation method given in [12, 13, 15], which in
turn uses the sweep implementation ideas of [2] and some of the scaling analysis
ideas of [18]. However, there are some novel and nontrivial features, such as
the adaptation of the sweep implementation to the network auction algorithm,
and, particularly, the distinction of nonsaturating ~-pushes into two types, regular
and irregular. We concentrate on an unscaled version of the algorithm. Once
the main complexity result for the unscaled algorithm (Proposition 5) is proved,

248 BERTSEKAS AND CASTAtNON

Problem data and
initial conditions. Arc

0 1 lengths are shown next
Orig tination to the arcs. Node prices

are shown next to the
nodes. Thick lines

~ 1 st ~eration equalindicateto arcs1, with flow

2e',.J 0 Contraction at node 2

1+ 2e
After the
l s t ~

2nd iteration ~1~,. ,~,~/
Contraction ~ i [_
at node 5 1+ 2c "*~" 0

1 + 4 e ~ 1 + 2~
After the

~ ation

" ~ ~ 3rd iteration
(~ Extension

2+2~ 2+2E at node2

1+4~,("~ 1+4e 1+4c t "~ 1+4~
After the J ~ ~ F i n a l paths
3rd i t e ~ 4 ~ 0 " ~ , " and prices

1+3e e

4th iteration " ~ , . - . . J " ~ r . J
Extension ~ 5)" - ' (S y
at node3 2+ 2g" 2+2e 2+ 2g-" 2+2~

Figure 3. Illustration of the k node-disjoint shortest path algorithm for k = 2, starting with p+ = 0
for all i ~ s and using the standard initialization. The problem data is given in the first graph. The
numbers on the left and the right sides of a node i are the prices p+~ and p~-, respectively. Thick
(thin) line arcs are the ones with flow equal to 1 (0, respectively). Initially the active paths are (1, 2)
and (1, 5). At the start of the second and third iterations there is only one active path, (1,5) and
(1, 2), respectively.

G E N E R I C A U C T I O N A L G O R I T H M 249

the derivation of the corresponding results for scaled versions is straightforward,
following established lines of analysis.

We first make some assumptions:

Assumption 1. Problem (LNF) is feasible.
Assumption 2. All arc cost coefficients are integer multiples of e.
Assumption 3. All starting prices are integer multiples of e, all starting flows
are integer, and together they satisfy e-CS.

We assume that the push lists of the nodes are maintained in a data structure
that makes possible the addition and deletion of a single arc in O(1) time; this is
true, for example if each push list Pi is maintained in a doubly linked list. Then
it is seen that selecting an arc in Step 1 takes O(1) time, updating the push list
of node i following a 6-push in Step 2 takes 0(1) time per &push, and updating
the push list of a node i following a price rise involving node i in Step 3 takes
O(di) time per price rise and node, where di is the number of incident arcs of
node i.

The admissible graph

A notion that is central in our analysis is the so-called admissible graph, introduced
in [2], which consists of the push list arcs, except that the directions of those
arcs that are incoming to the corresponding nodes are reversed to make them
consistent with the direction in which flow is pushed in the network auction
algorithm. Formally, the admissible graph is defined as G* = (A/', A*), where A*
contains arc (i, j) if either (i, j) is an e+-unblocked arc, or (j, i) is e--unblocked
arc. Note that the admissible graph depends on the current pair (x, p) that
satisfies e-CS and changes as the pair (x, p) changes during the course of the
algorithm. In particular, when there is a saturating push on an arc, the arc
is removed from Jr*. However, 6-pushes cannot create any new arcs of the
admissible graph. Furthermore, when there is a substantive price rise of a node
set I in Step 3, all the arcs (i, j) and (j, i) with i E I and j ~ I that belonged
to A* prior to the price rise are removed from A*, and an arc (i, j) is added to
.4* if either an arc (i, j) (or (j, i)) with i c I and j r I became e +-unblocked
(or e--unblocked, respectively), as a result of the price rise. Thus following the
price rise, there are no arcs (j, i) of the admissible graph that have a start node
j ~ I and an end node i E I, leading to the conclusion that price rises cannot
create any new cycles of the admissible graph (this will be shown more precisely
in the proof of the subsequent Prop. 5). Our next assumption is that:

Assumption 4. Initially, the admissible graph has no arcs.

