New Exact and Approximate Policy Iteration Methods in Dynamic Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

March 2011

- Optimistic/modified policy iteration (policy evaluation is approximate, with a finite number of value iterations using the current policy)
- Convergence issues for synchronous and asynchronous versions
- Failure of asynchronous/modified policy iteration (Williams-Baird counterexample)
- A radical modification of policy iteration/evaluation: Aim to solve an optimal stopping problem instead of solving a linear system
- Convergence properties are restored/enhanced
- Optimistic policy iteration/Q-learning with cost function approximation, exploration enhancement, and approximate solution of optimal stopping problems
- Generalizations and abstractions (multi-agent aggregation, concave fixed point problems)

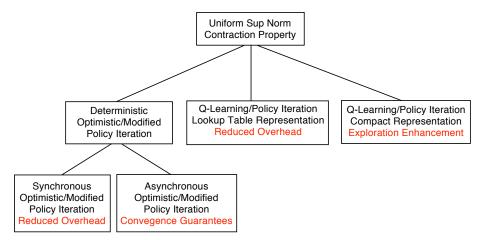
References

- Starting Point: D. P. Bertsekas and H. Yu, "Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming," Report LIDS-P-2831, MIT, April 2010
- Emphasis in this talk: D. P. Bertsekas and H. Yu, "Distributed Asynchronous Policy Iteration," Proc. Allerton Conference, Sept. 2010
- Line of analysis: Theory of totally asynchronous distributed algorithms from
 - D. P. Bertsekas, "Distributed Dynamic Programming," IEEE Transactions on Aut. Control, Vol. AC-27, 1982
 - D. P. Bertsekas, "Distributed Asynchronous Computation of Fixed Points," Mathematical Programming, Vol. 27, 1983
 - D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, 1989

$$(TJ)(i) = \min_{\mu \in \mathcal{M}_i} (T_{\mu}J)(i), \qquad i = 1, \ldots, n,$$

where μ is a parameter from some set \mathcal{M}_i .

- We update J in two ways:
 - Iterate with $T: J \mapsto TJ$ (cf. value iteration/DP), OR
 - Pick a μ and iterate with T_{μ} : $J \mapsto T_{\mu}J$ (cf. policy evaluation/DP)
- Difficulty: T_{μ} has different fixed point than T ... so iterations with T_{μ} aim at a target other than J^*
- Our key idea (abstractly): Embed both T and T_{μ} within another (uniform) contraction mapping F_{μ} that has the same fixed point for all μ
- ullet The uniform contraction mapping F_{μ} operates on the larger space of Q-factors
- In the DP context, F_{μ} is associated with an optimal stopping problem
- Most of what follows applies beyond DP



Outline

- Classical Value and Policy Iteration for Discounted MDP
- Distributed Asynchronous Computation of Fixed Points
- 3 Distributed Asynchronous Policy Iteration
- Interlocking Research Directions Generalizations

- System: Controlled Markov chain w/ transition probabilties $p_{ij}(u)$
- States: i = 1, ..., n
- Controls: $u \in U(i)$
- Cost per stage: g(i, u, j)
- Stationary policy: State to control mapping μ ; apply $\mu(i)$ when at state i
- Discounted MDP: Find policy μ that minimizes the expected value of the infinite horizon cost:

$$\sum_{k=0}^{\infty} \alpha^k g(i_k, \mu(i_k), i_{k+1})$$

where

$$i_k=$$
 state at time $k,$ $i_{k+1}=$ state at time $k+1,$ $lpha:$ discount factor 0

- $J^*(i)$ = Optimal cost starting from state i
- $J_{\mu}(i)$ = Optimal cost starting from state i using policy μ
- Bellman's equation:

$$J^*(i) = \min_{u \in U(i)} \sum_{j=1}^n \rho_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \qquad i = 1, \dots, n$$

A system of *n* nonlinear equations in the unknowns $J^*(1), \ldots, J^*(n)$.

