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Summary

@ Discounted infinite horizon DP problems/Classical value and policy
iteration

@ Optimistic/modified policy iteration (policy evaluation is approximate, with
a finite number of value iterations using the current policy)

@ Convergence issues for synchronous and asynchronous versions

@ Failure of asynchronous/modified policy iteration (Williams-Baird
counterexample)

@ A radical modification of policy iteration/evaluation: Aim to solve an
optimal stopping problem instead of solving a linear system

@ Convergence properties are restored/enhanced

@ Optimistic policy iteration/Q-learning with cost function approximation,
exploration enhancement, and approximate solution of optimal stopping
problems

@ Generalizations and abstractions (multi-agent aggregation, concave
fixed point problems)
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A More Abstract View of What Follows

We want to find a fixed point J* of a mapping T : ®" — %" of the form
(TH(H) = min (TI)(F), i=1,...,n,

HEM,;
where p is a parameter from some set M;.
We update J in two ways:

o lterate with T: J— TJ  (cf. value iteration/DP), OR
e Pick a p and iterate with T,,: J— T,J  (cf. policy evaluation/DP)

Difficulty: T, has different fixed point than T ... so iterations with T,, aim
at a target other than J*

Our key idea (abstractly): Embed both T and T,, within another (uniform)
contraction mapping F,, that has the same fixed point for all

The uniform contraction mapping F,, operates on the larger space of
Q-factors

In the DP context, F,, is associated with an optimal stopping problem

Most of what follows applies beyond DP



A High Level View of Research Directions
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Outline

a Classical Value and Policy Iteration for Discounted MDP
@ Distributed Asynchronous Computation of Fixed Points
e Distributed Asynchronous Policy lteration

e Interlocking Research Directions - Generalizations



Classical Value and Policy lteration for Discounted MDP

Dynamic Programming - Markovian Decision Problems (MDP)

@ System: Controlled Markov chain w/ transition probabilties p;(u)

@ States:i=1,...,n

@ Controls: u € U(i)

@ Cost per stage: g(i, u, )

@ Stationary policy: State to control mapping r; apply w(i/) when at state i

@ Discounted MDP: Find policy i that minimizes the expected value of the
infinite horizon cost:

Z akg(ik7 I'L(,k)z ik+1)

k=0
where

ix = state at time k, k1 = state attime k + 1,

« : discount factor 0 < a < 1



Classical Value and Policy lteration for Discounted MDP

Major DP Results

J*(i) = Optimal cost starting from state i

J,.(i) = Optimal cost starting from state i using policy 1

Bellman’s equation:

*(i) = min Zp,,(u) (i,u ) +aJd*(j)), i=1,....n

ueU

A system of n nonlinear equations in the unknowns J*(1),...,J*(n).

@ J* is its unique solution.
@ An optimal policy minimizes for each i in the RHS of Bellman’s equation.
@ Bellman’s equation for a policy p:
n
iy = 3" pi(r()) (90 u(i). ) + adu()),  i=1,...,n
j=1
@ ltis a linear system of equations with J,, as its unique solution.



Classical Value and Policy lteration for Discounted MDP

Shorthand Notation - Fixed Point View

@ Denote by T and T, the mappings that transform J € R" to the vectors
TJ and T,J with components

n

(TN = min >~ py(u) (9, ) + (i), i=1,....m,
j=1

and

n

(T E D" py((i) (g, (i), ) + ad()),  i=1,....n

j=1
@ Bellman’s equations are written as

J = TJ*a Ju = TMJH

@ Key structure for our purposes: T and T, are sup-norm contractions with
common modulus «:

..........



Classical Value and Policy lteration for Discounted MDP

Major Methods for Finding Fixed Point of T

@ Value iteration (generic fixed point method): Start with any J°, iterate by

J1+1 _ TJ[

@ Policy iteration (special method for T of the form T = min, T,): Start
with any J° and 1°. Given J! and 1/, iterate by:
o Policy evaluation: J**" = (T,1)™J" (m applications of T,: on J*; m = oo is
possible)
o Policy improvement: u!*" attains the min in TU'*" (or T i J'! = TUHT)

@ Both methods converge to J*:

o Value iteration, thanks to contraction of T
e Policy iteration, thanks to contraction and monotonicity of T and T,

@ Typically, (optimistic/modified) policy iteration (with a reasonable choice
of m) is more efficient because application of T, is cheaper than
application of T



Classical Value and Policy lteration for Discounted MDP

Convergence Issues in Optimistic/Modified Policy lteration

@ Classical convergence result assumes monotonicity of initial condition:

T’ < J° (1)

e For a discounted MDP problem, this condition is not needed (a fortunate
consequence of structure)

o For other types of DP problems, situation unclear

e For example: If the policy evaluations are done in Gauss-Seidel cyclic
fashion (one state at a time), the situation is unclear