Assumption 4 can be satisfied by setting initially xij = cij (or x~j = bij) for

250 BERTSEKAS AND CASTANON

all arcs (i, j) with pi = pj + aij + e (Pi = Pj + aij - e, respectively). Under
this assumption, the admissible graph is initially acyclic and since, based on the
preceding arguments, neither 6-pushes nor price rises can create a cycle, we
conclude that the admissible graph is acyclic throughout the algorithm. (Again this
will be shown formally as part of the proof of Proposition 5.)

The sweep implementation

In order to obtain the subsequent complexity bounds, we need a certain rule for
choosing the starting node in each iteration. This rule is the basis for the sweep
implementation referred to earlier, and uses an ordered list T of all the nodes,
which is restructured repeatedly in the course of the algorithm. The initial choice
of the list can be arbitrary. We say that node i ranks higher (or lower) than node
j at some time, if the position of i in the list T is higher (or lower, respectively)
than the one of j at that time. The order of nodes in the list will be shown to
be related to the admissible graph (see the proof of the subsequent Proposition
5). In particular, it will be seen that a node i ranks higher than all nodes j such
that there is a directed path from i to j in the admissible graph.

The order of nodes in T is changed only when there is a substantive price rise
in Step 3. In particular, if the price rise involves a set I, the nodes of I are
placed at the top of T in the order in which they appear in T prior to the price
rise. The position of the nodes not in I is not changed. Figure 4 illustrates
the rule for restructuring the list T following a price rise. We note that the
restructuring of T can be done in O(N) time per substantive price rise. In the
case where the alternative form of Step 3 of the network auction algorithm or
Step 3 of the e-relaxation algorithm is used, the restructuring of T can be done
more simply, in time O(1) per single node price increase, by placing sequentially
the nodes of L at the top of T as their price is increased. In practice one may
want to maintain T in an appropriate data structure, such as a linked list, to
minimize the restructuring overhead, but this is not necessary for the subsequent
complexity bounds.

If a given iteration is started at node i, the list T is used to select the starting
node i' for the next iteration as follows: Let Ni be the set of nodes that were
ranking lower than i in T at the start of the given iteration and whose price did
not change during the iteration. If Ni contains nodes that have positive surplus
at the end of the iteration, then i t is chosen to be the highest ranking of these
nodes; otherwise i' is chosen to be the highest ranking node in T among all the
nodes that have positive surplus at the end of the iteration. (Thus, the algorithm
goes down the list T selecting nodes with positive surplus and when it reaches
the bottom of the list, it returns to the top of the list.)

A sequence of iterations between two successive times that the algorithm starts
an iteration with the highest ranking node with positive surplus is called a cycle.

GENERIC AUCTION ALGORITHM 251

�9

Nodes of set I

�9
@
@
@

Order of nodes in list T
before the price rise
at the set I

Order of nodes in list T
after the price rise
at the set I

Figure 4. Illustration of the rule for restructuring the order of nodes in the list T following a price
rise at the set 1.

Note that the computation time for selecting the starting node of an iteration
by going down the list T and checking for a positive surplus node, is O(N) per
cycle. Our final assumption is:

Assumption 5. The starting node of iterations of the network auction algorithm
are chosen as described above.

Main result

We now introduce some terminology and state a lemma that is similar to one
given for the c-relaxation method in [12, 13, 15]. For any path H, we denote by
s(H) and t(H) the start and end nodes of H, respectively, and by H + and H -
the sets of forward and backward arcs of H, respectively, as the path is traversed
in the direction from s(H) to t(H). We say that the path is simple if it has no
repeated nodes. For any price vector p and simple H, we define

252 BERTSEKAS AND CASTAIqON

(i, j)EH + (i, j) E H -

(32)

It is seen that the following upper bound on dH(p) holds:

dH(p) <_ p+ - p- -I- L, (33)

where p+ = maxip~, p - = min~p~, and L is the maximum simple path length,
where the length of each arc (i, j) is taken to be la~jl. Since any simple path
can have at most N - 1 arcs, it is seen that when p+ - p - = O(1), we have
dH(p) = O(NC).

For any capacity-feasible flow vector x, we say that a simple path H is unblocked
with respect to x if we have xlj < cij for all arcs (i, j) E H + and we have xij > bij
for all arcs (i, j) c H - . For any price vector p and feasible flow vector x, denote

D(p, f) = max{dH(p)lH is a simple unblocked path with respect to x}.

In the exceptional case where there is no simple unblocked path with respect to
x, we define D(p, f) = 0. In this case, we must have bij = cij for all (i, j) since
any arc (i, j) with blj < cij gives rise to a one-arc unblocked path with respect
to x.

