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Approximation Procedures Based on the Method of
Multipliers'
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Abstract. In this paper, we consider a method for solving certain
optimization problems with constraints, nondifferentiabilities, and
other ill-conditioning terms in the cost functional by approximating
them by well-behaved optimization problems. The approach is based
on methods of multipliers. The convergence properties of the methods
proposed can be inferred from corresponding properties of multiplier
methods with partial elimination of constraints. A related analysis is
provided in this paper.
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1. Introduction

Many optimization problems of interest can be written as

minimize f(x)+ g vilgi(x)],
i=1 (l)

subject to x € X,

where
f:R">R

is a continuously differentiable function on R" (n-dimensional Euclidean
space),

g;ZR"-’Rr', i=1,...,m,
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are continuously differentiable mappings from R" to R, respectively (r; is a
positive integer for each i), and X is a given subset of R". The functions

?]': R’;_)(_m,+m}, l.=1""’nl‘

are assumed to be extended real-valued, convex, lower semicontinuous
convex functions with v;(t)<+c0 for at least one te R".

We are primarily interested in the case where the presence of the
functions y; introduces difficulties in the numerical solution of problem (1),
in the sense that, if the functions y; were replaced by some real-valued and
continuously differentiable functions ¥;, then problem (1) could be solved in

a relatively easy manner. For example, the functions y; may induce con-
straints, nondifferentiabilities, or ill-conditioning in problem (1). Here are

some examples. In the first five examples, v; is a function defined on the real

line R (;=1).

Example 1.1. Equality Constraints:
if =0,
otherwise.

o= @

Here, the presence of y{g:(x)] in problem (1) is equivalent to an additional
equality constraint
gi(x)=0.

Example 1.2. One-Sided Inequality Constraints:

0, if t=0,
+00, otherwise.

7= @)

Here, the presence of y{gi(x)] induces the constraint

g,‘(X)E 0

Example 1.3. Two-Sided Inequality Constraints:

ifa;=t=p,

)= +00, otherwise, “) T

where «;, 8; are scalars with «; < 8.

Example 1.4. Polyhedral Functions:

vi(t) = max[0, ¢], 5) : i S
?l(r)=|fl, (6) At A




JOTA: VOL. 23, NO. 4, DECEMBER 1977 489

()= {M, if [t| < a, ™
+00

g otherwise,

max {y+8;}, fa<sr=g,
f=1l...r

r()= 400, otherwise, @)
where «a, 8, v;, 8; are given scalars.
Example 1.5. [ll-Conditioning Terms:
vi(t)=1sc%, )
vi(t)=a exp(Bt) (10)

where s, «, 8 are given scalars with s >0, a >0. The term (9) may induce
ill-conditioning in problem (1) if s is very large, while the term (10) may
induce ill-conditioning in problem (1) if B is very large. More generally, if
the second derivatives or third derivatives of y; are very large, relative to
other terms in the cost functional, the numerical solution of problem (1) may
run into serious difficulties.

Example 1.6. Minimax Problems: For t=(t1, t3,...,4,)eR", con-
sider

‘}’,'(f) = maX{h, & R f‘-‘}, (1 ].)

‘Yl'(t) =lTIaX{|11|, |f2|, ey |rr;“| (12)

v(t)= max ('z, (13)
lz—alP=1

where|| - ||is the usual Euclidean normin R" and « is a given vectorin R".
This paper presents an approach for solving numerically problems of
the type described above. The approach consists of approximation of
problem (1) by a sequence of optimization problems which involve relatively
well-behaved objective functions. The approximation is effected by intro-
ducing additional variables and constraints in problem (1), thus forming an

equivalent constrained minimization problem. This problem is subsequently

handled by a suitable method of multipliers (see Refs. 1-3 for analysis and
references on multiplier methods). For the case of Examples 1.1 and 1.2, our
approach turns out to be identical to standard multiplier methods. However,
for other cases, our approach results in computational and storage savings
over standard multiplier methods due to the fact that the number of scalar
multipliers utilized is significantly reduced. For many cases of interest, our
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algorithms may be viewed in effect as multiplier methods with partial
elimination of constraints. Aside from the case of convex programming
problems, there is no convergence analysis available for multiplier methods
of this type. For this reason, we provide in the last section of this paper a
convergence and rate-of-convergence result for such methods. This result
can be used in turn to provide corresponding convergence results for specific
algorithms. Throughout the paper, we have restricted ourselves exclusively
to first-order multiplier methods (i.e., steepest-ascent methods for solving a
related dual problem in the sense described in Ref. 1). Second-order
methods of the Newton type (see Section 6 and Proposition 6 of Ref. 2 for
related description and analysis) could also be used.

