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Nedić, and Asuman E. Ozdaglar, 2003, ISBN 1-886529-45-0, 560 pages

12. Network Optimization: Continuous and Discrete Models, by Dimitri
P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages

13. Network Flows and Monotropic Optimization, by R. Tyrrell Rockafel-
lar, 1998, ISBN 1-886529-06-X, 634 pages

14. Introduction to Linear Optimization, by Dimitris Bertsimas and John
N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages

15. Parallel and Distributed Computation: Numerical Methods, by Dim-
itri P. Bertsekas and John N. Tsitsiklis, 1997, ISBN 1-886529-01-9,

718 pages

16. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John N.
Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages

17. Constrained Optimization and Lagrange Multiplier Methods, by Dim-
itri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages

18. Stochastic Optimal Control: The Discrete-Time Case, by Dimitri P.
Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5, 330 pages



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . p. 1

1.1. Structure of Dynamic Programming Problems . . . . . . . p. 2
1.2. Abstract Dynamic Programming Models . . . . . . . . . . p. 5

1.2.1. Problem Formulation . . . . . . . . . . . . . . . . p. 5
1.2.2. Monotonicity and Contraction Properties . . . . . . . p. 7
1.2.3. Some Examples . . . . . . . . . . . . . . . . . . p. 10
1.2.4. Reinforcement Learning - Projected and Aggregation . . . .

Bellman Equations . . . . . . . . . . . . . . . . p. 24
1.2.5. Reinforcement Learning - Temporal Difference and . . . . .

Proximal Algorithms . . . . . . . . . . . . . . . . p. 26
1.3. Reinforcement Learning - Approximation in Value Space . . . p. 29

1.3.1. Approximation in Value Space for . . . . . . . . . . . .
Markovian Decision Problems . . . . . . . . . . . . p. 29

1.3.2. Approximation in Value Space and . . . . . . . . . . . .
Newton’s Method . . . . . . . . . . . . . . . . . p. 35

1.3.3. Policy Iteration and Newton’s Method . . . . . . . . p. 39
1.3.4. Approximation in Value Space for General Abstract . . . .

Dynamic Programming . . . . . . . . . . . . . . . p. 41
1.4. Organization of the Book . . . . . . . . . . . . . . . . p. 41
1.5. Notes, Sources, and Exercises . . . . . . . . . . . . . . . p. 45

2. Contractive Models . . . . . . . . . . . . . . . . . p. 53

2.1. Bellman’s Equation and Optimality Conditions . . . . . . . p. 54
2.2. Limited Lookahead Policies . . . . . . . . . . . . . . . p. 61
2.3. Value Iteration . . . . . . . . . . . . . . . . . . . . . p. 66

2.3.1. Approximate Value Iteration . . . . . . . . . . . . . p. 67
2.4. Policy Iteration . . . . . . . . . . . . . . . . . . . . . p. 70

2.4.1. Approximate Policy Iteration . . . . . . . . . . . . p. 73
2.4.2. Approximate Policy Iteration Where Policies Converge . p. 75

2.5. Optimistic Policy Iteration and λ-Policy Iteration . . . . . . p. 77
2.5.1. Convergence of Optimistic Policy Iteration . . . . . . p. 79
2.5.2. Approximate Optimistic Policy Iteration . . . . . . . p. 84
2.5.3. Randomized Optimistic Policy Iteration . . . . . . . . p. 87

v



vi Contents

2.6. Asynchronous Algorithms . . . . . . . . . . . . . . . . p. 91
2.6.1. Asynchronous Value Iteration . . . . . . . . . . . . p. 91
2.6.2. Asynchronous Policy Iteration . . . . . . . . . . . . p. 98
2.6.3. Optimistic Asynchronous Policy Iteration with a . . . . . .

Uniform Fixed Point . . . . . . . . . . . . . . . p. 103
2.7. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 110

3. Semicontractive Models . . . . . . . . . . . . . . p. 121

3.1. Pathologies of Noncontractive DP Models . . . . . . . . p. 123
3.1.1. Deterministic Shortest Path Problems . . . . . . . p. 127
3.1.2. Stochastic Shortest Path Problems . . . . . . . . . p. 129
3.1.3. The Blackmailer’s Dilemma . . . . . . . . . . . . p. 131
3.1.4. Linear-Quadratic Problems . . . . . . . . . . . . p. 134
3.1.5. An Intuitive View of Semicontractive Analysis . . . . p. 139

3.2. Semicontractive Models and Regular Policies . . . . . . . p. 141
3.2.1. S-Regular Policies . . . . . . . . . . . . . . . . p. 144
3.2.2. Restricted Optimization over S-Regular Policies . . . p. 146
3.2.3. Policy Iteration Analysis of Bellman’s Equation . . . p. 152
3.2.4. Optimistic Policy Iteration and λ-Policy Iteration . . p. 160
3.2.5. A Mathematical Programming Approach . . . . . . p. 164

3.3. Irregular Policies/Infinite Cost Case . . . . . . . . . . p. 165
3.4. Irregular Policies/Finite Cost Case - A Perturbation . . . . . .

Approach . . . . . . . . . . . . . . . . . . . . . . p. 171
3.5. Applications in Shortest Path and Other Contexts . . . . p. 177

3.5.1. Stochastic Shortest Path Problems . . . . . . . . . p. 178
3.5.2. Affine Monotonic Problems . . . . . . . . . . . . p. 186
3.5.3. Robust Shortest Path Planning . . . . . . . . . . p. 195
3.5.4. Linear-Quadratic Optimal Control . . . . . . . . . p. 205
3.5.5. Continuous-State Deterministic Optimal Control . . . p. 207

3.6. Algorithms . . . . . . . . . . . . . . . . . . . . . . p. 211
3.6.1. Asynchronous Value Iteration . . . . . . . . . . . p. 211
3.6.2. Asynchronous Policy Iteration . . . . . . . . . . . p. 212

3.7. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 219

4. Noncontractive Models . . . . . . . . . . . . . . p. 231

4.1. Noncontractive Models - Problem Formulation . . . . . . p. 233
4.2. Finite Horizon Problems . . . . . . . . . . . . . . . . p. 235
4.3. Infinite Horizon Problems . . . . . . . . . . . . . . . p. 241

4.3.1. Fixed Point Properties and Optimality Conditions . . p. 244
4.3.2. Value Iteration . . . . . . . . . . . . . . . . . . p. 256
4.3.3. Exact and Optimistic Policy Iteration - . . . . . . . . . .

λ-Policy Iteration . . . . . . . . . . . . . . . . p. 260
4.4. Regularity and Nonstationary Policies . . . . . . . . . . p. 265

4.4.1. Regularity and Monotone Increasing Models . . . . . p. 271



Contents vii

4.4.2. Nonnegative Cost Stochastic Optimal Control . . . . p. 273
4.4.3. Discounted Stochastic Optimal Control . . . . . . . p. 276
4.4.4. Convergent Models . . . . . . . . . . . . . . . . p. 278

4.5. Stable Policies for Deterministic Optimal Control . . . . . p. 282
4.5.1. Forcing Functions and p-Stable Policies . . . . . . . p. 286
4.5.2. Restricted Optimization over Stable Policies . . . . . p. 289
4.5.3. Policy Iteration Methods . . . . . . . . . . . . . p. 301

4.6. Infinite-Spaces Stochastic Shortest Path Problems . . . . . p. 307
4.6.1. The Multiplicity of Solutions of Bellman’s Equation . p. 315
4.6.2. The Case of Bounded Cost per Stage . . . . . . . . p. 317

4.7. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 320

5. Sequential Zero-Sum Games and Minimax Control . . p. 337

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . p. 338
5.2. Relations to Single Player Abstract DP Formulations . . . p. 344
5.3. A New PI Algorithm for Abstract Minimax DP Problems . p. 350
5.4. Convergence Analysis . . . . . . . . . . . . . . . . . p. 364
5.5. Approximation by Aggregation . . . . . . . . . . . . . p. 371
5.6. Notes and Sources . . . . . . . . . . . . . . . . . . p. 373

Appendix A: Notation and Mathematical Conventions . . p. 377

A.1. Set Notation and Conventions . . . . . . . . . . . . . p. 377
A.2. Functions . . . . . . . . . . . . . . . . . . . . . . p. 379

Appendix B: Contraction Mappings . . . . . . . . . . p. 381

B.1. Contraction Mapping Fixed Point Theorems . . . . . . . p. 381
B.2. Weighted Sup-Norm Contractions . . . . . . . . . . . p. 385

References . . . . . . . . . . . . . . . . . . . . . p. 391

Index . . . . . . . . . . . . . . . . . . . . . . . p. 401





Preface of the First Edition

This book aims at a unified and economical development of the core the-
ory and algorithms of total cost sequential decision problems, based on
the strong connections of the subject with fixed point theory. The analy-
sis focuses on the abstract mapping that underlies dynamic programming
(DP for short) and defines the mathematical character of the associated
problem. Our discussion centers on two fundamental properties that this
mapping may have: monotonicity and (weighted sup-norm) contraction. It
turns out that the nature of the analytical and algorithmic DP theory is
determined primarily by the presence or absence of these two properties,
and the rest of the problem’s structure is largely inconsequential.

In this book, with some minor exceptions, we will assume that mono-
tonicity holds. Consequently, we organize our treatment around the con-
traction property, and we focus on four main classes of models:

(a) Contractive models, discussed in Chapter 2, which have the richest
and strongest theory, and are the benchmark against which the the-
ory of other models is compared. Prominent among these models are
discounted stochastic optimal control problems. The development of
these models is quite thorough and includes the analysis of recent ap-
proximation algorithms for large-scale problems (neuro-dynamic pro-
gramming, reinforcement learning).

(b) Semicontractive models, discussed in Chapter 3 and parts of Chap-
ter 4. The term “semicontractive” is used qualitatively here, to refer
to a variety of models where some policies have a regularity/contrac-
tion-like property but others do not. A prominent example is stochas-
tic shortest path problems, where one aims to drive the state of
a Markov chain to a termination state at minimum expected cost.
These models also have a strong theory under certain conditions, of-
ten nearly as strong as those of the contractive models.

(c) Noncontractive models, discussed in Chapter 4, which rely on just
monotonicity. These models are more complex than the preceding
ones and much of the theory of the contractive models generalizes in
weaker form, if at all. For example, in general the associated Bell-
man equation need not have a unique solution, the value iteration
method may work starting with some functions but not with others,
and the policy iteration method may not work at all. Infinite hori-
zon examples of these models are the classical positive and negative
DP problems, first analyzed by Dubins and Savage, Blackwell, and

ix
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Strauch, which are discussed in various sources. Some new semicon-
tractive models are also discussed in this chapter, further bridging
the gap between contractive and noncontractive models.

(d) Restricted policies and Borel space models, which are discussed
in Chapter 5. These models are motivated in part by the complex
measurability questions that arise in mathematically rigorous theories
of stochastic optimal control involving continuous probability spaces.
Within this context, the admissible policies and DP mapping are
restricted to have certain measurability properties, and the analysis
of the preceding chapters requires modifications. Restricted policy
models are also useful when there is a special class of policies with
favorable structure, which is “closed” with respect to the standard DP
operations, in the sense that analysis and algorithms can be confined
within this class.

We do not consider average cost DP problems, whose character bears
a much closer connection to stochastic processes than to total cost prob-
lems. We also do not address specific stochastic characteristics underlying
the problem, such as for example a Markovian structure. Thus our re-
sults apply equally well to Markovian decision problems and to sequential
minimax problems. While this makes our development general and a con-
venient starting point for the further analysis of a variety of different types
of problems, it also ignores some of the interesting characteristics of special
types of DP problems that require an intricate probabilistic analysis.

Let us describe the research content of the book in summary, de-
ferring a more detailed discussion to the end-of-chapter notes. A large
portion of our analysis has been known for a long time, but in a somewhat
fragmentary form. In particular, the contractive theory, first developed by
Denardo [Den67], has been known for the case of the unweighted sup-norm,
but does not cover the important special case of stochastic shortest path
problems where all policies are proper. Chapter 2 transcribes this theory
to the weighted sup-norm contraction case. Moreover, Chapter 2 develops
extensions of the theory to approximate DP, and includes material on asyn-
chronous value iteration (based on the author’s work [Ber82], [Ber83]), and
asynchronous policy iteration algorithms (based on the author’s joint work
with Huizhen (Janey) Yu [BeY10a], [BeY10b], [YuB11a]). Most of this
material is relatively new, having been presented in the author’s recent
book [Ber12a] and survey paper [Ber12b], with detailed references given
there. The analysis of infinite horizon noncontractive models in Chapter 4
was first given in the author’s paper [Ber77], and was also presented in the
book by Bertsekas and Shreve [BeS78], which in addition contains much
of the material on finite horizon problems, restricted policies models, and
Borel space models. These were the starting point and main sources for
our development.

The new research presented in this book is primarily on the semi-
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contractive models of Chapter 3 and parts of Chapter 4. Traditionally,
the theory of total cost infinite horizon DP has been bordered by two ex-
tremes: discounted models, which have a contractive nature, and positive
and negative models, which do not have a contractive nature, but rely
on an enhanced monotonicity structure (monotone increase and monotone
decrease models, or in classical DP terms, positive and negative models).
Between these two extremes lies a gray area of problems that are not con-
tractive, and either do not fit into the categories of positive and negative
models, or possess additional structure that is not exploited by the theory
of these models. Included are stochastic shortest path problems, search
problems, linear-quadratic problems, a host of queueing problems, multi-
plicative and exponential cost models, and others. Together these problems
represent an important part of the infinite horizon total cost DP landscape.
They possess important theoretical characteristics, not generally available
for positive and negative models, such as the uniqueness of solution of Bell-
man’s equation within a subset of interest, and the validity of useful forms
of value and policy iteration algorithms.

Our semicontractive models aim to provide a unifying abstract DP
structure for problems in this gray area between contractive and noncon-
tractive models. The analysis is motivated in part by stochastic shortest
path problems, where there are two types of policies: proper , which are
the ones that lead to the termination state with probability one from all
starting states, and improper , which are the ones that are not proper.
Proper and improper policies can also be characterized through their Bell-
man equation mapping: for the former this mapping is a contraction, while
for the latter it is not. In our more general semicontractive models, policies
are also characterized in terms of their Bellman equation mapping, through
a notion of regularity, which generalizes the notion of a proper policy and
is related to classical notions of asymptotic stability from control theory.

In our development a policy is regular within a certain set if its cost
function is the unique asymptotically stable equilibrium (fixed point) of
the associated DP mapping within that set. We assume that some policies
are regular while others are not , and impose various assumptions to ensure
that attention can be focused on the regular policies. From an analytical
point of view, this brings to bear the theory of fixed points of monotone
mappings. From the practical point of view, this allows application to a
diverse collection of interesting problems, ranging from stochastic short-
est path problems of various kinds, where the regular policies include the
proper policies, to linear-quadratic problems, where the regular policies
include the stabilizing linear feedback controllers.

The definition of regularity is introduced in Chapter 3, and its theoret-
ical ramifications are explored through extensions of the classical stochastic
shortest path and search problems. In Chapter 4, semicontractive models
are discussed in the presence of additional monotonicity structure, which
brings to bear the properties of positive and negative DP models. With the
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aid of this structure, the theory of semicontractive models can be strength-
ened and can be applied to several additional problems, including risk-
sensitive/exponential cost problems.

The book has a theoretical research monograph character, but re-
quires a modest mathematical background for all chapters except the last
one, essentially a first course in analysis. Of course, prior exposure to DP
will definitely be very helpful to provide orientation and context. A few
exercises have been included, either to illustrate the theory with exam-
ples and counterexamples, or to provide applications and extensions of the
theory. Solutions of all the exercises can be found in Appendix D, at the
book’s internet site

http://www.athenasc.com/abstractdp.html

and at the author’s web site

http://web.mit.edu/dimitrib/www/home.html

Additional exercises and other related material may be added to these sites
over time.

I would like to express my appreciation to a few colleagues for inter-
actions, recent and old, which have helped shape the form of the book. My
collaboration with Steven Shreve on our 1978 book provided the motivation
and the background for the material on models with restricted policies and
associated measurability questions. My collaboration with John Tsitsiklis
on stochastic shortest path problems provided inspiration for the work on
semicontractive models. My collaboration with Janey (Huizhen) Yu played
an important role in the book’s development, and is reflected in our joint
work on asynchronous policy iteration, on perturbation models, and on
risk-sensitive models. Moreover Janey contributed significantly to the ma-
terial on semicontractive models with many insightful suggestions. Finally,
I am thankful to Mengdi Wang, who went through portions of the book
with care, and gave several helpful comments.

Dimitri P. Bertsekas

Spring 2013
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Preface to the Second Edition

The second edition aims primarily to amplify the presentation of the semi-
contractive models of Chapter 3 and Chapter 4, and to supplement it with
a broad spectrum of research results that I obtained and published in jour-
nals and reports since the first edition was written. As a result, the size
of this material more than doubled, and the size of the book increased by
about 40%.

In particular, I have thoroughly rewritten Chapter 3, which deals with
semicontractive models where stationary regular policies are sufficient. I
expanded and streamlined the theoretical framework, and I provided new
analyses of a number of shortest path-type applications (deterministic,
stochastic, affine monotonic, exponential cost, and robust/minimax), as
well as several types of optimal control problems with continuous state
space (including linear-quadratic, regulation, and planning problems).

In Chapter 4, I have extended the notion of regularity to nonstation-
ary policies (Section 4.4), aiming to explore the structure of the solution set
of Bellman’s equation, and the connection of optimality with other struc-
tural properties of optimal control problems. As an application, I have
discussed in Section 4.5 the relation of optimality with classical notions
of stability and controllability in continuous-spaces deterministic optimal
control. In Section 4.6, I have similarly extended the notion of a proper
policy to continuous-spaces stochastic shortest path problems.

I have also revised Chapter 1 a little (mainly with the addition of
Section 1.2.5 on the relation between proximal algorithms and temporal
difference methods), added to Chapter 2 some analysis relating to λ-policy
iteration and randomized policy iteration algorithms (Section 2.5.3), and I
have also added several new exercises (with complete solutions) to Chapters
1-4. Additional material relating to various applications can be found in
some of my journal papers, reports, and video lectures on semicontractive
models, which are posted at my web site.

In addition to the changes in Chapters 1-4, I have also eliminated from
the second edition the analysis that deals with restricted policies (Chap-
ter 5 and Appendix C of the first edition). This analysis is motivated in
part by the complex measurability questions that arise in mathematically
rigorous theories of stochastic optimal control with Borel state and control
spaces. This material is covered in Chapter 6 of the monograph by Bert-
sekas and Shreve [BeS78], and followup research on the subject has been
limited. Thus, I decided to just post Chapter 5 and Appendix C of the first
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edition at the book’s web site (40 pages), and omit them from the second
edition. As a result of this choice, the entire book now requires only a
modest mathematical background, essentially a first course in analysis and
in elementary probability.

The range of applications of dynamic programming has grown enor-
mously in the last 25 years, thanks to the use of approximate simulation-
based methods for large and challenging problems. Because approximations
are often tied to special characteristics of specific models, their coverage in
this book is limited to general discussions in Chapter 1 and to error bounds
given in Chapter 2. However, much of the work on approximation methods
so far has focused on finite-state discounted, and relatively simple deter-
ministic and stochastic shortest path problems, for which there is solid and
robust analytical and algorithmic theory (part of Chapters 2 and 3 in this
monograph). As the range of applications becomes broader, I expect that
the level of mathematical understanding projected in this book will become
essential for the development of effective and reliable solution methods. In
particular, much of the new material in this edition deals with infinite-state
and/or complex shortest path type-problems, whose approximate solution
will require new methodologies that transcend the current state of the art.

Dimitri P. Bertsekas

January 2018



Preface xv

Preface to the Third Edition

The third edition is based on the same theoretical framework as the sec-
ond edition, but contains two major additions. The first is to highlight
the central role of abstract DP methods in the conceptualization of re-
inforcement learning and approximate DP methods, as described in the
author’s recent book “Lessons from AlphaZero for Optimal, Model Predic-
tive, and Adaptive Control,” Athena Scientific, 2022. The main idea here
is that approximation in value space with one-step lookahead amounts to
a step of Newton’s method for solving the abstract Bellman’s equation.
This material is included in summary form in view of its strong reliance on
abstract DP visualization. Our presentation relies primarily on geometric
illustrations rather than mathematical analysis, and is given in Section 1.3.

The second addition is a new Chapter 5 on abstract DP methods for
minimax and zero sum game problems, which is based on the author’s re-
cent paper [Ber21c]. A primary motivation here is the resolution of some
long-standing convergence difficulties of the “natural” policy iteration algo-
rithm, which have been known since the Pollatschek and Avi-Itzhak method
[PoA69] for finite-state Markov games. Mathematically, this “natural” al-
gorithm is a form of Newton’s method for solving the corresponding Bell-
man’s equation, but Newton’s method, contrary to the case of single-player
DP problems, is not globally convergent in the case of a minimax problem,
because the Bellman operator may have components that are neither con-
vex nor concave. Our approach in Chapter 5 has been to introduce a special
type of abstract Bellman operator for minimax problems, and modify the
standard PI algorithm along the lines of the asynchronous optimistic PI al-
gorithm of Section 2.6.3, which involves a parametric contraction mapping
with a uniform fixed point.

The third edition also contains a number of small corrections and
editorial changes. The author wishes to thank the contributions of several
colleagues in this regard, and particularly Yuchao Li, who proofread with
care large portions of the book.

Dimitri P. Bertsekas

February 2022
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2 Introduction Chap. 1

1.1 STRUCTURE OF DYNAMIC PROGRAMMINGPROBLEMS

Dynamic programming (DP for short) is the principal method for analysis
of a large and diverse class of sequential decision problems. Examples are
deterministic and stochastic optimal control problems with a continuous
state space, Markov and semi-Markov decision problems with a discrete
state space, minimax problems, and sequential zero-sum games. While the
nature of these problems may vary widely, their underlying structures turn
out to be very similar. In all cases there is an underlying mapping that
depends on an associated controlled dynamic system and corresponding
cost per stage. This mapping, the DP (or Bellman) operator, provides a
compact “mathematical signature” of the problem. It defines the cost func-
tion of policies and the optimal cost function, and it provides a convenient
shorthand notation for algorithmic description and analysis.

More importantly, the structure of the DP operator defines the math-
ematical character of the associated problem. The purpose of this book is to
provide an analysis of this structure, centering on two fundamental prop-
erties: monotonicity and (weighted sup-norm) contraction. It turns out
that the nature of the analytical and algorithmic DP theory is determined
primarily by the presence or absence of one or both of these two properties,
and the rest of the problem’s structure is largely inconsequential.

A Deterministic Optimal Control Example

To illustrate our viewpoint, let us consider a discrete-time deterministic
optimal control problem described by a system equation

xk+1 = f(xk, uk), k = 0, 1, . . . . (1.1)

Here xk is the state of the system taking values in a set X (the state space),
and uk is the control taking values in a set U (the control space). † At stage
k, there is a cost

αkg(xk, uk)

incurred when uk is applied at state xk, where α is a scalar in (0, 1] that has
the interpretation of a discount factor when α < 1. The controls are chosen
as a function of the current state, subject to a constraint that depends on
that state. In particular, at state x the control is constrained to take values
in a given set U(x) ⊂ U . Thus we are interested in optimization over the
set of (nonstationary) policies

Π =
{

{µ0, µ1, . . .} | µk ∈ M, k = 0, 1, . . .
}

,

† Our discussion of this section is somewhat informal, without strict adher-

ence to mathematical notation and rigor. We will introduce a rigorous mathe-
matical framework later.
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where M is the set of functions µ : X #→ U defined by

M =
{

µ | µ(x) ∈ U(x), ∀ x ∈ X
}

.

The total cost of a policy π = {µ0, µ1, . . .} over an infinite number of
stages (an infinite horizon) and starting at an initial state x0 is the limit
superior of the N -step costs

Jπ(x0) = lim sup
N→∞

N−1
∑

k=0

αkg
(

xk, µk(xk)
)

, (1.2)

where the state sequence {xk} is generated by the deterministic system
(1.1) under the policy π:

xk+1 = f
(

xk, µk(xk)
)

, k = 0, 1, . . . .

(We use limit superior rather than limit to cover the case where the limit
does not exist.) The optimal cost function is

J*(x) = inf
π∈Π

Jπ(x), x ∈ X.

For any policy π = {µ0, µ1, . . .}, consider the policy π1 = {µ1, µ2, . . .}
and write by using Eq. (1.2),

Jπ(x) = g
(

x, µ0(x)
)

+ αJπ1

(

f(x, µ0(x))
)

.

We have for all x ∈ X

J*(x) = inf
π={µ0,π1}∈Π

{

g
(

x, µ0(x)
)

+ αJπ1

(

f(x, µ0(x))
)

}

= inf
µ0∈M

{

g
(

x, µ0(x)
)

+ α inf
π1∈Π

Jπ1

(

f(x, µ0(x))
)

}

= inf
µ0∈M

{

g
(

x, µ0(x)
)

+ αJ*
(

f(x, µ0(x))
)

}

.

The minimization over µ0 ∈ M can be written as minimization over all
u ∈ U(x), so we can write the preceding equation as

J*(x) = inf
u∈U(x)

{

g(x, u) + αJ*
(

f(x, u)
)

}

, ∀ x ∈ X. (1.3)

This equation is an example of Bellman’s equation, which plays a
central role in DP analysis and algorithms. If it can be solved for J*,
an optimal stationary policy {µ∗, µ∗, . . .} may typically be obtained by
minimization of the right-hand side for each x, i.e.,

µ∗(x) ∈ arg min
u∈U(x)

{

g(x, u) + αJ*
(

f(x, u)
)

}

, ∀ x ∈ X. (1.4)
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We now note that both Eqs. (1.3) and (1.4) can be stated in terms of
the expression

H(x, u, J) = g(x, u) + αJ
(

f(x, u)
)

, x ∈ X, u ∈ U(x).

Defining
(TµJ)(x) = H

(

x, µ(x), J
)

, x ∈ X,

and
(TJ)(x) = inf

u∈U(x)
H(x, u, J), x ∈ X,

we see that Bellman’s equation (1.3) can be written compactly as

J* = TJ*,

i.e., J* is the fixed point of T , viewed as a mapping from the set of functions
onX into itself. Moreover, it can be similarly seen that Jµ, the cost function
of the stationary policy {µ, µ, . . .}, is a fixed point of Tµ. In addition, the
optimality condition (1.4) can be stated compactly as

Tµ∗J* = TJ*.

We will see later that additional properties, as well as a variety of algorithms
for finding J* can be stated and analyzed using the mappings T and Tµ.

The mappings Tµ can also be used in the context of DP problems
with a finite number of stages (a finite horizon). In particular, for a given
policy π = {µ0, µ1, . . .} and a terminal cost αN J̄(xN ) for the state xN at
the end of N stages, consider the N -stage cost function

Jπ,N(x0) = αN J̄(xN ) +
N−1
∑

k=0

αkg
(

xk, µk(xk)
)

. (1.5)

Then it can be verified by induction that for all initial states x0, we have

Jπ,N (x0) = (Tµ0Tµ1 · · ·TµN−1 J̄)(x0). (1.6)

Here Tµ0Tµ1 · · ·TµN−1 is the composition of the mappings Tµ0 , Tµ1 , . . . TµN−1 ,
i.e., for all J ,

(Tµ0Tµ1J)(x) =
(

Tµ0(Tµ1J)
)

(x), x ∈ X,

and more generally

(Tµ0Tµ1 · · ·TµN−1J)(x) =
(

Tµ0(Tµ1(· · · (TµN−1J)))
)

(x), x ∈ X,

(our notational conventions are summarized in Appendix A). Thus the
finite horizon cost functions Jπ,N of π can be defined in terms of the map-
pings Tµ [cf. Eq. (1.6)], and so can the infinite horizon cost function Jπ:

Jπ(x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X, (1.7)

where J̄ is the zero function, J̄(x) = 0 for all x ∈ X .
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Connection with Fixed Point Methodology

The Bellman equation (1.3) and the optimality condition (1.4), stated in
terms of the mappings Tµ and T , highlight a central theme of this book,
which is that DP theory is intimately connected with the theory of abstract
mappings and their fixed points. Analogs of the Bellman equation, J* =
TJ*, optimality conditions, and other results and computational methods
hold for a great variety of DP models, and can be stated compactly as
described above in terms of the corresponding mappings Tµ and T . The
gain from this abstraction is greater generality and mathematical insight,
as well as a more unified, economical, and streamlined analysis.

1.2 ABSTRACT DYNAMIC PROGRAMMING MODELS

In this section we formally introduce and illustrate with examples an ab-
stract DP model, which embodies the ideas just discussed in Section 1.1.

1.2.1 Problem Formulation

Let X and U be two sets, which we loosely refer to as a set of “states”
and a set of “controls,” respectively. For each x ∈ X , let U(x) ⊂ U be a
nonempty subset of controls that are feasible at state x. We denote by M
the set of all functions µ : X #→ U with µ(x) ∈ U(x), for all x ∈ X .

In analogy with DP, we refer to sequences π = {µ0, µ1, . . .}, with
µk ∈ M for all k, as “nonstationary policies,” and we refer to a sequence
{µ, µ, . . .}, with µ ∈ M, as a “stationary policy.” In our development,
stationary policies will play a dominant role, and with slight abuse of ter-
minology, we will also refer to any µ ∈ M as a “policy” when confusion
cannot arise.

Let R(X) be the set of real-valued functions J : X #→ &, and let
H : X ×U ×R(X) #→ & be a given mapping. † For each policy µ ∈ M, we
consider the mapping Tµ : R(X) #→ R(X) defined by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X, J ∈ R(X),

and we also consider the mapping T defined by ‡

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ R(X).

† Our notation and mathematical conventions are outlined in Appendix A.

In particular, we denote by ! the set of real numbers, and by !n the space of
n-dimensional vectors with real components.

‡ We assume that H , TµJ , and TJ are real-valued for J ∈ R(X) in the

present chapter and in Chapter 2. In Chapters 3 and 4 we will allow H(x, u, J),
and hence also (TµJ)(x) and (TJ)(x), to take the values ∞ and −∞.
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We will generally refer to T and Tµ as the (abstract) DP mappings or DP
operators or Bellman operators (the latter name is common in the artificial
intelligence and reinforcement learning literature).

Similar to the deterministic optimal control problem of the preceding
section, the mappings Tµ and T serve to define a multistage optimization
problem and a DP-like methodology for its solution. In particular, for some
function J̄ ∈ R(X), and nonstationary policy π = {µ0, µ1, . . .}, we define
for each integer N ≥ 1 the functions

Jπ,N (x) = (Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

where Tµ0Tµ1 · · ·TµN−1 denotes the composition of the mappings Tµ0 , Tµ1 ,
. . . , TµN−1 , i.e.,

Tµ0Tµ1 · · ·TµN−1J =
(

Tµ0(Tµ1(· · · (TµN−2(TµN−1J))) · · ·)
)

, J ∈ R(X).

We view Jπ,N as the “N -stage cost function” of π [cf. Eq. (1.5)]. Consider
also the function

Jπ(x) = lim sup
N→∞

Jπ,N (x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

which we view as the “infinite horizon cost function” of π [cf. Eq. (1.7); we
use lim sup for generality, since we are not assured that the limit exists].
We want to minimize Jπ over π, i.e., to find

J*(x) = inf
π

Jπ(x), x ∈ X,

and a policy π∗ that attains the infimum, if one exists.
The key connection with fixed point methodology is that J* “typi-

cally” (under mild assumptions) can be shown to satisfy

J*(x) = inf
u∈U(x)

H(x, u, J*), ∀ x ∈ X,

i.e., it is a fixed point of T . We refer to this as Bellman’s equation [cf. Eq.
(1.3)]. Another fact is that if an optimal policy π∗ exists, it “typically” can
be selected to be stationary, π∗ = {µ∗, µ∗, . . .}, with µ∗ ∈ M satisfying an
optimality condition, such as for example

(Tµ∗J*)(x) = (TJ*)(x), x ∈ X,

[cf. Eq. (1.4)]. Several other results of an analytical or algorithmic nature
also hold under appropriate conditions, which will be discussed in detail
later.

However, Bellman’s equation and other related results may not hold
without Tµ and T having some special structural properties. Prominent
among these are a monotonicity assumption that typically holds in DP
problems, and a contraction assumption that holds for some important
classes of problems. We describe these assumptions next.
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1.2.2 Monotonicity and Contraction Properties

Let us now formalize the monotonicity and contraction assumptions. We
will require that both of these assumptions hold for most of the next chap-
ter, and we will gradually relax the contraction assumption in Chapters 3
and 4. Recall also our assumption that Tµ and T map R(X) (the space
of real-valued functions over X) into R(X). In Chapters 3 and 4 we will
relax this assumption as well.

Assumption 1.2.1: (Monotonicity) If J, J ′ ∈ R(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

Note that by taking infimum over u ∈ U(x), we have

J(x) ≤ J ′(x), ∀ x ∈ X ⇒ inf
u∈U(x)

H(x, u, J) ≤ inf
u∈U(x)

H(x, u, J ′), ∀ x ∈ X,

or equivalently, †

J ≤ J ′ ⇒ TJ ≤ TJ ′.

Another way to arrive at this relation, is to note that the monotonicity
assumption is equivalent to

J ≤ J ′ ⇒ TµJ ≤ TµJ ′, ∀ µ ∈ M,

and to use the simple but important fact

inf
u∈U(x)

H(x, u, J) = inf
µ∈M

(TµJ)(x), ∀ x ∈ X, J ∈ R(X),

i.e., for a fixed x ∈ X , infimum over u is equivalent to infimum over µ.
This is true because for any µ, there is no coupling constraint between the
controls µ(x) and µ(x′) that correspond to two different states x and x′, i.e.,
the set M =

{

µ | µ(x) ∈ U(x), ∀ x ∈ X
}

can be viewed as the Cartesian
product Πx∈XU(x). We will be writing this relation as TJ = infµ∈M TµJ .