- J* is its unique solution.
- An optimal policy minimizes for each i in the RHS of Bellman's equation.
- Bellman's equation for a policy μ:

$$J_{\mu}(i) = \sum_{i=1}^{n} p_{ij}(\mu(i)) (g(i,\mu(i),j) + \alpha J_{\mu}(j)), \qquad i = 1,\ldots,n$$

• It is a linear system of equations with J_{μ} as its unique solution.

• Denote by T and T_{μ} the mappings that transform $J \in \mathbb{R}^n$ to the vectors TJ and $T_{\mu}J$ with components

$$(TJ)(i) \stackrel{\mathrm{def}}{=} \min_{u \in U(i)} \sum_{i=1}^{n} p_{ij}(u) (g(i,u,j) + \alpha J(j)), \qquad i = 1, \ldots, n,$$

and

$$(T_{\mu}J)(i) \stackrel{\mathrm{def}}{=} \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + \alpha J(j)), \qquad i = 1,\ldots,n$$

Bellman's equations are written as

$$J^* = TJ^*, \qquad J_{\mu} = T_{\mu}J_{\mu}$$

• Key structure for our purposes: T and T_{μ} are sup-norm contractions with common modulus α :

$$||TJ - TJ'||_{\infty} = \max_{i=1}^{n} |(TJ)(i) - (TJ')(i)| \le \alpha \max_{i=1}^{n} |J(i) - J'(i)| = \alpha ||J - J'||_{\infty}$$

• Value iteration (generic fixed point method): Start with any J^0 , iterate by

$$J^{t+1} = TJ^t$$

- Policy iteration (special method for T of the form $T = \min_{\mu} T_{\mu}$): Start with any J^0 and μ^0 . Given J^t and μ^t , iterate by:
 - Policy evaluation: $J^{t+1} = (T_{\mu t})^m J^t$ (m applications of $T_{\mu t}$ on J^t ; $m = \infty$ is possible)
 - ullet Policy improvement: μ^{t+1} attains the min in TJ^{t+1} (or $T_{\mu^{t+1}}J^{t+1}=TJ^{t+1}$)
- Both methods converge to J*:
 - Value iteration, thanks to contraction of T
 - ullet Policy iteration, thanks to contraction and monotonicity of T and T_{μ}
- Typically, (optimistic/modified) policy iteration (with a reasonable choice of m) is more efficient because application of T_μ is cheaper than application of T

Classical convergence result assumes monotonicity of initial condition:

$$T_{\mu_0}J^0 \le J^0 \tag{1}$$

- For a discounted MDP problem, this condition is not needed (a fortunate consequence of structure)
- For other types of DP problems, situation unclear
- For example: If the policy evaluations are done in Gauss-Seidel cyclic fashion (one state at a time), the situation is unclear
- Williams-Baird Example: Convergence fails if condition (1) does not hold, and the policy evaluations and policy improvements are (a little) less regular than Gauss-Seidel
- Williams and Baird prove that asynchronous policy iteration converges monotonically from above under condition (1)



Distributed Asynchronous Framework for Fixed Point Computation

• Consider solution of general fixed point problem J = TJ, or

$$J(i) = T_i(J(1), \ldots, J(n)), \qquad i = 1, \ldots, n$$

- We have a network of processors, and w/out loss of generality assume that there is a separate processor i for each component J(i), i = 1, ..., n
- Processor *i* updates J(i) at a subset of times $\mathcal{T}_i \subset \{0, 1, \ldots\}$
- Processor i receives (possibly outdated values) J(i) from other processors $j \neq i$
- Update of processor i (no "delays")

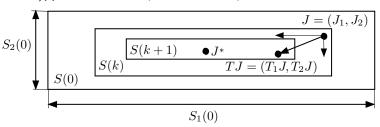
$$J^{t+1}(i) = \begin{cases} T_i(J^t(1), \dots, J^t(n)) & \text{if } t \in \mathscr{T}_i, \\ J^t(i) & \text{if } t \notin \mathscr{T}_i. \end{cases}$$