2. Approximation Procedure

It is clear that problem (1) is equivalent to the following problem:

minimize f(x)+ ¥ vi[gi(x)—u],
- i=1 (14)
subject to x € X, u; =0, i=1,...,m,
where we have introduced the additional vectors

weR" i=1,...,m.

A method of multipliers for the problem above is based on sequential
minimization over x, Uy, . .., 4, of the form

minimize f(x)+ ‘rf::l {vilgelx) = w) + yrwi +3eelludl,

(15)

subject to x € X,

where || - | denotes the usual Euclidean norm on R", yx are multiplier vectors
in R", ¢, is a positive scalar penalty parameter, and prime denotes transposi-
tion. Equivalently, problem (15) is written as

minimize f(x)+ ‘Zl pLlgi(x), yil,
‘ (16)
subject to x € X,
where

Pig{gi(x ), )’:'(] = min{y;[g(x)—w]+ )’li:“:' +%Cki|“illz}- 17)
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The initial multiplier vectors yio, i=1,...,m,are arbitrary; and, after each
minimization (16), the multiplier vectors y; are updated by means of

Yisi=yitewus, i=1,...,m, (18)

where uf, i=1,..., m,solve (15), together with some vector x;. Alternate
methods could be obtained by using a nonquadratic penalty function in (15);
in fact, in some cases, the use of such nonquadratic penalty functions is
essential. [n order to keep the exposition simple, we will restrict ourselves
for the moment to quadratic penalty functions.

It is important to note that the function p%, of (17) is both real-valued
and continuously differentiable in x, provided the function g; is continuously
differentiable; hence, problem (16) can be solved by the powerful methods
available for differentiable functions whenever f, g; are differentiable. These
properties of the function p{, can be inferred from the following lemma.

Lemma 2.1. Let y:R" - (—c0, +o0] be a lower semicontinuous, con-
vex function, and assume that ¥{t) < +co for at least one vector teR". Let
also A be any vector in R" and ¢ >0 be a scalar. Then, the function p.(-, A)
defined by

pe(t, ) =inf{y(t—u)+A"u +3cllul*} (19)

is real-valued, convex, and continuously differentiable in ¢. Furthermore, the
infimum with respect to u in (19) is attained at a unique point for every
teR’.

Proof. The function p.(-, ¢) is the infimal convolution (Ref. 4) of the
convex function y and the quadratic convex function #: R” - R defined by

Bu)=A"u+3clul’. 20)
Since
h(u)>c  as |l > oo,

it follows from Corollary 9.2.2 of Ref. 4 that p(-, A) is convex and the
infimum in (19)is attained for each ¢ by some u. Since h is strictly convex and
real-valued, it follows that p.(- , A) is also real-valued and the minimum is
attained at a single point. Also, 4 is a smooth function (Ref. 4, p. 251); and,
from Corollary 26.3.2 of Ref. 4, it follows that p.(-,A) is an essentially
smooth convex function. Since it is also real-valued, it is continuously
differentiable.

The interpretation of p.(- , A ) in the proof above as the infimal convolu-
tion of v and h defined by (20) is useful in visualizing the form of p.(-, A).
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The epigraph of p.(- , A) is obtained as the vector sum of the epigraph of the
functions y(- ) and k(- ) (see Ref. 4, Theorem 5.4).

In some cases, it is useful to work with a dual expression for the function
(-, A)of (19). This expression is given in the following lemma, the proof of
which follows by straightforward application of Theorem 31.2 of Ref. 4
(Fenchel’s duality theorem).

Lemma 2.2. The function p.(-, A)of (19)is also given by

pe(t, ) =sup{t'u* — y*(u*) -iclu*-al}, 1)
where

y*(u*)=sup{u'u® —y(u)}

is the convex conjugate function of y. Furthermore, the supremum in (21) is
attained at a unique point «*(#, A, ¢), and we have

u*(t, A, c)=A+cu(t, A, c)=Vp.(t, 1), (22)

where u(z, A, ¢) is the unique point attaining the infimum in (19) and V,p, is
the gradient of p. with respect to &

The correspondence between Eqs. (22) and (18) is often convenient in
the analysis of specific cases.