For the contraction assumption, we introduce a function v : X #→ &
with

v(x) > 0, ∀ x ∈ X.

† Unless otherwise stated, in this book, inequalities involving functions, min-

ima and infima of a collection of functions, and limits of function sequences are
meant to be pointwise; see Appendix A for our notational conventions.
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J TJ

= 0 TµJ

= 0
J TJ

= 0 TµJ

= 0 ) Jµ

Figure 1.2.1. Illustration of the monotonicity and the contraction assumptions in
one dimension. The mapping Tµ on the left is monotone but is not a contraction.
The mapping Tµ on the right is both monotone and a contraction. It has a unique
fixed point at Jµ.

Let us denote by B(X) the space of real-valued functions J on X such
that J(x)/v(x) is bounded as x ranges over X , and consider the weighted
sup-norm

‖J‖ = sup
x∈X

∣

∣J(x)
∣

∣

v(x)

on B(X). The properties of B(X) and some of the associated fixed point
theory are discussed in Appendix B. In particular, as shown there, B(X)
is a complete normed space, so any mapping from B(X) to B(X) that is a
contraction or an m-stage contraction for some integer m > 1, with respect
to ‖ · ‖, has a unique fixed point (cf. Props. B.1 and B.2).

Assumption 1.2.2: (Contraction) For all J ∈ B(X) and µ ∈ M,
the functions TµJ and TJ belong to B(X). Furthermore, for some
α ∈ (0, 1), we have

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖, ∀ J, J ′ ∈ B(X), µ ∈ M. (1.8)

Figure 1.2.1 illustrates the monotonicity and the contraction assump-
tions. It can be shown that the contraction condition (1.8) implies that

‖TJ − TJ ′‖ ≤ α‖J − J ′‖, ∀ J, J ′ ∈ B(X), (1.9)

so that T is also a contraction with modulus α. To see this we use Eq.
(1.8) to write

(TµJ)(x) ≤ (TµJ ′)(x) + α‖J − J ′‖ v(x), ∀ x ∈ X,
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from which, by taking infimum of both sides over µ ∈ M, we have

(TJ)(x)− (TJ ′)(x)

v(x)
≤ α‖J − J ′‖, ∀ x ∈ X.

Reversing the roles of J and J ′, we also have

(TJ ′)(x) − (TJ)(x)

v(x)
≤ α‖J − J ′‖, ∀ x ∈ X,

and combining the preceding two relations, and taking the supremum of
the left side over x ∈ X , we obtain Eq. (1.9).

Nearly all mappings related to DP satisfy the monotonicity assump-
tion, and many important ones satisfy the weighted sup-norm contraction
assumption as well. When both assumptions hold, the most powerful an-
alytical and computational results can be obtained, as we will show in
Chapter 2. These are:

(a) Bellman’s equation has a unique solution, i.e., T and Tµ have unique
fixed points, which are the optimal cost function J* and the cost
functions Jµ of the stationary policies {µ, µ, . . .}, respectively [cf. Eq.
(1.3)].

(b) A stationary policy {µ∗, µ∗, . . .} is optimal if and only if

Tµ∗J* = TJ*,

[cf. Eq. (1.4)].

(c) J* and Jµ can be computed by the value iteration method,

J* = lim
k→∞

T kJ, Jµ = lim
k→∞

T k
µJ,

starting with any J ∈ B(X).

(d) J* can be computed by the policy iteration method, whereby we gen-
erate a sequence of stationary policies via

Tµk+1Jµk = TJµk ,

starting from some initial policy µ0 [here Jµk is obtained as the fixed
point of Tµk by several possible methods, including value iteration as
in (c) above].

These are the most favorable types of results one can hope for in
the DP context, and they are supplemented by a host of other results,
involving approximate and/or asynchronous implementations of the value
and policy iteration methods, and other related methods that combine
features of both. As the contraction property is relaxed and is replaced
by various weaker assumptions, some of the preceding results may hold
in weaker form. For example J* turns out to be a solution of Bellman’s
equation in most of the models to be discussed, but it may not be the
unique solution. The interplay between the monotonicity and contraction-
like properties, and the associated results of the form (a)-(d) described
above is a recurring analytical theme in this book.
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1.2.3 Some Examples

In what follows in this section, we describe a few special cases, which indi-
cate the connections of appropriate forms of the mapping H with the most
popular total cost DP models. In all these models the monotonicity As-
sumption 1.2.1 (or some closely related version) holds, but the contraction
Assumption 1.2.2 may not hold, as we will indicate later. Our descriptions
are by necessity brief, and the reader is referred to the relevant textbook
literature for more detailed discussion.

Example 1.2.1 (Stochastic Optimal Control - Markovian
Decision Problems)

Consider the stationary discrete-time dynamic system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1.10)

where for all k, the state xk is an element of a space X, the control uk is
an element of a space U , and wk is a random “disturbance,” an element of a
space W . We consider problems with infinite state and control spaces, as well
as problems with discrete (finite or countable) state space (in which case the
underlying system is a Markov chain). However, for technical reasons that
relate to measure-theoretic issues, we assume that W is a countable set .

The control uk is constrained to take values in a given nonempty subset
U(xk) of U , which depends on the current state xk [uk ∈ U(xk), for all
xk ∈ X]. The random disturbances wk, k = 0, 1, . . ., are characterized by
probability distributions P (· | xk, uk) that are identical for all k, where P (wk |
xk, uk) is the probability of occurrence of wk, when the current state and
control are xk and uk, respectively. Thus the probability of wk may depend
explicitly on xk and uk, but not on values of prior disturbances wk−1, . . . , w0.

Given an initial state x0, we want to find a policy π = {µ0, µ1, . . .},
where µk : X (→ U , µk(xk) ∈ U(xk), for all xk ∈ X, k = 0, 1, . . ., that
minimizes the cost function

Jπ(x0) = lim sup
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

, (1.11)

where α ∈ (0, 1] is a discount factor, subject to the system equation constraint

xk+1 = f
(

xk, µk(xk), wk

)

, k = 0, 1, . . . .

This is a classical problem, which is discussed extensively in various sources,
including the author’s text [Ber12a]. It is usually referred to as the stochastic
optimal control problem or the Markovian Decision Problem (MDP for short).

Note that the expected value of the N-stage cost of π,

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

,
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is defined as a (possibly countably infinite) sum, since the disturbances wk,
k = 0, 1, . . ., take values in a countable set. Indeed, the reader may verify
that all the subsequent mathematical expressions that involve an expected
value can be written as summations over a finite or a countable set, so they
make sense without resort to measure-theoretic integration concepts. †

In what follows we will often impose appropriate assumptions on the
cost per stage g and the scalar α, which guarantee that the infinite horizon
cost Jπ(x0) is defined as a limit (rather than as a lim sup):

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

.

In particular, it can be shown that the limit exists if α < 1 and the expected
value of |g| is uniformly bounded, i.e., for some B > 0,

E
{
∣

∣g(x, u,w)
∣

∣

}

≤ B, ∀ x ∈ X, u ∈ U(x). (1.12)

In this case, we obtain the classical discounted infinite horizon DP prob-
lem, which generally has the most favorable structure of all infinite horizon
stochastic DP models (see [Ber12a], Chapters 1 and 2).

To make the connection with abstract DP, let us define

H(x, u, J) = E
{

g(x, u,w) + αJ
(

f(x, u, w)
)}

,

so that

(TµJ)(x) = E
{

g
(

x,µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

,

and
(TJ)(x) = inf

u∈U(x)
E
{

g(x, u,w) + αJ
(

f(x, u,w)
)}

.

Similar to the deterministic optimal control problem of Section 1.1, the N-
stage cost of π, can be expressed in terms of Tµ:

(Tµ0 · · · TµN−1 J̄)(x0) = E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

,

† As noted in Appendix A, the formula for the expected value of a random
variable w defined over a space Ω is

E{w} = E{w+}+ E{w−},

where w+ and w− are the positive and negative parts of w,

w+(ω) = max
{

0, w(ω)
}

, w−(ω) = min
{

0, w(ω)
}

, ∀ ω ∈ Ω.

In this way, taking also into account the rule∞−∞ = ∞ (see Appendix A),E{w}
is well-defined as an extended real number if Ω is finite or countably infinite.
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where J̄ is the zero function, J̄(x) = 0 for all x ∈ X. The same is true for
the infinite-stage cost [cf. Eq. (1.11)]:

Jπ(x0) = lim sup
N→∞

(Tµ0 · · ·TµN−1 J̄)(x0).

It can be seen that the mappings Tµ and T are monotone, and it is
well-known that if α < 1 and the boundedness condition (1.12) holds, they
are contractive as well (under the unweighted sup-norm); see e.g., [Ber12a],
Chapter 1. In this case, the model has the powerful analytical and algorith-
mic properties (a)-(d) mentioned at the end of the preceding subsection. In
particular, the optimal cost function J∗ [i.e., J∗(x) = infπ Jπ(x) for all x ∈ X]
can be shown to be the unique solution of the fixed point equation J∗ = TJ∗,
also known as Bellman’s equation, which has the form

J∗(x) = inf
u∈U(x)

E
{

g(x, u,w) + αJ∗
(

f(x, u,w)
)}

, x ∈ X,

and parallels the one given for deterministic optimal control problems [cf. Eq.
(1.3)].

These properties can be expressed and analyzed in an abstract setting
by using just the mappings Tµ and T , both when Tµ and T are contractive
(see Chapter 2), and when they are only monotone and not contractive while
either g ≥ 0 or g ≤ 0 (see Chapter 4). Moreover, under some conditions, it is
possible to analyze these properties in cases where Tµ is contractive for some
but not all µ (see Chapter 3, and Section 4.4).

Example 1.2.2 (Finite-State Discounted Markovian Decision
Problems)

In the special case of the preceding example where the number of states is
finite, the system equation (1.10) may be defined in terms of the transition
probabilities

pxy(u) = Prob
(

y = f(x, u, w) | x
)

, x, y ∈ X, u ∈ U(x),

so H takes the form

H(x, u, J) =
∑

y∈X

pxy(u)
(

g(x, u, y) + αJ(y)
)

.

When α < 1 and the boundedness condition
∣

∣g(x, u, y)
∣

∣ ≤ B, ∀ x, y ∈ X, u ∈ U(x),

[cf. Eq. (1.12)] holds (or more simply, when U is a finite set), the mappings Tµ

and T are contraction mappings with respect to the standard (unweighted)
sup-norm. This is a classical model, referred to as discounted finite-state
MDP , which has a favorable theory and has found extensive applications (cf.
[Ber12a], Chapters 1 and 2). The model is additionally important, because it
is often used for computational solution of continuous state space problems
via discretization.
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Example 1.2.3 (Discounted Semi-Markov Problems)

With x, y, and u as in Example 1.2.2, consider a mapping of the form

H(x, u, J) = G(x, u) +
∑

y∈X

mxy(u)J(y),

where G is some function representing expected cost per stage, and mxy(u)
are nonnegative scalars with

∑

y∈X

mxy(u) < 1, ∀ x ∈ X, u ∈ U(x).

The equation J∗ = TJ∗ is Bellman’s equation for a finite-state continuous-
time semi-Markov decision problem, after it is converted into an equivalent
discrete-time problem (cf. [Ber12a], Section 1.4). Again, the mappings Tµ and
T are monotone and can be shown to be contraction mappings with respect
to the unweighted sup-norm.

Example 1.2.4 (Discounted Zero-Sum Dynamic Games)

Let us consider a zero-sum game analog of the finite-state MDP Example
1.2.2. Here there are two players that choose actions at each stage: the
first (called the minimizer) may choose a move i out of n moves and the
second (called the maximizer) may choose a move j out of m moves. Then
the minimizer gives a specified amount aij to the maximizer, called a payoff .
The minimizer wishes to minimize aij , and the maximizer wishes to maximize
aij .

The players use mixed strategies, whereby the minimizer selects a prob-
ability distribution u = (u1, . . . , un) over his n possible moves and the max-
imizer selects a probability distribution v = (v1, . . . , vm) over his m possible
moves. Thus the probability of selecting i and j is uivj , and the expected
payoff for this stage is

∑

i,j
aijuivj or u′Av, where A is the n × m matrix

with components aij .
In a single-stage version of the game, the minimizer must minimize

maxv∈V u′Av and the maximizer must maximize minu∈U u′Av, where U and
V are the sets of probability distributions over {1, . . . , n} and {1, . . . , m},
respectively. A fundamental result (which will not be proved here) is that
these two values are equal:

min
u∈U

max
v∈V

u′Av = max
v∈V

min
u∈U

u′Av. (1.13)

Let us consider the situation where a separate game of the type just
described is played at each stage. The game played at a given stage is repre-
sented by a “state” x that takes values in a finite set X. The state evolves
according to transition probabilities qxy(i, j) where i and j are the moves
selected by the minimizer and the maximizer, respectively (here y represents
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the next game to be played after moves i and j are chosen at the game rep-
resented by x). When the state is x, under u ∈ U and v ∈ V , the one-stage
expected payoff is u′A(x)v, where A(x) is the n ×m payoff matrix, and the
state transition probabilities are

pxy(u, v) =

n
∑

i=1

m
∑

j=1

uivjqxy(i, j) = u′Qxyv,

where Qxy is the n × m matrix that has components qxy(i, j). Payoffs are
discounted by α ∈ (0, 1), and the objectives of the minimizer and maximizer,
roughly speaking, are to minimize and to maximize the total discounted ex-
pected payoff. This requires selections of u and v to strike a balance between
obtaining favorable current stage payoffs and playing favorable games in fu-
ture stages.

We now introduce an abstract DP framework related to the sequential
move selection process just described. We consider the mapping G given by

G(x, u, v, J) = u′A(x)v + α
∑

y∈X

pxy(u, v)J(y)

= u′

(

A(x) + α
∑

y∈X

QxyJ(y)

)

v,

(1.14)

where α ∈ (0, 1) is discount factor, and the mapping H given by

H(x, u, J) = max
v∈V

G(x, u, v, J).

The corresponding mappings Tµ and T are

(TµJ)(x) = max
v∈V

G
(

x, µ(x), v, J
)

, x ∈ X,

and
(TJ)(x) = min

u∈U
max
v∈V

G(x, u, v, J).

It can be shown that Tµ and T are monotone and (unweighted) sup-norm
contractions. Moreover, the unique fixed point J∗ of T satisfies

J∗(x) = min
u∈U

max
v∈V

G(x, u, v, J∗), ∀ x ∈ X,

(see [Ber12a], Section 1.6.2).
We now note that since

A(x) + α
∑

y∈X

QxyJ(y)

[cf. Eq. (1.14)] is a matrix that is independent of u and v, we may view J∗(x)
as the value of a static game (which depends on the state x). In particular,
from the fundamental minimax equality (1.13), we have

min
u∈U

max
v∈V

G(x, u, v, J∗) = max
v∈V

min
u∈U

G(x, u, v, J∗), ∀ x ∈ X.
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This implies that J∗ is also the unique fixed point of the mapping

(TJ)(x) = max
v∈V

H(x, v, J),

where
H(x, v, J) = min

u∈U
G(x, u, v, J),

i.e., J∗ is the fixed point regardless of the order in which minimizer and
maximizer select mixed strategies at each stage.

In the preceding development, we have introduced J∗ as the unique
fixed point of the mappings T and T . However, J∗ also has an interpretation
in game theoretic terms. In particular, it can be shown that J∗(x) is the value
of a dynamic game, whereby at state x the two opponents choose multistage
(possibly nonstationary) policies that consist of functions of the current state,
and continue to select moves using these policies over an infinite horizon. For
further discussion of this interpretation, we refer to [Ber12a] and to books on
dynamic games such as [FiV96]; see also [PaB99] and [Yu14] for an analysis
of the undiscounted case (α = 1) where there is a termination state, as in
the stochastic shortest path problems of the subsequent Example 1.2.6. An
alternative and more general formulation of sequential zero-sum games, which
allows for an infinite state space, will be given in Chapter 5.

Example 1.2.5 (Minimax Problems)

Consider a minimax version of Example 1.2.1, where w is not random but is
rather chosen from within a set W (x, u) by an antagonistic opponent. Let

H(x, u, J) = sup
w∈W (x,u)

[

g(x, u, w) + αJ
(

f(x, u,w)
)

]

.

Then the equation J∗ = TJ∗ is Bellman’s equation for an infinite horizon
minimax DP problem. A special case of this mapping arises in zero-sum
dynamic games (cf. Example 1.2.4). We will also discuss alternative and
more general abstract DP formulations of minimax problems in Chapter 5.

Example 1.2.6 (Stochastic Shortest Path Problems)

The stochastic shortest path (SSP for short) problem is the special case of
the stochastic optimal control Example 1.2.1 where:

(a) There is no discounting (α = 1).

(b) The state space is X = {t, 1, . . . , n} and we are given transition proba-
bilities, denoted by

pxy(u) = P (xk+1 = y | xk = x, uk = u), x, y ∈ X, u ∈ U(x).

(c) The control constraint set U(x) is finite for all x ∈ X.
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(d) A cost g(x, u) is incurred when control u ∈ U(x) is selected at state x.

(e) State t is a special termination state, which is cost-free and absorbing,
i.e., for all u ∈ U(t),

g(t, u) = 0, ptt(u) = 1.

To simplify the notation, we have assumed that the cost per stage does not
depend on the successor state, which amounts to using expected cost per
stage in all calculations.

Since the termination state t is cost-free, the cost starting from t is zero
for every policy. Accordingly, for all cost functions, we ignore the component
that corresponds to t, and define

H(x, u, J) = g(x, u) +

n
∑

y=1

pxy(u)J(y), x = 1, . . . , n, u ∈ U(x), J ∈ !n.

The mappings Tµ and T are defined by

(TµJ)(x) = g
(

x, µ(x)
)

+

n
∑

y=1

pxy
(

µ(x)
)

J(y), x = 1, . . . , n,

(TJ)(x) = min
u∈U(x)

[

g(x, u) +

n
∑

y=1

pxy(u)J(y)

]

, x = 1, . . . , n.

Note that the matrix that has components pxy(u), x, y = 1, . . . , n, is sub-
stochastic (some of its row sums may be less than 1) because there may be
a positive transition probability from a state x to the termination state t.
Consequently Tµ may be a contraction for some µ, but not necessarily for all
µ ∈ M.

The SSP problem has been discussed in many sources, including the
books [Pal67], [Der70], [Whi82], [Ber87], [BeT89], [HeL99], [Ber12a], and
[Ber17a], where it is sometimes referred to by earlier names such as “first
passage problem” and “transient programming problem.” In the framework
that is most relevant to our purposes, given in the paper by Bertsekas and
Tsitsiklis [BeT91], there is a classification of stationary policies for SSP into
proper and improper . We say that µ ∈ M is proper if, when using µ, there is
positive probability that termination will be reached after at most n stages,
regardless of the initial state; i.e., if

ρµ = max
x=1,...,n

P{xn ,= 0 | x0 = x, µ} < 1.

Otherwise, we say that µ is improper. It can be seen that µ is proper if and
only if in the Markov chain corresponding to µ, each state x is connected to
the termination state with a path of positive probability transitions.

For a proper policy µ, it can be shown that Tµ is a weighted sup-norm
contraction, as well as an n-stage contraction with respect to the unweighted
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sup-norm. For an improper policy µ, Tµ is not a contraction with respect to
any norm. Moreover, T also need not be a contraction with respect to any
norm (think of the case where there is only one policy, which is improper).
However, T is a weighted sup-norm contraction in the important special case
where all policies are proper (see [BeT96], Prop. 2.2, or [Ber12a], Chapter 3).

Nonetheless, even in the case where there are improper policies and T
is not a contraction, results comparable to the case of discounted finite-state
MDP are available for SSP problems assuming that:

(a) There exists at least one proper policy.

(b) For every improper policy there is an initial state that has infinite cost
under this policy.

Under the preceding two assumptions, referred to as the strong SSP conditions
in Section 3.5.1, it was shown in [BeT91] that T has a unique fixed point J∗,
the optimal cost function of the SSP problem. Moreover, a policy {µ∗, µ∗, . . .}
is optimal if and only if

Tµ∗J
∗ = TJ∗.

In addition, J∗ and Jµ can be computed by value iteration,

J∗ = lim
k→∞

T kJ, Jµ = lim
k→∞

T k
µJ,

starting with any J ∈ !n (see [Ber12a], Chapter 3, for a textbook account).
These properties are in analogy with the desirable properties (a)-(c), given at
the end of the preceding subsection in connection with contractive models.

Regarding policy iteration, it works in its strongest form when there are
no improper policies, in which case the mappings Tµ and T are weighted sup-
norm contractions. When there are improper policies, modifications to the
policy iteration method are needed; see [Ber12a], [YuB13a], and also Section
3.6.2, where these modifications will be discussed in an abstract setting.

In Section 3.5.1 we will also consider SSP problems where the strong
SSP conditions (a) and (b) above are not satisfied. Then we will see that
unusual phenomena can occur, including that J∗ may not be a solution of
Bellman’s equation. Still our line of analysis of Chapter 3 will apply to such
problems.

Example 1.2.7 (Deterministic Shortest Path Problems)

The special case of the SSP problem where the state transitions are determin-
istic is the classical shortest path problem. Here, we have a graph of n nodes
x = 1, . . . , n, plus a destination t, and an arc length axy for each directed arc
(x, y). At state/node x, a policy µ chooses an outgoing arc from x. Thus the
controls available at x can be identified with the outgoing neighbors of x [the
nodes u such that (x, u) is an arc]. The corresponding mapping H is

H(x, u, J) =
{

axu + J(u) if u ,= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines a graph whose arcs are
(

x, µ(x)
)

, x =
1, . . . , n. The policy µ is proper if and only if this graph is acyclic (it consists of
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a tree of directed paths leading from each node to the destination). Thus there
exists a proper policy if and only if each node is connected to the destination
with a directed path. Furthermore, an improper policy has finite cost starting
from every initial state if and only if all the cycles of the corresponding graph
have nonnegative cycle cost. It follows that the favorable analytical and
algorithmic results described for SSP in the preceding example hold if the
given graph is connected and the costs of all its cycles are positive. We will
see later that significant complications result if the cycle costs are allowed to
be zero, even though the shortest path problem is still well posed in the sense
that shortest paths exist if the given graph is connected (see Section 3.1).

Example 1.2.8 (Multiplicative and Risk-Sensitive Models)

With x, y, u, and transition probabilities pxy(u), as in the finite-state MDP
of Example 1.2.2, consider the mapping

H(x, u, J) =
∑

y∈X

pxy(u)g(x, u, y)J(y) = E
{

g(x, u, y)J(y) | x, u
}

, (1.15)

where g is a scalar function satisfying g(x,u, y) ≥ 0 for all x, y, u (this is
necessary for H to be monotone). This mapping corresponds to the multi-
plicative model of minimizing over all π = {µ0, µ1, . . .} the cost

Jπ(x0) = lim sup
N→∞

E
{

g
(

x0, µ0(x0), x1

)

g
(

x1, µ1(x1), x2

)

· · ·

g
(

xN−1, µN−1(xN−1), xN

)
∣

∣ x0

}

,

(1.16)

where the state sequence {x0, x1, . . .} is generated using the transition prob-
abilities pxkxk+1

(

µk(xk)
)

.
To see that the mappingH of Eq. (1.15) corresponds to the cost function

(1.16), let us consider the unit function

J̄(x) ≡ 1, x ∈ X,

and verify that for all x0 ∈ X, we have

(Tµ0Tµ1 · · ·TµN−1 J̄)(x0) = E
{

g
(

x0, µ0(x0), x1

)

g
(

x1, µ1(x1), x2

)

· · ·

g
(

xN−1, µN−1(xN−1), xN

)
∣

∣ x0

}

,
(1.17)

so that

Jπ(x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X.

Indeed, taking into account that J̄(x) ≡ 1, we have

(TµN−1 J̄)(xN−1) = E
{

g
(

xN−1, µN−1(xN−1), xN

)

J̄(xN) | xN−1

}

= E
{

g
(

xN−1, µN−1(xN−1), xN

)

| xN−1

}

,
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(TµN−2TµN−1 J̄)(xN−2) =
(

(TµN−2(TµN−1 J̄)
)

(xN−2)

= E
{

g
(

xN−2, µN−2(xN−2), xN−1

)

·E
{

g
(

xN−1, µN−1(xN−1), xN

)

| xN−1} | xN−2

}

,

and continuing similarly,

(Tµ0Tµ1 · · ·TµN−1 J̄)(x0) = E
{

g
(

x0, µ0(x0), x1

)

E
{

g
(

x1, µ1(x1), x2

)

· · ·

E
{

g
(

xN−1, µN−1(xN−1), xN

)

| xN−1

}

| xN−2

}

· · ·
}

| x0

}

,

which by using the iterated expectations formula (see e.g., [BeT08]) proves
the expression (1.17).

An important special case of a multiplicative model is when g has the
form

g(x, u, y) = eh(x,u,y)

for some one-stage cost function h. We then obtain a finite-state MDP with
an exponential cost function,

Jπ(x0) = lim sup
N→∞

E
{

e

(

h(x0,µ0(x0),x1)+···+h(xN−1,µN−1(xN−1),xN )
)

}

,

which is often used to introduce risk aversion in the choice of policy through
the convexity of the exponential.

There is also a multiplicative version of the infinite state space stochas-
tic optimal control problem of Example 1.2.1. The mapping H takes the
form

H(x, u, J) = E
{

g(x, u, w)J
(

f(x, u,w)
)}

,

where xk+1 = f(xk, uk, wk) is the underlying discrete-time dynamic system;
cf. Eq. (1.10).

Multiplicative models and related risk-sensitive models are discussed
extensively in the literature, mostly for the exponential cost case and under
different assumptions than ours; see e.g., [HoM72], [Jac73], [Rot84], [ChS87],
[Whi90], [JBE94], [FlM95], [HeM96], [FeM97], [BoM99], [CoM99], [BoM02],
[BBB08], [Ber16a]. The works of references [DeR79], [Pat01], and [Pat07]
relate to the stochastic shortest path problems of Example 1.2.6, and are the
closest to the semicontractive models discussed in Chapters 3 and 4, based
on the author’s paper [Ber16a]; see the next example and Section 3.5.2.

Example 1.2.9 (Affine Monotonic Models)

Consider a finite state space X = {1, . . . , n} and a (possibly infinite) control
constraint set U(x) for each state x. For each policy µ, let the mapping Tµ

be given by
TµJ = bµ + AµJ, (1.18)

where bµ is a vector of !n with components b
(

x, µ(x)
)

, x = 1, . . . , n, and Aµ

is an n× n matrix with components Axy

(

µ(x)
)

, x, y = 1, . . . , n. We assume
that b(x, u) and Axy(u) are nonnegative,

b(x, u) ≥ 0, Axy(u) ≥ 0, ∀ x, y = 1, . . . , n, u ∈ U(x).
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Thus Tµ and T map nonnegative functions to nonnegative functions J : X (→
[0,∞].

This model was introduced in the first edition of this book, and was elab-
orated on in the author’s paper [Ber16a]. Special cases of the model include
the finite-state Markov and semi-Markov problems of Examples 1.2.1-1.2.3,
and the stochastic shortest path problem of Example 1.2.6, with Aµ being the
transition probability matrix of µ (perhaps appropriately discounted), and bµ
being the cost per stage vector of µ, which is assumed nonnegative. An in-
teresting affine monotonic model of a different type is the multiplicative cost
model of the preceding example, where the initial function is J̄(x) ≡ 1 and
the cost accumulates multiplicatively up to reaching a termination state t. In
the exponential case of this model, the cost of a generated path starting from
some initial state accumulates additively as in the SSP case, up to reaching
t. However, the cost of the model is the expected value of the exponentiated
cost of the path up to reaching t. It can be shown then that the mapping Tµ

has the form

(TµJ)(x) = pxt
(

µ(x)
)

exp
(

g(x,µ(x), t)
)

+

n
∑

y=1

pxy(µ(x))exp
(

g(x,µ(x), y)
)

J(y), x ∈ X,

where pxy(u) is the probability of transition from x to y under u, and g(x, u, y)
is the cost of the transition; see Section 3.5.2 for a detailed derivation. Clearly
Tµ has the affine monotonic form (1.18).

Example 1.2.10 (Aggregation)

Aggregation is an approximation approach that simplifies a large dynamic
programming (DP) problem by “combining” multiple states into aggregate
states. This results in a reduced or “aggregate” problem with fewer states,
which can often be solved using exact DP methods. The optimal cost-to-go
function derived from this aggregate problem then serves as an approximation
of the optimal cost function for the original problem.

Consider an n-state Markovian decision problem with transition prob-
abilities pij(u). To construct an aggregation framework, we introduce a finite
set A of aggregate states. We generically denote the aggregate states by let-
ters such as x and y, and the original system states by letters such as i and j.
The approximation framework is constructed by combining in various ways
the aggregate states and the original system states to form a larger system
(see Fig. 1.2.2). To specify the probabilistic structure of this system, we in-
troduce two (somewhat arbitrary) choices of probability distributions, which
relate the original system states with the aggregate states:

(1) For each aggregate state x and original system state i, we specify the
disaggregation probability dxi. We assume that dxi ≥ 0 and

n
∑

i=1

dxi = 1, ∀ x ∈ A.
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according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregate System

Original System

Figure 1.2.2 Illustration of the relation between aggregate and original sys-
tem states.

Roughly, dxi may be interpreted as the “degree to which x is represented
by i.”

(2) For each aggregate state y and original system state j, we specify the
aggregation probability φjy . We assume that φjy ≥ 0 and

∑

y∈A

φjy = 1, ∀ j = 1, . . . , n.

Roughly, φjy may be interpreted as the “degree of membership of j in
the aggregate state y.”

The aggregation and disaggregation probabilities specify a dynamic sys-
tem involving both aggregate and original system states (cf. Fig. 1.2.2). In
this system:

(i) From aggregate state x, we generate original system state i according
to dxi.

(ii) We generate transitions from original system state i to original system
state j according to pij(u), with cost g(i, u, j).

(iii) From original system state j, we generate aggregate state y according
to φjy.

Illustrative examples of aggregation frameworks are given in the books
[Ber12a] and [Ber17a]. One possibility is hard aggregation, where aggregate
states are identified with the sets of a partition of the state space. For another
type of common scheme, think of the case where the original system states
form a fine grid in some space, which is “aggregated” into a much coarser grid.
In particular let us choose a collection of “representative” original system
states, and associate each one of them with an aggregate state. Thus, each
aggregate state x is associated with a unique representative state ix, and the
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x j1 j2j2 j3

x j1

j3 y1 1 y2

y2 y3

y3 Original State Space

Representative/Aggregate States

x = i p

i pij1(u)

φj1y1

1
φj1y2

2
φj1y3

Figure 1.2.3 Aggregation based on a small subset of representative states
(these are shown with larger dark circles, while the other (nonrepresentative)
states are shown with smaller dark circles). In this figure, from representa-
tive state x = i, there are three possible transitions, to states j1, j2, and
j3, according to pij1 (u), pij2 (u), pij3 (u), and each of these states is associ-
ated with a convex combination of representative states using the aggregation
probabilities. For example, j1 is associated with φj1y1y1+φj1y2y2 +φj1y3y3.

disaggregation probabilities are

dxi =
{

1 if i = ix,
0 if i ,= ix.

(1.19)

The aggregation probabilities are chosen to represent each original system
state j with a convex combination of aggregate/representative states; see
Fig. 1.2.3. It is also natural to assume that the aggregation probabilities map
representative states to themselves, i.e.,

φjy =
{

1 if j = jy ,
0 if j ,= jy .

This scheme makes intuitive geometrical sense as an interpolation scheme in
the special case where both the original and the aggregate states are asso-
ciated with points in a Euclidean space. The scheme may also be extended
to problems with a continuous state space. In this case, the state space is
discretized with a finite grid, and the states of the grid are viewed as the ag-
gregate states. The disaggregation probabilities are still given by Eq. (1.19),
while the aggregation probabilities may be arbitrarily chosen to represent each
original system state with a convex combination of representative states.

As an extension of the preceding schemes, suppose that through some
special insight into the problem’s structure or some preliminary calculation,
we know some features of the system’s state that can “predict well” its cost.
Then it seems reasonable to form the aggregate states by grouping together
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states with “similar features,” or to form aggregate states by using “represen-
tative features” instead of representative states. This is called “feature-based
aggregation;” see the books [BeT96] (Section 3.1) and [Ber12a] (Section 6.5)
for a description and analysis.

Given aggregation and disaggregation probabilities, we may define an
aggregate problem whose states are the aggregate states. This problem in-
volves an aggregate discrete-time system, which we will describe shortly. We
require that the control is applied with knowledge of the current aggregate
state only (rather than the original system state).† To this end, we assume
that the control constraint set U(i) is independent of the state i, and we de-
note it by U . Then, by adding the probabilities of all the relevant paths in
Fig. 1.2.2, it can be seen that the transition probability from aggregate state
x to aggregate state y under control u ∈ U is

p̂xy(u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)φjy .

The corresponding expected transition cost is given by

ĝ(x, u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem.
We may compute the optimal costs-to-go Ĵ(x), x ∈ A, of this problem

by using some exact DP method. Then, the costs-to-go of each state j of the
original problem are usually approximated by

J̃(j) =
∑

y∈A

φjy Ĵ(y).

Example 1.2.11 (Distributed Aggregation)

The abstract DP framework is useful not only in modeling DP problems,
but also in modeling algorithms arising in DP and even other contexts. We
illustrate this with an example from Bertsekas and Yu [BeY10] that relates
to the distributed solution of large-scale discounted finite-state MDP using
cost function approximation based on aggregation. ‡ It involves a partition of
the n states into m subsets for the purposes of distributed computation, and
yields a corresponding approximation (V1, . . . , Vm) to the cost vector J∗.