• Update of processor *i* [with "delays" $t - \tau_{ii}(t)$]

$$J^{t+1}(i) = \begin{cases} T_i(J^{\tau_{i1}(t)}(1), \dots, J^{\tau_{in}(t)}(n)) & \text{if } t \in \mathscr{T}_i, \\ J^t(i) & \text{if } t \notin \mathscr{T}_i. \end{cases}$$

Distributed Convergence of Fixed Point Iterations

A general theorem for "totally asynchronous" iterations, i.e., \mathcal{T}_i are infinite sets and $\tau_{ii}(t) \to \infty$ as $t \to \infty$ (Bertsekas, 1983)



- Assume there is a nested sequence of sets $S(k+1) \subset S(k)$ such that
 - (Synchronous Convergence Condition) We have

$$TJ \in S(k+1), \forall J \in S(k),$$

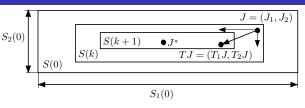
and the limit points of all sequences $\{J^k\}$ with $J^k \in S(k)$, for all k, are fixed points of T.

(Box Condition) S(k) is a Cartesian product:

$$S(k) = S_1(k) \times \cdots \times S_n(k)$$

Then, if $J^0 \in S(0)$, every limit point of $\{J^t\}$ is a fixed point of T.

Applications of the Theorem



Major contexts where the theorem applies:

• T is a sup-norm contraction with fixed point J^* and modulus α :

$$S(k) = \{J \mid ||J - J^*||_{\infty} \le \alpha^k B\},$$
 for some scalar B

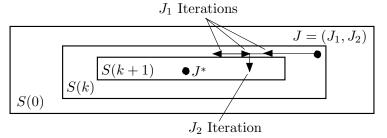
• T is monotone $(TJ \le TJ')$ for $J \le J'$ with fixed point J^* and for some \underline{J} and \overline{J} with

$$\underline{J} \leq T\underline{J} \leq T\overline{J} \leq \overline{J},$$
 and $\lim_{k \to \infty} T^k \underline{J} = \lim_{k \to \infty} T^k \underline{J} = J^*$, we have
$$S(k) = \{J \mid T^k J < J < T^k \overline{J}\}$$

Both of these apply to various DP problems:

- 1st context applies to discounted problems
- 2nd context applies to undiscounted problems (e.g., shortest paths)

Distributed Asynchronous Convergence for Value Iteration



• Value Iteration: Start with any J^0 . Given J^t , for all i, iterate at i by

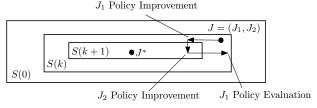
$$J^{t+1}(i) = (TJ^t)(i)$$
 if $t \in \mathscr{T}_i$

and set $J^{t+1}(i) = J^{t}(i)$ otherwise, where

$$(TJ)(i) = T_i(J(1), \ldots, J(n)) = \min_{u \in U(i)} \sum_{i=1}^n p_{ij}(u) (g(i, u, j) + \alpha J(j))$$

- ullet T is a sup-norm contraction with contraction modulus lpha
- Totally asynchronous distributed convergence (including communication delays) is obtained

Difficulties of Asynchronous Convergence for Policy Iteration



Policy iteration: Start with any J^0 and μ^0 . Given J^t and μ^t , iterate as follows:

- If $t \in \mathcal{T}_i$, do a policy evaluation at $i: J^{t+1}(i) = (T_{ut})^m J^t(i)$
- If $t \in \overline{T}_i$, do a policy improvement at i: Set $J^{t+1}(i) = (TJ^t)(i)$ and let μ^{t+1} be the policy that attains the min in TJ^t (i.e., $T_{\mu^{t+1}}J^t = TJ^t$)

Difficulties:

- We iterate with both T and T_u
- All these mappings are sup-norm contractions
- But they have different fixed points (J^* and J_{μ})
- Policy improvement operates with a different set sequence $\{S(k)\}$ than policy evaluation

Failure of Asynchronous Policy Iteration: W-B Example

Counterexample by Williams and Baird (1993)

- Deterministic discounted MDP with 6 states arranged in a circle
- 2 controls available in half the states, 1 control available in the other half
- Policy evaluations and improvements are one state at a time, no "delays"
- A cycle of 15 iterations is constructed that repeats the initial conditions
- The order of iterated states in the cycle is "maliciously" constructed
- It is unknown whether it is possible to construct a counterexample where the order of iterated states is random

- Q-factors, Q(i, u) are functions of state-control pairs (i, u)
- The optimal Q-factors are given by

$$Q^*(i, u) = \sum_{j=1}^{n} \rho_{ij}(u) (g(i, u, j) + \alpha J^*(j))$$

 $Q^*(i, u)$: Cost of starting at i, using u first, then use optimal policy.