It is to be noted that, even though we employed the additional vectors
Uy, ..., Un in order to introduce the algorithm, the numerical computation
itself need not involve these vectors, since, in the cases of interest to us, the
functions p., of (16)-(17) can be obtained in explicit form. Furthermore, the
minimizing vectors « £ of (18) can be expressed directly in terms of minimiz-
ing vectors x; in problem (16), since ufis uniquely defined in terms of x,, ¢,
¥k as the minimizing vector in (17). We provide the corresponding analysis
for the examples given in the previous section.

Example 2.1. For the case where () is given by (2), we obtain from

(17)-(18):
pelgix), yil = yigi(x) +ce[g ()],
Vi =yitagiln), i=1,...,m.
In this case, the iteration reduces to the ordinary multiplier iteration with

quadratic penalty function as proposed for equality constraints by Hestenes
(Ref. 5).
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Example 2.2. For y(f) given by (3), we obtain from (17)-(18) by
straightforward calculation:

peleix), yid = (1/2c f(max{0, yi+cugi(x)])’ - (v},
Yier=max[0, yi+cgi(x)], i=1,...,m.
The algorithm reduces to the multiplier method proposed for inequality
constraints by Rockafellar (Ref. 6).

Example 2.3. For the case of two-sided inequality constraints, v;(¢)
given by (4), we obtain
yilgi(x)—Bil +icclgi(x)=B:,  if B —yifcx < gi(x),
pelgi(x), yi]= yilgi(x)—ai]+3ce[gi(x) —a; ], it gi(x)=a; —yi/cs,
- (}’J‘; Y/ 2ck, otherwise;
yie +celgi(xe) - Bil, if B — yu/cr = gi(xx),
Yier = \yeteelgi()—ail,  if giln) < —yifer

0, otherwise.

Notice that this algorithm involves a single multiplier per two-sided con-
straint as compared with two multipliers per constraint required by a method
of multipliers which would separate the constraint

a=t=g,;

into two constraints
a =t and =8,

On the other hand, we note that it is possible to convert the two-sided
constraint

a;=t=g;
into the one-sided constraint

(t—a)(t—B:)=0

and subsequently employ the method of multipliers of Example 2.2, thus
also utilizing a single multiplier per constraint. This possibility was suggested
by an anonymous referee. A possible objection to this approach is that a
constraint of the form

[gi(x)—aillgi(x)—B:] =0
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involves a more complex nonlinearity than the equivalent constraint
o <g(x)=p:

(for example, it is nonlinear even if the function g; is linear). However, the
relative merit (if any) of the method proposed here versus the approach of
replacing the constraint

a; =gi(x)= B
by the constraint

(gi(x)—ea:][g:i(x)—B:]=0

can only be determined by extensive numerical experimentation on a variety
of test problems, which has not been undertaken.

Example 2.4. Consider the case where v;(f)=max{0, t]. Then, by
straightforward calculation, we obtain

gi(x)—(1=yi)*/2¢s, if g(x)=(1-ye)/cir
palgx), yl={ — )/ 2, if gi(x)=-yi/c,
yigi(x)+sce[g:(0)]%, if —yi/ce = gi(x)=(1-yi)/cx;
L, if & (x) = (1= yi )/ cxr
Yie1=10, if gi(xe) = - yi/cu

vitagil),  if-yifce <g(x)=(1-yk)/ c

The corresponding algorithm is a special case of an approximation method
for nondifferentiable optimization given in Ref. 7. Notice that a single
multiplier per term y;[g:(x)] is utilized. If one were to convert the problem to
a nonlinear programming problem of the form

m
minimize f(x)+ ¥ z,
i=1

subject to gi(x) =z, 0=z, i=1,...,m,

where z; are additional variables, then two multipliers per term y:{g:(x)]
would be required in order for the problem to be solved by the method of
multipliers.

The case where v,(¢) is given by (6) can be converted to the earlier case
by writing

|#| = —t + max[0, 2¢].
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Let v;(¢) be given by (7), where « is some positive number. Such terms
appear, for example, in the cost functional of minimum-fuel problems. We
have by straightforward calculation

[ a+yilgi(x)+al+icfgx)+al’, if gi(x)