In particular, we have a discounted n-state MDP (cf. Example 1.2.2),
and we introduce aggregate states S1, . . . , Sm, which are disjoint subsets of

† An alternative form of aggregate problem, where the control may depend
on the original system state is discussed in Section 6.5.2 of the book [Ber12a].

‡ See [Ber12a], Section 6.5.2, for a more detailed discussion. Other examples
of algorithmic mappings that come under our framework arise in asynchronous
policy iteration (see Sections 2.6.3, 3.6.2, and [BeY10], [BeY12], [YuB13a]), and
in constrained forms of policy iteration (see [Ber11c], or [Ber12a], Exercise 2.7).
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the original state space with S1∪· · ·∪Sn = {1, . . . , n}. We envision a network
of processors & = 1, . . . ,m, each assigned to the computation of a local cost
function V", defined on the corresponding aggregate state/subset S":

V" = {V"y | y ∈ S"}.

Processor & also maintains a scalar aggregate cost R" for its aggregate state,
which is a weighted average of the detailed cost values V"x within S":

R" =
∑

x∈S"

d"xV"x,

where d"x are given probabilities with d"x ≥ 0 and
∑

x∈S"
d"x = 1. The aggre-

gate costs R" are communicated between processors and are used to perform
the computation of the local cost functions V" (we will discuss computation
models of this type in Section 2.6).

We denote J = (V1, . . . , Vm, R1, . . . , Rm). We introduce the mapping
H(x, u, J) defined for each of the n states x by

H(x, u, J) = W"(x, u, V", R1, . . . , Rm), if x ∈ S",

where for x ∈ S"

W"(x, u, V", R1, . . . , Rm) =

n
∑

y=1

pxy(u)g(x,u, y) + α
∑

y∈S"

pxy(u)V"y

+ α
∑

y/∈S"

pxy(u)Rs(y),

and for each original system state y, we denote by s(y) the index of the subset
to which y belongs [i.e., y ∈ Ss(y)].

We may view H as an abstract mapping on the space of J , and aim to
find its fixed point J∗ = (V ∗

1 , . . . , V ∗
m, R∗

1 , . . . , R
∗
m). Then, for & = 1, . . . , m, we

may view V ∗
" as an approximation to the optimal cost vector of the original

MDP starting at states x ∈ S", and we may view R∗
" as a form of aggregate

cost for S". The advantage of this formulation is that it involves significant
decomposition and parallelization of the computations among the processors,
when performing various DP algorithms. In particular, the computation of
W"(x, u, V", R1, . . . , Rm) depends on just the local vector V", whose dimension
may be potentially much smaller than n.

1.2.4 Reinforcement Learning - Projected and Aggregation
Bellman Equations

Given an abstract DP model described by a mapping H , we may be in-
terested in fixed points of related mappings other than T and Tµ. Such
mappings may arise in various contexts, such as for example distributed
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asynchronous aggregation in Example 1.2.11. An important context is sub-
space approximation, whereby Tµ and T are restricted onto a subspace of
functions for the purpose of approximating their fixed points. Much of the
theory of approximate DP, neuro-dynamic programming, and reinforce-
ment learning relies on such approximations (there are quite a few books,
which collectively contain extensive accounts these subjects, such as Bert-
sekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98], Gosavi [Gos03],
Cao [Cao07], Chang, Fu, Hu, and Marcus [CFH07], Meyn [Mey07], Powell
[Pow07], Borkar [Bor08], Haykin [Hay08], Busoniu, Babuska, De Schut-
ter, and Ernst [BBD10], Szepesvari [Sze10], Bertsekas [Ber12a], [Ber17a],
[Ber19b], [Ber20], and Vrabie, Vamvoudakis, and Lewis [VVL13]).

For an illustration, consider the approximate evaluation of the cost
vector of a discrete-time Markov chain with states i = 1, . . . , n. We assume
that state transitions (i, j) occur at time k according to given transition
probabilities pij , and generate a cost αkg(i, j), where α ∈ (0, 1) is a discount
factor. The cost function over an infinite number of stages can be shown to
be the unique fixed point of the Bellman equation mapping T : &n #→ &n

whose components are given by

(TJ)(i) =
n
∑

j=1

pij(u)
(

g(i, j) + αJ(j)
)

, i = 1, . . . , n, J ∈ &n.

This is the same as the mapping T in the discounted finite-state MDP Ex-
ample 1.2.2, except that we restrict attention to a single policy. Finding
the cost function of a fixed policy is the important policy evaluation sub-
problem that arises prominently within the context of policy iteration. It
also arises in the context of a simplified form of policy iteration, the roll-
out algorithm; see e.g., [BeT96], [Ber12a], [Ber17a], [Ber19b], [Ber20]. In
some artificial intelligence contexts, policy iteration is referred to as self-
learning, and in these contexts the policy evaluation is almost always done
approximately, sometimes with the use of neural networks.

A prominent approach for approximation of the fixed point of T is
based on the solution of lower-dimensional equations defined on the sub-
space {Φr | r ∈ &s} that is spanned by the columns of a given n×s matrix
Φ. Two such approximating equations have been studied extensively (see
[Ber12a], Chapter 6, for a detailed account and references; also [BeY07],
[BeY09], [YuB10], [Ber11a] for extensions to abstract contexts beyond ap-
proximate DP). These are:

(a) The projected equation

Φr = ΠξT (Φr), (1.20)

where Πξ denotes projection onto S with respect to a weighted Eu-
clidean norm

‖J‖ξ =

√

√

√

√

n
∑

i=1

ξi
(

J(i)
)2

(1.21)
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with ξ = (ξ1, . . . , ξn) being a probability distribution with positive
components (sometimes a seminorm projection is used, whereby some
of the components ξi may be zero; see Yu and Bertsekas [YuB12]).

(b) The aggregation equation

Φr = ΦDT (Φr), (1.22)

with D being an s× n matrix whose rows are restricted to be proba-
bility distributions; these are the disaggregation probabilities of Ex-
ample 1.2.10. Also, in this approach, the rows of Φ are restricted to
be probability distributions; these are the aggregation probabilities
of Example 1.2.10.

We now see that solving the projected equation (1.20) and the aggre-
gation equation (1.22) amounts to finding a fixed point of the mappings
ΠξT and ΦDT , respectively. These mappings derive their structure from
the DP operator T , so they have some DP-like properties, which can be
exploited for analysis and computation.

An important fact is that the aggregation mapping ΦDT preserves
the monotonicity and the sup-norm contraction property of T , while the
projected equation mapping ΠξT generally does not. The reason for preser-
vation of monotonicity is the nonnegativity of the components of the ma-
trices Φ and D (see the author’s survey paper [Ber11c] for a discussion of
the importance of preservation of monotonicity in various DP operations).
The reason for preservation of sup-norm contraction is that the matrices
Φ and D are sup-norm nonexpansive, because their rows are probability
distributions. In fact, it can be verified that the solution r of Eq. (1.22)
can be viewed as the exact DP solution of the “aggregate” DP problem
that represents a lower-dimensional approximation of the original (see Ex-
ample 1.2.10). The preceding observations are important for our purposes,
as they indicate that much of the theory developed in this book applies to
approximation-related mappings based on aggregation.

By contrast, the projected equation mapping ΠξT need not be mono-
tone, because the components of Πξ need not be nonnegative. Moreover
while the projection Πξ is nonexpansive with respect to the projection norm
‖·‖ξ, it need not be nonexpansive with respect to the sup-norm. As a result
the projected equation mapping ΠξT need not be a sup-norm contraction.
These facts play a significant role in approximate DP methodology.

1.2.5 Reinforcement Learning - Temporal Difference and
Proximal Algorithms

An important possibility for finding a fixed point of T is to replace T
with another mapping, say F , such that F and T have the same fixed
points. For example, F may offer some advantages in terms of algorithmic
convenience or quality of approximation when used in conjunction with
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projection or aggregation [cf. Eqs. (1.20) and (1.22)]. Alternatively, F may
be the mapping of some iterative method that is suitable for computing
fixed points of T .

In this book we will not consider in much detail the possibility of using
an alternative mapping F to find a fixed point of a mapping T . We will just
mention here some multistep versions of T , which have been used widely
for approximations in reinforcement learning. An important example is the
mapping T (λ) : &n #→ &n, defined for a given λ ∈ (0, 1) as follows: T (λ)

transforms a vector J ∈ &n to the vector T (λ)J ∈ &n, whose n components
are given by

(

T (λ)J
)

(i) = (1− λ)
∞
∑

$=0

λ$(T $+1J)(i), i = 1, . . . , n, J ∈ &n,

for λ ∈ (0, 1), where T $ is the %-fold composition of T with itself % times.
Here there should be conditions that guarantee the convergence of the
infinite series in the preceding definition. The multistep analog of the
projected Eq. (1.20) is

Φr = ΠξT (λ)(Φr).

The popular temporal difference methods, such as TD(λ), LSTD(λ), and
LSPE(λ), aim to solve this equation (see the book references on approx-
imate DP, neuro-dynamic programming, and reinforcement learning cited
earlier). The mapping T (λ) also forms the basis for the λ-policy iteration
method to be discussed in Sections 2.5, 3.2.4, and 4.3.3.

The multistep analog of the aggregation Eq. (1.22) is

Φr = ΦDT (λ)(Φr),

and methods that are similar to the temporal difference methods can be
used for its solution. In particular, a multistep method based on the map-
ping T (λ) is the, so-called, λ-aggregation method (see [Ber12a], Chapter
6), as well as other forms of aggregation (see [Ber12a], [YuB12]).

In the case where T is a linear mapping of the form

TJ = AJ + b,

where b is a vector in &n, and A is an n × n matrix with eigenvalues
strictly within the unit circle, there is an interesting connection between
the multistep mapping T (λ) and another mapping of major importance in
numerical convex optimization. This is the proximal mapping, associated
with T and a scalar c > 0, and denoted by P (c). In particular, for a given
J ∈ &n, the vector P (c)J is defined as the unique vector Y ∈ &n that solves
the equation

Y −AY − b =
1

c
(J − Y ).
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Equivalently,

P (c)J =

(

c+ 1

c
I −A

)−1(

b+
1

c
J

)

, (1.23)

where I is the identity matrix. Then it can be shown (see Exercise 1.2 or
the papers [Ber16b], [Ber18c]) that if

c =
λ

1− λ
,

we have
T (λ) = T · P (c) = P (c) · T.

Moreover, the vectors J , P (c)J , and T (λ)J are colinear and satisfy

T (λ)J = J +
c+ 1

c

(

P (c)J − J
)

.

The preceding formulas show that T (λ) and P (c) are closely related, and
that iterating with T (λ) is “faster” than iterating with P (c), since the eigen-
values of A are within the unit circle, so that T is a contraction. In addition,
methods such as TD(λ), LSTD(λ), LSPE(λ), and their projected versions,
which are based on T (λ), can be adapted to be used with P (c).

A more general form of multistep approach, introduced and studied
in the paper [YuB12], replaces T (λ) with a mapping T (w) : &n #→ &n that
has components

(

T (w)J
)

(i) =
∞
∑

$=1

wi$(T $J)(i), i = 1, . . . , n, J ∈ &n,

where w is a vector sequence whose ith component, (wi1, wi2, . . .), is a prob-
ability distribution over the positive integers. Then the multistep analog
of the projected equation (1.20) is

Φr = ΠξT (w)(Φr), (1.24)

while the multistep analog of the aggregation equation (1.22) is

Φr = ΦDT (w)(Φr). (1.25)

The mapping T (λ) is obtained for wi$ = (1 − λ)λ$−1, independently of
the state i. A more general version, where λ depends on the state i, is
obtained for wi$ = (1 − λi)λ

$−1
i . The solution of Eqs. (1.24) and (1.25)

by simulation-based methods is discussed in the paper [YuB12]; see also
Exercise 1.3.

Let us also note that there is a connection between projected equa-
tions of the form (1.24) and aggregation equations of the form (1.25). This
connection is based on the use of a seminorm [this is given by the same
expression as the norm ‖ · ‖ξ of Eq. (1.21), with some of the components
of ξ allowed to be 0]. In particular, the most prominent cases of aggrega-
tion equations can be viewed as seminorm projected equations because, for
these cases, ΦD is a seminorm projection (see [Ber12a], p. 639, [YuB12],
Section 4). Moreover, they can also be viewed as projected equations where
the projection is oblique (see [Ber12a], Section 7.3.6).
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1.3 REINFORCEMENT LEARNING - APPROXIMATION IN
VALUE SPACE

In this section we will use geometric illustrations to obtain insight into Bell-
man’s equation, the algorithms of value iteration (VI) and policy iteration
(PI), and an approximation methodology, which is prominent in reinforce-
ment learning and is known as approximation in value space.† Throughout
this section, we will make use of the following two properties:

(a) T and Tµ are monotone, i.e., they satisfy Assumption 1.2.1.

(b) We have
(TJ)(x) = min

µ∈M
(TµJ)(x), for all x, (1.26)

where M is the set of stationary policies. This is true because for
any policy µ, there is no coupling constraint between the controls
µ(x) and µ(x′) that correspond to two different states x and x′.

We will first focus on the discounted version of the Markovian decision
problem of Example 1.2.1, and we will then consider more general cases.

1.3.1 Approximation in Value Space for Markovian Decision
Problems

In Markovian decision problems the mappings Tµ and T are given by

(TµJ)(x) = E
{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)

}

, for all x, (1.27)

and

(TJ)(x) = inf
u∈U(x)

E
{

g(x, u, w) + αJ
(

f(x, u, w)
)

}

, for all x, (1.28)

where α ∈ (0, 1]; cf. Example 1.2.1.
In addition to monotonicity, we have an additional important prop-

erty: Tµ is linear , in the sense that it has the form

TµJ = Gµ +AµJ,

where Gµ ∈ R(X) is some function and Aµ : R(X) "→ R(X) is an operator
such that for any functions J1, J2, and scalars γ1, γ2, we have

Aµ(γ1J1 + γ2J2) = γ1AµJ1 + γ2AµJ2.

† The major alternative reinforcement learning approach is approximation
in policy space, whereby a suboptimal policy is selected from within a class of

parametrized policies, usually by means of some optimization procedure, such as

random search, or gradient descent; see e.g., the author’s reinforcement learning
book [Ber19b].
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This is true because of the linearity of the expected value operation in Eq.
(1.27). The linearity of Tµ implies another important property: (TJ)(x) is
a concave function of J for every x. By this we mean that the set

Cx =
{

(J, ξ) | (TJ)(x) ≥ ξ, J ∈ R(X), ξ ∈ &
}

(1.29)

is convex for all x ∈ X , where R(X) is the set of real-valued functions over
the state space X , and & is the set of real numbers. This follows from the
linearity of Tµ, the alternative definition of T given by Eq. (1.26), and the
fact that for a fixed x, the minimum of the linear functions (TµJ)(x) over
µ ∈ M is concave as a function of J .

We illustrate these properties graphically with an example.

Example 1.3.1 (A Two-State and Two-Control Example)

Assume that there are two states 1 and 2, and two controls u and v. Consider
the policy µ that applies control u at state 1 and control v at state 2. Then
the operator Tµ takes the form

(TµJ)(1) =

2
∑

y=1

p1j(u)
(

g(1, u, y) + αJ(y)
)

, (1.30)

(TµJ)(2) =

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

, (1.31)

where pxy(u) and pxy(v) are the probabilities that the next state will be y,
when the current state is x, and the control is u or v, respectively. Clearly,
(TµJ)(1) and (TµJ)(2) are linear functions of J . Also the operator T of the
Bellman equation J = TJ takes the form

(TJ)(1) = min

[

2
∑

y=1

p1y(u)
(

g(1, u, y) + αJ(y)
)

,

2
∑

y=1

p1y(v)
(

g(1, v, y) + αJ(y)
)

]

,

(1.32)

(TJ)(2) = min

[

2
∑

y=1

p2y(u)
(

g(2, u, y) + αJ(y)
)

,

2
∑

y=1

p2y(v)
(

g(2, v, y) + αJ(y)
)

]

.

(1.33)

Thus, (TJ)(1) and (TJ)(2) are concave and piecewise linear as functions of
the two-dimensional vector J (with two pieces; more generally, as many linear
pieces as the number of controls). This concavity property holds in general
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since (TJ)(x) is the minimum of a collection of linear functions of J , one for
each u ∈ U(x). Figure 1.3.1 illustrates (TµJ)(1) for the cases where µ(1) = u
and µ(1) = v, (TµJ)(2) for the cases where µ(2) = u and µ(2) = v, (TJ)(1),
and (TJ)(2), as functions of J =

(

J(1), J(2)
)

.

Critical properties from the DP point of view are whether T and Tµ

have fixed points; equivalently, whether the Bellman equations J = TJ
and J = TµJ have solutions within the class of real-valued functions, and
whether the set of solutions includes J* and Jµ, respectively. It may thus
be important to verify that T or Tµ are contraction mappings. This is
true for example in the benign case of discounted problems (α < 1) with
bounded cost per stage. However, for undiscounted problems, asserting
the contraction property of T or Tµ may be more complicated, and even
impossible. In this book we will deal extensively with such questions and
related issues regarding the solution set of the Bellman equation.

Geometrical Interpretations

We will now interpret the Bellman operators geometrically, starting with
Tµ, which is linear as noted earlier. Figure 1.3.2 illustrates its form. Note
here that the functions J and TµJ are multidimensional. They have as
many scalar components J(x) and (TµJ)(x), respectively, as there are
states x, but they can only be shown projected onto one dimension. The
cost function Jµ satisfies Jµ = TµJµ, so it is obtained from the intersec-
tion of the graph of TµJ and the 45 degree line, when Jµ is real-valued.
We interpret the situation where Jµ is not real-valued with lack of system
stability under µ [so µ will be viewed as unstable if we have Jµ(x) = ∞
for some initial states x]. For further discussion of stability issues, see the
book [Ber22].

The form of the Bellman operator T is illustrated in Fig. 1.3.3. Again
the functions J , J*, TJ , TµJ , etc, are multidimensional, but they are shown
projected onto one dimension. The Bellman equation J = TJ may have
one or many real-valued solutions. It may also have no real-valued solution
in exceptional situations, as we will discuss later. The figure assumes that
the Bellman equations J = TJ and J = TµJ have a unique real-valued
solution, which is true if T and Tµ are contraction mappings, as is the case
for discounted problems with bounded cost per stage. Otherwise, these
equations may have no solution or multiple solutions within the class of
real-valued functions. The equation J = TJ typically has J* as a solution,
but may have more than one solution in cases where either α = 1 or α < 1,
and the cost per stage is unbounded.

Example 1.3.2 (A Two-State and Infinite Controls Problem)

Let us consider the mapping T for a problem that involves two states, 1 and
2, but an infinite number of controls. In particular, the control space at both
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State 1 State 2
State 1 State 2

One-step lookahead J∗

∗ J∗(1)

(2) (TJ∗)(1) = J∗(1) (

One-step lookahead J∗

(1) J∗(2)

(1) (TJ∗)(2) = J∗(2)

Figure 1.3.1 Geometric illustrations of the Bellman operators Tµ and T for
states 1 and 2 in Example 1.3.1; cf. Eqs. (1.30)-(1.33). The problem’s transition
probabilities are: p11(u) = 0.3, p12(u) = 0.7, p21(u) = 0.4, p22(u) = 0.6, p11(v) =
0.6, p12(v) = 0.4, p21(v) = 0.9, p22(v) = 0.1. The stage costs are g(1, u, 1) =
3, g(1, u, 2) = 10, g(2, u, 1) = 0, g(2, u, 2) = 6, g(1, v, 1) = 7, g(1, v, 2) = 5,
g(2, v, 1) = 3, g(2, v, 2) = 12. The discount factor is α = 0.9, and the optimal
costs are J∗(1) = 50.59 and J∗(2) = 47.41. The optimal policy is µ∗(1) = v

and µ∗(2) = u. The figure also shows the one-dimensional “slices” of T that pass
through J∗.
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1 J J

1 J J

45◦Line

TµJ

Cost of µ

Player/Policy Jµ = TµJµ

(1) = 0

Generic stable policy
Generic stable policy µJ Generic unstable policy

Generic unstable policy µ′

Tµ′J

Figure 1.3.2 Geometric interpretation of the linear Bellman operator Tµ and the
corresponding Bellman equation. The graph of Tµ is a plane in the space !×!,
and when projected on a one-dimensional plane that corresponds to a single state
and passes through Jµ, it becomes a line. Then there are three cases:

(a) The line has slope less than 45 degrees, so it intersects the 45-degree line at
a unique point, which is equal to Jµ, the solution of the Bellman equation
J = TµJ . This is true if Tµ is a contraction mapping, as is the case for
discounted problems with bounded cost per stage.

(b) The line has slope less than 45 degrees. Then it intersects the 45-degree line
at a unique point, which is a solution of the Bellman equation J = TµJ ,
but is not equal to Jµ. Then Jµ is not real-valued; we consider such µ to
be unstable under µ.

(c) The line has slope exactly equal to 45 degrees. This is an exceptional case
where the Bellman equation J = TµJ has an infinite number of real-valued
solutions or no real-valued solution at all; we will provide examples where
this occurs later.

states is the unit interval, U(1) = U(2) = [0, 1]. Here (TJ)(1) and (TJ)(2)
are given by

(TJ)(1) = min
u∈[0,1]

{

g1 + r11u
2 + r12(1− u)2 + αuJ(1) + α(1− u)J(2)

}

,

(TJ)(2) = min
u∈[0,1]

{

g2 + r21u
2 + r22(1− u)2 + αuJ(1) + α(1− u)J(2)

}

.
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J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

Optimal cost Cost of rollout policy ˜

45◦Line

TµJ

Cost of µ

TJ = minµ TµJ

Final Features Optimal Policy
Final Features Optimal Policy

J̃

Position Evaluation Policy µ̃ withON-LINE PLAY Lookahead Tree States

Tµ̃J̃ = T J̃

One-step lookahead

One-step lookahead Generic policy µ

= 4 Model minµ TµJ̃

Player/Policy Jµ = TµJµ

(1) = 0

Tµ̃J

ective Cost Approximation Value Space Approximation
Cost of µ̃
Jµ̃ = Tµ̃Jµ̃

Figure 1.3.3 Geometric interpretation of the Bellman operator T , and the cor-
responding Bellman equation. For a fixed x, the function (TJ)(x) can be written
as minµ(TµJ)(x), so it is concave as a function of J . The optimal cost function
J∗ satisfies J∗ = TJ∗, so it is obtained from the intersection of the graph of TJ

and the 45 degree line shown, assuming J∗ is real-valued.
Note that the graph of T lies below the graph of every operator Tµ, and

is in fact obtained as the lower envelope of the graphs of Tµ as µ ranges over
the set of policies M. In particular, for any given function J̃ , for every x, the
value (T J̃)(x) is obtained by finding a support hyperplane/subgradient of the
graph of the concave function (T J)(x) at J̃ , as shown in the figure. This support
hyperplane is defined by the control µ(x) of a policy µ̃ that attains the minimum
of (TµJ̃)(x) over µ:

µ̃(x) ∈ arg min
µ∈M

(TµJ̃)(x)

(there may be multiple policies attaining this minimum, defining multiple support
hyperplanes). This construction also shows how the minimization

(T J̃)(x) = min
µ∈M

(TµJ̃)(x)

corresponds to a linearization of the mapping T at the point J̃ .

The control u at each state x = 1, 2 has the meaning of a probability that
we must select at that state. In particular, we control the probabilities u and
(1−u) of moving to states y = 1 and y = 2, at a control cost that is quadratic
in u and (1− u), respectively. For this problem (TJ)(1) and (TJ)(2) can be
calculated in closed form, so they are easy to plot and understand. They are
piecewise quadratic, unlike the corresponding plots of Fig. 1.3.1, which are
piecewise linear; see Fig. 1.3.4.
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State 1 State 2

One-step lookahead J∗ One-step lookahead J∗

∗ J∗(1) (1) J∗(2)

(2) (TJ∗)(1) = J∗(1) ( (1) (TJ∗)(2) = J∗(2)

Figure 1.3.4 Illustration of the Bellman operator T for states 1 and 2 in Example
1.3.2. The parameter values are g1 = 5, g2 = 3, r11 = 3, r12 = 15, r21 = 9,
r22 = 1, and the discount factor is α = 0.9. The optimal costs are J∗(1) = 49.7
and J∗(2) = 40.0, and the optimal policy is µ∗(1) = 0.59 and µ∗(2) = 0. The
figure also shows the one-dimensional slices of the operators at J(1) = 15 and
J(2) = 30, together with the corresponding 45-degree lines.

Visualization of Value Iteration

The operator notation simplifies algorithmic descriptions, derivations, and
proofs related to DP. For example, the value iteration (VI) algorithm can
be written in the compact form

Jk+1 = TJk, k = 0, 1, . . . ,

as illustrated in Fig. 1.3.5. Moreover, the VI algorithm for a given policy
µ can be written as

Jk+1 = TµJk, k = 0, 1, . . . ,

and it can be similarly interpreted, except that the graph of the function
TµJ is linear. Also we will see shortly that there is a similarly compact
description for the policy iteration algorithm.

1.3.2 Approximation in Value Space and Newton’s Method

Let us now interpret approximation in value space in terms of abstract
geometric constructions. Here we approximate J* with some function J̃ ,
and we obtain by minimization a corresponding policy, called a one-step
lookahead policy. In particular, for a given J̃ , a one-step lookahead policy
µ̃ is characterized by the equation

Tµ̃J̃ = T J̃,
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J J∗ = TJ∗

0 Prob. = 1
1 J J

1 J J

J0 J1

J1

J2

J2

Optimal cost Cost of rollout policy ˜

TJ

45◦Line

provement Bellman Equation Value Iterations

Stability Region 0

Figure 1.3.5 Geometric interpretation of the VI algorithm Jk+1 = TJk, start-
ing from some initial function J0. Successive iterates are obtained through the
staircase construction shown in the figure. The VI algorithm Jk+1 = TµJk for a
given policy µ can be similarly interpreted, except that the graph of the function
TµJ is linear.

as in Fig. 1.3.6. This equation implies that the graph of Tµ̃J just touches
the graph of TJ at J̃ , as shown in the figure. Moreover, for each state
x ∈ X the hyperplane Hµ̃(x)

Hµ̃(x) =
{

(

J(x), ξ
)

| (Tµ̃J)(x) ≥ ξ
}

,

supports from above the convex set
{

(

J(x), ξ
)

| (TJ)(x) ≥ ξ
}

at the point
(

J̃(x), (T J̃)(x)
)

and defines a subgradient of (TJ)(x) at J̃ .
Note that the one-step lookahead policy µ̃ need not be unique, since T
need not be differentiable.

In conclusion, the equation

J = Tµ̃J

is a pointwise (for each x) linearization of the equation

J = TJ
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J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l
One-Step Lookahead Policy Cost l

One-Step Lookahead Policy Cost
One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0 J̃

Cost Approximation Value Space Approximation

Newton step from J̃

J̃ for solving J = TJ

Approximations Result ofalso Newton Step

Figure 1.3.6 Geometric interpretation of approximation in value space and the
one-step lookahead policy µ̃ as a step of Newton’s method. Given J̃ , we find a
policy µ̃ that attains the minimum in the relation

T J̃ = min
µ

TµJ̃ .

This policy satisfies T J̃ = Tµ̃J̃ , so the graph of TJ and Tµ̃J touch at J̃ , as shown.
It may not be unique. Because TJ has concave components, the equation

J = Tµ̃J

is the linearization of the equation J = TJ at J̃ . The linearized equation is solved
at the typical step of Newton’s method to provide the next iterate, which is just
Jµ̃.

at J̃ , and its solution, Jµ̃, can be viewed as the result of a Newton iteration
at the point J̃ . In summary, the Newton iterate at J̃ is Jµ̃, the solution of
the linearized equation J = Tµ̃J .†

We may also consider approximation in value space with %-step looka-

† The classical Newton’s method for solving a fixed point problem of the form
y = T (y), where y is an n-dimensional vector, operates as follows: At the current
iterate yk, we linearize T and find the solution yk+1 of the corresponding linear
fixed point problem. Assuming T is differentiable, the linearization is obtained
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head using J̃ . This is the same as approximation in value space with one-
step lookahead using the (% − 1)-fold operation of T on J̃ , T $−1J̃ . Thus
it can be interpreted as a Newton step starting from T $−1J̃ , the result of
%− 1 value iterations applied to J̃ . This is illustrated in Fig. 1.3.7.†

1.3.3 Policy Iteration and Newton’s Method

Another major class of infinite horizon algorithms is based on policy it-
eration (PI for short). We will discuss several abstract versions of PI in
subsequent chapters, under a variety of assumptions. Generally, each iter-
ation of the PI algorithm starts with a policy (which we call current or base
policy), and generates another policy (which we call new or rollout policy,
respectively). For the stochastic optimal control problem of Example 1.2.1,
given the base policy µ, a policy iteration consists of two phases:

by using a first order Taylor expansion:

yk+1 = T (yk) +
∂T (yk)

∂y
(yk+1 − yk),

where ∂T (yk)/∂y is the n × n Jacobian matrix of T evaluated at the vector
yk. The most commonly given convergence rate property of Newton’s method is
quadratic convergence. It states that near the solution y∗, we have

‖yk+1 − y∗‖ = O
(

‖yk − y∗‖2
)

,

where ‖ · ‖ is the Euclidean norm, and holds assuming the Jacobian matrix ex-
ists and is Lipschitz continuous (see [Ber16], Section 1.4). There are extensions
of Newton’s method that are based on solving a linearized system at the cur-
rent iterate, but relax the differentiability requirement to piecewise differentiabil-
ity, and/or component concavity, while maintaining the superlinear convergence
property of the method.

The structure of the Bellman operators (1.28) and (1.27), with their mono-

tonicity and concavity properties, tends to enhance the convergence and rate of

convergence properties of Newton’s method, even in the absence of differentiabil-
ity, as evidenced by the convergence analysis of PI, and the extensive favorable

experience with rollout, PI, and MPC. In this connection, it is worth noting that

in the case of Markov games, where the concavity property does not hold, the
PI method may oscillate, as shown by Pollatschek and Avi-Itzhak [PoA69], and

needs to be modified to restore its global convergence; see the author’s paper
[Ber21c]. We will discuss abstract versions of game and minimax contexts n

Chapter 5.

† Variants of Newton’s method that involve combinations of first order it-
erative methods, such as the Gauss-Seidel and Jacobi algorithms, and New-

ton’s method, and they belong to the general family of Newton-SOR methods

(SOR stands for “successive over-relaxation”); see the classic book by Ortega
and Rheinboldt [OrR70] (Section 13.4).
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J J∗ = TJ∗

0 Prob. = 1

1 J J

1 J J

Optimal cost Cost of rollout policy ˜

TJ

J̃

Tµ̃J

J̃ Jµ̃ = Tµ̃Jµ̃

One-Step Lookahead Policy Cost l

One-Step Lookahead Policy µ̃

Corresponds to One-Step Lookahead Policy ˜

Stability Region 0

Multistep Lookahead Policy Cost l

Multistep Lookahead Policy Cost

Cost Approximation Value Space Approximation

Cost Approximation Value Space Approximation

Multistep Lookahead Policy Cost T 2J̃

Effective Cost Approximation Value Space Approximation

J̃ for solving J = TJ

Newton step from T !−1J̃

Approximations Result of

Linear policy parameter Optimal ! = 3

also Newton Step

Figure 1.3.7 Geometric interpretation of approximation in value space with #-
step lookahead (in this figure # = 3). It is the same as approximation in value
space with one-step lookahead using T "−1J̃ as cost approximation. It can be
viewed as a Newton step at the point T "−1J̃ , the result of # − 1 value iterations
applied to J̃. Note that as # increases the cost function Jµ̃ of the #-step lookahead
policy µ̃ approaches more closely the optimal J∗, and that lim"→∞ Jµ̃ = J∗.

(a) Policy evaluation, which computes the cost function Jµ. One possi-
bility is to solve the corresponding Bellman equation

Jµ(x) = E
{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)

}

, for all x.

(1.34)
However, the value Jµ(x) for any x can also be computed by Monte
Carlo simulation, by averaging over many randomly generated tra-
jectories the cost of the policy starting from x. Other possibilities
include the use of specialized simulation-based methods, based on
the projected and aggregation Bellman equations discussed in Sec-
tion 1.2.4, for which there is extensive literature (see e.g., the books
[BeT96], [SuB98], [Ber12a], [Ber19b]).

(b) Policy improvement , which computes the rollout policy µ̃ using the
one-step lookahead minimization

µ̃(x) ∈ arg min
u∈U(x)

E
{

g(x, u, w) + αJµ
(

f(x, u, w)
)

}

, for all x.

(1.35)
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µk+1 = T
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Linearized Bellman Eq. at J
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for µk+1
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Figure 1.3.8 Geometric interpretation of a single policy iteration. Starting from
the stable current policy µk , it evaluates the corresponding cost function Jµk ,

and computes the next policy µk+1 according to Tµk+1Jµk = TJµk . The corre-
sponding cost function Jµk+1 is obtained as the solution of the linearized equation
J = Tµk+1J , so it is the result of a Newton step for solving the Bellman equation
J = TJ , starting from Jµk . Note than in policy iteration, the Newton step always
starts at a function Jµ, which satisfies Jµ ≥ J∗.

It is generally expected (and can be proved under mild conditions)
that the rollout policy is improved in the sense that Jµ̃(x) ≤ Jµ(x)
for all x.