We have the following lemma:

LEMMA 2. For every node, the total number of substantive price rises of a subset
containing the node, up to termination of the network auction algorithm, is O(N +
~(p~ where pO is the initial price vector and

/~(p0) = min{D(p0, f) lx is feasible}. (34)

The lemma has been proved for the e-relaxation method in [12, 13, 15], and
is based on showing that the relation

pi - p0 < (N - 1)e +/~(pO) (35)

holds throughout the algorithm for all nodes i with g~ > 0. The proof for the
network auction algorithm is essentially identical and will not be given; see also
the proof of Proposition 3.

Our main complexity result is the following:

PROPOSITION 5. Let Assumption 1-5 hold and let pO be the initial price vector.
Then the network auction algorithm terminates in O(N 3 + NE~(p~ time.

Proof. To economize on notation, we write/~ in place of fl(p0). We will also need
to distinguish between nonsaturating 6-pushes in Step 2 for which 6 < rj - g~ or
6 = rj - g j in (21); these are called regular and irregular nonsaturating 6-pushes,
respectively. Note that for each irregular 6-push, the node j of (21) enters the

GENERIC AUCTION ALGORITHM 253

set L and participates in a substantive price rise in the subsequent Step 3. The
dominant computational requirements of the network auction algorithm are:

(1) For price rises and for updating the push list of nodes involved in the price
rises.

(2) For restructuring the list T following price rises.
(3) For saturating ~-pushes.
(4) For irregular nonsaturating ~-pushes.
(5) For regular nonsaturating cS-pushes.
(6) For selecting a node i with g~ > 0 in Step 0.

There is also additional computation for updating the reject capacities of various
nodes, but this work can be lumped into the work for 6-pushes and price rises,
with no effect on the subsequently derived complexity bound.

We will show that the times required for the operations in (1)-(6) above can
be estimated as follows:

For (1), O(A(N + ~/~)).
For (2), O(NZ(N +/3/E)); if the alternative form of Step 3 is used, the time
required is O(A(N +/3/e)).
For (3), O(A(N + ~/e)).
For (4), O(A(N + 3/E)).
For (5), O(N2(N + fl/E)).
For (6), O(N2(N +/3/E)).

Thus, we will obtain the desired O(N2(N +/3/~)) time bound.
Indeed, since by Lemma 2, there are O(N +/3/E) price increases for each

node and a total of O(N(N + /3/~)) price rises, the time required for (1)
is O(A(N +/3/c)) and the time required for (2) is O(N2(N + d/a)). If the
alternative form of Step 3 is used, then the restructuring of the list T can be
done by placing sequentially the nodes of L at the top of T as their price is
increased, so that the time required for (2) is O(A(N +/3/~)).

Whenever an arc flow is set to either the upper or the lower bound due to a
saturating push at one of the end nodes, it takes a price increase of at least 2E by
the opposite end node before the arc flow can change again. Therefore, there
are O(N + B/~) saturating pushes per arc. The computation time for each of
these, including the time to remove the arc from the corresponding push list, is
O(1), so the time required for (3) is O(A(N +/~/E)). Similarly, for each irregular
nonsaturating ~-push there is a price rise of the corresponding node j that enters
that set L. Thus there are O(N +/3/E) irregular nonsaturating pushes per arc,
and the time required for (4) is O(A(N +/~/e)).

There remains to estimate the computational requirements for (5) and (6). At
this point, we will use the assumption that the algorithm is operated in cycles
with the node order in each cycle determined by the list T. We will demonstrate

254 BERTSEKAS AND CASTAJ~ON

that the number of cycles up to termination is O(N(N +/3/e)). Given this, we
argue that for each cycle, there can be only one regular nonsaturating push per
node in Step 2, for a total of O(N2(N + fl/e)) regular nonsaturating pushes.
Since the time required for each of these pushes is O(1), the time required for
(5) is O(N2(N + ~/e)). Furthermore, the time to select a positive surplus node
in Step 0 is O(N) per cycle, so the time required for (6) is also O(N2(N + ~/e)).
Thus the proof of the time estimates for the computations (1)-(6) stated above
will be completed.