@ Williams-Baird Example: Convergence fails if condition (1) does not
hold, and the policy evaluations and policy improvements are (a little)
less regular than Gauss-Seidel

@ Williams and Baird prove that asynchronous policy iteration converges
monotonically from above under condition (1)



Classical Value and Policy lteration for Discounted MDP

Graphical Interpretations
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Distributed Asynchronous Computation of Fixed Points

Distributed Asynchronous Framework for Fixed Point Computation

@ Consider solution of general fixed point problem J = TJ, or
J(i) = Ti(J(1),...,d(n), i=1,...,n

@ We have a network of processors, and w/out loss of generality assume
that there is a separate processor i for each component J(i), i =1,...,n

@ Processor i updates J(/i) at a subset of times .7; C {0,1,...}

@ Processor i receives (possibly outdated values) J(j) from other
processors j # i

@ Update of processor i (no “delays")
JH() = Ti(J'(1),...,J(n) ifte T,
J'(i) if t ¢ .
@ Update of processor i [with “delays" t — 7;(1)]

JH(i) = Ti(JOA), ..., JO(n)) ifte 7,
JI(N ift ¢ 7.



Distributed Asynchronous Computation of Fixed Points

Distributed Convergence of Fixed Point Iterations

A general theorem for “totally asynchronous" iterations, i.e., .7 are infinite
sets and 7j(t) — co as t — oo (Bertsekas, 1983)

T = (J1,72)
52(0) lsk+1) ey :AT|’ :
50 S(k) TT = (1), 1»J)

51(0)

@ Assume there is a nested sequence of sets S(k + 1) C S(k) such that
@ (Synchronous Convergence Condition) We have
TJeSk+1), VJeSk),

and the limit points of all sequences {J} with J¥ € S(k), for all k, are fixed
points of T.

@ (Box Condition) S(k) is a Cartesian product:
S(k) = Sy(k) x -+ x Sn(k)

Then, if J° € S(0), every limit point of {J'} is a fixed point of T.



Distributed Asynchronous Computation of Fixed Points

Applications of the Theorem

J = (J1,J2)

52(0) [s(k+1) e
S(k)

TJ = (TlJ, TQJ)

S1(0)
Major contexts where the theorem applies:
@ T is a sup-norm contraction with fixed point J* and modulus «:
S(k) ={J|||J—=J || <*B},  for some scalar B

@ T is monotone (TJ < TJ for J < J') with fixed point J* and for some J
and J with o
J<STI<STI<,
and limx_ oo TFJ = limk oo THJ = J*, we have
S(k)={J|T"J<J< T}
Both of these apply to various DP problems:
@ 1st context applies to discounted problems
@ 2nd context applies to undiscounted problems (e.g., shortest paths)



Distributed Asynchronous Computation of Fixed Points

Distributed Asynchronous Convergence for Value lteration

J1 Iterations

S(0)

Jo Iteration
@ Value lteration: Start with any J°. Given J', for all i, iterate at i by
JTi) = (TIHG)  ifte T
and set J*' (i) = J!(i) otherwise, where

(T)(0) = TN, () = min >~ py(u) (g0 u.]) + (i)

@ T is a sup-norm contraction with contraction modulus «

@ Totally asynchronous distributed convergence (including communication
delays) is obtained



Distributed Asynchronous Computation of Fixed Points

Difficulties of Asynchronous Convergence for Policy Iteration

Ji Policy Improvement

[Sk+1) e vl

S5(k)

5(0)

Jo Policy Improvement Ji Policy Evaluation
Policy iteration: Start with any J° and x°. Given J! and /!, iterate as follows:
e If t € 7, do a policy evaluation at i: J*'(i) = (T,:)"J'(/)

@ If t € T}, do a policy improvement at i: Set J**'(i) = (TJ")(i) and let p'*"
be the policy that attains the min in TJ' (i.e., i1 J" = TJ')
Difficulties:
@ We iterate with both T and T,
@ All these mappings are sup-norm contractions
@ But they have different fixed points (J* and J,,)

@ Policy improvement operates with a different set sequence {S(k)} than
policy evaluation



Distributed Asynchronous Computation of Fixed Points

Failure of Asynchronous Policy Iteration: W-B Example

Counterexample by Williams and Baird (1993)
@ Deterministic discounted MDP with 6 states arranged in a circle
@ 2 controls available in half the states, 1 control available in the other half

@ Policy evaluations and improvements are one state at a time, no “delays”

A cycle of 15 iterations is constructed that repeats the initial conditions

The order of iterated states in the cycle is “maliciously" constructed

@ Itis unknown whether it is possible to construct a counterexample where
the order of iterated states is random



Distributed Asynchronous Policy Iteration

Rectifying the Difficulty - Q-Factors

Q-factors, Q(i, u) are functions of state-control pairs (i, u)

The optimal Q-factors are given by
n
Q" (i,u) = Y py(u)(9(i, u, ) + " ()
j=1

Q* (i, u): Cost of starting at /, using u first, then use optimal policy.