Thus the PI process generates a sequence of policies {µk}, by obtain-
ing µk+1 through a policy improvement operation using Jµk in place of Jµ
in Eq. (1.35), which is obtained through policy evaluation of the preceding
policy µk using Eq. (1.34). In subsequent chapters, we will show under ap-
propriate assumptions that general forms of PI have interesting and often
solid convergence properties, which may hold even when the method is im-
plemented (with appropriate modifications) in unconventional computing
environments, involving asynchronous distributed computation.

In terms of our abstract notation, the PI algorithm can be written
in a compact form. For the generated policy sequence {µk}, the policy
evaluation phase obtains Jµk from the equation

Jµk = TµkJµk , (1.36)

while the policy improvement phase obtains µk+1 through the equation

Tµk+1Jµk = TJµk . (1.37)
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As Fig. 1.3.8 illustrates, PI can be viewed as Newton’s method for solv-
ing the Bellman equation in the function space of cost functions J . In
particular, the policy improvement Eq. (1.37) is the Newton step starting
from Jµk , and yields µk+1 as the corresponding one-step lookahead/rollout
policy.

The interpretation of PI as a form of Newton’s method has a long his-
tory, for which we refer to the original works for linear quadratic problems
by Kleinman [Klei68],† and for finite-state infinite horizon discounted and
Markov game problems by Pollatschek and Avi-Itzhak [PoA69] (who also
showed that the method may oscillate in the game case; see the discussion
in Chapter 5).

1.3.4 Approximation in Value Space for General Abstract
Dynamic Programming

Let us now consider the general case where the mapping Tµ is not assumed
linear for all stationary policies µ ∈ M. In this case we still have the
alternative description of T

(TJ)(x) = min
µ∈M

(TµJ)(x), for all x,

but T need not be concave, i.e., for some x ∈ X , the function (TJ)(x) may
not be concave as a function of J . We illustrate this fact in Fig. 1.3.9.

The nonlinearity of the mapping Tµ can have profound consequences
on the validity of the PI algorithm and its interpretation in terms of New-
ton’s method. A prominent case where this is so arises in minimax problems
and related two-person zero sum game settings (cf. Example 1.2.5). We will
discuss this case in Chapter 5, where we will introduce modifications to the
PI algorithm that restore its convergence property.

We note, however, that it is possible that the mappings Tµ are non-
linear and convex, but that T has concave and differentiable components
(TJ)(x), in which case the Newton step interpretation applies. This occurs
in particular in the important case of zero-sum dynamic games involving a
linear system and a quadratic cost function.

1.4 ORGANIZATION OF THE BOOK

The examples in the preceding sections demonstrate that while the mono-
tonicity assumption is satisfied for most DP models, the contraction as-
sumption may or may not hold. In particular, the contraction assumption

† This was part of Kleinman’s Ph.D. thesis [Kle67] at M.I.T., supervised by
M. Athans. Kleinman gives credit for the one-dimensional version of his results to

Bellman and Kalaba [BeK65]. Note also that the first proposal of the PI method

was given by Bellman in his classic book [Bel57], under the name “approximation
in policy space.”
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1 J J

TµJ

(1) = 0

Tµ′J

TJ = min{Tµ, Tµ′}

Figure 1.3.9 Geometric interpretation of the Bellman operator, in the general
case where the policy mappings Tµ are not linear. The figure illustrates the case
of two policies µ and µ′, whose mappings Tµ and Tµ′ are piecewise linear and

convex. In this case the mapping T , given by (TJ)(x) = min
{

TµJ(x), Tµ′J(x)
}

,

is piecewise linear, but it is neither convex nor concave, and the Newton step
interpretation breaks down; see also Chapter 5.

is satisfied for the mapping H in Examples 1.2.1-1.2.5, provided there is
discounting and that the cost per stage is bounded. However, it need not
hold in the SSP Example 1.2.6, the multiplicative Example 1.2.8, and the
affine monotonic Example 1.2.9.

The book’s central theme is that the presence or absence of mono-
tonicity and contraction fundamentally shapes the analytical and algorith-
mic theories for abstract DP. In our development, with few exceptions, we
will assume that monotonicity holds. Consequently, the book is organized
around the presence or absence of the contraction property. In the next
three chapters we will discuss three types of DP models.

(a) Contractive models: These models, discussed in Chapter 2, have
the richest and strongest algorithmic theory, and serve as a bench-
mark for other models. Notable examples include discounted stochas-
tic optimal control problems (cf. Example 1.2.1), finite-state dis-
counted MDP (cf. Example 1.2.2), and some special types of SSP
problems (cf. Example 1.2.6).

(b) Semicontractive models: In these models, Tµ is monotone but
is not a contraction for all µ ∈ M. Most practical deterministic,
stochastic, and minimax-type shortest path problems fall into this
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category. One challenge here is that, under certain conditions, some
of the problem’s cost functions may take the values +∞ or −∞, and
the mappings Tµ and T must be able to deal with such functions.

The distinguishing feature of semicontractive models is the separa-
tion of policies into those that “behave well” within our optimization
framework and those that do not. Contraction-based analysis is in-
sufficient to deal with “ill-behaved” policies, so we introduce a notion
of “regularity,” which is connected to contraction, but is more gen-
eral. In particular, a policy µ is considered “regular” if the dynamic
system underlying Tµ has Jµ has an asymptotically stable equilibrium
within a suitable domain. Our models and analysis are patterned to
a large extent after the SSP problems of Example 1.2.6 (the regular
µ correspond to the proper policies). We show that the (restricted)
optimal cost function over just the regular policies can typically be
obtained with value and policy iteration algorithms. By contrast, the
optimal cost function over all policies J* may not be obtainable by
these algorithms, and indeed J* may not even be a solution of Bell-
man’s equation, as we will show with a simple example in Section
3.1.2.

The key idea is that under certain conditions, the restricted opti-
mization (the one that optimizes over the regular policies only) is
well behaved, both analytically and algorithmically. Under additional
conditions, which directly or indirectly ensure the existence of an opti-
mal regular policy, we obtain semicontractive models with properties
nearly as robust as contractive models.

In Chapter 3, we develop the basic theory of semicontractive models
for the case where the regular policies are stationary, while in Chapter
4 (Section 4.4), we extend the notion of regularity to nonstationary
policies. Moreover, we illustrate the theory with a variety of interest-
ing shortest path-type problems (stochastic, minimax, affine mono-
tonic, and risk sensitive/exponential cost), linear-quadratic optimal
control problems, and deterministic and stochastic optimal control
problems.

(c) Noncontractive models: These models rely on just the monotonic-
ity property of Tµ, and are more complex than the preceding ones.
Like semicontractive models, the problem’s cost functions may take
the values of +∞ or −∞, and in fact the optimal cost function may
take the values ∞ and −∞ as a matter of course (rather than on
an exceptional basis, as in semicontractive models). This complexity
presents considerable challenges, as much of the contractive model
theory either does not extend or does so in a weaker form only. For
instance, the fixed point equation J = TJ may lack a unique solu-
tion, value iteration may succeed starting with some functions but
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not with others, and policy iteration may fail altogether. Some of
these issues may be mitigated when additional structure is present,
which we discuss in Sections 4.4-4.6, focusing on noncontractive mod-
els that also have some semicontractive structure, and corresponding
favorable properties.

Examples of DP problems from each of the model categories above,
primarily special cases of the specific DP models discussed in Section 1.2,
are scattered throughout the book. They serve both to illustrate the theory
and its exceptions, and to highlight the beneficial role of additional special
structure.

We finally note some other types of models where there are restric-
tions to the set of policies, i.e., M may be a strict subset of the set of
functions µ : X #→ U with µ(x) ∈ U(x) for all x ∈ X . Such restrictions
may include measurability (needed to establish a mathematically rigorous
probabilistic framework) or special structure that enhances the characteri-
zation of optimal policies and facilitates their computation. These models
were treated in Chapter 5 of the first edition of this book, and also in
Chapter 6 of [BeS78].†

Algorithms

Our discussion of algorithms centers on abstract forms of value and policy
iteration, and is organized along three characteristics: exact, approximate,
and asynchronous . The exact algorithms represent idealized versions, the
approximate represent implementations that use approximations of various
kinds, and the asynchronous involve irregular computation orders, where
the costs and controls at different states are updated at different iterations
(for example the cost of a single state being iterated at a time, as in Gauss-
Seidel and other methods; see [Ber12a] for several examples of distributed
asynchronous DP algorithms).

Approximate and asynchronous implementations have been the sub-
ject of intensive investigations since the 1980s, in the context of the solution
of large-scale problems. Some of this methodology relies on the use of sim-
ulation, which is asynchronous by nature and is prominent in approximate
DP. Generally, the monotonicity and sup-norm contraction structures of
many prominent DP models favors the use of asynchronous algorithms in
DP, as first shown in the author’s paper [Ber82], and discussed at vari-
ous points in this book: Section 2.6 for contractive models, Section 3.6 for
semicontractive models, and Sections 5.3-5.4 for minimax problems and
zero-sum games.

† Chapter 5 of the first edition is accessible from the author’s web site and

the book’s web page, and uses terminology and notation that are consistent with
the present edition.
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1.5 NOTES, SOURCES, AND EXERCISES

This monograph is written in a mathematical style that emphasizes sim-
plicity and abstraction. According to the relevant Wikipedia article:

“Abstraction in mathematics is the process of extracting the underlying
essence of a mathematical concept, removing any dependence on real world
objects with which it might originally have been connected, and generaliz-
ing it so that it has wider applications or matching among other abstract
descriptions of equivalent phenomena ... The advantages of abstraction
are:

(1) It reveals deep connections between different areas of mathematics.

(2) Known results in one area can suggest conjectures in a related area.

(3) Techniques and methods from one area can be applied to prove results
in a related area.

One disadvantage of abstraction is that highly abstract concepts can be
difficult to learn. A degree of mathematical maturity and experience may
be needed for conceptual assimilation of abstractions.”

Consistent with the preceding view of abstraction, our aim has been
to construct a minimalist framework, where the important mathematical
structures stand out, while the application context is deliberately blurred.
Of course, our development has to pass the test of relevance to applica-
tions. In this connection, we note that our presentation has integrated the
relation of our abstract DP models with the applications of Section 1.2,
and particularly discounted stochastic optimal control models (Chapter 2),
shortest path-type models (Chapters 3 and 4), undiscounted determinis-
tic and stochastic optimal control models (Chapter 4), and minimax and
zero-sum game problems (Chapter 5). We have given illustrations of the
abstract mathematical theory using these models and others throughout
the text. A much broader and accessible account of applications is given
in the author’s two-volume DP textbook.

Section 1.2: The abstract style of mathematical development has a long
history in DP. In particular, the connection between DP and fixed point the-
ory may be traced to Shapley [Sha53], who exploited contraction mapping
properties in analysis of the two-player dynamic game model of Example
1.2.4. Since then, the underlying contraction properties of discounted DP
problems with bounded cost per stage have been explicitly or implicitly
used by most authors that have dealt with the subject. Moreover, the
value of the abstract viewpoint as the basis for economical and insightful
analysis has been widely recognized.

An abstract DP model, based on unweighted sup-norm contraction
assumptions, was introduced in the paper by Denardo [Den67]. This model
pointed to the fundamental connections between DP and fixed point the-
ory, and provided generality and insight into the principal analytical and



46 Introduction Chap. 1

algorithmic ideas underlying the discounted DP research up to that time.
Abstract DP ideas were also researched earlier, notably in the paper by
Mitten (Denardo’s Ph.D. thesis advisor) [Mit64]; see also Denardo and
Mitten [DeM67]. The properties of monotone contractions were also used
in the analysis of sequential games by Zachrisson [Zac64].

Two abstract DP models that rely only on monotonicity properties
were given by the author in the papers [Ber75], [Ber77]. They were pat-
terned after the negative cost DP problem of Blackwell [Bla65] and the
positive cost DP problem of Strauch [Str66] (see the monotone decreasing
and monotone increasing models of Section 4.3). These two abstract DP
models, together with the finite horizon models of Section 4.2, were used
extensively in the book by Bertsekas and Shreve [BeS78] for the analysis
of both discounted and undiscounted DP problems, ranging over MDP,
minimax, multiplicative, and Borel space models.

Extensions of the monotonicity-based analysis of the author’s paper
[Ber77] were given by Verdu and Poor [VeP87], who introduced additional
structure for developing backward and forward value iterations, and by
Szepesvari [Sze98a, Sze98b], who incorporated non-Markovian policies into
the abstract DP framework. The model from [Ber77] also provided a foun-
dation for asynchronous value and policy iteration methods for abstract
contractive and noncontractive DP models in Bertsekas [Ber82] and Bert-
sekas and Yu [BeY10]. An extended contraction framework, whereby the
sup-norm contraction norm is allowed to be weighted, was given in the au-
thor’s paper [Ber12b]. Another line of related research involving abstract
DP mappings that are not necessarily scalar-valued was initiated by Mit-
ten [Mit74], and was followed up by a number of authors, including Sobel
[Sob75], Morin [Mor82], and Carraway and Morin [CaM88].

Section 1.3: The central role of Newton’s method for understanding ap-
proximation value space, rollout, and other reinforcement learning and ap-
proximate DP methods, was articulated in the author’s monograph [Ber20],
and was described in more detail in the book [Ber22].

Section 1.4: Generally, noncontractive total cost DP models with some
special structure beyond monotonicity, fall in three major categories: mono-
tone increasing models , principally represented by positive cost DP, mono-
tone decreasing models , principally represented by negative cost DP, and
transient models , exemplified by the SSP model of Example 1.2.6, where
the decision process terminates after a period that is random and subject to
control. Abstract DP models patterned after the first two categories have
been known since the author’s papers [Ber75], [Ber77], and are further
discussed in Section 4.3.

The semicontractive models, further discussed Chapter 3 and Sec-
tions 4.4-4.6, are patterned after the third category. They were introduced
and analyzed in the first edition of this book, as well as the subsequent
series of papers and reports, [Ber15], [Ber16a], [BeY16], [Ber17b], [Ber17c],
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[Ber17d], [Ber19c]. Their analysis is based on the idea of separating poli-
cies into those that are well-behaved (these are called regular , and have
contraction-like properties) and those that are not (these are called irregu-
lar). The objective of the analysis is then to explain the detrimental effects
of the irregular policies, and to delineate the kind of model structure that
can limit these effects. As far as the author knows, this idea is new in the
context of abstract DP. One of the aims of the present monograph is to
develop this idea and to show that it leads to an important and insightful
paradigm for conceptualization and solution of major classes of practical
DP problems.

E X E R C I S E S

1.1 (Multistep Contraction Mappings)

This exercise shows how starting with an abstract mapping, we can obtain mul-
tistep mappings with the same fixed points and a stronger contraction modulus.
Consider a set of mappings Tµ : B(X) (→ B(X), µ ∈ M, satisfying the con-
traction Assumption 1.2.2, let m be a positive integer, and let Mm be the set
of m-tuples ν = (µ0, . . . , µm−1), where µk ∈ M, k = 1, . . . ,m − 1. For each
ν = (µ0, . . . , µm−1) ∈ Mm, define the mapping T ν , by

T νJ = Tµ0 · · ·Tµm−1J, ∀ J ∈ B(X).

Show the contraction properties

‖T νJ − T νJ
′‖ ≤ αm‖J − J ′‖, ∀ J, J ′ ∈ B(X), (1.39)

and
‖TJ − TJ ′‖ ≤ αm‖J − J ′‖, ∀ J, J ′ ∈ B(X), (1.40)

where T is defined by

(TJ)(x) = inf
(µ0,...,µm−1)∈Mm

(Tµ0 · · · Tµm−1J)(x), ∀ J ∈ B(X), x ∈ X.

Solution: By the contraction property of Tµ0 , . . . , Tµm−1 , we have for all J, J
′ ∈

B(X),
‖T νJ − T νJ

′‖ = ‖Tµ0 · · ·Tµm−1J − Tµ0 · · ·Tµm−1J
′‖

≤ α‖Tµ1 · · · Tµm−1J − Tµ1 · · ·Tµm−1J
′‖

≤ α2‖Tµ2 · · ·Tµm−1J − Tµ2 · · ·Tµm−1J
′‖

...

≤ αm‖J − J ′‖,
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thus showing Eq. (1.39).
We have from Eq. (1.39)

(Tµ0 · · ·Tµm−1J)(x) ≤ (Tµ0 · · ·Tµm−1J
′)(x) + αm‖J − J ′‖ v(x), ∀ x ∈ X,

and by taking infimum of both sides over (Tµ0 · · ·Tµm−1) ∈ Mm and dividing by
v(x), we obtain

(TJ)(x)− (TJ ′)(x)

v(x)
≤ αm‖J − J ′‖, ∀ x ∈ X.

Similarly
(TJ ′)(x)− (TJ)(x)

v(x)
≤ αm‖J − J ′‖, ∀ x ∈ X,

and by combining the last two relations and taking supremum over x ∈ X, Eq.
(1.40) follows.

1.2 (Relation of Temporal Difference Methods and Proximal
Algorithms [Ber16b], [Ber18c])

The purpose of this exercise is establish a close connection between the map-
pings underlying temporal difference and proximal methods (cf. Section 1.2.5).
Consider a linear mapping of the form

TJ = AJ + b,

where b is a vector in !n, and A is an n × n matrix with eigenvalues strictly
within the unit circle. Let λ ∈ (0, 1) and c = λ

1−λ , and consider the multistep

mapping T (λ) given by

T (λ)J = (1− λ)

∞
∑

"=0

λ"T "+1J, J ∈ !n,

and the proximal mapping P (c) given by

P (c)J =
(

c+ 1
c

I − A
)−1 (

b+
1
c
J
)

, J ∈ !n;

cf. Eq. (1.23) [equivalently, for a given J , P (c)J is the unique vector Y ∈ !n that
solves the equation

Y − TY =
1
c
(J − Y ),

(cf. Fig. 1.5.1)].

(a) Show that P (c) is given by

P (c) = (1− λ)

∞
∑

"=0

λ"T ",
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λ =
c

c+ 1
, c =

λ

1− λ

Ĵ = P (c)J J

Jˆ J*

Ĵ − T Ĵ = 1

c
(J − Ĵ)

T (λ)J = T Ĵ

Y

Graph of the mapping Y −TY V

δ
1

c
(J − Y )

Figure 1.5.1. Illustration of the iterates T (λ)J and P (c)J for finding the fixed
point J∗ of a linear mapping T . Given J , we find the proximal iterate Ĵ =

P (c)J and then add the amount 1
c

(

Ĵ − J
)

to obtain T (λ)J = TP (c)J . If T is a

contraction mapping, T (λ)J is closer to J∗ than P (c)J .

and can be written as

P (c)J = A
(λ)

J + b
(λ)

,

where

A
(λ)

= (1− λ)

∞
∑

"=0

λ"A", b
(λ)

=

∞
∑

"=0

λ"+1A"b.

(b) Verify that

T (λ)J = A(λ)J + b(λ),

where

A(λ) = (1− λ)

∞
∑

"=0

λ"A"+1, b(λ) =

∞
∑

"=0

λ"A"b,

and show that
T (λ) = TP (c) = P (c)T, (1.41)

and that for all J ∈ !n,

P (c)J = J + λ
(

T (λ)J − J
)

, T (λ)J = J +
c+ 1
c

(

P (c)J − J
)

. (1.42)

Thus T (λ)J is obtained by extrapolation along the line segment P (c)J −J ,
as illustrated in Fig. 1.5.1. Note that since T is a contraction mapping,
T (λ)J is closer to J∗ than P (c)J .

(c) Show that for a given J ∈ !n, the multistep and proximal iterates T (λ)J
and P (c)J are the unique fixed points of the contraction mappings WJ and
W J given by

WJY = (1− λ)TJ + λTY, W JY = (1− λ)J + λTY, Y ∈ !n,
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respectively.

(d) Show that the fixed point property of part (c) yields the following formula
for the multistep mapping T (λ):

T (λ)J = (1− λA)−1
(

b+ (1− λ)AJ
)

. (1.43)

(e) (Multistep Contraction Property for Nonexpansive A [BeY09]) Instead of
assuming that A has eigenvalues strictly within the unit circle, assume
that the matrix I − A is invertible and A is nonexpansive [i.e., has all its
eigenvalues within the unit circle (possibly on the unit circle)]. Show that
A(λ) is contractive (i.e., has eigenvalues that lie strictly within the unit
circle) and its eigenvalues have the form

θi = (1− λ)

∞
∑

"=0

λ"ζ"+1
i =

ζi(1− λ)

1− ζiλ
, i = 1, . . . , n, (1.44)

where ζi, i = 1, . . . , n, are the eigenvalues of A. Note: For an intuitive
explanation of the result, note that the eigenvalues of A(λ) can be viewed
as convex combinations of complex numbers from the unit circle at least
two of which are different from each other, since ζi ,= 1 by assumption
(the nonzero corresponding eigenvalues of A and A2 are different from each
other). As a result the eigenvalues of A(λ) lie strictly within the unit circle.

(f) (Contraction Property of Projected Multistep Mappings) Under the assump-
tions of part (e), show that limλ→1 A

(λ) = 0. Furthermore, for any n × n
matrix W , the matrix WA(λ) is contractive for λ sufficiently close to 1.
In particular the projected mapping ΠA(λ) and corresponding projected
proximal mapping (cf. Section 1.2.5) become contractions as λ → 1.

Solution: (a) The inverse in the definition of P (c) is written as

(

c+ 1
c

I − A
)−1

=
(

1
λ
I − A

)−1

= λ(I − λA)−1 = λ

∞
∑

"=0

(λA)".

Thus, using the equation 1
c = 1−λ

λ ,

P (c)J =
(

c+ 1
c

I − A
)−1 (

b+
1
c
J
)

= λ

∞
∑

"=0

(λA)"
(

b+
1− λ
λ

J
)

= (1− λ)

∞
∑

"=0

(λA)"J + λ

∞
∑

"=0

(λA)"b,

which is equal to A
(λ)

J + b
(λ)

. The formula P (c) = (1 − λ)
∑∞

"=0
λ"T " follows

from this expression.
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(b) The formula T (λ)J = A(λ)J + b(λ) is verified by straightforward calculation.
We have,

TP (c)J = A
(

A
(λ)

J + b
(λ))

+ b

= (1− λ)

∞
∑

"=0

λ"A"+1J +

∞
∑

"=0

λ"+1A"+1b+ b = A(λ)J + b(λ)

= T (λ)J,

thus proving the left side of Eq. (1.41). The right side is proved similarly. The in-
terpolation/extrapolation formula (1.42) follows by a straightforward calculation
from the definition of T (λ). As an example, to show the left side of Eq. (1.42),
we write

J + λ
(

T (λ)J − J
)

= (1− λ)J + λT (λ)J

= (1− λ)J + λ

(

(1− λ)

∞
∑

"=0

λ"A"+1J +

∞
∑

"=0

λ"A"b

)

= (1− λ)

(

J +

∞
∑

"=1

λ"A"J

)

+

∞
∑

"=0

λ"+1A"b

= A
(λ)

J + b
(λ)

= P (c)J.

(c) To show that T (λ)J is the fixed point of WJ , we must verify that

T (λ)J = WJ

(

T (λ)J
)

,

or equivalently that

T (λ)J = (1− λ)TJ + λT
(

T (λ)J) = (1− λ)TJ + λT (λ)(TJ).

The right-hand side, in view of the interpolation formula

(1− λ)J + λT (λ)J = P (c)J, ∀ x ∈ !n,

is equal to P (c)(TJ), which from the formula T (λ) = P (c)T [cf. part (b)], is equal
to T (λ)J . The proof is similar for W J .

(d) The fixed point property of part (c) states that T (λ)J is the unique solution
of the following equation in Y :

Y = (1− λ)TJ + λTY = (1− λ)(AJ + b) + λ(AY + b),

from which the desired relation follows.

(e), (f) The formula (1.44) follows from the expression for A(λ) given in part (b).
This formula can be used to show that the eigenvalues of A(λ) lie strictly within
the unit circle, using also the fact that the matrices Am, m ≥ 1, and A(λ) have
the same eigenvectors (see [BeY09] for details). Moreover, the eigenvalue formula
shows that all eigenvalues of A(λ) converge to 0 as λ → 1, so that limλ→1 A

(λ) = 0.
This also implies that WA(λ) is contractive for λ sufficiently close to 1.
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1.3 (State-Dependent Weighted Multistep Mappings [YuB12])

Consider a set of mappings Tµ : B(X) (→ B(X), µ ∈ M, satisfying the contraction

Assumption 1.2.2. Consider also the mappings T (w)
µ : B(X) (→ B(X) defined by

(T (w)
µ J)(x) =

∞
∑

"=1

w"(x)
(

T "
µJ
)

(x), x ∈ X, J ∈ B(X),

where w"(x) are nonnegative scalars such that for all x ∈ X,

∞
∑

"=1

w"(x) = 1.

Show that
∣

∣(T (w)
µ J)(x)− (T (w)

µ J ′)(x)
∣

∣

v(x)
≤

∞
∑

"=1

w"(x)α
"‖J − J ′‖, ∀ x ∈ X,

so that T (w)
µ is a contraction with modulus

ᾱ = sup
x∈X

∞
∑

"=1

w"(x)α
" ≤ α < 1.

Moreover, for all µ ∈ M, the mappings Tµ and T (w)
µ have the same fixed point.

Solution: By the contraction property of Tµ, we have for all J, J ′ ∈ B(X) and
x ∈ X,

∣

∣(T (w)
µ J)(x)− (T (w)

µ J ′)(x)
∣

∣

v(x)
=

∣

∣

∑∞

"=1 w"(x)(T
"
µJ)(x)−

∑∞

"=1 w"(x)(T
"
µJ

′)(x)
∣

∣

v(x)

≤

∞
∑

"=1

w"(x)‖T
"
µJ − T "

µJ
′‖

≤

(

∞
∑

"=1

w"(x)α
"

)

‖J − J ′‖,

showing the contraction property of T (w)
µ .

Let Jµ be the fixed point of Tµ. By using the relation (T "
µJµ)(x) = Jµ(x),

we have for all x ∈ X,

(T (w)
µ Jµ)(x) =

∞
∑

"=1

w"(x)
(

T "
µJµ

)

(x) =

(

∞
∑

"=1

w"(x)

)

Jµ(x) = Jµ(x),

so Jµ is the fixed point of T (w)
µ [which is unique since T (w)

µ is a contraction].
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In this chapter we consider the abstract DP model of Section 1.2 under the
most favorable assumptions: monotonicity and weighted sup-norm contrac-
tion. Important special cases of this model are the discounted problems
with bounded cost per stage (Example 1.2.1-1.2.5), the stochastic shortest
path problem of Example 1.2.6 in the case where all policies are proper, as
well as other problems involving special structures.

We first provide some basic analytical results and then focus on two
types of algorithms: value iteration and policy iteration. In addition to
exact forms of these algorithms, we discuss combinations and approximate
versions, as well as asynchronous distributed versions.

2.1 BELLMAN’S EQUATION AND OPTIMALITY CONDITIONS

In this section we recall the abstract DP model of Section 1.2, and derive
some of its basic properties under the monotonicity and contraction as-
sumptions of Section 1.3. We consider a set X of states and a set U of
controls, and for each x ∈ X , a nonempty control constraint set U(x) ⊂ U .
We denote by M the set of all functions µ : X #→ U with µ(x) ∈ U(x)
for all x ∈ X , which we refer to as policies (or “stationary policies,” when
we want to emphasize the distinction from nonstationary policies, to be
discussed later).

We denote by R(X) the set of real-valued functions J : X #→ %. We
have a mapping H : X × U ×R(X) #→ % and for each policy µ ∈ M, we
consider the mapping Tµ : R(X) #→ R(X) defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X.

We also consider the mapping T defined by

(TJ)(x) = inf
u∈U(x)

H(x, u, J) = inf
µ∈M

(TµJ)(x), ∀ x ∈ X.

[We will use frequently the second equality above, which holds because M
can be viewed as the Cartesian product Πx∈XU(x).] We want to find a
function J* ∈ R(X) such that

J*(x) = inf
u∈U(x)

H(x, u, J*), ∀ x ∈ X,

i.e., to find a fixed point of T within R(X). We also want to obtain a policy
µ∗ ∈ M such that Tµ∗J* = TJ*.

Let us restate for convenience the contraction and monotonicity as-
sumptions of Section 1.2.2.

Assumption 2.1.1: (Monotonicity) If J, J ′ ∈ R(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).
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Note that the monotonicity assumption implies the following proper-
ties, for all J, J ′ ∈ R(X) and k = 0, 1, . . ., which we will use extensively:

J ≤ J ′ ⇒ T kJ ≤ T kJ ′, T k
µJ ≤ T k

µJ ′, ∀ µ ∈ M,

J ≤ TJ ⇒ T kJ ≤ T k+1J, T k
µJ ≤ T k+1

µ J, ∀ µ ∈ M.

Here T k and T k
µ denotes the k-fold composition of T and Tµ, respectively.

For the contraction assumption, we introduce a function v : X #→ %
with

v(x) > 0, ∀ x ∈ X.

We consider the weighted sup-norm

‖J‖ = sup
x∈X

∣∣J(x)
∣∣

v(x)

on B(X), the space of real-valued functions J on X such that J(x)/v(x) is
bounded over x ∈ X (see Appendix B for a discussion of the properties of
this space).

Assumption 2.1.2: (Contraction) For all J ∈ B(X) and µ ∈ M,
the functions TµJ and TJ belong to B(X). Furthermore, for some
α ∈ (0, 1), we have

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖, ∀ J, J ′ ∈ B(X), µ ∈ M.

The classical DP models where both the monotonicity and contrac-
tion assumptions are satisfied are the discounted finite-state Markovian
decision problem of Example 1.2.2, and the stochastic shortest path prob-
lem of Example 1.2.6 in the special case where all policies are proper; see
the textbook [Ber12a] for an extensive discussion. In the context of these
problems, the fixed point equation J = TJ is called Bellman’s equation, a
term that we will use more generally in this book as well. The following
proposition summarizes some of the basic consequences of the contraction
assumption.

Proposition 2.1.1: Let the contraction Assumption 2.1.2 hold. Then:

(a) The mappings Tµ and T are contraction mappings with modulus
α over B(X), and have unique fixed points in B(X), denoted Jµ
and J*, respectively.
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(b) For any J ∈ B(X) and µ ∈ M,

lim
k→∞

‖J* − T kJ‖ = 0, lim
k→∞

‖Jµ − T k
µJ‖ = 0.

(c) We have TµJ* = TJ* if and only if Jµ = J*.

(d) For any J ∈ B(X),

‖J* − J‖ ≤
1

1− α
‖TJ − J‖, ‖J* − TJ‖ ≤

α

1− α
‖TJ − J‖.

(e) For any J ∈ B(X) and µ ∈ M,

‖Jµ−J‖ ≤
1

1− α
‖TµJ−J‖, ‖Jµ−TµJ‖ ≤

α

1− α
‖TµJ−J‖.

Proof: We showed in Section 1.2.2 that T is a contraction with modulus
α over B(X). Parts (a) and (b) follow from Prop. B.1 of Appendix B.

To show part (c), note that if TµJ* = TJ*, then in view of TJ* = J*,
we have TµJ* = J*, which implies that J* = Jµ, since Jµ is the unique
fixed point of Tµ. Conversely, if J* = Jµ, we have TµJ* = TµJµ = Jµ =
J* = TJ*.

To show part (d), we use the triangle inequality to write for every k,

‖T kJ − J‖ ≤
k∑

!=1

‖T !J − T !−1J‖ ≤
k∑

!=1

α!−1‖TJ − J‖.

Taking the limit as k → ∞ and using part (b), the left-hand side inequality
follows. The right-hand side inequality follows from the left-hand side and
the contraction property of T . The proof of part (e) is similar to part (d)
[indeed it is the special case of part (d) where T is equal to Tµ, i.e., when
U(x) =

{
µ(x)

}
for all x ∈ X ]. Q.E.D.

Part (c) of the preceding proposition shows that there exists a µ ∈ M
such that Jµ = J* if and only if the minimum of H(x, u, J*) over U(x) is
attained for all x ∈ X . Of course the minimum is attained if U(x) is
finite for every x, but otherwise this is not guaranteed in the absence of
additional assumptions. Part (d) provides a useful error bound: we can
evaluate the proximity of any function J ∈ B(X) to the fixed point J* by
applying T to J and computing ‖TJ−J‖. The left-hand side inequality of
part (e) (with J = J*) shows that for every ε > 0, there exists a µε ∈ M
such that ‖Jµε −J*‖ ≤ ε, which may be obtained by letting µε(x) minimize
H(x, u, J*) over U(x) within an error of (1− α)ε v(x), for all x ∈ X .
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The preceding proposition and some of the subsequent results may
also be proved if B(X) is replaced by a closed subset B(X) ⊂ B(X). This is
because the contraction mapping fixed point theorem (Prop. B.1) applies to
closed subsets of complete spaces. For simplicity, however, we will disregard
this possibility in the present chapter.

An important consequence of monotonicity of H , when it holds in
addition to contraction, is that it implies that J*, the unique fixed point
of T , is the infimum over µ ∈ M of Jµ, the unique fixed point of Tµ.

Proposition 2.1.2: Let the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2 hold. Then

J*(x) = inf
µ∈M

Jµ(x), ∀ x ∈ X.

Furthermore, for every ε > 0, there exists µε ∈ M such that

J*(x) ≤ Jµε(x) ≤ J*(x) + ε, ∀ x ∈ X. (2.1)

Proof: We note that the right-hand side of Eq. (2.1) holds by Prop.
2.1.1(e) (see the remark following its proof). Thus infµ∈M Jµ(x) ≤ J*(x)
for all x ∈ X . To show the reverse inequality as well as the left-hand side
of Eq. (2.1), we note that for all µ ∈ M, we have TJ* ≤ TµJ*, and since
J* = TJ*, it follows that J* ≤ TµJ*. By applying repeatedly Tµ to both
sides of this inequality and by using the monotonicity Assumption 2.1.1,
we obtain J* ≤ T k

µJ* for all k > 0. Taking the limit as k → ∞, we see
that J* ≤ Jµ for all µ ∈ M, so that J*(x) ≤ infµ∈M Jµ(x) for all x ∈ X .
Q.E.D.