= -—a—(l+y)/ e
—gi(x)~ (1 +yi)*/ 2, if — —(1+yk)/cx
=gi(x)
= ~(1+yi/c,
phleix), vl ={ yig(x)+heelao)l, it~ (L+yiYce
=g(x)
=(1-ye)/ e
gi(x)—(1—yi)*/2¢, if (1—yi)/cw = gulx)
=a+(1 _}’Ii)/fk
a+yelgix)—al+iclg(x)—al?, if a+(1—yiYce
L =gix);
and iteration (18) takes the form
(vii +clgilxe) + ], if gi(xx)
=-a—(1 "’)’;)/Ck,
-1, if —a—(1+yi)cx -
= gi{xx)
= —(L+ye) e,
Yert = { Vi +Cugi(x), if —(1+yi)/cx < gi(x)
=(1—yi)ck,
1, if (1—yx)/ck
=gilxe)
=a+(1-yk)/c
yi +cklgi(xe)— e, if @ +(1-yi)/ck
L = gi(xi).

Notice that a single multiplier per term v; is utilized in place of four
multipliers per term v; for the ordinary method of multipliers.

Similarly, one may obtain the function p., and the iteration (18) in
explicit form for the function v;(¢) given by (8). Again, only one multiplier
per term is required in place of r multipliers for the ordinary multiplier
method.

Example 2.5. Let ¥(¢) be given by (9). Then, we have by straightfor-
ward calculation:

prlgi(x), yil=[s:/ (si + c)Bcxlg(x ) + yiga(x) — (y£)*/ 25},
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and the iteration (18) takes the form
Yot = yietcilsigi(x) = yil/(si +ci).

Notice that the second derivative of p. (-, yi) given above is sici/(s: +ci)
and can be made arbitrarily small by choosing ¢, sufficiently small.

The case where () is given by (10) requires a slightly different
approximation method and a nonquadratic penalty function. It will be
examined after we provide algorithms for the minimax cases (see next
example).

Example 2.6. Let v(¢) be given by (11). From Eq. (21), we have
p(t, A)=sup{t'u*—y*(u*)—3clu* - [},

where the convex conjugate function of y can be easily calculated as

0, it Y u¥=1uf=0,i=1,...,r
'Y*(“*)= i=1 .
+00, otherwise.
Hence,
pt,A)= max {t'u*—(1/2c)lu*~A[P}. (23)
{', uf:l
=]
“i*zo

By introducing a Lagrange multiplier ¢ corresponding to
Y uf=1

i=1

and carrying out the straightforward optimization in (23), we obtain
pe(t, A)=(c) Z {max{0, A +elt—u( A M =48+ A, ).

The maximizing vector &* in (23) has coordinates given by

&:F_:maX{O,Ai'{"C[rI_#(I! A!C)]}! £=1,...,r| (24)

R R R e L
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and the Lagrange multiplier w1 (¢, A, ¢) corresponding to 1, A, ¢ is determined
from

i max{0, A; ¥c[t—un(t, A, )]} =1.

i=1
In terms of problem (1), a term of the form
ylg(x)] = max{g'(x), g*(x), ..., 8" (x)}

is approximated by
Pe[8(x), yi] = (ex) '§'1 {(max{0, yi+ci[gi(x)

—ug(x), yi, il — ()7 + g (x), yu, cil.

The gradient with respect to x of the expression above is obtained from
(22) and (24):

Voe. [g(x), ye] = __i1 Vgi(x) max{0, yi+celgi(x)—ulg(x), ye cill}.

The scalar w[g(x), yx, ck] is determined from
Tioy max{0, yi +ce[g(x)—p(g(x), ye, cll} = L.

It is easy to see that the computer can determine the value of p[g(x), y. ¢}

from the relation above with very little effort.
Regarding the multiplier iteration, we have [see (18), (22), (24)]

Yieer =max{0, yi+cu[gi(x) —ulglex), yr cilll,  i=1,...,r

The algorithm described above was tested on the following problem.

Problem 2.1. This is a minimax problem, described by

mxin max{g;(x), g2(x), ga(x), ga(x)},

where
gix)=xi+x3+2x3+x3—5x1—Sx2+21x3+ Txs +44,
g(x)=2x 1+ x5+ x3+2x;—x2—xs—5,
g(x)=xi+x3+xd+xi+x— x4 x3-x4—8,

ga(x)=x2+2x3+x3+2xi—x1—xs—10.

This problem was obtained by alteration of the well-known Rosen-Suzuki
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problem. The optimal value is zero, the optimal solution is
x*=0,1,2,-1),
and the final multiplier vector is
y*=1(0.25, 0.50, 0.25, 0).