They satisfy

$$J^*(i) = \min_{u \in U(i)} Q^*(i, u)$$

- These are Bellman's equations in expanded MDP with states (i, u), i
- The Q-factors of a policy μ are the unique solution of

$$Q_{\mu}(i,u) = \sum_{j=1}^{n} p_{ij}(u) \big(g(i,u,j) + \alpha Q_{\mu}(j,\mu(j))\big)$$

 $Q_{\mu}(i,u)$: Cost of starting at i using u in the first step, then use μ . Also $Q_{\mu}(i,\mu(i))=J_{\mu}(i)$

• Consider Q-factors Q(i, u) and costs J(i). For any μ , define mapping

$$(Q,J) \mapsto (F_{\mu}(Q,J), M_{\mu}(Q,J))$$

where

$$F_{\mu}(Q,J)(i,u) \stackrel{\text{def}}{=} \sum_{j=1}^{n} p_{ij}(u) \big(g(i,u,j) + \alpha \min \big\{J(j), Q(j,\mu(j))\big\}\big),$$

$$M_{\mu}(Q,J)(i) \stackrel{\text{def}}{=} \min_{u \in U(i)} F_{\mu}(Q,J)(i,u)$$

- Key fact: This mapping is a uniform sup-norm contraction a common fixed point (Q^*, J^*) for all μ
- We have

$$\max \left\{ \|F_{\mu}(Q,J) - Q^*\|_{\infty}, \, \|M_{\mu}(Q,J) - J^*\|_{\infty} \right\} \leq \alpha \max \left\{ \|Q - Q^*\|_{\infty}, \, \|J - J^*\|_{\infty} \right\}$$

- The mapping is convergent under asynchronous iteration
- Even though we operate with different mappings corresponding to different μ , they all have a common fixed point

Consider policy iteration using

$$(Q,J) \mapsto (F_{\mu}(Q,J),M_{\mu}(Q,J))$$

where

$$F_{\mu}(Q,J)(i,u) \stackrel{\mathrm{def}}{=} \sum_{j=1}^{n} p_{ij}(u) \big(g(i,u,j) + \alpha \min \big\{J(j), Q(j,\mu(j))\big\}\big),$$

$$M_{\mu}(Q,J)(i) \stackrel{\mathrm{def}}{=} \min_{u \in U(i)} F_{\mu}(Q,J)(i,u)$$

- For fixed J and μ the fixed point of $F_{\mu}(\cdot, J)$ is the optimal cost of an optimal stopping problem [J(j)] is the stopping cost at j
- Iteration with $F_{\mu}(\cdot, J)$ for fixed J and μ , aims to solve the stopping problem associated with J and μ
- Iteration with $M_{\mu}(\cdot, J)$, does a "value iteration/policy improvement" to update the stopping problem

Asynchronous distributed policy iteration algorithm: Maintains J^t , μ^t , and V^t , where

$$V^{t}(i) = Q^{t}(i, \mu^{t}(i))$$
 Q-factors of current policy

- Let 𝒦_i (or 𝔻̄) be the policy evaluation (or policy improvement) times at state i.
- At time t, for all i,
 - If $t \in \mathcal{T}_i$, do a policy evaluation at i: Set

$$V^{t+1}(i) = \sum_{j=1}^{n} p_{ij}(\mu^{t}(i)) (g(i, \mu^{t}(i), j) + \alpha \min \{J^{t}(j), V^{t}(j)\})$$

and leave $J^t(i)$, $\mu^t(i)$ unchanged.