To show that the number of cycles up to termination is O(N(N +/3/e)), we
use the admissible graph G* = (Af, A*) and we argue as follows: a node i is
called a predecessor of a node j if a directed path starting at i, ending at j , and
having arcs oriented from i to j , exists in G*. First we claim that immediately
following a price rise of a node set I, there are no arcs (j, i) in .4* with j r 1
and i E I. To see this, note that if (j, i) E A with j ~ I and i E I is e +-unblocked
after the price rise, we must have pj > p~ + aj~ + e before the price rise, and,
hence, xji = eji, implying that (i, j) is not in .4*. The e--unblocked case is
similar, establishing the claim. We next claim that G* is always acyclic. This is
true initially because, by Assumption 4, .4* is empty. 6-pushes can only remove
arcs from .4", so G* can acquire a cycle only immediately after a price rise of a
node set I, and the cycle must include nodes of I as well as some nodes not in
I. But since there are no arcs (j, i) with j r I and i E I in the admissible graph
following the price rise, no such cycle is possible. This establishes the second
claim. Finally, we claim that the node list T maintained by the algorithm will
always be compatible with the partial order induced by G*, in the sense that
every node will always appear in the list after all its predecessors. Again this is
initially true because .4* starts out empty. Furthermore a 6-push does not create
new predecessor relationships, while after a price rise of a node set I, there can
be no predecessor of a node in I which does not belong to I, while the set I is
moved to the top of the list before any possible descendants. This establishes
the claim.

Let N + be the set of nodes with positive surplus that have no predecessor with
positive surplus, and let N O be the set of nodes with nonpositive surplus that
have no predecessor with positive surplus. Then, as long as no price rise takes
place, all nodes in N O remain in N ~ and execution of an iteration starting at a
node i E N + moves i from N + to N ~ If there is no price rise during a cycle,
then all nodes of N § will be added to N O by the end of the cycle, which implies
that the algorithm terminates. Therefore, there will be a price rise during every
cycle except possibly for the last one. Since the number of price increases per
node is O(N + ~/e), there can be 0nly O(N(N +/3/e)) cycles.

The proof of the time estimates for (1)-(6) stated above is now complete and
the desired overall time bound for the algorithm follows. []

Note that the classical max-flow problem can be formulated so that all arc
costs aij are zero except for one arc cost which is unity ([15] p. 334), and with

GENERIC AUCTION ALGORITHM 255

an initial price vector p0 such that p+ - p - --- O(1), we have fl(p0) = O(1) (cf.
(33)). By taking e = 1/(N + 1) in Proposition 5, it follows that the network
auction algorithm solves the max-flow problem in O(N 3) time.

Problems with unit arc capacities

When the feasible flow range of each arc is [0, 1], such as for example the
assignment problem and the k node-disjoint shortest path problem, there are
no regular nonsaturating pushes. For this reason, to obtain a good complexity
bound, it is not necessary to maintain and restructure the list T as described
earlier. Instead, a much simpler FIFO queue that includes the nodes with
positive surplus can be used. With this algorithmic modification, the preceding
analysis can be adapted to show that the complexity bound of Proposition 5 is
reduced to O(A(N + ~(p~

Complexity of the generic algorithm

Much of the preceding complexity analysis can also be applied to the generic
algorithm under some broadly applicable assumptions. In particular, let us call
a 5-push by node i exhaustive on arc (i, j) [or arc (j, i)] if 5 = min{gi, c4j - xij}
[or 6 = min{g, xji - bji}, respectively]. Let also ni be the number of times that
the price of node i is changed due to a price rise. Consider in addition to
Assumptions 1-3, the following assumptions:

(a) The computation required for price rises is bounded by a constant times
~ieh/'aini, where ai is the number of incident arcs of node i.

(b) Each 5-push requires O(1) computation and the number of 5-pushes which
are not exhaustive is bounded by a constant time ~ieac ni.

(c) Between two successive price rises there can be at most N 2 exhaustive 5-
pushes. (This assumption is satisfied in the network auction algorithm if the
node selection policy is arbitrary but the algorithm is operated so that the
admissible graph is acyclic.)

Then, for fixed e, by using assumptions (a) and (b) above, we can show similar
to the proof of Proposition 5 that the computation for price rises, saturating 5-
pushes, and nonexhaustive &pushes is O(A(N +/~(p~ By using assumptions
(a) and (c) above we can also show similar to the proof of Proposition 5 that the
computation for nonsaturating 5-pushes is O(N3(N + ~(pO)/e)). We thus obtain a
O(N3(N + ~(p~ bound for the algorithm. By exploiting the problem structure
and by using data structures such as the ones of the sweep implementation, it
may be possible to reduce the time bound for nonsaturating 6-pushes, which is
the worst-case complexity bottleneck. Such data structures can be developed in

256 BERTSEKAS AND CASTANON

the context of particular algorithms, e.g. the network auction algorithm.