Note that without monotonicity, we may have infµ∈M Jµ(x) < J*(x)
for some x. This is illustrated by the following example.

Example 2.1.1 (Counterexample Without Monotonicity)

Let X = {x1, x2}, U = {u1, u2}, and let

H(x1, u, J) =

{
−αJ(x2) if u = u1,
−1 + αJ(x1) if u = u2,

H(x2, u, J) =
{
0 if u = u1,
B if u = u2,

where B is a positive scalar. Then it can be seen that

J∗(x1) = −
1

1− α
, J∗(x2) = 0,

and Jµ∗ = J∗ where µ∗(x1) = u2 and µ∗(x2) = u1. On the other hand, for
µ(x1) = u1 and µ(x2) = u2, we have Jµ(x1) = −αB and Jµ(x2) = B, so
Jµ(x1) < J∗(x1) for B sufficiently large.



58 Contractive Models Chap. 2

Optimality over Nonstationary Policies

The connection with DP motivates us to consider the set Π of all sequences
π = {µ0, µ1, . . .} with µk ∈ M for all k (nonstationary policies in the DP
context), and define

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X,

with J̄ being some function in B(X), where Tµ0 · · ·Tµk
J denotes the com-

position of the mappings Tµ0 , . . . , Tµk
applied to J , i.e.,

Tµ0 · · ·Tµk
J = Tµ0

(
Tµ1 · · · (Tµk−1(Tµk

J)) · · ·
)
.

Note that under the contraction Assumption 2.1.2, the choice of J̄ in
the definition of Jπ does not matter , since for any two J, J ′ ∈ B(X), we
have

‖Tµ0Tµ1 · · ·Tµk
J − Tµ0Tµ1 · · ·Tµk

J ′‖ ≤ αk+1‖J − J ′‖,

so the value of Jπ(x) is independent of J̄ . Since by Prop. 2.1.1(b), Jµ(x) =
limk→∞ (T k

µJ)(x) for all µ ∈ M, J ∈ B(X), and x ∈ X , in the DP context
we recognize Jµ as the cost function of the stationary policy {µ, µ, . . .}.

We now claim that under the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2, J*, which was defined as the unique fixed point of T ,
is equal to the optimal value of Jπ, i.e.,

J*(x) = inf
π∈Π

Jπ(x), ∀ x ∈ X.

Indeed, since M defines a subset of Π, we have from Prop. 2.1.2,

J*(x) = inf
µ∈M

Jµ(x) ≥ inf
π∈Π

Jπ(x), ∀ x ∈ X,

while for every π ∈ Π and x ∈ X , we have

Jπ(x) = lim sup
k→∞

(Tµ0Tµ1 · · ·Tµk
J̄)(x) ≥ lim

k→∞
(T k+1J̄)(x) = J*(x)

[the monotonicity Assumption 2.1.1 can be used to show that

Tµ0Tµ1 · · ·Tµk
J̄ ≥ T k+1J̄ ,

and the last equality holds by Prop. 2.1.1(b)]. Combining the preceding
relations, we obtain J*(x) = infπ∈Π Jπ(x).

Thus, in DP terms, we may view J* as an optimal cost function over
all policies , including nonstationary ones. At the same time, Prop. 2.1.2
states that stationary policies are sufficient in the sense that the optimal
cost can be attained to within arbitrary accuracy with a stationary policy
[uniformly for all x ∈ X , as Eq. (2.1) shows].
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Error Bounds and Other Inequalities

The analysis of abstract DP algorithms and related approximations requires
the use of some basic inequalities that follow from the assumptions of con-
traction and monotonicity. We have obtained two such results in Prop.
2.1.1(d),(e), which assume only the contraction assumption. These results
can be strengthened if in addition to contraction, we have monotonicity.
To this end we first show the following useful characterization.

Proposition 2.1.3: The monotonicity and contraction Assumptions
2.1.1 and 2.1.2 hold if and only if for all J, J ′ ∈ B(X), µ ∈ M, and
scalar c ≥ 0, we have

J ≤ J ′ + c v ⇒ TµJ ≤ TµJ ′ + αc v, (2.2)

where v is the weight function of the weighted sup-norm ‖ · ‖.

Proof: Let the contraction and monotonicity assumptions hold. If J ≤
J ′ + c v, we have

H(x, u, J) ≤ H(x, u, J ′+ c v) ≤ H(x, u, J ′)+αc v(x), ∀ x ∈ X, u ∈ U(x),
(2.3)

where the left-side inequality follows from the monotonicity assumption and
the right-side inequality follows from the contraction assumption, which
together with ‖v‖ = 1, implies that

H(x, u, J + c v)−H(x, u, J)

v(x)
≤ α‖J + c v − J‖ = αc.

The condition (2.3) implies the desired condition (2.2). Conversely, con-
dition (2.2) for c = 0 yields the monotonicity assumption, while for c =
‖J ′ − J‖ it yields the contraction assumption. Q.E.D.

We can now derive the following useful variant of Prop. 2.1.1(d),(e),
which involves one-sided inequalities. This variant will be used in the
derivation of error bounds for various computational methods.

Proposition 2.1.4: (Error Bounds Under Contraction and
Monotonicity) Let the monotonicity and contraction Assumptions
2.1.1 and 2.1.2 hold. Then:
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(a) For any J ∈ B(X) and c ≥ 0, we have

TJ ≤ J + c v ⇒ J* ≤ J +
c

1− α
v,

J ≤ TJ + c v ⇒ J ≤ J* +
c

1− α
v.

(b) For any J ∈ B(X), µ ∈ M, and c ≥ 0, we have

TµJ ≤ J + c v ⇒ Jµ ≤ J +
c

1− α
v,

J ≤ TµJ + c v ⇒ J ≤ Jµ +
c

1− α
v.

(c) For all J ∈ B(X), c ≥ 0, and k = 0, 1, . . ., we have

TJ ≤ J + c v ⇒ J* ≤ T kJ +
αkc

1− α
v,

J ≤ TJ + c v ⇒ T kJ ≤ J* +
αkc

1− α
v.

Proof: (a) We show the first relation. Applying Eq. (2.2) with J ′ and J
replaced by J and TJ , respectively, and taking infimum over µ ∈ M, we
see that if TJ ≤ J + c v, then T 2J ≤ TJ + αc v. Proceeding similarly, it
follows that

T !J ≤ T !−1J + α!−1c v.

We now write for every k,

T kJ − J =
k∑

!=1

(T !J − T !−1J) ≤
k∑

!=1

α!−1c v,

from which, by taking the limit as k → ∞, we obtain

J* ≤ J +
c

1− α
v.

The second relation follows similarly.

(b) This part is the special case of part (a) where T is equal to Tµ.

(c) Similar to the proof of part (a), the inequality

TJ ≤ J + c v
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implies that for all k we have

T k+1J ≤ T kJ + αkc v.

Applying part (a) with J and c replaced by T kJ and αkc, respectively,
we obtain the first desired relation. The second relation follows similarly.
Q.E.D.

2.2 LIMITED LOOKAHEAD POLICIES

In this section, we discuss a basic building block in the algorithmic method-
ology of abstract DP. Given some function J̃ that approximates J*, we
obtain a policy by solving a finite-horizon problem where J̃ is the termi-
nal cost function. The simplest possibility is a one-step lookahead policy µ
defined by

µ(x) ∈ argmin
u∈U(x)

H(x, u, J̃), x ∈ X. (2.4)

Its cost function Jµ was interpreted in Section 1.3.1 as the result of a
Newton iteration that starts from J̃ and aims to solve the Bellman equation
J = TJ . The following proposition gives some bounds for its performance.

Proposition 2.2.1: (One-Step Lookahead Error Bounds) Let
the contraction Assumption 2.1.2 hold, and let µ be a one-step looka-
head policy obtained by minimization in Eq. (2.4), i.e., satisfying
TµJ̃ = T J̃ . Then

‖Jµ − T J̃‖ ≤
α

1− α
‖T J̃ − J̃‖, (2.5)

where ‖ · ‖ denotes the weighted sup-norm. Moreover

‖Jµ − J*‖ ≤
2α

1− α
‖J̃ − J*‖, (2.6)

and

‖Jµ − J*‖ ≤
2

1− α
‖T J̃ − J̃‖. (2.7)

Proof: Equation (2.5) follows from the second relation of Prop. 2.1.1(e)
with J = J̃ . Also from the first relation of Prop. 2.1.1(e) with J = J*, we
have

‖Jµ − J*‖ ≤
1

1− α
‖TµJ* − J*‖.
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By using the triangle inequality, and the relations TµJ̃ = T J̃ and J* = TJ*,
we obtain

‖TµJ* − J*‖ ≤ ‖TµJ* − TµJ̃‖+ ‖TµJ̃ − T J̃‖+ ‖T J̃ − J*‖

= ‖TµJ* − TµJ̃‖+ ‖T J̃ − TJ*‖

≤ α‖J* − J̃‖+ α‖J̃ − J*‖

= 2α ‖J̃ − J*‖,

and Eq. (2.6) follows by combining the preceding two relations.
Also, from the first relation of Prop. 2.1.1(d) with J = J̃ ,

‖J* − J̃‖ ≤
1

1− α
‖T J̃ − J̃‖. (2.8)

Thus

‖Jµ − J*‖ ≤ ‖Jµ − T J̃‖+ ‖T J̃ − J̃‖+ ‖J̃ − J*‖

≤
α

1− α
‖T J̃ − J̃‖+ ‖T J̃ − J̃‖+

1

1− α
‖T J̃ − J̃‖

=
2

1− α
‖T J̃ − J̃‖,

where the second inequality follows from Eqs. (2.5) and (2.8). This proves
Eq. (2.7). Q.E.D.

Equation (2.5) provides a computable bound on the cost function Jµ
of the one-step lookahead policy. The bound (2.6) says that if the one-step
lookahead approximation J̃ is within ε of the optimal, the performance of
the one-step lookahead policy is within

2αε

1− α

of the optimal. Unfortunately, this is not very reassuring when α is close
to 1, in which case the error bound is large relative to ε. Nonetheless, the
following example from [BeT96], Section 6.1.1, shows that this bound is
tight, i.e., for any α < 1, there is a problem with just two states where
the error bound is satisfied with equality. What is happening is that an
O(ε) difference in single stage cost between two controls can generate an
O
(
ε/(1−α)

)
difference in policy costs, yet it can be “nullified” in the fixed

point equation J* = TJ* by an O(ε) difference between J* and J̃ .

Example 2.2.1

Consider a discounted optimal control problem with two states, 1 and 2, and
deterministic transitions. State 2 is absorbing, but at state 1 there are two
possible decisions: move to state 2 (policy µ∗) or stay at state 1 (policy µ).
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The cost of each transition is 0 except for the transition from 1 to itself under
policy µ, which has cost 2αε, where ε is a positive scalar and α ∈ [0, 1) is the
discount factor. The optimal policy µ∗ is to move from state 1 to state 2, and
the optimal cost-to-go function is J∗(1) = J∗(2) = 0. Consider the vector J̃
with J̃(1) = −ε and J̃(2) = ε, so that

‖J̃ − J∗‖ = ε,

as assumed in Eq. (2.6) (cf. Prop. 2.2.1). The policy µ that decides to stay
at state 1 is a one-step lookahead policy based on J̃ , because

2αε+ αJ̃(1) = αε = 0 + αJ̃(2).

We have

Jµ(1) =
2αε
1− α

=
2α

1− α
‖J̃ − J∗‖,

so the bound of Eq. (2.6) holds with equality.

Multistep Lookahead Policies with Approximations

Let us now consider a more general form of lookahead involving multiple
stages as well as other approximations of the type that we will consider later
in the implementation of various approximate value and policy iteration
algorithms. In particular, we will assume that given any J ∈ B(X), we
cannot compute exactly TJ , but instead we can compute J̃ ∈ B(X) and
µ ∈ M such that

‖J̃ − TJ‖ ≤ δ, ‖TµJ − TJ‖ ≤ ε, (2.9)

where δ and ε are nonnegative scalars. These scalars are usually unknown,
so the resulting analysis will have a mostly qualitative character.

The case δ > 0 arises when the state space is either infinite or it is
finite but very large. Then instead of calculating (TJ)(x) for all states x,
one may do so only for some states and estimate (TJ)(x) for the remain-
ing states x by some form of interpolation. Alternatively, one may use
simulation data [e.g., noisy values of (TJ)(x) for some or all x] and some
kind of least-squares error fit of (TJ)(x) with a function from a suitable
parametric class. The function J̃ thus obtained will satisfy ‖J̃ − TJ‖ ≤ δ
with δ > 0. Note that δ may not be small in this context, and the resulting
performance degradation may be a primary concern.

Cases where ε > 0 may arise when the control space is infinite or
finite but large, and the minimization involved in the calculation of (TJ)(x)
cannot be done exactly. Note, however, that it is possible that

δ > 0, ε = 0,
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and in fact this occurs often in practice. In an alternative scenario, we may
first obtain the policy µ subject to a restriction that it belongs to a certain
subset of structured policies, so it satisfies

‖TµJ − TJ‖ ≤ ε

for some ε > 0, and then we may set J̃ = TµJ . In this case we have ε = δ
in Eq. (2.9).

In a multistep method with approximations, we are given a posi-
tive integer m and a lookahead function Jm, and we successively compute
(backwards in time) Jm−1, . . . , J0 and policies µm−1, . . . , µ0 satisfying

‖Jk−TJk+1‖ ≤ δ, ‖Tµk
Jk+1−TJk+1‖ ≤ ε, k = 0, . . . ,m−1. (2.10)

Note that in the context of MDP, Jk can be viewed as an approximation to
the optimal cost function of an (m − k)-stage problem with terminal cost
function Jm. We have the following proposition.

Proposition 2.2.2: (Multistep Lookahead Error Bound) Let
the contraction Assumption 2.1.2 hold. The periodic policy

π = {µ0, . . . , µm−1, µ0, . . . , µm−1, . . .}

generated by the method of Eq. (2.10) satisfies

‖Jπ − J*‖ ≤
2αm

1− αm
‖Jm − J*‖+

ε

1− αm
+

α(ε + 2δ)(1− αm−1)

(1− α)(1 − αm)
.

(2.11)

Proof: Using the triangle inequality, Eq. (2.10), and the contraction prop-
erty of T , we have for all k

‖Jm−k − T kJm‖ ≤ ‖Jm−k − TJm−k+1‖+ ‖TJm−k+1 − T 2Jm−k+2‖

+ · · ·+ ‖T k−1Jm−1 − T kJm‖

≤ δ + αδ + · · ·+ αk−1δ,
(2.12)

showing that

‖Jm−k − T kJm‖ ≤
δ(1− αk)

1− α
, k = 1, . . . ,m. (2.13)
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From Eq. (2.10), we have ‖Jk − Tµk
Jk+1‖ ≤ δ + ε, so for all k

‖Jm−k − Tµm−k
· · ·Tµm−1Jm‖ ≤ ‖Jm−k − Tµm−k

Jm−k+1‖

+ ‖Tµm−k
Jm−k+1 − Tµm−k

Tµm−k+1Jm−k+2‖

+ · · ·

+ ‖Tµm−k
· · ·Tµm−2Jm−1 − Tµm−k

· · ·Tµm−1Jm‖

≤ (δ + ε) + α(δ + ε) + · · ·+ αk−1(δ + ε),

showing that

‖Jm−k − Tµm−k
· · ·Tµm−1Jm‖ ≤

(δ + ε)(1 − αk)

1− α
, k = 1, . . . ,m.

(2.14)
Using the fact ‖Tµ0J1 − TJ1‖ ≤ ε [cf. Eq. (2.10)], we obtain

‖Tµ0 · · ·Tµm−1Jm − TmJm‖ ≤ ‖Tµ0 · · ·Tµm−1Jm − Tµ0J1‖

+ ‖Tµ0J1 − TJ1‖+ ‖TJ1 − TmJm‖

≤ α‖Tµ1 · · ·Tµm−1Jm − J1‖+ ε+ α‖J1 − Tm−1Jm‖

≤ ε+
α(ε + 2δ)(1− αm−1)

1− α
,

where the last inequality follows from Eqs. (2.13) and (2.14) for k = m− 1.
From this relation and the fact that Tµ0 · · ·Tµm−1 and Tm are con-

tractions with modulus αm, we obtain

‖Tµ0 · · ·Tµm−1J* − J*‖ ≤ ‖Tµ0 · · ·Tµm−1J* − Tµ0 · · ·Tµm−1Jm‖

+ ‖Tµ0 · · ·Tµm−1Jm − TmJm‖+ ‖TmJm − J*‖

≤ 2αm‖J* − Jm‖+ ε +
α(ε+ 2δ)(1 − αm−1)

1− α
.

We also have using Prop. 2.1.1(e), applied in the context of the multistep
mapping of Example 1.3.1,

‖Jπ − J*‖ ≤
1

1− αm
‖Tµ0 · · ·Tµm−1J* − J*‖.

Combining the last two relations, we obtain the desired result. Q.E.D.

Note that form = 1 and δ = ε = 0, i.e., the case of one-step lookahead
policy µ with lookahead function J1 and no approximation error in the
minimization involved in TJ1, Eq. (2.11) yields the bound

‖Jµ − J*‖ ≤
2α

1− α
‖J1 − J*‖,
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which coincides with the bound (2.6) derived earlier.
Also, in the special case where ε = δ and Jk = Tµk

Jk+1 (cf. the
discussion preceding Prop. 2.2.2), the bound (2.11) can be strengthened
somewhat. In particular, we have for all k, Jm−k = Tµm−k

· · ·Tµm−1Jm, so
the right-hand side of Eq. (2.14) becomes 0 and the preceding proof yields,
with some calculation,

‖Jπ − J*‖ ≤
2αm

1− αm
‖Jm − J*‖+

δ

1− αm
+

αδ(1 − αm−1)

(1− α)(1 − αm)

=
2αm

1− αm
‖Jm − J*‖+

δ

1− α
.

We finally note that Prop. 2.2.2 shows that as the lookahead size m
increases, the corresponding bound for ‖Jπ−J*‖ tends to ε+α(ε+2δ)/(1−
α), or

lim sup
m→∞

‖Jπ − J*‖ ≤
ε+ 2αδ

1− α
.

We will see that this error bound is superior to corresponding error bounds
for approximate versions of value and policy iteration by essentially a factor
1/(1 − α). In practice, however, periodic suboptimal policies, as required
by Prop. 2.2.2, are typically not used.

There is an alternative and often used form of on-line multistep
lookahead, whereby at the current state x we compute a multistep pol-
icy {µ0, . . . , µm−1}, we apply the first component µ0(x) of that policy at
state x, then at the next state x̄ we recompute a new multistep policy
{µ̄0, . . . , µ̄m−1}, apply µ̄0(x̄), etc. However, no error bound similar to the
one of Prop. 2.2.2 is currently known for this type of lookahead.

2.3 VALUE ITERATION

In this section, we discuss value iteration (VI for short), the algorithm
that starts with some J ∈ B(X), and generates TJ, T 2J, . . .. Since T is
a weighted sup-norm contraction under Assumption 2.1.2, the algorithm
converges to J*, and the rate of convergence is governed by

‖T kJ − J*‖ ≤ αk‖J − J*‖, k = 0, 1, . . . .

Similarly, for a given policy µ ∈ M, we have

‖T k
µJ − Jµ‖ ≤ αk‖J − Jµ‖, k = 0, 1, . . . .

From Prop. 2.1.1(d), we also have the error bound

‖T k+1J − J*‖ ≤
α

1− α
‖T k+1J − T kJ‖, k = 0, 1, . . . .
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This bound does not rely on the monotonicity Assumption 2.1.1.
The VI algorithm is often used to compute an approximation J̃ to

J*, and then to obtain a policy µ by minimizing H(x, u, J̃) over u ∈ U(x)
for each x ∈ X . In other words J̃ and µ satisfy

‖J̃ − J*‖ ≤ γ, TµJ̃ = T J̃,

where γ is some positive scalar. Then by using Eq. (2.6), we have

‖Jµ − J*‖ ≤
2αγ

1− α
. (2.15)

If the set of policies is finite, this procedure can be used to compute an
optimal policy with a finite but sufficiently large number of exact VI, as
shown in the following proposition.

Proposition 2.3.1: Let the contraction Assumption 2.1.2 hold and
let J ∈ B(X). If the set of policies M is finite, there exists an integer
k ≥ 0 such that Jµ∗ = J* for all µ∗ and k ≥ k with Tµ∗T kJ = T k+1J .

Proof: Let M̃ be the set of policies such that Jµ .= J*. Since M̃ is finite,
we have

inf
µ∈M̃

‖Jµ − J*‖ > 0,

so by Eq. (2.15), there exists sufficiently small β > 0 such that

‖J̃ − J*‖ ≤ β and TµJ̃ = T J̃ ⇒ ‖Jµ − J*‖ = 0 ⇒ µ /∈ M̃.
(2.16)

It follows that if k is sufficiently large so that ‖T kJ − J*‖ ≤ β, then
Tµ∗T kJ = T k+1J implies that µ∗ /∈ M̃ so Jµ∗ = J*. Q.E.D.

2.3.1 Approximate Value Iteration

We will now consider situations where the VI method may be imple-
mentable only through approximations. In particular, given a function
J , assume that we may only be able to calculate an approximation J̃ to
TJ such that ∥∥J̃ − TJ

∥∥ ≤ δ,

where δ is a given positive scalar. In the corresponding approximate VI
method, we start from an arbitrary bounded function J0, and we generate
a sequence {Jk} satisfying

‖Jk+1 − TJk‖ ≤ δ, k = 0, 1, . . . . (2.17)
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This approximation may be the result of representing Jk+1 compactly, as a
linear combination of basis functions, through a projection or aggregation
process, as is common in approximate DP (cf. the discussion of Section
1.2.4).

We may also simultaneously generate a sequence of policies {µk} such
that

‖TµkJk − TJk‖ ≤ ε, k = 0, 1, . . . , (2.18)

where ε is some scalar [which could be equal to 0, as in case of Eq. (2.10),
considered earlier]. The following proposition shows that the corresponding
cost functions Jµk “converge” to J* to within an error of order O

(
δ/(1 −

α)2
)
[plus a less significant error of order O

(
ε/(1− α)

)
].

Proposition 2.3.2: (Error Bounds for Approximate VI) Let
the contraction Assumption 2.1.2 hold. A sequence {Jk} generated by
the approximate VI method (2.17)-(2.18) satisfies

lim sup
k→∞

‖Jk − J*‖ ≤
δ

1− α
, (2.19)

while the corresponding sequence of policies {µk} satisfies

lim sup
k→∞

‖Jµk − J*‖ ≤
ε

1− α
+

2αδ

(1− α)2
. (2.20)

Proof: Using the triangle inequality, Eq. (2.17), and the contraction prop-
erty of T , we have

‖Jk − T kJ0‖ ≤ ‖Jk − TJk−1‖

+ ‖TJk−1 − T 2Jk−2‖+ · · ·+ ‖T k−1J1 − T kJ0‖

≤ δ + αδ + · · ·+ αk−1δ,

and finally

‖Jk − T kJ0‖ ≤
(1− αk)δ

1− α
, k = 0, 1, . . . . (2.21)

By taking limit as k → ∞ and by using the fact limk→∞ T kJ0 = J*, we
obtain Eq. (2.19).

We also have using the triangle inequality and the contraction prop-
erty of Tµk and T ,

‖TµkJ* − J*‖ ≤ ‖TµkJ* − TµkJk‖+ ‖TµkJk − TJk‖+ ‖TJk − J*‖

≤ α‖J* − Jk‖+ ε+ α‖Jk − J*‖,
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while by using also Prop. 2.1.1(e), we obtain

‖Jµk − J*‖ ≤
1

1− α
‖TµkJ* − J*‖ ≤

ε

1− α
+

2α

1− α
‖Jk − J*‖.

By combining this relation with Eq. (2.19), we obtain Eq. (2.20). Q.E.D.

The error bound (2.20) relates to stationary policies obtained from
the functions Jk by one-step lookahead. We may also obtain an m-step
periodic policy π from Jk by using m-step lookahead. Then Prop. 2.2.2
shows that the corresponding bound for ‖Jπ−J*‖ tends to (ε+2αδ)/(1−α)
as m → ∞, which improves on the error bound (2.20) by a factor 1/(1−α).

Finally, let us note that the error bound of Prop. 2.3.2 is predicated
upon generating a sequence {Jk} satisfying ‖Jk+1 − TJk‖ ≤ δ for all k [cf.
Eq. (2.17)]. Unfortunately, some practical approximation schemes guar-
antee the existence of such a δ only if {Jk} is a bounded sequence. The
following example from [BeT96], Section 6.5.3, shows that boundedness of
the iterates is not automatically guaranteed, and is a serious issue that
should be addressed in approximate VI schemes.

Example 2.3.1 (Error Amplification in Approximate
Value Iteration)

Consider a two-state α-discounted MDP with states 1 and 2, and a single
policy. The transitions are deterministic: from state 1 to state 2, and from
state 2 to state 2. These transitions are also cost-free. Thus we have (TJ(1) =
(TJ)(2) = αJ(2), and J∗(1) = J∗(2) = 0.

We consider a VI scheme that approximates cost functions within the
one-dimensional subspace of linear functions S =

{
(r, 2r) | r ∈ $

}
by using

a weighted least squares minimization; i.e., we approximate a vector J by its
weighted Euclidean projection onto S. In particular, given Jk = (rk, 2rk), we
find Jk+1 = (rk+1, 2rk+1), where for weights ξ1, ξ2 > 0, rk+1 is obtained as

rk+1 ∈ argmin
r

[
ξ1
(
r − (TJk)(1)

)2
+ ξ2

(
2r − (TJk)(2)

)2]
.

Since for a zero cost per stage and the given deterministic transitions, we
have TJk = (2αrk, 2αrk), the preceding minimization is written as

rk+1 ∈ argmin
r

[
ξ1(r − 2αrk)

2 + ξ2(2r − 2αrk)
2
]
,

which by writing the corresponding optimality condition yields rk+1 = αβrk,
where β = 2(ξ1 + 2ξ2)(ξ1 + 4ξ2) > 1. Thus if α > 1/β, the sequence {rk}
diverges and so does {Jk}. Note that in this example the optimal cost func-
tion J∗ = (0, 0) belongs to the subspace S. The difficulty here is that the
approximate VI mapping that generates Jk+1 as the weighted Euclidean pro-
jection of TJk is not a contraction (this is a manifestation of an important
issue in approximate DP and projected equation approximation, namely that
the projected mapping ΠT need not be a contraction even if T is a sup-norm
contraction; see [DFV00], [Ber12b] for examples and related discussions). At
the same time there is no δ such that ‖Jk+1 − TJk‖ ≤ δ for all k, because of
error amplification in each approximate VI.
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2.4 POLICY ITERATION

In this section, we discuss policy iteration (PI for short), an algorithm
whereby we maintain and update a policy µk, starting from some initial
policy µ0. The typical iteration has the following form (see Fig. 2.4.1 for a
one-dimensional illustration).

Policy iteration given the current policy µk:

Policy evaluation: We compute Jµk as the unique solution of the
equation

Jµk = TµkJµk .

Policy improvement: We obtain a policy µk+1 that satisfies

Tµk+1Jµk = TJµk .

We assume that the minimum of H(x, u, Jµk ) over u ∈ U(x) is at-
tained for all x ∈ X , so that the improved policy µk+1 is defined (we
use this assumption for all the PI algorithms of the book). The following
proposition establishes a basic cost improvement property, as well as finite
convergence for the case where the set of policies is finite.

Proposition 2.4.1: (Convergence of PI) Let the monotonicity
and contraction Assumptions 2.1.1 and 2.1.2 hold, and let {µk} be
a sequence generated by the PI algorithm. Then for all k, we have
Jµk+1 ≤ Jµk , with equality if and only if Jµk = J*. Moreover,

lim
k→∞

‖Jµk − J*‖ = 0,

and if the set of policies is finite, we have Jµk = J* for some k.

Proof: We have

Tµk+1Jµk = TJµk ≤ TµkJµk = Jµk .

Applying Tµk+1 to this inequality while using the monotonicity Assumption
2.1.1, we obtain

T 2
µk+1Jµk ≤ Tµk+1Jµk = TJµk ≤ TµkJµk = Jµk .
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J J∗ = TJ∗

0 Prob. = 1

∗ TJ

Prob. = 1 Prob. =

∗ TJ

Prob. = 1 Prob. =

1 J J

TJ 45 Degree Line
Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy Improvement Exact Policy Evaluation (Exact if

J0
= TJ0

Do not Replace Set S

= T 2J0

n Value Iterations

Tµ0J J

J Jµ0 = Tµ0Jµ0

Jµ1 = Tµ1Jµ1

Figure 2.4.1 Geometric interpretation of PI and VI in one dimension (a single
state). Each policy µ defines the mapping Tµ, and TJ is the function minµ TµJ .
When the number of policies is finite, TJ is a piecewise linear concave function,
with each piece being a linear function TµJ that corresponds to a policy µ. The
optimal cost function J∗ satisfies J∗ = TJ∗, so it is obtained from the intersection
of the graph of TJ and the 45 degree line shown. Similarly Jµ is the intersection of
the graph of TµJ and the 45 degree line. The VI sequence is indicated in the top
figure by the staircase construction, which asymptotically leads to J∗. A single
policy iteration is illustrated in the bottom figure, and illustrates the connection
of PI with Newton’s method that was discussed in Section 1.3.2.
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Similarly, we have for all m > 0,

Tm
µk+1Jµk ≤ TJµk ≤ Jµk ,

and by taking the limit as m → ∞, we obtain

Jµk+1 ≤ TJµk ≤ Jµk , k = 0, 1, . . . . (2.22)

If Jµk+1 = Jµk , it follows that TJµk = Jµk , so Jµk is a fixed point of T and
must be equal to J*. Moreover by using induction, Eq. (2.22) implies that

Jµk ≤ T kJµ0 , k = 0, 1, . . . .

Since
J* ≤ Jµk , lim

k→∞
‖T kJµ0 − J*‖ = 0,

it follows that limk→∞ ‖Jµk − J*‖ = 0.
Finally, if the number of policies is finite, Eq. (2.22) implies that there

can be only a finite number of iterations for which Jµk+1(x) < Jµk (x) for
some x. Thus we must have Jµk+1 = Jµk for some k, at which time
Jµk = J* as shown earlier [cf. Eq. (2.22)]. Q.E.D.

In the case where the set of policies is infinite, we may assert the
convergence of the sequence of generated policies under some compactness
and continuity conditions. In particular, we will assume that the state
space is finite, X = {1, . . . , n}, and that each control constraint set U(x)
is a compact subset of %m. We will view a cost function J as an element
of %n, and a policy µ as an element of the set U(1) × · · · × U(n) ⊂ %mn,
which is compact. Then {µk} has at least one limit point µ, which must
be an admissible policy. The following proposition guarantees, under an
additional continuity assumption for H(x, ·, ·), that every limit point µ is
optimal.

Assumption 2.4.1: (Compactness and Continuity)

(a) The state space is finite, X = {1, . . . , n}.

(b) Each control constraint set U(x), x = 1, . . . , n, is a compact
subset of %m.

(c) Each function H(x, ·, ·), x = 1, . . . , n, is continuous over U(x) ×
%n.

Proposition 2.4.2: Let the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2 hold, together with Assumption 2.4.1, and let
{µk} be a sequence generated by the PI algorithm. Then for every
limit point µ of {µk}, we have Jµ = J∗.



Sec. 2.4 Policy Iteration 73

Proof: We have Jµk → J* by Prop. 2.4.1. Let µ be the limit of a sub-
sequence {µk}k∈K. We will show that TµJ* = TJ*, from which it follows
that Jµ = J* [cf. Prop. 2.1.1(c)]. Indeed, we have TµJ* ≥ TJ*, so we focus
on showing the reverse inequality. From the equation

TµkJµk−1 = TJµk−1 ,

we have

H
(
x, µk(x), Jµk−1

)
≤ H(x, u, Jµk−1), x = 1, . . . , n, u ∈ U(x).

By taking limit in this relation as k → ∞, k ∈ K, and by using the
continuity of H(x, ·, ·) [cf. Assumption 2.4.1(c)], we obtain

H
(
x, µ(x), J*

)
≤ H(x, u, J*), x = 1, . . . , n, u ∈ U(x).

By taking the minimum of the right-hand side over u ∈ U(x), we obtain
TµJ* ≤ TJ*. Q.E.D.

2.4.1 Approximate Policy Iteration

We now consider the PI method where the policy evaluation step and/or
the policy improvement step of the method are implemented through ap-
proximations. This method generates a sequence of policies {µk} and a
corresponding sequence of approximate cost functions {Jk} satisfying

‖Jk − Jµk‖ ≤ δ, ‖Tµk+1Jk − TJk‖ ≤ ε, k = 0, 1, . . . , (2.23)

where δ and ε are some scalars, and ‖·‖ denotes the weighted sup-norm (the
one used in the contraction Assumption 2.1.2). The following proposition
provides an error bound for this algorithm.