• If $t \in \overline{\mathcal{T}}_i$, do a policy improvement at i: Set

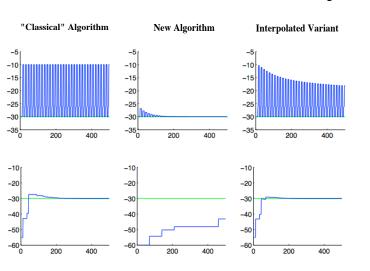
$$J^{t+1}(i) = V^{t+1}(i) = \min_{u \in U(i)} \sum_{i=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha \min \{J^{t}(j), V^{t}(j)\}),$$

and set $\mu^{t+1}(i)$ to a control that attains the minimum.

Convergence follows by the asynchronous convergence theorem

Some Computational Experiments

Williams-Baird Counterexample



Malicious Order of Component Selection

Random Order of Component Selection

Several Interlocking Research Directions

The idea of embedding into a stopping problem applies to several research contexts:

- Optimistic/modified policy iteration for costs: synchronous or asynchronous
- Optimistic Q-learning: Stochastic asynchronous policy iteration for Q-factors with function approximation (can modify μ at will to enhance exploration)
- Algorithmic variations that work without sup-norm contraction assume just monotonicity
- Optimistic (synchronous and asynchronous) policy iteration for stochastic shortest path and other nondiscounted problems
- Multi-agent aggregation in DP
- General forms of mappings T and T_{μ} for other types of DP and nonDP problems, under sup-norm contraction assumptions. The discounted DP structure is not critical, sup-norm contraction is
- NonDP fixed point problems involving concave sup-norm contractions

- Use for (nondistributed) policy iteration where policy evaluation is done by solving a stopping problem
- Given (Q^t, J^t) and μ^t , iterate by:
 - Policy evaluation: $Q^{t+1} = F_{ut}^m(Q^t, J^t)$ (*m* applications of F_{ut} on Q^t with J^t kept fixed) - connection to a stopping problem
 - Policy improvement: $J^{t+1} = (MQ^{t+1})$ and set μ^{t+1} to the policy that attains the min
- Contraction property is uniform for all policies
- We may use randomized policies μ that induce exploration
- We may use simulation-based implementations and lookup-table or compact representations, and the TD algorithm of Tsitsiklis and VanRoy (1999) to solve the optimal stopping problems
- Error bounds are available thanks to the uniform contraction property

Generalized Mappings T and T_{μ}

- The preceding analysis uses only the contraction property of the discounted MDP (not monotonicity or the probabilistic structure)
- Abstract Mappings T and T_u :
 - Introduce a mapping H(i, u, J) and denote

$$(TJ)(i) = \min_{u \in U(i)} H(i, u, J), \qquad (T\mu J)(i) = H(i, \mu(i), J)$$

i.e., $TJ = \min_{\mu} T_{\mu}J$, where the min is taken separately for each component

• Assume that for all i and $u \in U(i)$

$$|H(i,u,J) - H(i,u,J')| \le \alpha ||J - J'||_{\infty}$$

- Asynchronous "policy iteration" algorithm: At time t, for all i:
 - If $t \in \mathcal{T}_i$, do a "policy evaluation" at i: Set

$$V^{t+1}(i) = H(i, \mu^t(i), \min\{J^t, V^t\})$$

and leave $J^t(i)$, $\mu^t(i)$ unchanged.

• If $t \in \overline{\mathcal{T}}_i$, do a "policy improvement" at i: Set

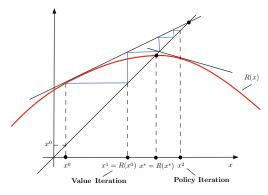
$$J^{t+1}(i) = V^{t+1}(i) = \min_{u \in J(t)} H(i, u, \min\{J^t, V^t\})$$

set $\mu^{t+1}(i)$ to a u that attains the minimum.