Scaled versions

We can consider also a scaled version of the network auction algorithm. Given
Proposition 5, this analysis is virtually identical to the corresponding analysis of
the e-relaxation method given in the sources mentioned earlier. It can be found
in our paper [8], which uses cost scaling. Here, we will just quote the main
results. In particular, by using cost scaling as in [12] or [13], or e-scaling as
in [18] or [19], it can be shown based on Proposition 5 that the scaled version
of the network auction algorithm with the sweep implementation as described
earlier has an O(N31og(NC)) running time, where C = max(i,j)eA I Jl. Also,
when the problem has unit arc capacities, we can obtain with a similar analysis an
O(NA log(NC)) bound. Finally, for the scaled version of the generic algorithm,
we can show a n O(N 4 log(NC)) running time.

6. Computational results

In this section we present the results of some of our experimentation with the
k node-disjoint shortest path algorithm of Section 4. The reader is also referred
to several computational studies that have tested extensively auction algorithms
for assignment and transportation problems [8, 9, 10, 11, 16].

We have implemented a code called AUCTION-KSP for k node-disjoint shortest
path problems, which we tested against an implementation of the e-relaxation
method, called E-RELAX (given in [6]), the RELAXT-III code, which is an
improved version of the one described in [14], and the primal-simplex code
NETFLO, which is given in [20]. Figures 5 and 6 give some representative
experimental results. NETFLO was slower by an order of magnitude than
RELAXT-III and E-RELAX for the problems we tried, so its performance is not
shown in these figures. AUCTION-KSP does not use scaling and this probably
slows down its performance, particularly when k is relatively large. Despite this
fact, AUCTION-KSP is uniformly and substantially faster than RELAXT-III and
much faster than E-RELAX. This suggests that our specialized auction algorithm
for the k node-disjoint shortest path problem is not just a heuristic improvement
on the e-relaxation method, but rather embodies some computational ideas that
are genuinely interesting. We note also that the performance of AUCTION-
KSP will probably improve substantially once we use scaling as well as "down
iterations" where the prices of nodes with negative surplus are decreased. Down
iterations have been shown to be very useful in the context of reverse auction for
assignment problems [6, 11], and reverse auction for shortest path problems [5, 6].

We have also conducted much additional experimentation with the purpose to

GENERIC AUCTION ALGORITHM 257

20

o

o

t o
I -
x II}
z

CO

.S 10

._E I-.-

P,

E
8

......... "~ - , E-relaxation

No. of Arcs = 10*(No. of nodes)

NC~o?sRhoar~geset P 'at0h0s0 = .075"(No.

1000 2000 3000 4000 5000 6000 7000

Number of Nodes

RELAXT-III

K-disjoint auction

Figure 5. Comparison for the auction code AUCTION-KSP for k node-disjoint shortest path problems,
with the transhipment codes E-RELAX, and RELAXT-III. Here the problems have a constant k
while the number of nodes increases. The graphs of these problems were generated using NETGEN.

determine for what types of problems auction-like algorithms can form the basis
for codes that outperform current state-of-the-art codes. This experimentation
is not conclusive and cannot be presented here. However, the results seem
to suggest that problems with a structure resembling the one of the assign-
ment problem (bipartite or nearly bipartite structure, small and/or uniform sized
supplies, small arc capacities) are good candidates for effective solution using
specialized versions of the generic auction algorithm. Also a relatively simple
problem structure such as the one of the max-flow, shortest path, and other
related problems seems to favor the use of specialized auction algorithms.

References

1. D.E Bertsekas, '~k distributed algorithm for the assignment problem," Lab. for Information and
Decision Systems Working Paper, Massachusetts Inst. Technol., Cambridge, MA, 1979.

2. D.E Bertsekas, "Distributed asynchronous relaxation methods for linear network flow problems,"
LIDS Report P-1606, Massachusetts Inst. Technol., Cambridge, MA, 1986.

3. D.E Bertsekas, "Distributed relaxation methods for linear network flow problems," in Proe. 25th
IEEE Conf. on Decision and Control, Athens, Greece, 1986, pp. 2101-2106.