We solved the problem with the method described above by using for
unconstrained minimization the Fletcher-Powell method available on the
IBM-360 as the FMFP scientific subroutine. The parameter EPS of the
subroutine, which controls minimization accuracy, was set at 107°; and the
parameter EST was set at —1. The starting multiplier vector was

yo=1(0, 0,0, 0);
and the starting vector x for the first minimization was

x=(0,0,0,0).
The starting vector x in each subsequent minimization was the final vector in
the previous minimization. The penalty parameter sequence was

Cr = 4k.

The optimal solution and multiplier vector and the optimal value function
were all obtained within five significant digits of accuracy in a total of 47
iterations of the Fletcher—Powell method and a total of five unconstrained
minimization cycles.

For the case where

v[g(x)] = max{|gi(x)], lg2(x), . . .. [g- (I},

a very similar calculation as the one for the previous case yields the
following:

pﬂk[g(x)! yk] = iél ﬁ;u[g(x)- h]‘*‘#-[g(x), Y Ci:l.

where

(yilei(x)—nlg(x), yo cell +icelgi(x) — u[g(x), yi cell’,

if yi+ce[gi(x)—u[g(x), yx c]] =0,
Pelg(x), yel ﬂ yilgi(x) + 1[g(x), yi cxll+3ci[gi(x) + (g (x), yi ccll’,

if yit+celgi(x)+ulglx), yr, c]l =0,
L = (yi)*/2¢x, otherwise.
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The gradient of p., [g(x). y|with respect to x is given by

Ve [g(x), ye]= _; Vei(x)a7 (x, yi, ci),

where

(vic+ce[gi(x)— plg(x), yo cell, if yi+ce[gi(x)
—u(g(x), ye cl1=0,
a¥x, yo c) =1 vitcelgx)+ulgk). yocell,  if yit+cegilx)
+u(g(x), ye cell =0,
L0, otherwise.

The scalar g[g(x), yx c] is determined from

ulg(), yi =0, i T max{0, lyit+egi(x)=1,

¥ max{0, |yk+cegi () — i [g(x), yince]}=1,  otherwise.
i=1

The multiplier iteration is given by
yi+l=E:‘k(xk1 Y, Ck), f=1,...,r,
where &} is defined above.
The case where v;(¢) is given by (13) and other related cases where vy is

the support function of a relatively simple set can be handled in a similar
manner.

A Variation of the Approximation Procedure. A slightly different type
of algorithm may be obtained when the functions y; in problem (1) are
monotonically nondecreasing. Then, we may consider the following prob-
lem which is equivalent to problem (1):

minimize f(x)+ ¥ vi[gi(x)—u],
i=1
subjectto x € X, u; =0, i=1,...,m,

and we may utilize a multiplier method for solving the problem above. An
example is provided for the case where y;(t) is given by (10), with « >0,
B>0. For this case, it is convenient to use a multiplier method with
exponential penalty function proposed in 1972 by Kort and the author (Ref.
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8). The penalty for this method is (1/c)y [exp(cu)— 1], and we have
pelgi(x), yi] = min{a exp[B(yi(x)— )]+ (1/ci)y[exple) — 11}
= ("16 )ckf(ck"-ﬂ)(yi)ﬁa’(ckﬂ?)

X [(ex +B8)/ i8] expf{{ciB/(cx + B)]gi(x)}-

The initial multiplier vector yo must have positive coordinates. The multi-
plier iteration is

i+t = yk explcetis),

which yields

yiar = ()N aB )Y ) explcuB/ (i + B)gi(xi )}

An application of this method, together with some computational
results, is given elsewhere (Ref. 9), where an algorithm is described for
solving electric network problems involving physical or ideal diodes. The
voltage—current characteristics of physical diodes are typically described by
sharply rising exponential functions, which cause formidable difficulties
during the computational solution of the related network problem. By using
the multiplier method with exponential penalty function described above,
all computational difficulties due to steep diode characteristics are bypassed.

We also note that the same exponential penalty function when used in
connection with the function

v[g(x)] = max{g'(x), g’(x), ..., g (x)}

yields the approximating function

Pelg(x), yel =(1/ci) log{ é. Vi exp[ckg"(x)]}

and the multiplier iteration

yikexplexg' (xi)]
Yi-1ykexpleeg’ (xi)]

i
Y11=

We close this section by mentioning that we expect that the main idea of
the approximation procedure provided here should find application in
problems involving ill-conditioning terms other than the ones considered
here. One such application has been described recently in a paper by Gabay
and Mercier (Ref. 10). The approximation method could also prove usefulin
generalized versions of problem (1), such as, for example, problems of the
form

minimize f(x)+h[x, yi(gi(x)), ..., Ym[gm ()],
subjectto x € X
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where v, i=1,..., m, are real-valued and
h:R™™" >R

is a continuously differentiable function. The terms y; could be approxi-
mated in the same way as earlier, and the same multiplier iterations could be
used. One such algorithm has been described in Ref. 7, and favorable
computational results have been reported. Other related algorithms are
described in Ref. 11, together with encouraging computational experience.
A local duality theory as well as analysis relating to the behavior of
approximation algorithms for the problem above where the function # is
nonlinear can be found in Ref. 12.