DP Applications with Generalized T and T_{μ}

- DP models beyond discounted with standard policy evaluation
 - Gauss-Seidel version of optimistic/modified policy iteration for discounted problems
 - Optimistic/modified policy iteration for semi-Markov and minimax discounted problems
 - Stochastic shortest path problems
 - Q-learning versions of the above
- Multi-agent aggregation
 - Each agent updates costs at all states within a subset
 - Each agent uses detailed costs for the local states and aggregate costs for other states, as communicated by other agents

Fixed Points of Parametric Sup-Norm Contractions



- Find a fixed point of a mapping $R: \mathbb{R}^n \mapsto \mathbb{R}^n$, i.e. $x^* = R(x^*)$
- Special case: The components $R_i(\cdot): \Re^n \mapsto \Re$ are concave sup-norm contractions
- A policy iteration algorithm can be used: policy evaluation corresponds to linearization (like Newton's method)

• Modify the mapping F_{μ} with a stepsize parameter $\gamma \in [0, 1)$:

$$F_{\mu,\gamma}(Q,J) = H(i,u,W_{\gamma}(J,Q\mu))$$

where

$$W_{\gamma}(J,Q\mu) = (1-\gamma)\min\{J,Q_{\mu}\} + \gamma Q_{\mu}$$

and $Q_{\mu}(i) = Q(i, \mu(i))$

- Asynchronous "policy iteration" algorithm: At time t, for all i:
 - If $t \in \mathcal{T}_i$, do a "policy evaluation" at i: Set

$$V^{t+1}(i) = H(i, \mu^t(i), W_{\sim t}(J^t, V^t))$$

and leave J(i) and $\mu(i)$ unchanged

• If $t \in \overline{\mathscr{T}}_i$, do a "policy improvement" at i: Set

$$J^{t+1}(i) = V^{t+1}(i) = \min_{u \in U(i)} H(i, u, W_{\gamma^t}(J^t, V^t))$$

set $\mu^{t+1}(i)$ to a u that attains the minimum.

• If $\gamma^t \to 0$, the algorithm converges asynchronously

Asynchronous Policy Iteration Under Monotonicity Assumptions

If H is not sup-norm contraction, we may use monotonicity properties. Assume:

(a) The mapping H is monotone in the sense that

$$H(i, u, J) \leq H(i, u, J'), \quad \forall i, u \in U(i)$$

for all J, J' from a set of vectors \mathcal{F} such that J < J'.

(b) There exist two vectors $J, \overline{J} \in \mathcal{F}$ such that all $J \in F$ with $J < J < \overline{J}$ belong to \mathcal{F} , and we have $J \leq TJ \leq T\overline{J} \leq \overline{J}$. Furthermore, T has a unique fixed point J^* and

$$\lim_{k\to\infty}T^k\underline{J}=\lim_{k\to\infty}T^k\overline{J}=J^*$$

- Assuming J^0 satisfies $J < J^0 < \overline{J}$, value iteration still converges in a distributed, totally asynchronous setting
- Asynchronous policy iteration needs to be corrected for convergence
 - Policy evaluation equation at i is changed to

$$V^{t+1}(i) = \min \left\{ J^t(i), H(i, \mu^t(i), V^t) \right\}$$

(the min is outside of H)

- Totally asynchronous convergence can be shown

- Optimistic/modified/asynchronous policy iteration has fragile convergence properties
- We have provided a new approach and several algorithmic variants to correct the difficulties
- Key idea: Embed the problem into one that involves Q-factors/Q-learning and admits an underlying uniform sup-norm contraction
- Can be implemented by replacing the linear system used for policy evaluation with an optimal stopping problem
- Can work with cost function approximation and allows enhanced exploration
- Extensions to generalized DP models involving H:
 - They validate (distributed and nondistributed) optimistic/modified policy iteration for more general than discounted DP models (e.g., stochastic shortest path, semi-Markov, etc)
 - They provide algorithms for finding fixed points of nonDP mappings of the form $T = min_{\mu \in \mathcal{M}} T_{\mu}$

Classical Value and Policy Iteration for Discounted MDP Distributed Asynchronous Computation of Fixed Points Distributed Asynchronous Policy Iteration Int

Thank You!