Proposition 2.4.3: (Error Bound for Approximate PI) Let
the monotonicity and contraction Assumptions 2.1.1 and 2.1.2 hold.
The sequence {µk} generated by the approximate PI algorithm (2.23)
satisfies

lim sup
k→∞

‖Jµk − J*‖ ≤
ε+ 2αδ

(1− α)2
. (2.24)

The essence of the proof is contained in the following proposition,
which quantifies the amount of approximate policy improvement at each
iteration.
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Proposition 2.4.4: Let the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2 hold. Let J , µ, and µ satisfy

‖J − Jµ‖ ≤ δ, ‖TµJ − TJ‖ ≤ ε,

where δ and ε are some scalars. Then

‖Jµ − J*‖ ≤ α‖Jµ − J*‖+
ε+ 2αδ

1− α
. (2.25)

Proof: We denote by v the weight function corresponding to the weighted
sup-norm. Using the contraction property of T and Tµ, which implies that
‖TµJµ − TµJ‖ ≤ αδ and ‖TJ − TJµ‖ ≤ αδ, and hence TµJµ ≤ TµJ + αδ v
and TJ ≤ TJµ + αδ v, we have

TµJµ ≤ TµJ + αδ v ≤ TJ + (ε+ αδ) v ≤ TJµ + (ε+ 2αδ) v. (2.26)

Since TJµ ≤ TµJµ = Jµ, this relation yields

TµJµ ≤ Jµ + (ε+ 2αδ) v,

and applying Prop. 2.1.4(b) with µ = µ, J = Jµ, and c = ε + 2αδ, we
obtain

Jµ ≤ Jµ +
ε+ 2αδ

1− α
v. (2.27)

Using this relation, we have

Jµ = TµJµ = TµJµ + (TµJµ − TµJµ) ≤ TµJµ +
α(ε + 2αδ)

1− α
v,

where the inequality follows by using Prop. 2.1.3 and Eq. (2.27). Subtract-
ing J* from both sides, we have

Jµ − J* ≤ TµJµ − J* +
α(ε + 2αδ)

1− α
v. (2.28)

Also by subtracting J* from both sides of Eq. (2.26), and using the
contraction property

TJµ − J* = TJµ − TJ* ≤ α‖Jµ − J*‖ v,

we obtain

TµJµ − J* ≤ TJµ − J* + (ε + 2αδ) v ≤ α‖Jµ − J*‖ v + (ε+ 2αδ) v.
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Combining this relation with Eq. (2.28), yields

Jµ−J* ≤ α‖Jµ−J*‖ v+
α(ε+ 2αδ)

1− α
v+(ε+αδ)e = α‖Jµ−J*‖ v+

ε+ 2αδ

1− α
v,

which is equivalent to the desired relation (2.25). Q.E.D.

Proof of Prop. 2.4.3: Applying Prop. 2.4.4, we have

‖Jµk+1 − J*‖ ≤ α‖Jµk − J*‖+
ε+ 2αδ

1− α
,

which by taking the lim sup of both sides as k → ∞ yields the desired result.
Q.E.D.

We note that the error bound of Prop. 2.4.3 is tight, as can be shown
with an example from [BeT96], Section 6.2.3. The error bound is com-
parable to the one for approximate VI, derived earlier in Prop. 2.3.2. In
particular, the error ‖Jµk−J*‖ is asymptotically proportional to 1/(1−α)2

and to the approximation error in policy evaluation or value iteration, re-
spectively. This is noteworthy, as it indicates that contrary to the case of
exact implementation, approximate PI need not hold a convergence rate
advantage over approximate VI, despite its greater overhead per iteration.

Note that when δ = ε = 0, Eq. (2.25) yields

‖Jµk+1 − J*‖ ≤ α‖Jµk − J*‖.

Thus in the case of an infinite state space and/or control space, exact
PI converges at a geometric rate under the contraction and monotonicity
assumptions of this section. This rate is the same as the rate of convergence
of exact VI. It follows that judging solely from the point of view of rate
of convergence estimates, exact PI holds an advantage over exact VI only
when the number of states is finite. This raises the question what happens
when the number of states is finite but very large. However, this question
is not very interesting from a practical point of view, since for a very large
number of states, neither VI or PI can be implemented in practice without
approximations (see the discussion of Section 1.2.4).

2.4.2 Approximate Policy Iteration Where Policies Converge

Generally, the policy sequence {µk} generated by approximate PI may
oscillate between several policies. However, under some circumstances this
sequence may be guaranteed to converge to some µ, in the sense that

µk+1 = µk = µ for some k. (2.29)
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An example arises when the policy sequence {µk} is generated by exact PI
applied with a different mapping H̃ in place of H , but the policy evaluation
and policy improvement error bounds of Eq. (2.23) are satisfied. The map-
ping H̃ may for example correspond to an approximation of the original
problem (as in the aggregation methods of Example 1.2.10; see [Ber11c]
and [Ber12a] for further discussion). In this case we can show the following
bound, which is much more favorable than the one of Prop. 2.4.3.

Proposition 2.4.5: (Error Bound for Approximate PI when
Policies Converge) Let the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2 hold, and assume that the approximate PI algo-
rithm (2.23) terminates with a policy µ that satisfies condition (2.29).
Then we have

‖Jµ − J*‖ ≤
ε+ 2αδ

1− α
. (2.30)

Proof: Let J̃ be the cost function obtained by approximate policy evalu-
ation of µ [i.e., J̃ = Jk, where k satisfies the condition (2.29)]. Then we
have

‖J̃ − Jµ‖ ≤ δ, ‖TµJ̃ − T J̃‖ ≤ ε, (2.31)

where the latter inequality holds since we have

‖TµJ̃ − T J̃‖ = ‖T
µk+1Jk − TJ

k
‖ ≤ ε,

cf. Eq. (2.23). Using Eq. (2.31) and the fact Jµ = TµJµ, we have

‖TJµ − Jµ‖ ≤ ‖TJµ − T J̃‖+ ‖T J̃ − TµJ̃‖+ ‖TµJ̃ − Jµ‖

= ‖TJµ − T J̃‖+ ‖T J̃ − TµJ̃‖+ ‖TµJ̃ − TµJµ‖

≤ α‖Jµ − J̃‖+ ε+ α‖J̃ − Jµ‖

≤ ε+ 2αδ.

(2.32)

Using Prop. 2.1.1(d) with J = Jµ, we obtain the error bound (2.30).
Q.E.D.

The preceding error bound can be extended to the case where two
successive policies generated by the approximate PI algorithm are “not too
different” rather than being identical. In particular, suppose that µ and µ
are successive policies, which in addition to

‖J̃ − Jµ‖ ≤ δ, ‖TµJ̃ − T J̃‖ ≤ ε,

[cf. Eq. (2.23)], also satisfy

‖TµJ̃ − TµJ̃‖ ≤ ζ,
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where ζ is some scalar (instead of µ = µ, which is the case where policies
converge exactly). Then we also have

‖T J̃ − TµJ̃‖ ≤ ‖T J̃ − TµJ̃‖+ ‖TµJ̃ − TµJ̃‖ ≤ ε+ ζ,

and by replacing ε with ε+ ζ and µ with µ in Eq. (2.32), we obtain

‖Jµ − J∗‖ ≤
ε + ζ + 2αδ

1− α
.

When ζ is small enough to be of the order of max{δ, ε}, this error bound
is comparable to the one for the case where policies converge.

2.5 OPTIMISTIC POLICY ITERATION AND λ-POLICY
ITERATION

In this section, we discuss some variants of the PI algorithm of the preceding
section, where the policy evaluation

Jµk = TµkJµk

is approximated by using VI. The most straightforward of these methods is
optimistic PI (also called “modified” PI, see e.g., [Put94]), where a policy
µk is evaluated approximately, using a finite number of VI. Thus, starting
with a function J0 ∈ B(X), we generate sequences {Jk} and {µk} with the
algorithm

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . . , (2.33)

where {mk} is a sequence of positive integers (see Fig. 2.5.1, which shows
one iteration of the method where mk = 3). There is no systematic guide-
line for selecting the integers mk. Usually their best values are chosen
empirically, and tend to be considerably larger than 1 (in the case where
mk ≡ 1 the optimistic PI method coincides with the VI method). The
convergence of this method is discussed in Section 2.5.1.

Variants of optimistic PI include methods with approximations in the
policy evaluation and policy improvement phases (Section 2.5.2), and meth-
ods where the number mk is randomized (Section 2.5.3). An interesting
advantage of the latter methods is that they do not require the monotonic-
ity Assumption 2.1.1 for convergence in problems with a finite number of
policies.

A method that is conceptually similar to the optimistic PI method is
the λ-PI method defined by

TµkJk = TJk, Jk+1 = T (λ)

µk Jk, k = 0, 1, . . . , (2.34)
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TJ = minµ TµJ

J J∗ = TJ∗

0 Prob. = 1

1 J J

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

J0

= TJ0

J Jµ0 = Tµ0Jµ0

= TJ0 = Tµ0J0

Tµ0J

Approx. Policy Evaluation

J1 = T 3
µ0
J0

Figure 2.5.1 Illustration of optimistic PI in one dimension. In this example, the
policy µ0 is evaluated approximately with just three applications of Tµ0 to yield

J1 = T 3
µ0

J0.

where J0 is an initial function in B(X), and for any policy µ and scalar

λ ∈ (0, 1), T (λ)
µ is the multistep mapping defined by

T (λ)
µ J = (1− λ)

∞∑

!=0

λ!T !+1
µ J, J ∈ B(X),

(cf. Section 1.2.5). To compare optimistic PI and λ-PI, note that they both
involve multiple applications of the VI mapping Tµk : a fixed number mk

in the former case, and a geometrically weighted number in the latter case.

In fact, we may view the λ-PI iterate T (λ)

µk Jk as the expected value of the

optimistic PI iterate Tmk

µk Jµk when mk is chosen by a geometric probability

distribution with parameter λ.
One of the reasons that make λ-PI interesting is its relation with

TD(λ) and other temporal difference methods on one hand, and the prox-
imal algorithm on the other. In particular, in λ-PI a policy evaluation is
performed with a single iteration of an extrapolated proximal algorithm;
cf. the discussion of Section 1.2.5 and Exercise 1.2. Thus implementation
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of λ-PI can benefit from the rich methodology that has developed around
temporal difference and proximal methods.

Generally the optimistic and λ-PI methods have similar convergence
properties. In this section, we focus primarily on optimistic PI, and we
discuss briefly λ-PI in Section 2.5.3, where we will prove convergence for a
randomized version. For a convergence proof of λ-PI without randomiza-
tion in discounted stochastic optimal control and stochastic shortest path
problems, see the paper [BeI96] and the book [BeT96] (Section 2.3.1).

2.5.1 Convergence of Optimistic Policy Iteration

We will now focus on the optimistic PI algorithm (2.33). The following two
propositions provide its convergence properties.

Proposition 2.5.1: (Convergence of Optimistic PI) Let the
monotonicity and contraction Assumptions 2.1.1 and 2.1.2 hold, and
let

{
(Jk, µk)

}
be a sequence generated by the optimistic PI algorithm

(2.33). Then
lim
k→∞

‖Jk − J*‖ = 0,

and if the number of policies is finite, we have Jµk = J* for all k

greater than some index k̄.

Proposition 2.5.2: Let the monotonicity and contraction Assump-
tions 2.1.1 and 2.1.2 hold, together with Assumption 2.4.1, and let{
(Jk, µk)

}
be a sequence generated by the optimistic PI algorithm

(2.33). Then for every limit point µ of {µk}, we have Jµ = J∗.

We develop the proofs of the propositions through four lemmas. The
first lemma collects some properties of monotone weighted sup-norm con-
tractions, variants of which we noted earlier and we restate for convenience.

Lemma 2.5.1: Let W : B(X) #→ B(X) be a mapping that satisfies
the monotonicity assumption

J ≤ J ′ ⇒ WJ ≤ WJ ′, ∀ J, J ′ ∈ B(X),

and the contraction assumption
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‖WJ −WJ ′‖ ≤ α‖J − J ′‖, ∀ J, J ′ ∈ B(X),

for some α ∈ (0, 1).

(a) For all J, J ′ ∈ B(X) and scalar c ≥ 0, we have

J ≥ J ′ − c v ⇒ WJ ≥ WJ ′ − αc v. (2.35)

(b) For all J ∈ B(X), c ≥ 0, and k = 0, 1, . . ., we have

J ≥ WJ − c v ⇒ W kJ ≥ J* −
αk

1− α
c v, (2.36)

WJ ≥ J − c v ⇒ J* ≥ W kJ −
αk

1− α
c v, (2.37)

where J* is the fixed point of W .

Proof: The proof of part (a) follows the one of Prop. 2.1.4(b), while the
proof of part (b) follows the one of Prop. 2.1.4(c). Q.E.D.

Lemma 2.5.2: Let the monotonicity and contraction Assumptions
2.1.1 and 2.1.2 hold, let J ∈ B(X) and c ≥ 0 satisfy

J ≥ TJ − c v,

and let µ ∈ M be such that TµJ = TJ . Then for all k > 0, we have

TJ ≥ T k
µJ −

α

1− α
c v, (2.38)

and
T k
µJ ≥ T (T k

µJ)− αkc v. (2.39)

Proof: Since J ≥ TJ − c v = TµJ − c v, by using Lemma 2.5.1(a) with
W = T j

µ and J ′ = TµJ , we have for all j ≥ 1,

T j
µJ ≥ T j+1

µ J − αjc v. (2.40)

By adding this relation over j = 1, . . . , k − 1, we have

TJ = TµJ ≥ T k
µJ −

k−1∑

j=1

αjc v = T k
µJ −

α− αk

1− α
c v ≥ T k

µJ −
α

1− α
c v,
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showing Eq. (2.38). From Eq. (2.40) for j = k, we obtain

T k
µJ ≥ T k+1

µ J − αkc v = Tµ(T k
µJ)− αkc v ≥ T (T k

µJ)− αkc v,

showing Eq. (2.39). Q.E.D.

The next lemma applies to the optimistic PI algorithm (2.33) and
proves a preliminary bound.

Lemma 2.5.3: Let the monotonicity and contraction Assumptions
2.1.1 and 2.1.2 hold, let

{
(Jk, µk)

}
be a sequence generated by the

optimistic PI algorithm (2.33), and assume that for some c ≥ 0 we
have

J0 ≥ TJ0 − c v.

Then for all k ≥ 0,

TJk +
α

1− α
βkc v ≥ Jk+1 ≥ TJk+1 − βk+1c v, (2.41)

where βk is the scalar given by

βk =

{
1 if k = 0,
αm0+···+mk−1 if k > 0,

(2.42)

with mj , j = 0, 1, . . ., being the integers used in the algorithm (2.33).

Proof: We prove Eq. (2.41) by induction on k, using Lemma 2.5.2. For
k = 0, using Eq. (2.38) with J = J0, µ = µ0, and k = m0, we have

TJ0 ≥ J1 −
α

1− α
c v = J1 −

α

1− α
β0c v,

showing the left-hand side of Eq. (2.41) for k = 0. Also by Eq. (2.39) with
µ = µ0 and k = m0, we have

J1 ≥ TJ1 − αm0c v = TJ1 − β1c v.

showing the right-hand side of Eq. (2.41) for k = 0.
Assuming that Eq. (2.41) holds for k − 1 ≥ 0, we will show that it

holds for k. Indeed, the right-hand side of the induction hypothesis yields

Jk ≥ TJk − βkc v.

Using Eqs. (2.38) and (2.39) with J = Jk, µ = µk, and k = mk, we obtain

TJk ≥ Jk+1 −
α

1− α
βkc v,



82 Contractive Models Chap. 2

and
Jk+1 ≥ TJk+1 − αmkβkc v = TJk+1 − βk+1c v,

respectively. This completes the induction. Q.E.D.

The next lemma essentially proves the convergence of the optimistic
PI (Prop. 2.5.1) and provides associated error bounds.

Lemma 2.5.4: Let the monotonicity and contraction Assumptions
2.1.1 and 2.1.2 hold, let

{
(Jk, µk)

}
be a sequence generated by the

optimistic PI algorithm (2.33), and let c ≥ 0 be a scalar such that

‖J0 − TJ0‖ ≤ c. (2.43)

Then for all k ≥ 0,

Jk +
αk

1− α
c v ≥ Jk +

βk

1− α
c v ≥ J* ≥ Jk −

(k + 1)αk

1− α
c v, (2.44)

where βk is defined by Eq. (2.42).

Proof: Using the relation J0 ≥ TJ0−c v [cf. Eq. (2.43)] and Lemma 2.5.3,
we have

Jk ≥ TJk − βkc v, k = 0, 1, . . . .

Using this relation in Lemma 2.5.1(b) with W = T and k = 0, we obtain

Jk ≥ J* −
βk

1− α
c v,

which together with the fact αk ≥ βk, shows the left-hand side of Eq.
(2.44).

Using the relation TJ0 ≥ J0− c v [cf. Eq. (2.43)] and Lemma 2.5.1(b)
with W = T , we have

J* ≥ T kJ0 −
αk

1− α
c v, k = 0, 1, . . . . (2.45)

Using again the relation J0 ≥ TJ0 − c v in conjunction with Lemma 2.5.3,
we also have

TJj ≥ Jj+1 −
α

1− α
βjc v, j = 0, . . . , k − 1.

Applying T k−j−1 to both sides of this inequality and using the monotonicity
and contraction properties of T k−j−1, we obtain

T k−jJj ≥ T k−j−1Jj+1 −
αk−j

1− α
βjc v, j = 0, . . . , k − 1,
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cf. Lemma 2.5.1(a). By adding this relation over j = 0, . . . , k−1, and using
the fact βj ≤ αj , it follows that

T kJ0 ≥ Jk −
k−1∑

j=0

αk−j

1− α
αjc v = Jk −

kαk

1− α
c v. (2.46)

Finally, by combining Eqs. (2.45) and (2.46), we obtain the right-hand side
of Eq. (2.44). Q.E.D.

Proof of Props. 2.5.1 and 2.5.2: Let c be a scalar satisfying Eq. (2.43).
Then the error bounds (2.44) show that limk→∞ ‖Jk−J*‖ = 0, i.e., the first
part of Prop. 2.5.1. To show the second part (finite termination when the

number of policies is finite), let M̂ be the finite set of nonoptimal policies.

Then there exists ε > 0 such that ‖Tµ̂J* − TJ*‖ > ε for all µ̂ ∈ M̂, which

implies that ‖Tµ̂Jk − TJk‖ > ε for all µ̂ ∈ M̂ and k sufficiently large. This

implies that µk /∈ M̂ for all k sufficiently large. The proof of Prop. 2.5.2
follows using the compactness and continuity Assumption 2.4.1, and the
convergence argument of Prop. 2.4.2. Q.E.D.

Convergence Rate Issues

Let us consider the convergence rate bounds of Lemma 2.5.4 for optimistic
PI, and write them in the form

‖J0 − TJ0‖ ≤ c ⇒ Jk −
(k + 1)αk

1− α
c v ≤ J* ≤ Jk +

αm0+···+mk−1

1− α
c v.

(2.47)
We may contrast these bounds with the ones for VI, where

‖J0 − TJ0‖ ≤ c ⇒ T kJ0 −
αk

1− α
c v ≤ J* ≤ T kJ0 +

αk

1− α
c v (2.48)

[cf. Prop. 2.1.4(c)].
In comparing the bounds (2.47) and (2.48), we should also take into

account the associated overhead for a single iteration of each method: op-
timistic PI requires at iteration k a single application of T and mk − 1
applications of Tµk (each being less time-consuming than an application of
T ), while VI requires a single application of T . It can then be seen that the
upper bound for optimistic PI is better than the one for VI (same bound
for less overhead), while the lower bound for optimistic PI is worse than the
one for VI (worse bound for more overhead). This suggests that the choice
of the initial condition J0 is important in optimistic PI, and in particular
it is preferable to have J0 ≥ TJ0 (implying convergence to J* from above)
rather than J0 ≤ TJ0 (implying convergence to J* from below). This is
consistent with the results of other works, which indicate that the conver-
gence properties of the method are fragile when the condition J0 ≥ TJ0
does not hold (see [WiB93], [BeT96], [BeY10], [BeY12], [YuB13a]).
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2.5.2 Approximate Optimistic Policy Iteration

We will now derive error bounds for the case where the policy evaluation
and policy improvement operations are approximate, similar to the nonop-
timistic PI case of Section 2.4.1. In particular, we consider a method that
generates a sequence of policies {µk} and a corresponding sequence of ap-
proximate cost functions {Jk} satisfying

‖Jk − Tmk

µk Jk−1‖ ≤ δ, ‖Tµk+1Jk − TJk‖ ≤ ε, k = 0, 1, . . . , (2.49)

[cf. Eq. (2.23)]. For example, we may compute (perhaps approximately,
by simulation) the values (Tmk

µk Jk−1)(x) for a subset of states x, and use a

least squares fit of these values to select Jk from some parametric class of
functions.

We will prove the same error bound as for the nonoptimistic case, cf.
Eq. (2.24). However, for this we will need the following condition, which
is stronger than the contraction and monotonicity conditions that we have
been using so far.

Assumption 2.5.1: (Semilinear Monotonic Contraction) For
all J ∈ B(X) and µ ∈ M, the functions TµJ and TJ belong to B(X).
Furthermore, for some α ∈ (0, 1), we have for all J, J ′ ∈ B(X), µ ∈ M,
and x ∈ X ,

(TµJ ′)(x) − (TµJ)(x)

v(x)
≤ α sup

y∈X

J ′(y)− J(y)

v(y)
. (2.50)

This assumption implies both the monotonicity and contraction As-
sumptions 2.1.1 and 2.1.2, as can be easily verified. Moreover the assump-
tion is satisfied in the discounted DP examples of Section 1.2, as well as
the stochastic shortest path problem of Example 1.2.6. It holds if Tµ is a
linear mapping involving a matrix with nonnegative components that has
spectral radius less than 1 (or more generally if Tµ is the minimum or the
maximum of a finite number of such linear mappings).

For any function y ∈ B(X), let us use the notation

M(y) = sup
x∈X

y(x)

v(x)
.

Then the condition (2.50) can be written for all J, J ′ ∈ B(X), and µ ∈ M
as

M(TµJ − TµJ ′) ≤ αM(J − J ′), (2.51)
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and also implies the following multistep versions, for ) ≥ 1,

T !
µJ − T !

µJ ′ ≤ α!M(J − J ′)v, M(T !
µJ − T !

µJ ′) ≤ α!M(J − J ′), (2.52)

which can be proved by induction using Eq. (2.51). We have the following
proposition.

Proposition 2.5.3: (Error Bound for Optimistic Approximate
PI) Let Assumption 2.5.1 hold, in addition to the monotonicity and
contraction Assumptions 2.1.1 and 2.1.2. Then the sequence {µk}
generated by the optimistic approximate PI algorithm (2.49) satisfies

lim sup
k→∞

‖Jµk − J*‖ ≤
ε+ 2αδ

(1− α)2
.

Proof: Let us fix k ≥ 1, and for simplicity let us assume that mk ≡ m for
some m, and denote

J = Jk−1, J = Jk, µ = µk, µ̄ = µk+1,

s = Jµ − Tm
µ J, s̄ = Jµ̄ − Tm

µ̄ J, t = Tm
µ J − J*, t̄ = Tm

µ̄ J − J*.

We have
Jµ − J* = Jµ − Tm

µ J + Tm
µ J − J* = s+ t. (2.53)

We will derive recursive relations for s and t, which will also involve the
residual functions

r = TµJ − J, r̄ = Tµ̄J − J.

We first obtain a relation between r and r̄. We have

r̄ = Tµ̄J − J

= (Tµ̄J − TµJ) + (TµJ − J)

≤ (Tµ̄J − TJ) +
(
TµJ − Tµ(Tm

µ J)
)
+ (Tm

µ J − J) +
(
Tm
µ (TµJ)− Tm

µ J
)

≤ εv + αM(J − Tm
µ J)v + δv + αmM(TµJ − J)v

≤ (ε + δ)v + αδv + αmM(r)v,

where the first inequality follows from Tµ̄J ≥ TJ , and the second and third
inequalities follow from Eqs. (2.49) and (2.52). From this relation we have

M(r̄) ≤
(
ε + (1 + α)δ

)
+ βM(r),
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where β = αm. Taking lim sup as k → ∞ in this relation, we obtain

lim sup
k→∞

M(r) ≤
ε+ (1 + α)δ

1− β
. (2.54)

Next we derive a relation between s and r. We have

s = Jµ − Tm
µ J

= Tm
µ Jµ − Tm

µ J

≤ αmM(Jµ − J)v

≤
αm

1− α
M(TµJ − J)v

=
αm

1− α
M(r)v,

where the first inequality follows from Eq. (2.52) and the second inequality
follows by using Prop. 2.1.4(b). Thus we have M(s) ≤ αm

1−αM(r), from
which by taking lim sup of both sides and using Eq. (2.54), we obtain

lim sup
k→∞

M(s) ≤
β
(
ε+ (1 + α)δ

)

(1 − α)(1 − β)
. (2.55)

Finally we derive a relation between t, t̄, and r. We first note that

TJ − TJ* ≤ αM(J − J*)v

= αM(J − Tm
µ J + Tm

µ J − J*)v

≤ αM(J − Tm
µ J)v + αM(Tm

µ J − J*)v

≤ αδv + αM(t)v.

Using this relation, and Eqs. (2.49) and (2.52), we have

t̄ = Tm
µ̄ J − J*

= (Tm
µ̄ J − Tm−1

µ̄ J) + · · ·+ (T 2
µ̄J − Tµ̄J) + (Tµ̄J − TJ) + (TJ − TJ*)

≤ (αm−1 + · · ·+ α)M(Tµ̄J − J)v + εv + αδv + αM(t)v,

so finally

M(t̄) ≤
α− αm

1− α
M(r̄) + (ε + αδ) + αM(t).

By taking lim sup of both sides and using Eq. (2.54), it follows that

lim sup
k→∞

M(t) ≤
(α − β)

(
ε+ (1 + α)δ

)

(1 − α)2(1− β)
+

ε+ αδ

1− α
. (2.56)
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We now combine Eqs. (2.53), (2.55), and (2.56). We obtain

lim sup
k→∞

M(Jµk − J*) ≤ lim sup
k→∞

M(s) + lim sup
k→∞

M(t)

≤
β
(
ε+ (1 + α)δ

)

(1− α)(1 − β)
+

(α− β)
(
ε+ (1 + α)δ

)

(1− α)2(1 − β)
+

ε+ αδ

1− α

=

(
β(1 − α) + (α− β)

)(
ε+ (1 + α)δ

)

(1− α)2(1 − β)
+

ε + αδ

1− α

=
α
(
ε+ (1 + α)δ

)

(1− α)2
+

ε+ αδ

1− α

=
ε+ 2αδ

(1− α)2
.

This proves the result, since in view of Jµk ≥ J*, we have M(Jµk − J*) =
‖Jµk − J*‖. Q.E.D.

A remarkable fact is that approximate VI, approximate PI, and ap-
proximate optimistic PI have very similar error bounds (cf. Props. 2.3.2,
2.4.3, and 2.5.3). Approximate VI has a slightly better bound, but insignif-
icantly so in practical terms. When approximate PI produces a convergent
sequence of policies, the associated error bound is much better (cf. Prop.
2.4.5). However, special conditions are needed for convergence of policies
in approximate PI. These conditions are fulfilled in some cases, notably
including schemes where aggregation is used for policy evaluation (cf. Sec-
tion 1.2.4). In other cases, including some where the projected equation
is used for policy evaluation, approximate PI (both optimistic and nonop-
timistic) will typically generate a cycle of policies satisfying the bound of
Prop. 2.4.3; see Section 3.6 of the PI survey paper [Ber11c], or Chapter 6
of the book [Ber12a].

2.5.3 Randomized Optimistic Policy Iteration

We will now consider a randomized version of the optimistic PI algorithm
where the number mk of VI iterations in the kth policy evaluation is ran-
dom, while the monotonicity assumption need not hold. We assume, how-
ever, that each policy mapping is a contraction in a suitable space, that
the number of policies is finite, and that mk = 1 with positive probability
(these assumptions can be modified and/or generalized in ways suggested
by the subsequent line of proof). In particular, for each positive integer j,
we have a probability p(j) ≥ 0, where

p(1) > 0,
∞∑

j=1

p(j) = 1.
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We consider the algorithm

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . . , (2.57)

where mk is chosen randomly according to the distribution p(j),

P (mk = j) = p(j), j = 1, 2, . . . . (2.58)

The selection of mk is independent of previous selections. We will assume
the following.

Assumption 2.5.2: Let ‖ · ‖ be a norm on some complete space of
real-valued functions overX , denoted F(X), and assume the following.

(a) The set of policies M is finite.

(b) The mappings Tµ, µ ∈ M, and T are contraction mappings from
F(X) into F(X).

The preceding assumption requires that the number of policies is
finite, but does not require any monotonicity condition (cf. Assumption
2.1.1), while its contraction condition (b) is weaker than the contraction
Assumption 2.1.2 since F(X) is a general complete normed space, not nec-
essarily B(X). This flexibility may be useful in algorithms that involve
cost function approximation within a subspace of basis functions. For such
algorithms, however, T does not necessarily have a unique fixed point, as
discussed in Section 1.2.4. By contrast since F(X) is assumed complete,
Assumption 2.5.2 implies that Tµ and T have unique fixed points, which
we denote by Jµ and J*, respectively.

An important preliminary fact (which relies on the finiteness of M)
is given in the following proposition. The proposition implies that near J*

the generated policies µk are “optimal” in the sense that Jµk = J*, so the
algorithm does not tend to cycle. †

Proposition 2.5.4: Let Assumption 2.5.2 hold, and let M∗ be the
subset of all µ ∈ M such that TµJ* = TJ*. Then for all µ ∈ M∗, we
have Jµ = J*. Moreover, there exists an ε > 0 such that for all J with
‖J − J*‖ < ε we have TµJ = TJ only if µ ∈ M∗.

Proof: If µ ∈ M∗, we have TµJ* = TJ* = J*. Thus J* is the unique
fixed point Jµ of Tµ, and we have Jµ = J*.

† Note that without monotonicity, J∗ need not have any formal optimality
properties (cf. the discussion of Section 2.1 and Example 2.1.1).
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To prove the second assertion, we argue by contradiction, so we as-
sume that there exist a sequence of scalars {εk} and a sequence of policies
{µk} such that εk ↓ 0 and

µk /∈ M∗, TµkJk = TJk, ‖Jk − J*‖ < εk, ∀ k = 0, 1, . . . .

Since M is finite, we may assume without loss of generality that for some
µ /∈ M∗, we have µk = µ for all k, so from the preceding relation we have

TµJk = TJk, ‖Jk − J*‖ < εk, ∀ k = 0, 1, . . . .

Thus ‖Jk −J*‖ → 0, and by the contraction Assumption 2.5.2(b), we have

‖TµJk − TµJ*‖ → 0, ‖TJk − TJ*‖ → 0.

Since TµJk = TJk, the limits of {TµJk} and {TJk} are equal, i.e., TµJ* =
TJ* = J*. Since Jµ is the unique fixed point of Tµ over F(X), it follows
that Jµ = J*, contradicting the earlier hypothesis that µ /∈ M∗. Q.E.D.

The preceding proof illustrates the key idea of the randomized opti-
mistic PI algorithm, which is that for µ ∈ M∗, the mappings Tmk

µ have a
common fixed point that is equal to J*, the fixed point of T . Thus within
a distance ε from J*, the iterates (2.57) aim consistently at J*. Moreover,
because the probability of a VI (an iteration with mk = 1) is positive, the
algorithm is guaranteed to eventually come within ε from J* through a
sufficiently long sequence of contiguous VI iterations. For this we need the
sequence {Jk} to be bounded, which will be shown as part of the proof of
the following proposition.

Proposition 2.5.5: Let Assumption 2.5.2 hold. Then for any start-
ing point J0 ∈ F(X), a sequence {Jk} generated by the randomized
optimistic PI algorithm (2.57)-(2.58) belongs to F(X) and converges
to J* with probability one.

Proof: We will show that {Jk} is bounded by showing that for all k, we
have

max
µ∈M

‖Jk − Jµ‖ ≤ ρk max
µ∈M

‖J0 − Jµ‖+
1

1− ρ
max

µ,µ′∈M
‖Jµ − Jµ′‖, (2.59)

where ρ is a common contraction modulus of Tµ, µ ∈ M, and T . Indeed,
we have for all µ ∈ M

‖Jk − Jµ‖ ≤ ‖Jk − Jµk−1‖+ ‖Jµk−1 − Jµ‖

= ‖T
mk−1

µk−1 Jk−1 − Jµk−1‖+ ‖Jµk−1 − Jµ‖

≤ ρmk−1‖Jk−1 − Jµk−1‖+ ‖Jµk−1 − Jµ‖

≤ ρmk−1 max
µ∈M

‖Jk−1 − Jµ‖+ max
µ,µ′∈M

‖Jµ − Jµ′‖

≤ ρmax
µ∈M

‖Jk−1 − Jµ‖+ max
µ,µ′∈M

‖Jµ − Jµ′‖,
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and finally, for all k,

max
µ∈M

‖Jk − Jµ‖ ≤ ρmax
µ∈M

‖Jk−1 − Jµ‖+ max
µ,µ′∈M

‖Jµ − Jµ′‖.

From this relation, we obtain Eq. (2.59) by induction.
Thus in conclusion, we have {Jk} ⊂ D, where D is the bounded set

D =

{
J
∣∣∣ max

µ∈M
‖J − Jµ‖ ≤ max

µ∈M
‖J0 − Jµ‖+

1

1− ρ
max

µ,µ′∈M
‖Jµ − Jµ′‖

}
.

We use this fact to argue that with enough contiguous value iterations, i.e.,
iterations where mk = 1, Jk can be brought arbitrarily close to J*, and
once this happens, the algorithm operates like the ordinary VI algorithm.