3. Convergence Analysis: Multiplier Methods with Partial Elimination of
Constraints

From the discussion given above, it should be evident that some of the
algorithms of the type that we have discussed are multiplier methods where
only some of the constraints (i.e., the constraints u; = 0) are eliminated by
means of a penalty function. For example, in the problem involving two-
sided inequality constraints:

minimize f(x),

subject to x € X, o; =g (x)—u; =, u; =0, i=1,...,m,
only the constraints &; =0 are eliminated by means of a penalty function.
The approximate minimization problem takes the form

Lot A
minimize f(x)+ ¥ (ykuri-]ickuaz).
i=1

subject to x € X, a;=g(x)-u; =8, i=1,...,m.
This problem may also be converted to the following problem involving
equality constraints by introducing additional variables z;, w;, i =1, ..., m,

m
minimize f(x)+ ¥, (yiu; +iceu?d),
i=]

subject to x € X, a;i+z]=gix)—u, gi(x)—w+wi=p,
i=1,...,m.

Under second-order sufficiency assumptions that we will introduce shortly,
the equality constrained problem and the inequality constrained problem
above are equivalent, in the sense that there is a one-to-one correspondence
between their Kuhn-Tucker pairs. Thus, even though we shall restrict
ourselves to the case of equality constraints, the analysis applies to problems
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with inequality constraints as well. This analytically convenient device has
been utilized in the past in connection with ordinary multiplier methods
(Ref. 2).

[n what follows in this section, we consider an optimization problem
involving equality constraints and a multiplier algorithm for its solution
involving partial elimination of constraints. A convergence and rate-of-
convergence result for this algorithm will be given. This result yields in a
straightforward manner convergence and rate-of-convergence results for
algorithms such as those considered in the previous section.

Consider the problem

minimize q(x),
subject to h;(x)=0, Li{(x)=0, i=1,...,m, (25)
Ry Py
Let £ be a local minimum for this problem. We assume that the functions
q:R" >R, h: R" >R, I:R">R
have Hessian matrices
Vq(x),  Vh(x), V(x)

which are Lipschitz continuous in a neighborhood of %. Furthermore, we
assume that the gradients

Vh(), V&), i=1,...,m  j=1,...,n,

are linearly independent. As a consequence, we obtain that there exist
unique Lagrange multipliers

A=Y, a=@Eh... L&),
such that
Vq(@)+ ¥ A'Vh(%)+ ¥ &'Vi(%)=0. (26)
i=1 i=1
Consider now the following multiplier iteration for solving problem
(25):
Aiﬂ-l:*;c-'_ckhi(xk)s i= 11 codty I, (2?)
where x, solves, within a neighborhood of %, the problem

minimize q(x)+ E {/l.fchs(x)‘i“%ck[h.-(x)]z}.
i=1 (28)

subjectto l;(x)=0, j=1,...,r.
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In the above relations, {c«} is as earlier a sequence of positive penalty
parameters, and

Ao=(Ad,...,ATY

is a given initial multiplier vector.

In what follows in this section, we shall investigate the convergence
properties of the multiplier method specified by (27)~(28). This method may
be cast into the usual form of the method of multipliers where all constraints
are eliminated by means of a penalty function by using the constraints

L(x)=0

to reduce the number of the variables of the problem in a manner which is
familiar from constructions used in the reduced gradient method (see, e.g.,
Ref. 13).