@ They satisfy
J* N — H k0
(i) = min Q"(/,u)
@ These are Bellman’s equations in expanded MDP with states (i, u), i

The Q-factors of a policy x are the unique solution of
Q..(i,u) Zpll(u) (i, u, ) + aQu(j, u(f)))

Q. (i, u): Cost of starting at i using u in the first step, then use p.
Also Qu (i, u(i)) = Ju(7)



Distributed Asynchronous Policy Iteration

Sup-Norm Uniform Contraction Property

@ Consider Q-factors Q(/, u) and costs J(i). For any p, define mapping
(QJ) —  (Fu(Q,J),M.(Q,J))
where
n
Fu(Q. ), u) =S py(u) (g, u, ) + armin {J(), QU, p())}),
j=1
M.(Q,J)() & min F.(Q,J)(i, u)
ueU(i)
@ Key fact: This mapping is a uniform sup-norm contraction - a common
fixed point (Q*, J*) for all 1
@ We have

max {[|F.(Q, J)=Q[loo, [IMu(Q, )= [loo } < amax {[|Q=Q"[|oo, [|[J—J"[|o }

@ The mapping is convergent under asynchronous iteration

@ Even though we operate with different mappings corresponding to
different p, they all have a common fixed point



Distributed Asynchronous Policy Iteration

Connection to an Optimal Stopping Problem

@ Consider policy iteration using
(QJ) — (Fu(QJ),M.(Q,J))
where

Fu(Q. )i, u) = 3~ pyi(u) (90, u, ) + amin {J(), QU (i)},

j=1
M.(Q.J)(1) < min F.(Q,J)(i, u)
ueU(i)
@ For fixed J and p the fixed point of F,.(-, J) is the optimal cost of an
optimal stopping problem [J(j) is the stopping cost at j]

@ lteration with F,(-,J) for fixed J and u, aims to solve the stopping
problem associated with J and p

@ lteration with M, (-, J), does a “value iteration/policy improvement" to
update the stopping problem



Distributed Asynchronous Policy Iteration

Distributed Asynchronous Policy lteration

Asynchronous distributed policy iteration algorithm: Maintains J', i, and V?,
where
V(i) = Q' (i, i (1)) Q-factors of current policy

@ Let .7 (or .7;) be the policy evaluation (or policy improvement) times at
state /.

@ Attime t, for all j,

e If t € .7, do a policy evaluation at i: Set

VET () = pi(n' () (90, ' (7). ) + aemin {J(7), V'(j)})

j=1
and leave J!(i), p!(i) unchanged.
e Ift € 7, do a policy improvement at i: Set

JH(i) = V() = N > Pi(u)(g(i, u,j) + amin {J(), VI()}),
=1

and set u!*1 (/) to a control that attains the minimum.

@ Convergence follows by the asynchronous convergence theorem



Distributed Asynchronous Policy Iteration

Some Computational Experiments

Williams-Baird Counterexample

"Classical" Algorithm New Algorithm Interpolated Variant
-5 -5 -5
-10 -10 -10
-15 -15 -15
20 20 -20 Malicious Order of
25 25 25 Component Selection
-30 -30 -30
% 200 400 % 200 400 ) 200 400
-10 -10 -10
-20 -20 -20
_30 30 _30 Random Order of
0 40 0 Component Selection

200 400 0 200 400 0 200 400



Several Interlocking Research Directions

The idea of embedding into a stopping problem applies to several research
contexts:

Optimistic/modified policy iteration for costs: synchronous or
asynchronous

Optimistic Q-learning: Stochastic asynchronous policy iteration for
Q-factors with function approximation (can modify . at will to enhance
exploration)

Algorithmic variations that work without sup-norm contraction - assume
just monotonicity

Optimistic (synchronous and asynchronous) policy iteration for
stochastic shortest path and other nondiscounted problems

Multi-agent aggregation in DP

General forms of mappings T and T, for other types of DP and nonDP
problems, under sup-norm contraction assumptions. The discounted DP
structure is not critical, sup-norm contraction is

NonDP fixed point problems involving concave sup-norm contractions



Stopping Problem-Based Optimistic Q-learning

Use for (nondistributed) policy iteration where policy evaluation is done
by solving a stopping problem

Given (@', J") and 1!, iterate by:
e Policy evaluation: Q+1 = Fg}(of, J') (m applications of F,: on Q' with J!