Indeed, each time the iteration Jk+1 = TJk is performed (i.e., when
mk = 1), the distance of the iterate Jk from J* is reduced by a factor ρ, i.e.,
‖Jk+1 − J*‖ ≤ ρ‖Jk − J*‖. Since {Jk} belongs to the bounded set D, and
our randomization scheme includes the condition p(1) > 0, the algorithm is
guaranteed (with probability one) to eventually execute a sufficient number
of contiguous iterations Jk+1 = TJk to enter a sphere

Sε =
{
J ∈ F(X) | ‖J − J*‖ < ε

}

of small enough radius ε to guarantee that the generated policy µk belongs
to M∗, as per Prop. 2.5.4. Once this happens, all subsequent iterations
reduce the distance ‖Jk − J*‖ by a factor ρ at every iteration, since

∥∥Tm
µ J −J*‖ ≤ ρ‖Tm−1

µ J −J*‖ ≤ ρ‖J −J*‖, ∀ µ ∈ M∗, m ≥ 1, J ∈ Sε.

Thus once {Jk} enters Sε, it stays within Sε and converges to J*. Q.E.D.

A Randomized Version of λ-Policy Iteration

We now turn to the λ-PI algorithm. Instead of the nonrandomized version

TµkJk = TJk, Jk+1 = T (λ)

µk Jk, k = 0, 1, . . . ,

cf. Eq. (2.34), we consider a randomized version that involves a fixed prob-
ability p ∈ (0, 1). It has the form

TµkJk = TJk, Jk+1 =

{
TJk with probability p,

T (λ)

µk Jk with probability 1− p. (2.60)

The idea of the algorithm is similar to the one of the randomized
optimistic PI algorithm (2.57)-(2.58). Under the assumptions of Prop.



Sec. 2.6 Asynchronous Algorithms 91

2.5.5, the sequence {Jk} generated by the randomized λ-PI algorithm (2.60)
belongs to F(X) and converges to J* with probability one. The reason is
that the contraction property of Tµ over F(X) with respect to the norm ‖·‖

implies that T (λ)
µ is well-defined, and also implies that T (λ)

µ is a contraction
over F(X). The latter assertion follows from the calculation

∥∥T (λ)
µ J − Jµ

∥∥ =

∥∥∥∥∥(1 − λ)
∞∑

!=0

λ!T !+1
µ J − (1− λ)

∞∑

!=0

λ!Jµ

∥∥∥∥∥

≤ (1− λ)
∞∑

!=0

λ!
∥∥T !+1

µ J − Jµ
∥∥

≤ (1− λ)
∞∑

!=0

λ!ρ!+1‖J − Jµ‖

= ρ ‖J − Jµ‖,

where the first inequality follows from the triangle inequality, and the sec-
ond inequality follows from the contraction property of Tµ. Given that

T (λ)
µ is a contraction, the proof of Prop. 2.5.5 goes through with mini-

mal changes. The idea again is that {Jk} remains bounded, and through
a sufficiently long sequence of contiguous iterations where the iteration
xk+1 = TJk is performed, it enters the sphere Sε, and subsequently stays
within Sε and converges to J*.

The convergence argument just given suggests that the choice of the
randomization probability p is important. If p is too small, convergence
may be slow because oscillatory behavior may go unchecked for a long
time. On the other hand if p is large, a correspondingly large number of
fixed point iterations xk+1 = TJk may be performed, and the hoped for

benefits of the use of the proximal iterations xk+1 = T (λ)

µk Jk may be lost.

Adaptive schemes that adjust p based on algorithmic progress may address
this issue. Similarly, the choice of the probability p(1) is significant in the
randomized optimistic PI algorithm (2.57)-(2.58).

2.6 ASYNCHRONOUS ALGORITHMS

In this section, we extend further the computational methods of VI and
PI for abstract DP models, by embedding them within an asynchronous
computation framework.

2.6.1 Asynchronous Value Iteration

Each VI of the form given in Section 2.3 applies the mapping T defined by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X,
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for all states simultaneously, thereby producing the sequence TJ, T 2J, . . .
starting with some J ∈ B(X). In a more general form of VI, at any one
iteration, J(x) may be updated and replaced by (TJ)(x) only for a subset
of states. An example is the Gauss-Seidel method for the finite-state case,
where at each iteration, J(x) is updated only for a single selected state x
and J(x) is left unchanged for all other states x .= x (see [Ber12a]). In that
method the states are taken up for iteration in a cyclic order, but more
complex iteration orders are possible, deterministic as well as randomized.

Methods of the type just described are called asynchronous VI meth-
ods and may be motivated by several considerations such as:

(a) Faster convergence. Generally, computational experience with DP
as well as analysis, have shown that convergence is accelerated by
incorporating the results of VI updates for some states as early as
possible into subsequent VI updates for other states. This is known
as the Gauss-Seidel effect , which is discussed in some detail in the
book [BeT89].

(b) Parallel and distributed asynchronous computation. In this context,
we have several processors, each applying VI for a subset of states, and
communicating the results to other processors (perhaps with some
delay). One objective here may be faster computation by taking
advantage of parallelism. Another objective may be computational
convenience in problems where useful information is generated and
processed locally at geographically dispersed points. An example is
data or sensor network computations, where nodes, gateways, sensors,
and data collection centers collaborate to route and control the flow
of data, using DP or shortest path-type computations.

(c) Simulation-based implementations . In simulation-based versions of
VI, iterations at various states are often performed in the order that
the states are generated by some form of simulation.

With these contexts in mind, we introduce a model of asynchronous
distributed solution of abstract fixed point problems of the form J = TJ .
Let R(X) be the set of real-valued functions defined on some given set
X and let T map R(X) into R(X). We consider a partition of X into
disjoint nonempty subsets X1, . . . , Xm, and a corresponding partition of J
as J = (J1, . . . , Jm), where J! is the restriction of J on the set X!. Our
computation framework involves a network of m processors, each updat-
ing corresponding components of J . In a (synchronous) distributed VI
algorithm, processor ) updates J! at iteration t according to

J t+1
! (x) = T (J t

1, . . . , J
t
m)(x), ∀ x ∈ X!, ) = 1, . . . ,m.

Here to accommodate the distributed algorithmic framework and its over-
loaded notation, we will use superscript t to denote iterations/times where
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some (but not all) processors update their corresponding components, re-
serving the index k for computation stages involving all processors, and
also reserving subscript ) to denote component/processor index.

In an asynchronous VI algorithm, processor ) updates J! only for t in
a selected subset R! of iterations, and with components Jj , j .= ), supplied
by other processors with communication “delays” t− τ!j(t),

J t+1
! (x) =

{
T
(
Jτ"1(t)
1 , . . . , Jτ"m(t)

m

)
(x) if t ∈ R!, x ∈ X!,

J t
! (x) if t /∈ R!, x ∈ X!.

(2.61)

Communication delays arise naturally in the context of asynchronous dis-
tributed computing systems of the type described in many sources (an
extensive reference is the book [BeT89]). Such systems are interesting for
solution of large DP problems, particularly for methods that are based on
simulation, which is naturally well-suited for distributed computation. On
the other hand, if the entire algorithm is centralized at a single physical
processor, the algorithm (2.61) ordinarily will not involve communication
delays, i.e., τ!j(t) = t for all ), j, and t.

The simpler case where X is a finite set and each subset X! consists
of a single element ) arises often, particularly in the context of simulation.
In this case we may simplify the notation of iteration (2.61) by writing J t

!

in place of the scalar component J t
!()), as we do in the following example.

Example 2.6.1 (One-State-at-a-Time Iterations)

Assuming X = {1, . . . , n}, let us view each state as a processor by itself, so
that X" = {'}, ' = 1, . . . , n. Consider a VI algorithm that executes one-state-
at-a-time, according to some state sequence {x0, x1, . . .}, which is generated
in some way, possibly by simulation. Thus, starting from some initial vector
J0, we generate a sequence {Jt}, with Jt = (Jt

1, . . . , J
t
n), as follows:

Jt+1
" =

{
T (Jt

1, . . . , J
t
n)(') if ' = xt,

Jt
" if ' &= xt,

where T (Jt
1, . . . , J

t
n)(') denotes the '-th component of the vector

T (Jt
1, . . . , J

t
n) = TJt,

and for simplicity we write Jt
" instead of Jt

" ('). This algorithm is a special
case of iteration (2.61) where the set of times at which J" is updated is

R" = {t | xt = '},

and there are no communication delays (as in the case where the entire algo-
rithm is centralized at a single physical processor).
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Note also that if X is finite, we can assume without loss of generality
that each state is assigned to a separate processor. The reason is that a
physical processor that updates a group of states may be replaced by a
group of fictitious processors, each assigned to a single state, and updating
their corresponding components of J simultaneously.

We will now discuss the convergence of the asynchronous algorithm
(2.61). To this end we introduce the following assumption.

Assumption 2.6.1: (Continuous Updating and Information
Renewal)

(1) The set of times R! at which processor ) updates J! is infinite,
for each ) = 1, . . . ,m.

(2) limt→∞ τ!j(t) = ∞ for all ), j = 1, . . . ,m.

Assumption 2.6.1 is natural, and is essential for any kind of conver-
gence result about the algorithm. † In particular, the condition τ!j(t) → ∞
guarantees that outdated information about the processor updates will
eventually be purged from the computation. It is also natural to assume
that τ!j(t) is monotonically increasing with t, but this assumption is not
necessary for the subsequent analysis.

We wish to show that J t
! → J∗

! for all ), and to this end we employ
the following convergence theorem for totally asynchronous iterations from
the author’s paper [Ber83], which has served as the basis for the treatment
of totally asynchronous iterations in the book [BeT89] (Chapter 6), and
their application to DP (i.e., VI and PI), and asynchronous gradient-based
optimization. For the statement of the theorem, we say that a sequence
{Jk} ⊂ R(X) converges pointwise to J ∈ R(X) if

lim
k→∞

Jk(x) = J(x)

for all x ∈ X .

Proposition 2.6.1 (Asynchronous Convergence Theorem): Let
T have a unique fixed point J*, let Assumption 2.6.1 hold, and assume
that there is a sequence of nonempty subsets

{
S(k)

}
⊂ R(X) with

† Generally, convergent distributed iterative asynchronous algorithms are

classified in totally and partially asynchronous [cf. the book [BeT89] (Chapters
6 and 7), or the more recent survey in the book [Ber16c] (Section 2.5)]. In the

former, there is no bound on the communication delays, while in the latter there

must be a bound (which may be unknown). The algorithms of the present section
are totally asynchronous, as reflected by Assumption 2.6.1.
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S(k + 1) ⊂ S(k), k = 0, 1, . . . ,

and is such that if {V k} is any sequence with V k ∈ S(k), for all k ≥ 0,
then {V k} converges pointwise to J*. Assume further the following:

(1) Synchronous Convergence Condition: We have

TJ ∈ S(k + 1), ∀ J ∈ S(k), k = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesian product of the form

S(k) = S1(k)× · · ·× Sm(k),

where S!(k) is a set of real-valued functions on X!, ) = 1, . . . ,m.

Then for every J0 ∈ S(0), the sequence {J t} generated by the asyn-
chronous algorithm (2.61) converges pointwise to J*.

Proof: To explain the idea of the proof, let us note that the given condi-
tions imply that updating any component J!, by applying T to a function
J ∈ S(k), while leaving all other components unchanged, yields a function
in S(k). Thus, once enough time passes so that the delays become “irrel-
evant,” then after J enters S(k), it stays within S(k). Moreover, once a
component J! enters the subset S!(k) and the delays become “irrelevant,”
J! gets permanently within the smaller subset S!(k+1) at the first time that
J! is iterated on with J ∈ S(k). Once each component J!, ) = 1, . . . ,m,
gets within S!(k + 1), the entire function J is within S(k + 1) by the Box
Condition. Thus the iterates from S(k) eventually get into S(k + 1) and
so on, and converge pointwise to J* in view of the assumed properties of
{S(k)}.

With this idea in mind, we show by induction that for each k ≥ 0,
there is a time tk such that:

(1) J t ∈ S(k) for all t ≥ tk.

(2) For all ) and t ∈ R! with t ≥ tk, we have

(
Jτ"1(t)
1 , . . . , Jτ"m(t)

m

)
∈ S(k).

[In words, after some time, all fixed point estimates will be in S(k) and all
estimates used in iteration (2.61) will come from S(k).]

The induction hypothesis is true for k = 0 since J0 ∈ S(0). Assuming
it is true for a given k, we will show that there exists a time tk+1 with the
required properties. For each ) = 1, . . . ,m, let t()) be the first element of
R! such that t()) ≥ tk. Then by the Synchronous Convergence Condition,
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S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

(0) S2(0)
TJ

Figure 2.6.1 Geometric interpretation of the conditions of asynchronous con-
vergence theorem. We have a nested sequence of boxes {S(k)} such that TJ ∈
S(k + 1) for all J ∈ S(k).

we have TJ t(!) ∈ S(k + 1), implying (in view of the Box Condition) that

J t(!)+1
! ∈ S!(k + 1).

Similarly, for every t ∈ R!, t ≥ t()), we have J t+1
! ∈ S!(k + 1). Between

elements of R!, J t
! does not change. Thus,

J t
! ∈ S!(k + 1), ∀ t ≥ t()) + 1.

Let t′k = max!
{
t())

}
+ 1. Then, using the Box Condition we have

J t ∈ S(k + 1), ∀ t ≥ t′k.

Finally, since by Assumption 2.6.1, we have τ!j(t) → ∞ as t → ∞, t ∈ R!,
we can choose a time tk+1 ≥ t′k that is sufficiently large so that τ!j(t) ≥ t′k
for all ), j, and t ∈ R! with t ≥ tk+1. We then have, for all t ∈ R!

with t ≥ tk+1 and j = 1, . . . ,m, J
τ"j(t)
j ∈ Sj(k + 1), which (by the Box

Condition) implies that

(
Jτ"1(t)
1 , . . . , Jτ"m(t)

m

)
∈ S(k + 1).

The induction is complete. Q.E.D.

Figure 2.6.1 illustrates the assumptions of the preceding convergence
theorem. The challenge in applying the theorem is to identify the set se-
quence

{
S(k)

}
and to verify the assumptions of Prop. 2.6.1. In abstract

DP, these assumptions are satisfied in two primary contexts of interest.
The first is when S(k) are weighted sup-norm spheres centered at J*, and
can be used in conjunction with the contraction framework of the preced-
ing section (see the following proposition). The second context is based
on monotonicity conditions. It will be used in Section 3.6 in conjunction
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S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

J1 Iterations

Iterations J2 Iteration

Figure 2.6.2 Geometric interpretation of the mechanism for asynchronous con-
vergence. Iteration on a single component of a function J ∈ S(k), say J", keeps J

in S(k), while it moves J" into the corresponding component S"(k+1) of S(k+1),
where it remains throughout the subsequent iterations. Once all components J"
have been iterated on at least once, the iterate is guaranteed to be in S(k + 1).

with semicontractive models for which there is no underlying sup-norm
contraction. It is also relevant to the noncontractive models of Section 4.3
where again there is no underlying contraction. Figure 2.6.2 illustrates the
mechanism by which asynchronous convergence is achieved.

We note a few extensions of the theorem. It is possible to allow T to be
time-varying, so in place of T we operate with a sequence of mappings Tk,
k = 0, 1, . . .. Then if all Tk have a common fixed point J*, the conclusion
of the theorem holds (see Exercise 2.2 for a more precise statement). This
extension is useful in some of the algorithms to be discussed later. Another
extension is to allow T to have multiple fixed points and introduce an
assumption that roughly says that ∩∞

k=0S(k) is the set of fixed points.
Then the conclusion is that any limit point (in an appropriate sense) of
{J t} is a fixed point.

We now apply the preceding convergence theorem to the totally asyn-
chronous VI algorithm under the contraction assumption. Note that the
monotonicity Assumption 2.1.1 is not necessary (just like it is not needed
for the synchronous convergence of {T kJ} to J*).

Proposition 2.6.2: Let the contraction Assumption 2.1.2 hold, to-
gether with Assumption 2.6.1. Then if J0 ∈ B(X), a sequence {J t}
generated by the asynchronous VI algorithm (2.61) converges to J*.

Proof: We apply Prop. 2.6.1 with

S(k) =
{
J ∈ B(X) | ‖Jk − J*‖ ≤ αk‖J0 − J*‖

}
, k = 0, 1, . . . .

Since T is a contraction with modulus α, the synchronous convergence
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condition is satisfied. Since T is a weighted sup-norm contraction, the box
condition is also satisfied, and the result follows. Q.E.D.

2.6.2 Asynchronous Policy Iteration

We will now develop asynchronous PI algorithms that have comparable
properties to the asynchronous VI algorithm of the preceding subsection.
The processors collectively maintain and update an estimate J t of the op-
timal cost function, and an estimate µt of an optimal policy. The local
portions of J t and µt of processor ) are denoted J t

! and µt
!, respectively,

i.e., J t
!(x) = J t(x) and µt

!(x) = µt(x) for all x ∈ X!.
For each processor ), there are two disjoint subsets of times R!,R! ⊂

{0, 1, . . .}, corresponding to policy improvement and policy evaluation iter-
ations, respectively. At the times t ∈ R! ∪R!, the local cost function J t

! of

processor ) is updated using “delayed” local costs J
τ"j(t)
j of other processors

j .= ), where 0 ≤ τ!j(t) ≤ t. At the times t ∈ R! (the local policy improve-
ment times), the local policy µt

! is also updated. For various choices of R!

and R!, the algorithm takes the character of VI (when R! = {0, 1, . . .}),
and PI (when R! contains a large number of time indices between succes-
sive elements of R!). As before, we view t − τ!j(t) as a “communication
delay,” and we require Assumption 2.6.1. †

In a natural asynchronous version of optimistic PI, at each time t,
each processor ) does one of the following:

(a) Local policy improvement : If t ∈ R!, processor ) sets for all x ∈ X!,

J t+1
! (x) = min

u∈U(x)
H
(
x, u, Jτ"1(t)

1 , . . . , Jτ"m(t)
m

)
, (2.62)

µt+1
! (x) ∈ arg min

u∈U(x)
H
(
x, u, Jτ"1(t)

1 , . . . , Jτ"m(t)
m

)
. (2.63)

(b) Local policy evaluation: If t ∈ R!, processor ) sets for all x ∈ X!,

J t+1
! (x) = H

(
x, µt(x), Jτ"1(t)

1 , . . . , Jτ"m(t)
m

)
, (2.64)

and leaves µ! unchanged, i.e., µ
t+1
! (x) = µt

!(x) for all x ∈ X!.

(c) No local change: If t /∈ R! ∪ R!, processor ) leaves J! and µ! un-
changed, i.e., J t+1

! (x) = J t
!(x) and µt+1

! (x) = µt
!(x) for all x ∈ X!.

Unfortunately, even when implemented without the delays τ!j(t), the
preceding PI algorithm is unreliable. The difficulty is that the algorithm

† As earlier in all PI algorithms we assume that the infimum over u ∈ U(x)

in the policy improvement operation is attained, and we write min in place of
inf.
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involves a mix of applications of T and various mappings Tµ that have dif-
ferent fixed points, so in the absence of some systematic tendency towards
J* there is the possibility of oscillation (see Fig. 2.6.3). While this does
not happen in synchronous versions (cf. Prop. 2.5.1), asynchronous ver-
sions of the algorithm (2.33) may oscillate unless J0 satisfies some special
condition (examples of this type of oscillation have been constructed in the
paper [WiB93]; see also [Ber10], which translates an example from [WiB93]
to the notation of the present book).

In this subsection and the next we will develop two distributed asyn-
chronous PI algorithms, each embodying a distinct mechanism that pre-
cludes the oscillatory behavior just described. In the first algorithm, there
is a simple randomization scheme, according to which a policy evaluation
of the form (2.64) is replaced by a policy improvement (2.62)-(2.63) with
some positive probability. In the second algorithm, given in Section 2.6.3,
we introduce a mapping Fµ, which has a common fixed point property: its
fixed point is related to J* and is the same for all µ, so the anomaly illus-
trated in Fig. 2.6.3 cannot occur. The first algorithm is simple but requires
some restrictions, including that the set of policies is finite. The second
algorithm is more sophisticated and does not require this restriction. Both
of these algorithms do not require the monotonicity assumption.

An Optimistic Asynchronous PI Algorithmwith Randomization

We introduce a randomization scheme for avoiding oscillatory behavior. It
is defined by a small probability p > 0, according to which a policy evalua-
tion iteration is replaced by a policy improvement iteration with probability
p, independently of the results of past iterations. We model this random-
ization by assuming that before the algorithm is started, we restructure
the sets R! and R! as follows: we take each element of each set R!, and
with probability p, remove it from R!, and add it to R! (independently of
other elements). We will assume the following:

Assumption 2.6.2:

(a) The set of policies M is finite.

(b) There exists an integer B ≥ 0 such that

(R! ∪R!) ∩ {τ | t < τ ≤ t+B} .= Ø, ∀ t, ).

(c) There exists an integer B′ ≥ 0 such that

0 ≤ t− τ!j(t) ≤ B′, ∀ t, ), j.
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Nonmonotone
Optimistic PI∗ Jµ

µ Jµ′

′ Jµ′′J

Monotone
Optimistic PI

J∗

′′Jµ0
Jµ1

1 Jµ2

TJ J0

Figure 2.6.3 Illustration of optimistic asynchronous PI under the monotonicity
and the contraction assumptions. When started with J0 and µ0 satisfying

J0 ≥ TJ0 = Tµ0J0,

the algorithm converges monotonically to J∗ (see the trajectory on the right).
However, for other initial conditions, there is a possibility for oscillations, since
with changing values of µ, the mappings Tµ have different fixed points and “aim at
different targets” (see the trajectory on the left, which illustrates a cycle between
three policies µ, µ′, µ′′). It turns out that such oscillations are not possible when
the algorithm is implemented synchronously (cf. Prop. 2.5.1), but may occur in
asynchronous implementations.

Assumption 2.6.2 guarantees that each processor ) will execute at
least one policy evaluation or policy improvement iteration within every
block of B consecutive iterations, and places a bound B′ on the communi-
cation delays. The convergence of the algorithm is shown in the following
proposition.

Proposition 2.6.3: Under the contraction Assumption 2.1.2, and As-
sumptions 2.6.1, and 2.6.2, for the preceding algorithm with random-
ization, we have

lim
t→∞

J t(x) = J*(x), ∀ x ∈ X,

with probability one.

Proof: Let J* and Jµ be the fixed points of T and Tµ, respectively, and
denote by M∗ the set of optimal policies:

M∗ = {µ ∈ M | Jµ = J*} = {µ ∈ M | TµJ* = TJ*}.
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We will show that the algorithm eventually (with probability one) enters
a small neighborhood of J* within which it remains, generates policies in
M∗, becomes equivalent to asynchronous VI, and therefore converges to
J* by Prop. 2.6.2. The idea of the proof is twofold; cf. Props. 2.5.4 and
2.5.5.

(1) There exists a small enough weighted sup-norm sphere centered at
J*, call it S∗, within which policy improvement generates only poli-
cies in M∗, so policy evaluation with such policies as well as policy
improvement keep the algorithm within S∗ if started there, and re-
duce the weighted sup-norm distance to J*, in view of the contraction
and common fixed point property of T and Tµ, µ ∈ M∗. This is a
consequence of Prop. 2.3.1 [cf. Eq. (2.16)].

(2) With probability one, thanks to the randomization device, the algo-
rithm will eventually enter permanently S∗ with a policy in M∗.

We now establish (1) and (2) in suitably refined form to account for
the presence of delays and asynchronism. As in the proof of Prop. 2.5.5,
we can prove that given J0, we have that {J t} ⊂ D, where D is a bounded
set that depends on J0. We define

S(k) =
{
J | ‖J − J*‖ ≤ αkc

}
,

where c is sufficiently large so that D ⊂ S(0). Then J t ∈ D and hence
J t ∈ S(0) for all t.

Let k∗ be such that

J ∈ S(k∗) and TµJ = TJ ⇒ µ ∈ M∗. (2.65)

Such a k∗ exists in view of the finiteness of M and Prop. 2.3.1 [cf. Eq.
(2.16)].

We now claim that with probability one, for any given k ≥ 1, J t

will eventually enter S(k) and stay within S(k) for at least B′ additional
consecutive iterations. This is because our randomization scheme is such
that for any t and k, with probability at least pk(B+B′) the next k(B+B′)
iterations are policy improvements, so that

J t+k(B+B′)−ξ ∈ S(k)

for all ξ with 0 ≤ ξ < B′ [if t ≥ B′ − 1, we have J t−ξ ∈ S(0) for all ξ
with 0 ≤ ξ < B′, so J t+B+B′

−ξ ∈ S(1) for 0 ≤ ξ < B′, which implies that
J t+2(B+B′)−ξ ∈ S(2) for 0 ≤ ξ < B′, etc].

It follows that with probability one, for some t we will have Jτ ∈ S(k∗)
for all τ with t − B′ ≤ τ ≤ t, as well as µt ∈ M∗ [cf. Eq. (2.65)]. Based
on property (2.65) and the definition (2.63)-(2.64) of the algorithm, we see
that at the next iteration, we have µt+1 ∈ M∗ and

‖J t+1 − J*‖ ≤ ‖J t − J*‖ ≤ αk∗c,
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so J t+1 ∈ S(k∗); this is because in view of J
µt = J*, and the contraction

property of T and T
µt , we have

∣∣J t+1
! (x)− J*

! (x)
∣∣

v(x)
≤ α‖J t − J*‖ ≤ αk∗+1c, (2.66)

for all x ∈ X! and ) such that t ∈ R! ∪R!, while

J t+1(x) = J t(x)

for all other x. Proceeding similarly, it follows that for all t > t we will
have

Jτ ∈ S(k∗), ∀ t with t−B′ ≤ τ ≤ t,

as well as µt ∈ M∗. Thus, after at most B iterations following t [after all
components J! are updated through policy evaluation or policy improve-
ment at least once so that

∣∣J t+1
! (x)− J*

! (x)
∣∣

v(x)
≤ α‖J t − J*‖ ≤ αk∗+1c,

for every i, x ∈ X!, and some t with t ≤ t < t+ B, cf. Eq. (2.66)], J t will
enter S(k∗ + 1) permanently, with µt ∈ M∗ (since µt ∈ M∗ for all t ≥ t
as shown earlier). Then, with the same reasoning, after at most another
B′ +B iterations, J t will enter S(k∗ +2) permanently, with µt ∈ M∗, etc.
Thus J t will converge to J* with probability one. Q.E.D.

The proof of Prop. 2.6.3 shows that eventually (with probability one
after some iteration) the algorithm will become equivalent to asynchronous
VI (each policy evaluation will produce the same results as a policy im-
provement), while generating optimal policies exclusively. However, the
expected number of iterations for this to happen can be very large. More-
over the proof depends on the set of policies being finite. These observa-
tions raise questions regarding the practical effectiveness of the algorithm.
However, it appears that for many problems the algorithm works well, par-
ticularly when oscillatory behavior is a rare occurrence.

A potentially important issue is the choice of the randomization prob-
ability p. If p is too small, convergence may be slow because oscillatory
behavior may go unchecked for a long time. On the other hand if p is
large, a correspondingly large number of policy improvement iterations
may be performed, and the hoped for benefits of optimistic PI may be lost.
Adaptive schemes which adjust p based on algorithmic progress may be an
interesting possibility for addressing this issue.
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2.6.3 Optimistic Asynchronous Policy Iteration with a Uniform
Fixed Point

We will now discuss another approach to address the convergence difficul-
ties of the “natural” asynchronous PI algorithm (2.62)-(2.64). As illus-
trated in Fig. 2.6.3 in connection with optimistic PI, the mappings T and
Tµ have different fixed points. As a result, optimistic and distributed PI,
which involve an irregular mixture of applications of Tµ and T , do not have
a “consistent target” at which to aim.

With this in mind, we introduce a new mapping that is parametrized
by µ and has a common fixed point for all µ, which in turn yields J*. This
mapping is a weighted sup-norm contraction with modulus α, so it may be
used in conjunction with asynchronous VI and PI. An additional benefit is
that the monotonicity Assumption 2.1.1 is not needed to prove convergence
in the analysis that follows; the contraction Assumption 2.1.2 is sufficient
(see Exercise 2.3 for an application).

The mapping operates on a pair (V,Q) where:

• V is a function with a component V (x) for each x (in the DP context
it may be viewed as a cost function).

• Q is a function with a component Q(x, u) for each pair (x, u) [in the
DP context Q(x, u), is known as a Q-factor ].

The mapping produces a pair

(
MFµ(V,Q), Fµ(V,Q)

)
,

where

• Fµ(V,Q) is a function with a component Fµ(V,Q)(x, u) for each (x, u),
defined by

Fµ(V,Q)(x, u) = H
(
x, u,min{V,Qµ}

)
, (2.67)

where for any Q and µ, we denote by Qµ the function of x defined by

Qµ(x) = Q
(
x, µ(x)

)
, x ∈ X, (2.68)

and for any two functions V1 and V2 of x, we denote by min{V1, V2}
the function of x given by

min{V1, V2}(x) = min
{
V1(x), V2(x)

}
, x ∈ X.

• MFµ(V,Q) is a function with a component
(
MFµ(V,Q)

)
(x) for each

x, where M denotes minimization over u, so that

(
MFµ(V,Q)

)
(x) = min

u∈U(x)
Fµ(V,Q)(x, u). (2.69)



104 Contractive Models Chap. 2

Example 2.6.2 (Asynchronous Optimistic Policy Iteration for
Discounted Finite-State MDP)

Consider the special case of the finite-state discounted MDP of Example 1.2.2.
We have

H(x, u, J) =

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ(y)

)
,

and

Fµ(V,Q)(x, u) = H
(
x, u,min{V,Qµ}

)

=

n∑

y=1

pxy(u)
(
g(x, u, y) + αmin

{
V (y), Q(y, µ(y))

})
,

(
MFµ(V,Q)

)
(x) = min

u∈U(x)

n∑

y=1

pxy(u)
(
g(x,u, y) + αmin

{
V (y),Q(y, µ(y))

})
,

[cf. Eqs. (2.67)-(2.69)]. Note that Fµ(V,Q) is the mapping that defines Bell-
man’s equation for the Q-factors of a policy µ in an optimal stopping problem
where the stopping cost at state y is equal to V (y).

We now consider the mapping Gµ given by

Gµ(V,Q) =
(
MFµ(V,Q), Fµ(V,Q)

)
, (2.70)

and show that it has a uniform contraction property and a corresponding
uniform fixed point. To this end, we introduce the norm

∥∥(V,Q)
∥∥ = max

{
‖V ‖, ‖Q‖

}

in the space of (V,Q), where ‖V ‖ is the weighted sup-norm of V , and ‖Q‖
is defined by

‖Q‖ = sup
x∈X,u∈U(x)

∣∣Q(x, u)
∣∣

v(x)
.

We have the following proposition.

Proposition 2.6.4: Let the contraction Assumption 2.1.2 hold. Con-
sider the mapping Gµ defined by Eqs. (2.67)-(2.70). Then for all µ:

(a) (J*, Q*) is the unique fixed point of Gµ, where Q* is defined by

Q*(x, u) = H(x, u, J*), x ∈ X, u ∈ U(x). (2.71)

(b) The following uniform contraction property holds for all (V,Q)
and (Ṽ , Q̃):

∥∥Gµ(V,Q)−Gµ(Ṽ , Q̃)
∥∥ ≤ α

∥∥(V,Q)− (Ṽ , Q̃)
∥∥.
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Proof: (a) Using the definition (2.71) of Q*, we have

J*(x) = (TJ*)(x) = inf
u∈U(x)

H(x, u, J*) = inf
u∈U(x)

Q*(x, u), ∀ x ∈ X,

so that

min
{
J*(x), Q*

(
x, µ(x)

)}
= J*(x), ∀ x ∈ X, µ ∈ M.

Using the definition (2.67) of Fµ, it follows that Fµ(J*, Q*) = Q* and also
that MFµ(J*, Q*) = J*, so (J*, Q*) is a fixed point of Gµ for all µ. The
uniqueness of this fixed point will follow from the contraction property of
part (b).

(b) We first show that for all (V,Q) and (Ṽ , Q̃), we have

∥∥Fµ(V,Q)− Fµ(Ṽ , Q̃)
∥∥ ≤ α

∥∥min{V,Qµ}−min{Ṽ , Q̃µ}
∥∥

≤ αmax
{
‖V − Ṽ ‖, ‖Q− Q̃‖

}
.

(2.72)

Indeed, the first inequality follows from the definition (2.67) of Fµ and
the contraction Assumption 2.1.2. The second inequality follows from a
nonexpansiveness property of the minimization map: for any J1, J2, J̃1,
J̃2, we have

∥∥min{J1, J2}−min{J̃1, J̃2}
∥∥ ≤ max

{
‖J1 − J̃1‖, ‖J2 − J̃2‖

}
; (2.73)

[to see this, write for every x,

Jm(x)

v(x)
≤ max

{
‖J1 − J̃1‖, ‖J2 − J̃2‖

}
+

J̃m(x)

v(x)
, m = 1, 2,

take the minimum of both sides over m, exchange the roles of Jm and J̃m,
and take supremum over x]. Here we use the relation (2.73) for J1 = V ,
J̃1 = Ṽ , and J2(x) = Q

(
x, µ(x)

)
, J̃2(x) = Q̃

(
x, µ(x)

)
, for all x ∈ X .

We next note that for all Q, Q̃, †

‖MQ−MQ̃‖ ≤ ‖Q− Q̃‖,

† For a proof, we write

Q(x, u)

v(x)
≤ ‖Q− Q̃‖+

Q̃(x, u)

v(x)
, ∀ u ∈ U(x), x ∈ X,

take infimum of both sides over u ∈ U(x), exchange the roles of Q and Q̃, and
take supremum over x ∈ X.
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which together with Eq. (2.72) yields

max
{∥∥MFµ(V,Q)−MFµ(Ṽ , Q̃)

∥∥,
∥∥Fµ(V,Q)− Fµ(Ṽ , Q̃)

∥∥}

≤ αmax
{
‖V − Ṽ ‖, ‖Q− Q̃‖

}
,

or equivalently
∥∥Gµ(V,Q)−Gµ(Ṽ , Q̃)

∥∥ ≤ α
∥∥(V,Q)− (Ṽ , Q̃)

∥∥. Q.E.D.