[ndeed, consider the n X r matrix

Vi(x)=[VIi(x), VIy(%), . .., VI(X)]
having as columns the gradients
Yix). Jj=Ll.sl

Since these gradients are linearly independent by assumption, one may find r
rows of VI(x) which are linearly independent. Assume, without loss of
generality, that the first r rows of VI(X) are linearly independent and parti-
tion the vector x into
B
x= ;
Xr

xg€R', xg€R".

where

Then, the system of equations

Li(x)=1li(xp, xg)=0, j=1,...,r, (29)
may be solved for xp in terms of xg in a neighborhood of
£=(%s, X

by using the implicit function theorem and the linear independence of the
first r rows of VI(X) (i.e., the invertibility of the Jacobian matrix correspond-
ing to the coordinates of xg). More specifically, there exists an ¢ >0 and a
function

@1 S(Zr; €)~> S(p; €),
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where
S(x_R; e)l S(fﬂ; E)

denote the open spheres of radius € centered at £z and £g, respectively,
with the following property:
ile(xe), xr]1=0, V¥;=1,...,r, xpeS(%r;e).

Furthermore, (¢(xr), x&) is the unique solution of the system of equa-
tions (29) within
S(Xp; €)X S(Xg; €).
As a result,
Xp = @(Xg).
In addition, all first and second derivatives of ¢ exist and are Lipschitz
continuous within $(fg; €).
Now, in view of the above construction, the algorithm specified by
(27)-(28) is, within a neighborhood of
X = (‘P(x_R)'s f’R),t
equivalent to the algorithm
Ak =Aktah(z), i=1,....m, (30)
where
zzeR"T

solves, within a neighborhood of

Z = Xg,
the problem
minimize §(z)+ 5. (AL (2) +eulh), 31)
and 4 and f; are real-valued functions defined on S(&g; €) by
4(z)=qle(2), z], (32)
h(z)=hle(2), 2], i=1,...,m. (33)

Notice that the algorithm specified by (30)~(31) is the ordinary method of
multipliers for the problem

minimize §(z),

subject to E,v(z) =0, i=1,...,m, (34)
which has

f=xg

as a local minimum.
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Now, based on the above construction, and utilizing a known result for
the method of multipliers with full elimination of constraints as applied to
problem (34), we can prove the following proposition which constitutes
both a convergence and a rate-of-convergence result for the algorithm
specified by (27)—«(28). The assumptions of the proposition constitute
second-order sufficiency conditions for problem (25).

i

Proposition 3.1. In addition to linear independence of the gradients
Vhi(x), Vii(x), i=1,...,m, ji=1,...,n
and Lipschitz continuity of the Hessian matrices .
qu(x), Vhi(x), Vzig(x), i=1,...,m, f=100st,

within a neighborhood of £, assume that

WP+ 5 IVh@+ S @YW >0,  (69)

for all we R" such that w #0 and
w'Vh(x)=0, w'VI(Z)=0 foralli=1,...,m, s I

Then, for any subset A< R™, there exists a scalar ¢* >0 (depending on A)
such that, for all

c=c* and A=A ...,A")eA,
the problem )

minimize g(x)+ 2,1 i () + 3 [,

: ; (36) ]
subjectto [;(x)=0, j=1,...,r =

has a unique solution within some neighborhood of £, denoted by x(A, ¢).
Furthermore, there exists a scalar M > 0 such that, forallc =c*and A € A,

k@, ¢)— &= MlA —A|/c, (37)
IX@, )= Al = MA = A]|/c, (38)

where A is the Lagrange multiplier vector for problem (25) [see (26)] and the
vector A (A, ¢) has coordinates given by

AN e)=A"+chi[x(A, ¢), i=1,...,m. 39)

Prior to proving Proposition 3.1, we show the following lemma.
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Lemma 3.1. Under the assumptions of Proposition 3.1, the gradients

V};.-(fg), F= iy

of the functions A; of (33) are linearly independent, and we have
Va(ta)+ ¥ A'Vhi(#) =0, (40)

where § is given by (32) [i.e., A is a Lagrange multiplier vector for problem
(34) as well as for problem (25)]. Furthermore, the Hessian matrices V>4(z),
V2h;(z)exist and are Lipschitz continuous in a neighborhood of the vector

f=x_g. -

In addition, we have
V(PR + 5 XV hi ) >0, (1)
for all v e R"™" such that v #0 and
v'Vhi(Zr)=0 foralli=1,...,m.
Proof. Consider the matrices
Vh(x)=[Vhi(x), Vho(x),. . ., Vh,(x)],

Vi(x)=[Vi(x), VIa(x), ..., VL(x)],

having as columns the gradients Vh;(x), V/;(x), and partition them as follows

Vah(x) Vsi(x)]_

Vgh(x)]’ W)= [vgt(x)