kept fixed) - connection to a stopping problem

e Policy improvement: Ji*1 = (MQ'1) and set u!*" to the policy that attains
the min

@ Contraction property is uniform for all policies
@ We may use randomized policies u that induce exploration

@ We may use simulation-based implementations and lookup-table or
compact representations, and the TD algorithm of Tsitsiklis and VanRoy
(1999) to solve the optimal stopping problems

@ Error bounds are available thanks to the uniform contraction property



Generalized Mappings T and T,

@ The preceding analysis uses only the contraction property of the
discounted MDP (not monotonicity or the probabilistic structure)

@ Abstract Mappings T and T,:
@ Introduce a mapping H(i, u, J) and denote
TJ)(i) = min H(i,u,J Tud)(i) = H(i, u(i),J
(T)() = min HG,u ), (Tud)(i) = HO (i), J)
i.e., TJ = min, T,J, where the min is taken separately for each component
@ Assume that for all i and u € U(/)
|H(i, u, ) = H(i, u, J)| < alld = [l
@ Asynchronous “policy iteration" algorithm: At time t, for all /:
o If t € 7}, do a “policy evaluation" at i: Set
VEFL(i) = H(i, p! (i), min{J", V'})
and leave J!(i), p!(i) unchanged.
e If t € 7, do a “policy improvement" at i: Set
10y — V() = min H(i infJt vt
JE(i) ()= min H(i,umin{J', V1))

set u*1(/) to a u that attains the minimum.



DP Applications with Generalized T and T,

@ DP models beyond discounted with standard policy evaluation
o Gauss-Seidel version of optimistic/modified policy iteration for discounted
problems

e Optimistic/modified policy iteration for semi-Markov and minimax discounted
problems

e Stochastic shortest path problems
@ Q-learning versions of the above

@ Multi-agent aggregation

e Each agent updates costs at all states within a subset

e Each agent uses detailed costs for the local states and aggregate costs for
other states, as communicated by other agents



Fixed Points of Parametric Sup-Norm Contractions

\ =

a0

e

0 #l = R(x%) a* = R(z*) a? z

~
Value Iteration Policy Iteration
@ Find a fixed point of a mapping R : R" — R", i.e. x* = R(x*)

@ Special case: The components Ri(-) : " — R are concave sup-norm
contractions

@ A policy iteration algorithm can be used: policy evaluation corresponds
to linearization (like Newton’s method)



A Variant with Interpolation

@ Modify the mapping F,, with a stepsize parameter v € [0, 1):
Fun(Q,J) = H(i, u, W, (J, Qu))

where
W, (J, Qu) = (1 —7) min{J, Qu} + 7 Q.

and Q. (i) = Q(i, u(7))
@ Asynchronous “policy iteration" algorithm: At time ¢, for all i:
o If t € 7}, do a “policy evaluation" at i: Set
VI (i) = H(i, 1t (i), W (S, V1))
and leave J(i) and p(i) unchanged
e Ift € 7, do a “policy improvement" at i: Set
JEN() = vt (i) = u?[ijr(li) H(i, u, W (J', V1)

set u!t1(J) to a u that attains the minimum.

@ If v — 0, the algorithm converges asynchronously



Asynchronous Policy lteration Under Monotonicity Assumptions

If H is not sup-norm contraction, we may use monotonicity properties.
Assume:

(a) The mapping H is monotone in the sense that
H(i,u,J) < H(i,u,J"), Vi, ue U()
for all J,J’ from a set of vectors F such that J < J'.

(b) There exist two vectors J, J € F such thatall J € FwithJ < J < J
belong to 7, and we have J < TJ < TJ < J. Furthermore, T has a
unique fixed point J* and

lim T"J = lim T"J=J*
k—oo k— oo

@ Assuming J° satisfies J < J° < J, value iteration still converges in a
distributed, totally asynchronous setting

@ Asynchronous policy iteration needs to be corrected for convergence
o Policy evaluation equation at i is changed to

VI (i) = min {Jf(i), H(i, (i), vf)}
(the min is outside of H)
o Totally asynchronous convergence can be shown



Concluding Remarks

Optimistic/modified/asynchronous policy iteration has fragile
convergence properties

We have provided a new approach and several algorithmic variants to
correct the difficulties

Key idea: Embed the problem into one that involves Q-factors/Q-learning
and admits an underlying uniform sup-norm contraction

Can be implemented by replacing the linear system used for policy
evaluation with an optimal stopping problem

Can work with cost function approximation and allows enhanced
exploration

Extensions to generalized DP models involving H:

e They validate (distributed and nondistributed) optimistic/modified policy
iteration for more general than discounted DP models (e.g., stochastic
shortest path, semi-Markov, etc)

e They provide algorithms for finding fixed points of nonDP mappings of the
form T = min,em Ty



Thank You!
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