258 BERTSEKAS AND CASTA/qON

o

(D
I'--
X

Z

o

Q
CO

I--

E
0
o

30

20

10

6400 nocies, 64000 arcs
Cost range 1-1000

D RELAXT-II I

......... ~ e-relaxation

.......... ~ K-disjoint auction

I I I I I

0 100 200 300 400 500

Number of shortest paths

Figure 6. Comparison of the auction code AUCTION-KSP for k node-disjoint shortest path problems,
with the minimum cost flow codes E-RELAX, and RELAXT-III. Here there is a single graph created
by NETGEN[21] that has 6,400 nodes and 64,000 arcs, but the number of shortest paths k varies.

4. D.E Bertsekas, "The auction algorithm: a distributed relaxation method for the assignment prob-
lem," Ann. Oper. Res., vol. 14, pp. 105-123, 1988.

5. D.P. Bertsekas, "The auction algorithm for shortest paths," SIAM J. on Optimization, vol. 1,
pp. 425-447, 1991.

6. D.E Bertsekas, Linear Network Optimization: Algorithms and Codes, MIT Press: Cambridge,
MA, 1991.

7. D.P. Bertsekas, 'gtuction algorithms for network flow problems: a tutorial introduction," J. Comput,
Optimization and Appl., vol. 1, pp. 7-66, 1992.

8. D.E Bertsekas and D.A. Casta~lon, "The auction algorithm for the minimum cost network flow
problem," Laboratory for Information and Decision Systems Report LIDS-P-1925, Massachusetts
Inst. Technol., Cambridge, MA, 1989.

9. D.E Bertsekas and D.A. CastaYion, "The auction algorithm for transportation problems," Ann.
Oper. Res., vol. 20, pp. 67-96, 1989.

10. D.P. Bertsekas and D.A. Casta?/on, "Parallel synchronous and asynchronous implementations of
the auction algorithm," Parallel Comput., vol. 17, pp. 707-732, 1991.

11. D.E Bertsekas, D.A. Castailon, and H. Tsaknakis, "Reverse auction and the solution of inequality
constrained assignment problems," SIAM J. Optimization, vol. 3, pp. 268-297, 1993.

12. D.E Bertsekas and J. Eckstein, "Distributed asynehronous relaxation methods for linear network
flow problems," in Proc. of IFAC '87, Munich, Germany, July 1987.

13. D.P. Bertsekas and J. Eckstein, "Dual coordinate step methods for linear network flow problems,"
Math. Progr., Series B, vol. 42, pp. 203-243, 1988.

GENERIC AUCTION ALGORITHM 259

14. D.E Bertsekas and P. Tseng, "RELAX: A computer code for minimum cost network flow problems,"
Ann. Oper. Res., vol. 13, pp. 127-190, 1988.

15. D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall: Englewood Cliffs, NJ, 1989.

16. D.A. Castaifon, "Reverse auction algorithms for assignment problems," in Network Flows and
Matching, D.S. Johnson and C. McGeoch, eds., DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 12, American Mathematical Society, pp. 407--430, 1993.

17. S.E. Dreyfus, "An appraisal of some shortest-path algorithms," Oper. Res., vol. 17, pp. 395-
412, 1969.

18. A.V. Goldberg, "Efficient graph algorithms for sequential and parallel computers," Tech. Report
TR-374, Laboratory for Computer Science, Massachusetts Inst. Technol., Cambridge, MA, 1987.

19. A.V. Goldberg and R. E. Tarjan, "Solving minimum cost flow problems by successive approximation,"
Math. Oper. Res., vol. 15, pp. 430-466, 1990.

20. J. Kennington and R. Helgason, Algorithms for Network Programming, Wiley: New York, 1980.
21. D. Klingman, A. Napier, and J. Stutz, "NETGEN-A program for generating large scale (un)

eapacitated assignment, transportation, and minimum cost flow network problems," Mgmt. Sci.,
vol. 20, pp. 814-822, 1974.

22. X. Li and S.A. Zenios, "Data parallel solutions of min-cost network flow problems using E-
relaxations," Report 1991-05-20, Dept. of Decision Sciences, The Wharton School, Univ. of
Pennsylvania, Philadelphia, 1991.

23. C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall: Englewood Cliffs, NJ, 1982.

24. L.C. Polymenakos and D.E Bertsekas, "Parallel shortest path auction algorithm," Laboratory for
Information and Decision Systems Report LIDS-P-2151, Masachusetts Inst. Techno., Cambridge,
MA, 1993; Parallel Computing (to appear).

25. R.T. Rockafellar, Network Flows and Monotropic Programming, Witey-Interscience: New York,
1984.