Vh(x)=[

In the above relations, Vgh(x), Vgl(x) are r X m and r X r matrices, respec-
tively, consisting of the partial derivatives of k;, [; with respect to the first r
components of x, i.e., the r-tuple of variables xg. From the implicit function
theorem and the definition of the implicit function ¢, we have, for all
Xg € S(x_R 'ué');

-_. Vo(xr)= —[Valle(xr), x=]'] 'Vel[e(xr), x&]'; 42)
and, in particular,
Vo(%r)= —[Val(Xs, £r )] Vr!(%s, %), (43)
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where Vo is the rx(n—r) Jacobian matrix of ¢. We also have, from

(32)-(33), :
V§(¥r)=Ve(fr)Vsq(Ts, ir)+Vrq(Xs, ¥r), (44)
Vhi(2r) = Vo (Zr)V shi(%s, £r)+V =hi(%5, %r), (45)
where
Veq, Vehie R’ and Vgq, Vahic R"™"

are the vectors of partial derivatives of g and A; with respect to the
coordinates of xg and xg, respectively.
Now, (26) can be written as

Veq(£)+Vph (DA +V5l(£)z =0, (46)
Veq()+Vgh () +Vgi(£)i =0. 47)

From (46), we obtain
= —[Vsl(®)] "' [Veq(2) + Vsh (D)A]; (48)

and substitution in (47) yields
Vrq (%)~ Vel(E) V6l (F)] 7' Vaq(®)+ [Veh (%)~ Val(F)Val(Z)] 'Vsh (D)X .
=0.

Using (42), (44), (45) in the above relation, we obtain

V§(zr)+ ¥ X‘Vhi(%c)=0,
i=1
which is identical to (40), which was to be proved.
To show linear independence of the gradients

Vf;l(x-ﬂ)t i=1,---,m,

assume that there exists another vector

A=A .., A™Y #4,

such that

Vﬁ(fﬂ)'l‘ Z ):"Vﬁ'g(fg) = 0,

i=1

and define }
i = —[Vpl(®)] ' [Veg(X)+Vph(E)A].

Then, by reversing the argument given above, we obtain

Veq(E)+Vh(EA +Vpl(E)d =0,  Veq(¥)+Vgh(X)A +Vgi(£)i =0.
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Comparing the above relations with (46)-(47), we obtain
Vh(£)A =)+ VIENE — ) =0.

Since the gradients Vh;(x), V/;(x) are linearly independent by assumption, it
follows that

A=g

a contradiction. Hence,
Vh(Er), i=1,...,m,

are linearly independent vectors.

_Toprove (4 1), we first express the matrix within braces in terms of g, A,
I, A, &. We have, by a straightforward calculation based on analysis given
in Ref. 13, pp. 268-269, and on the relations verified above

V{(£=)+ ¥ A'Vhi(ER)
i=1

. B B Sigy o E apciaaa [VO(ER)
=Vo(e), Lo V() + 3 KVh(@)+ T V4@ g |
i= I= n—r
where [, is the (n —r)x(n —r) identity matrix. Now, based on the above
relation and the expressions (43) and (45) for V(&g ) and Vi;(Zg), it can be
seen that (41), which is to be proved, is equivalent to the assumption (35).

O

Proof of Proposition 3.1. Lemma 3.1 guarantees that, under the
assumptions of Proposition 3.1, one may apply the result of Proposition 1 of
Ref. 14 (also, Proposition 1 in Refs. 2, 15) to problem (34). This result
yields that, given any subset A< R™, there exists a scalar ¢* > 0 (depending
on A) such that, for all c =c¢* and A € A, the problem

minimize §(z)+ g W)+l @B (49)

has a unique solution z(A, ¢) within some neighborhood of Z = . Further-
more, there exists a scalar M >0 such that, for all c =c* and A € A,

llz(r, )=zl = MlIA - All/e, (50)
A +chlz(A, )] = Al =< MiA —A]l/c. (51)

Denote
506)= [wi"(f\“'c C))]]. (52)
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Since problem (49) is equivalent to problem (36) in a neighborhood of %, the
first part of Proposition 3.1 follows. Since ¢ is Lipschitz continuous in a
neighborhood of 7 = £z, we have, for some L >0,

lelzA, N—e @M=Lz, c)—zl|=< LM — A]/c. (53)

Combining (50)-(53) and (39), we obtain, for some M >0 and all ¢ =c¢*,
and A € A,

[x@, c)—zll=Mlr =Xl/c,  [IXQ, c)—All=<M]A —A]|/c,

which were to be proved. O
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