Because of the uniform contraction property of Prop. 2.6.4(b), a dis-
tributed fixed point iteration, like the VI algorithm of Eq. (2.61), can be
used in conjunction with the mapping (2.70) to generate asynchronously
a sequence

{
(V t, Qt)

}
that is guaranteed to converge to (J*, Q*) for any

sequence {µt}. This can be verified using the proof of Prop. 2.6.2 (more
precisely, a proof that closely parallels the one of that proposition); the
mapping (2.70) plays the role of T in Eq. (2.61). †

Asynchronous PI Algorithm

We now describe a PI algorithm, which applies asynchronously the com-
ponents MFµ(V,Q) and Fµ(V,Q) of the mapping Gµ(V,Q) of Eq. (2.70).
The first component is used for local policy improvement and makes a local
update to V and µ, while the second component is used for local policy
evaluation and makes a local update to Q. The algorithm draws its validity
from the weighted sup-norm contraction property of Prop. 2.6.4(b) and the
asynchronous convergence theory (Prop. 2.6.2 and Exercise 2.2).

The algorithm is a modification of the “natural” asynchronous PI
algorithm (2.63)-(2.64) [without the “communication delays” t− τ!j(t)]. It
generates sequences {V t, Qt, µt}, which will be shown to converge, in the
sense that V t → J*, Qt → Q*. Note that this is not the only distributed
iterative algorithm that can be constructed using the contraction property
of Prop. 2.6.4, because this proposition allows a lot of freedom of choice for
the policy µ. The paper by Bertsekas and Yu [BeY12] provides an extensive
discussion of alternative possibilities, including stochastic simulation-based
iterative algorithms, and algorithms that involve function approximation.

To define the asynchronous computation framework, we consider again
m processors, a partition ofX into setsX1, . . . , Xm, and assignment of each
subset X! to a processor ) ∈ {1, . . . ,m}. For each ), there are two infinite
disjoint subsets of times R!,R! ⊂ {0, 1, . . .}, corresponding to policy im-
provement and policy evaluation iterations, respectively. Each processor
) operates on V t(x), Qt(x, u), and µt(x), only for the states x within its
“local” state space X!. Moreover, to execute the steps (a) and (b) of the
algorithm, processor ) needs only the values Qt

(
x, µt(x)

)
of Qt [which are

† Because Fµ and Gµ depend on µ, which changes as the algorithm pro-

gresses, it is necessary to use a minor extension of the asynchronous convergence
theorem, given in Exercise 2.2, for the convergence proof.
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equal to Qt
µt(x); cf. Eq. (2.68)]. In particular, at each time t, each processor

) does one of the following:

(a) Local policy improvement : If t ∈ R!, processor ) sets for all x ∈ X!, †

V t+1(x) = min
u∈U(x)

H
(
x, u,min{V t, Qt

µt}
)
=

(
MFµt(V t, Qt)

)
(x),

sets µt+1(x) to a u that attains the minimum, and leaves Q un-
changed, i.e., Qt+1(x, u) = Qt(x, u) for all x ∈ X! and u ∈ U(x).

(b) Local policy evaluation: If t ∈ R!, processor ) sets for all x ∈ X! and
u ∈ U(x),

Qt+1(x, u) = H
(
x, u,min{V t, Qt

µt}
)
= Fµt(V t, Qt)(x, u),

and leaves V and µ unchanged, i.e., V t+1(x) = V t(x) and µt+1(x) =
µt(x) for all x ∈ X!.

(c) No local change: If t /∈ R! ∪ R!, processor ) leaves Q, V , and µ
unchanged, i.e., Qt+1(x, u) = Qt(x, u) for all x ∈ X! and u ∈ U(x),
V t+1(x) = V t(x), and µt+1(x) = µt(x) for all x ∈ X!.

Note that while this algorithm does not involve the “communication
delays” t− τ!j(t), it can clearly be extended to include them. The reason
is that our asynchronous convergence analysis framework in combination
with the uniform weighted sup-norm contraction property of Prop. 2.6.4
can tolerate the presence of such delays.

Reduced Space Implementation

The preceding PI algorithm may be used for the calculation of both J* and
Q*. However, if the objective is just to calculate J*, a simpler and more
efficient algorithm is possible. To this end, we observe that the preceding
algorithm can be operated so that it does not require the maintenance of
the entire function Q. The reason is that the values Qt(x, u) with u .=
µt(x) do not appear in the calculations, and hence we need only the values
Qt

µt(x) = Q
(
x, µt(x)

)
, which we store in a function J t:

J t(x) = Q
(
x, µt(x)

)
.

This observation is the basis for the following algorithm.
At each time t and for each processor ):

(a) Local policy improvement : If t ∈ R!, processor ) sets for all x ∈ X!,

J t+1(x) = V t+1(x) = min
u∈U(x)

H
(
x, u,min{V t, J t}

)
, (2.74)

† As earlier we assume that the infimum over u ∈ U(x) in the policy im-
provement operation is attained, and we write min in place of inf.
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and sets µt+1(x) to a u that attains the minimum.

(b) Local policy evaluation: If t ∈ R!, processor ) sets for all x ∈ X!,

J t+1(x) = H
(
x, µt(x),min{V t, J t}

)
, (2.75)

and leaves V and µ unchanged, i.e., for all x ∈ X!,

V t+1(x) = V t(x), µt+1(x) = µt(x).

(c) No local change: If t /∈ R! ∪ R!, processor ) leaves J , V , and µ
unchanged, i.e., for all x ∈ X!,

J t+1(x) = J t(x), V t+1(x) = V t(x), µt+1(x) = µt(x).

Example 2.6.3 (Asynchronous Optimistic Policy Iteration for
Discounted Finite-State MDP - Continued)

As an illustration of the preceding reduced space implementation, consider
the special case of the finite-state discounted MDP of Example 2.6.2. Here

H(x, u, J) =

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ(y)

)
,

and the mapping Fµ(V,Q) given by

Fµ(V,Q)(x, u) =

n∑

y=1

pxy(u)
(
g(x, u, y) + αmin

{
V (y), Q(y, µ(y))

})
,

defines the Q-factors of µ in a corresponding stopping problem. In the PI
algorithm (2.74)-(2.75), policy evaluation of µ aims to solve this stopping
problem, rather than solve a linear system of equations, as in classical PI. In
particular, the policy evaluation iteration (2.75) is

Jt+1(x) =

n∑

y=1

pxy
(
µt(x)

)(
g
(
x, µt(x), y

)
+ αmin

{
V t(y), Jt(y)

})
,

for all x ∈ X". The policy improvement iteration (2.74) is a VI for the
stopping problem:

Jt+1(x) = V t+1(x) = min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αmin

{
V t(y), Jt(y)

})
,

for all x ∈ X", while the current policy is locally updated by

µt+1(x) ∈ arg min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x,u, y) + αmin

{
V t(y), Jt(y)

})
,

for all x ∈ X". The “stopping cost” V t(y) is the most recent cost value,
obtained by local policy improvement at y.
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Example 2.6.4 (Asynchronous Optimistic Policy Iteration for
Minimax Problems and Dynamic Games)

Consider the optimistic PI algorithm (2.74)-(2.75) for the case of the minimax
problem of Example 1.2.5 of Chapter 1, where

H(x, u, J) = sup
w∈W (x,u)

[
g(x, u, w) + αJ

(
f(x, u,w)

)]
.

Then the local policy evaluation step [cf. Eq. (2.75)] is written as

Jt+1(x) = sup
w∈W (x,µt(x))

[
g
(
x, µt(x), w

)

+ αmin
{
V t

(
f(x, µt(x), w)

)
, Jt

(
f(x, µt(x), w)

)})]
.

The local policy improvement step [cf. Eq. (2.74)] takes the form

Jt+1(x) = V t+1(x) = min
u∈U(x)

sup
w∈W (x,u)

[
g(x, u,w)

+ αmin
{
V t

(
f(x, u,w)

)
, Jt

(
f(x, u, w)

)}]
,

and sets µt+1(x) to a u that attains the minimum.
Similarly for the discounted dynamic game problem of Example 1.2.4 of

Chapter 1, a local policy evaluation step [cf. Eq. (2.75)] consists of a local VI
for the maximizer’s DP problem assuming a fixed policy for the minimizer,
and a stopping cost V t as per Eq. (2.75). A local policy improvement step [cf.
Eq. (2.74)] at state x consists of the solution of a static game with a payoff
matrix that also involves min{V t, Jt} in place of Jt, as per Eq. (2.74).

A Variant with Interpolation

While the use of min{V t, J t} (rather than J t) in Eq. (2.75) provides a
convergence enforcement mechanism for the algorithm, it may also become
a source of inefficiency, particularly when V t(x) approaches its limit J*(x)
from lower values for many x. Then J t+1(x) is set to a lower value than
the iterate

Ĵ t+1(x) = H
(
x, µt(x), J t

)
, (2.76)

given by the “standard” policy evaluation iteration, and in some cases this
may slow down the algorithm.

A possible way to address this is to use an algorithmic variation that
modifies appropriately Eq. (2.75), using interpolation with a parameter
γt ∈ (0, 1], with γt → 0. In particular, for t ∈ R! and x ∈ X!, we calculate
the values J t+1(x) and Ĵ t+1(x) given by Eqs. (2.75) and (2.76), and if

J t+1(x) < Ĵ t+1(x), (2.77)
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we reset J t+1(x) to

(1� �t)J t+1(x) + �tĴ t+1(x). (2.78)

The idea of the algorithm is to aim for a larger value of J t+1(x) when
the condition (2.77) holds. Asymptotically, as �t ! 0, the iteration (2.77)-
(2.78) becomes identical to the convergent update (2.75). For a detailed
analysis we refer to the paper by Bertsekas and Yu [BeY10].

2.7 NOTES, SOURCES, AND EXERCISES

Section 2.1: The contractive DP model of this section was first studied
systematically by Denardo [Den67], who assumed an unweighted sup-norm,
proved the basic results of Section 2.1, and described some of their appli-
cations. In this section, we have extended the analysis of [Den67] to the
case of weighted sup-norm contractions.

Section 2.2: The abstraction of the computational methodology for finite-
state discounted MDP within the broader framework of weighted sup-norm
contractions and an infinite state space (Sections 2.2-2.6) follows the au-
thor’s survey [Ber12b], and relies on several earlier analyses that use more
specialized assumptions.

Section 2.3: The multistep error bound of Prop. 2.2.2 is based on Scher-
rer [Sch12], which explores periodic policies in approximate VI and PI in
finite-state discounted MDP (see also Scherrer and Lesner [ShL12], who
give an example showing that the bound for approximate VI of Prop. 2.3.2
is essentially sharp for discounted finite-state MDP). For a related discus-
sion of approximate VI, including the error amplification phenomenon of
Example 2.3.1, and associated error bounds, see de Farias and Van Roy
[DFV00].

Section 2.4: The error bound of Prop. 2.4.3 extends a standard bound for
finite-state discounted MDP, derived by Bertsekas and Tsitsiklis [BeT96]
(Section 6.2.2), and shown to be tight by an example.

Section 2.5: Optimistic PI has received a lot of attention in the literature,
particularly for finite-state discounted MDP, and it is generally thought to
be computationally more e�cient in practice than ordinary PI (see e.g.,
Puterman [Put94], who refers to the method as “modified PI”). The con-
vergence analysis of the synchronous optimistic PI (Section 2.5.1) follows
Rothblum [Rot79], who considered the case of an unweighted sup-norm
(v = e); see also Canbolat and Rothblum [CaR13]. The error bound for
optimistic PI (Section 2.5.2) is due to Thierry and Scherrer [ThS10b], which
was given for the case of a finite-state discounted MDP. We follow closely
their line of proof. Related error bounds and analysis are given by Scherrer
[Sch11].
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The �-PI method [cf. Eq. (2.34)] was introduced by Bertsekas and
Io↵e [BeI96], and was also presented in the book [BeT96], Section 2.3.1. It
is the basis of the LSPE(�) policy evaluation method, described by Nedić
and Bertsekas [NeB03], and by Bertsekas, Borkar, and Nedić [BBN04]. It
was studied further in approximate DP contexts by Thierry and Scherrer
[ThS10a], Bertsekas [Ber11b], and Scherrer [Sch11]. An extension of �-PI,
called ⇤-PI, uses a di↵erent parameter �i for each state i, and is discussed
in Section 5 of the paper by Yu and Bertsekas [YuB12]. Based on the
discussion of Section 1.2.5 and Exercise 1.2, ⇤-PI may be viewed as a
diagonally scaled version of the proximal algorithm, i.e., one that uses a
di↵erent penalty parameter for each proximal term.

When the state and control spaces are finite, and cost approximation
over a subspace {�r | r 2 <s} is used (cf. Section 1.2.4), a prominent
approximate PI approach is to replace the exact policy evaluation equation

Jµk = TµkJµk

with an approximate version of the form

�rk = WTµk(�rk), (2.79)

where W is some n⇥ n matrix whose range space is the subspace spanned
by the columns of �, where n is the number of states. For example the
projected and aggregation equations, described in Section 1.2.4, have this
form. The next policy µk+1 is obtained using the policy improvement
equation

Tµk+1(�rk) = T (�rk). (2.80)

A critical issue for the validity of such a method is whether the ap-
proximate Bellman equations

�r = WT (�r)

and
�r = WTµ(�r), µ 2 M,

have a unique solution. This is true if the composite mappings W � T
and W � Tµ are contractions over <n. In particular, in the case of an
aggregation equation, where W = �D, the rows of � and D are probability
distributions, and Tµ, µ 2 M, are monotone sup-norm contractions, the
mappings W � T and W � Tµ are also monotone sup-norm contractions.
However, in other cases, including when policy evaluation is done using
the projected equation, W � T need not be monotone or be a contraction
of any kind, and the approximate PI algorithm (2.79)-(2.80) may lead to
systematic oscillations, involving cycles of policies (see related discussions
in [BeT96], [Ber11c], and [Ber12a]). This phenomenon has been known
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since the early days of approximate DP ([Ber96] and the book [BeT96]),
but its practical implications have not been fully assessed. Generally, the
line of analysis of Section 2.5.3, which does not require monotonicity or sup-
norm contraction properties of the composite mappings W �T and W �Tµ,
can be applied to the approximate PI algorithm (2.79)-(2.80), but only in
the case where these mappings are contractions over <n with respect to a
common norm k · k; see Exercise 2.6 for further discussion.

Section 2.6: Asynchronous VI (Section 2.6.1) for finite-state discounted
MDP and games, shortest path problems, and abstract DP models, was
proposed in the author’s paper on distributed DP [Ber82]. The asyn-
chronous convergence theorem (Prop. 2.6.1) was first given in the author’s
paper [Ber83], where it was applied to a variety of algorithms, including
VI for discounted and undiscounted DP, and gradient methods for uncon-
strained optimization (see also Bertsekas and Tsitsiklis [BeT89], where a
textbook account is presented). The key convergence mechanism, which
underlies the proof of Prop. 2.6.1, is that while the algorithm iterates asyn-
chronously on the components J` of J , an iteration with any one com-
ponent does not impede the progress made by iterations with the other
components, thanks to the box condition. At the same time, progress to-
wards the solution is continuing thanks to the synchronous convergence
condition.

Earlier references on distributed asynchronous iterative algorithms in-
clude the work of Chazan and Miranker [ChM69] on Gauss-Seidel methods
for solving linear systems of equations (who attributed the original algo-
rithmic idea to Rosenfeld [Ros67]), and also Baudet [Bau78] on sup-norm
contractive iterations. We refer to [BeT89] for detailed references.

Asynchronous algorithms have also been studied and applied to simu-
lation-based DP, particularly in the context of Q-learning, first proposed
by Watkins [Wat89], which may be viewed as a stochastic version of VI,
and is a central algorithmic concept in approximate DP and reinforcement
learning. Two principal approaches for the convergence analysis of asyn-
chronous stochastic algorithms have been suggested.

The first approach, initiated in the paper by Tsitsiklis [Tsi94], con-
siders the totally asynchronous computation of fixed points of abstract
sup-norm contractive mappings and monotone mappings, which are de-
fined in terms of an expected value. The algorithm of [Tsi94] contains as
special cases Q-learning algorithms for finite-spaces discounted MDP and
SSP problems. The analysis of [Tsi94] shares some ideas with the theory
of Section 2.6.1, and also relies on the theory of stochastic approximation
methods. For a subsequent analysis of the convergence of Q-learning for
SSP, which addresses the issue of boundedness of the iterates, we refer to
Yu and Bertsekas [YuB13b].

The second approach, treats asynchronous algorithms of the stochas-
tic approximation type under some restrictions on the size of the communi-
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cation delays or on the time between consecutive updates of a typical com-
ponent. This approach was initiated in the paper by Tsitsiklis, Bertsekas,
and Athans [TBA86], and was also developed in the book by Bertsekas
and Tsitsiklis [BeT89] for stochastic gradient optimization methods. A re-
lated analysis that uses the ODE approach for more general fixed point
problems was given in the paper by Borkar [Bor98], and was refined in
the papers by Abounadi, Bertsekas, and Borkar [ABB02], and Borkar and
Meyn [BoM00], which also considered applications to Q-learning. We refer
to the monograph by Borkar [Bor08] for a more comprehensive discussion.

The convergence of asynchronous PI for finite-state discounted MDP
under the condition

J0 � Tµ0J0

was shown by Williams and Baird [WiB93], who also gave examples show-
ing that without this condition, cycling of the algorithm may occur. The
asynchronous PI algorithm with a uniform fixed point (Section 2.6.3) was
introduced in the papers by Bertsekas and Yu [BeY10], [BeY12], [YuB13a],
in order to address this di�culty. Our analysis follows the analysis of these
papers.

In addition to resolving the asynchronous convergence issue, the asyn-
chronous PI algorithm of Section 2.6.3, obviates the need for minimization
over all controls at every iteration (this is the generic computational ef-
ficiency advantage that optimistic PI typically holds over VI). Moreover,
the algorithm admits a number of variations thanks to the fact that Prop.
2.6.4 asserts the contraction property of the mapping Gµ for all µ. This
can be used to prove convergence in variants of the algorithm where the
policy µt is updated more or less arbitrarily, with the aim to promote some
objective. We refer to the paper [BeY12], which also derives related asyn-
chronous simulation-based Q-learning algorithms with and without cost
function approximation, where µt is replaced by a randomized policy to
enhance exploration.

The randomized asynchronous optimistic PI algorithm of Section
2.6.2, introduced in the first edition of this book, also resolves the asyn-
chronous convergence issue. The fact that this algorithm does not require
the monotonicity assumption may be useful in nonDP algorithmic contexts
(see [Ber16b] and Exercise 2.6).

In addition to discounted stochastic optimal control, the results of this
chapter find application in the context of the stochastic shortest path prob-
lem of Example 1.2.6, when all policies are proper. Then, under some addi-
tional assumptions, it can be shown that T and Tµ are weighted sup-norm
contractions with respect to a special norm. It follows that the analysis and
algorithms of this chapter apply in this case. For a detailed discussion, we
refer to the monograph [BeT96] and the survey [Ber12b]. For extensions
to the case of countable state space, see the textbook [Ber12a], Section 3.6,
and Hinderer and Waldmann [HiW05].
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E X E R C I S E S

2.1 (Periodic Policies)

Consider the multistep mappings T ⌫ = Tµ0 · · ·Tµm�1 , ⌫ 2 Mm, defined in Exer-
cise 1.1 of Chapter 1, where Mm is the set of m-tuples ⌫ = (µ0, . . . , µm�1), with
µk 2 M, k = 1, . . . ,m�1, and m is a positive integer. Assume that the mappings
Tµ satisfy the monotonicity and contraction Assumptions 2.1.1 and 2.1.2, so that
the same is true for the mappings T ⌫ (with the contraction modulus of T ⌫ being
↵
m, cf. Exercise 1.1).

(a) Show that the unique fixed point of T ⌫ is J⇡, where ⇡ is the nonstationary
but periodic policy ⇡ = {µ0, . . . , µm�1, µ0, . . . , µm�1, . . .}.

(b) Show that the multistep mappings Tµ0 · · ·Tµm�1 , Tµ1 · · ·Tµm�1Tµ0 , . . . ,
Tµm�1Tµ0 · · ·Tµm�2 , have unique corresponding fixed points J0, J1, . . .,
Jm�1, which satisfy

J0 = Tµ0J1, J1 = Tµ1J2, . . . , Jµm�2 = Tµm�2Jµm�1 , Jµm�1 = Tµm�1J0.

Hint : Apply Tµ0 to the fixed point relation

J1 = Tµ1 · · ·Tµm�1Tµ0J1

to show that Tµ0J1 is the fixed point of Tµ0 · · ·Tµm�1 , i.e., is equal to J0.
Similarly, apply Tµ1 to the fixed point relation

J2 = Tµ2 · · ·Tµm�1Tµ0Tµ1J2,

to show that Tµ1J2 is the fixed point of Tµ1 · · ·Tµm�1Tµ0 , etc.

Solution: (a) Let us define

J0 = lim
k!1

T
k
⌫J

0
, J1 = lim

k!1
T

k
⌫(Tµ0J

0), . . . , Jm�1 = lim
k!1

T
k
⌫(Tµ0 · · ·Tµm�2J

0),

where J 0 is some function in B(X). Since T ⌫ is a contraction mapping, J0, . . . , Jm�1

are all equal to the unique fixed point of T ⌫ . Since J0, . . . , Jm�1 are all equal,
they are also equal to J⇡ (by the definition of J⇡). Thus J⇡ is the unique fixed
point of T ⌫ .

(b) Follow the hint.
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2.2 (Asynchronous Convergence Theorem for Time-Varying
Maps)

In reference to the framework of Section 2.6.1, let {Tt} be a sequence of mappings
from R(X) to R(X) that have a common unique fixed point J⇤, let Assumption
2.6.1 hold, and assume that there is a sequence of nonempty subsets

�
S(k)

 
⇢

R(X) with S(k + 1) ⇢ S(k) for all k, and with the following properties:

(1) Synchronous Convergence Condition: Every sequence {Jk} with J
k 2 S(k)

for each k, converges pointwise to J
⇤. Moreover, we have

TtJ 2 S(k + 1), 8 J 2 S(k), k, t = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesian product of the form

S(k) = S1(k)⇥ · · ·⇥ Sm(k),

where S`(k) is a set of real-valued functions on X`, ` = 1, . . . ,m.

Then for every J
0 2 S(0), the sequence {J t} generated by the asynchronous

algorithm

J
t+1
` (x) =

⇢
Tt(J

⌧`1(t)
1 , . . . , J

⌧`m(t)
m )(x) if t 2 R`, x 2 X`,

J
t
` (x) if t /2 R`, x 2 X`,

[cf. Eq. (2.61)] converges pointwise to J
⇤.

Solution: A straightforward adaptation of the proof of Prop. 2.6.1.

2.3 (Nonmonotonic Contractive Models – Fixed Points of
Concave Sup-Norm Contractions [Ber16b])

The purpose of this exercise is to make a connection between our abstract DP
model and the problem of finding the fixed point of a (not necessarily monotone)
mapping that is a sup-norm contraction and has concave components. Let T :
<n 7! <n be a real-valued function whose n scalar components are concave. Then
the components of T can be represented as

(TJ)(x) = inf
u2U(x)

�
F (x, u)� J

0
u

 
, x = 1, . . . , n, (2.81)

where u 2 <n, J 0
u denotes the inner product of J and u, F (x, ·) is the conju-

gate convex function of the convex function �(TJ)(x), and U(x) =
�
u 2 <n |

F (x, u) < 1
 
is the e↵ective domain of F (x, ·) (for the definition of these terms,

we refer to books on convex analysis, such as [Roc70] and [Ber09]). Assuming
that the infimum in Eq. (2.81) is attained for all x, show how the VI algorithm of
Section 2.6.1 and the PI algorithm of Section 2.6.3 can be used to find the fixed
point of T in the case where T is a sup-norm contraction, but not necessarily
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monotone. Note: For algorithms that relate to the context of this exercise and
are inspired by approximate PI, see [Ber16b], [Ber18c].

Solution: The analysis of Sections 2.6.1 and 2.6.3 does not require monotonicity
of the mapping Tµ given by

(TµJ)(x) = F

�
x, µ(x)

�
� J

0
µ(x).

2.4 (Discounted Problems with Unbounded Cost per Stage)

Consider a countable-state MDP, where X = {1, 2, . . .}, the discount factor is
↵ 2 (0, 1), the transition probabilities are denoted pxy(u) for x, y 2 X and
u 2 U(x), and the expected cost per stage is denoted by g(x, u), x 2 X, u 2 U(x).
The constraint set U(x) may be infinite. For a positive weight sequence v =�
v(1), v(2), . . .

 
, we consider the space B(X) of sequences J =

�
J(1), J(2), . . .

 

such that kJk < 1, where k · k is the corresponding weighted sup-norm. We
assume the following.

(1) The sequence G = {G1, G2, . . .}, where

Gx = sup
u2U(x)

��g(x, u)
��, x 2 X,

belongs to B(X).

(2) The sequence V = {V1, V2, . . .}, where

Vx = sup
u2U(x)

X

y2X

pxy(u) v(y), x 2 X,

belongs to B(X).

(3) We have P
y2X

pxy(u)v(y)

v(x)
 1, 8 x 2 X.

Consider the monotone mappings Tµ and T , given by

(TµJ)(x) = g

�
x, µ(x)

�
+ ↵

X

y2X

pxy

�
µ(x)

�
J(y), x 2 X,

(TJ)(x) = inf
u2U(x)

"
g(x, u) + ↵

X

y2X

pxy(u)J(y)

#
, x 2 X.

Show that Tµ and T map B(X) into B(X), and are contraction mappings with
modulus ↵.
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Solution: We have

��(TµJ)(x)
��

v(x)
 Gx

v(x)
+ ↵

X

y2X

pxy

�
µ(x)

�
v(y)

v(x)

��J(y)
��

v(y)
, 8 x 2 X, µ 2 M,

from which, using assumptions (1) and (2),

��(TµJ)(x)
��

v(x)
 kGk+ kV k kJk, 8 x 2 X, µ 2 M.

A similar argument shows that

��(TJ)(x)
��

v(x)
 kGk+ kV k kJk, 8 x 2 X.

It follows that TµJ 2 B(X) and TJ 2 B(X) if J 2 B(X).
For any J, J

0 2 B(X) and µ 2 M, we have

kTµJ � TµJ
0k = sup

x2X

���↵
P

y2X
pxy

�
µ(x)

��
J(x)� J

0(x)
����

v(x)

 sup
x2X

���↵
P

y2X
pxy

�
µ(x)

�
v(y)

�
|J(y)� J

0(y)|/v(y)
����

v(x)

 sup
x2X

↵

���
P

y2X
pxy

�
µ(x)

�
v(y)

���
v(x)

kJ � J
0k

 ↵kJ � J
0k,

where the last inequality follows from assumption (3). Hence Tµ is a contraction
of modulus ↵.

To show that T is a contraction, we note that

(TµJ)(x)

v(x)
 (TµJ

0)(x)

v(x)
+ ↵kJ � J

0k, x 2 X, µ 2 M,

so by taking infimum over µ 2 M, we obtain

(TJ)(x)

v(x)
 (TJ 0)(x)

v(x)
+ ↵kJ � J

0k, x 2 X.

Similarly,
(TJ 0)(x)

v(x)
 (TJ)(x)

v(x)
+ ↵kJ � J

0k, x 2 X,

and by combining the last two relations the contraction property of T follows.
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2.5 (Solution by Mathematical Programming)

Let the monotonicity and contraction Assumptions 2.1.1 and 2.1.2 hold. Show
that if J  TJ and J 2 B(X), then J  J

⇤. Use this fact to show that if
X = {1, . . . , n} and U(i) is finite for each i = 1, . . . , n, then J

⇤(1), . . . , J⇤(n)
solves the following problem (in z1, . . . , zn):

maximize

nX

i=1

zi

subject to zi  H(i, u, z), i = 1, . . . , n, u 2 U(i),

where z = (z1, . . . , zn). Note: This is a linear or nonlinear program (depending
on whether H is linear in J or not) with n variables and as many as n ⇥ m

constraints, where m is the maximum number of elements in the sets U(i).

Solution: If J  TJ , by monotonicity we have J  limk!1 T
k
J = J

⇤. Any
feasible solution z of the given optimization problem satisfies zi  H(i, u, z) for
all i = 1, . . . , n and u 2 U(i), so that z  Tz. It follows that z  J

⇤, which
implies that J⇤ solves the optimization problem.

2.6 (Conditions for Convergence of PI with Cost Function
Approximation [Ber11c])

Let the monotonicity and contraction Assumptions 2.1.1 and 2.1.2 hold, and
assume that there are n states, and that U(x) is finite for every x. Consider a PI
method that aims to approximate a fixed point of T on a subspace S = {�r | r 2
<s}, where � is an n ⇥ s matrix, and evaluates a policy µ 2 M with a solution
J̃µ of the following fixed point equation in the vector J 2 <n:

J = WTµJ (2.82)

where W : <n 7! <n is some mapping (possibly nonlinear, but independent of
µ), whose range is contained in S. Examples where W is linear include policy
evalution using the projected and aggregation equations; see Section 1.2.4. The
algorithm is given by

�rk = WTµk (�rk), Tµk+1(�rk) = T (�rk); (2.83)

[cf. Eqs. (2.79)-(2.80)]. We assume the following:

(1) For each J 2 <n, there exists µ 2 M such that TµJ = TJ .

(2) For each µ 2 M, Eq. (2.82) has a unique solution that belongs to S and is
denoted J̃µ. Moreover, for all J such that WTµJ  J , we have

J̃µ = lim
k!1

(WTµ)
k
J.

(3) For each µ 2 M, the mappings W and WTµ are monotone in the sense
that

WJ  WJ
0
, WTµJ  WTµJ

0
, 8 J, J

0 2 <n with J  J
0
. (2.84)
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Note that conditions (1) and (2) guarantee that the iterations (2.83) are well-
defined. Assume that the method is initiated with some policy in M, and it is
operated so that it terminates when a policy µ is obtained such that TµJ̃µ = T J̃µ.
Show that the method terminates in a finite number of iterations, and the vector
J̃µ obtained upon termination is a fixed point of WT . Note: Condition (2) is
satisfied if WTµ is a contraction, while condition (b) is satisfied if W is a matrix
with nonnegative components and Tµ is monotone for all µ. For counterexamples
to convergence when the conditions (2) and/or (3) are not satisfied, see [BeT96],
Section 6.4.2, and [Ber12a], Section 2.4.3.

Solution: Similar to the standard proof of convergence of (exact) PI, we use
the policy improvement equation TµJ̃µ = T J̃µ, the monotonicity of W , and the
policy evaluation equation to write

WTµJ̃µ = WTJ̃µ  WTµJ̃µ = J̃µ.

By iterating with the monotone mapping WTµ and by using condition (2), we
obtain

J̃µ = lim
k!1

(WTµ)
k
J̃µ  J̃µ.

There are finitely many policies, so we must have J̃µ = J̃µ after a finite number
of iterations, which using the policy improvement equation TµJ̃µ = T J̃µ, implies
that TµJ̃µ = T J̃µ. Thus the algorithm terminates with µ, and since J̃µ =
WTµJ̃µ, it follows that J̃µ is a fixed point of WT .
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We will now consider abstract DP models that are intermediate between
the contractive models of Chapter 2, where all stationary policies involve a
contraction mapping, and noncontractive models to be discussed in Chapter
4, where there are no contraction-like assumptions (although there are some
compensating conditions, including monotonicity).

A representative instance of such an intermediate model is the deter-
ministic shortest path problem of Example 1.2.7, where we can distinguish
between two types of stationary policies: those that terminate at the des-
tination from every starting node, and those that do not. A more general
instance is the stochastic shortest path (SSP for short) problem of Example
1.2.6. In this problem, the analysis revolves around two types of stationary
policies µ: those with a mapping Tµ that is a contraction with respect to
some norm, and those with a mapping Tµ that is not a contraction with
respect to any norm (it can be shown that the former are the ones that
terminate with probability 1 starting from any state).

In the models of this chapter, like in SSP problems, we divide policies
into two groups, one of which has favorable characteristics. We loosely
refer to such models as semicontractive to indicate that these favorable
characteristics include contraction-like properties of the mapping Tµ. To
develop a more broadly applicable theory, we replace the notion of contrac-
tiveness of Tµ with a notion of S-regularity of µ, where S is an appropriate
set of functions of the state (roughly, this is a form of “local stability” of
Tµ, which ensures that the cost function Jµ is the unique fixed point of Tµ

within S, and that T k
µJ converges to Jµ regardless of the choice of J from

within S). We allow that some policies are S-regular while others are not.
Note that the term “semicontractive” is not used in a precise mathe-

matical sense here. Rather it refers qualitatively to a collection of models
where some policies have a regularity/contraction-like property but others
do not. Moreover, regularity is a relative property: the division of policies
into “regular” and “irregular” depends on the choice of the set S. On the
other hand, typically in practical applications an appropriate choice of S
is fairly evident.

Our analysis will involve two types of assumptions:

(a) Favorable assumptions, under which we obtain results that are nearly
as strong as those available for the contractive models of Chapter 2.
In particular, we show that J* is a fixed point of T , that the Bellman
equation J = TJ has a unique solution, at least within a suitable
class of functions, and that variants of the VI and PI algorithms are
valid. Some of the VI and PI approaches are suitable for distributed
asynchronous computation, similar to their Section 2.6 counterparts
for contractive models.

(a) Less favorable assumptions, under which serious difficulties may oc-
cur: J* may not be a fixed point of T , and even when it is, it may not
be found using the VI and PI algorithms. These anomalies may ap-
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pear in simple problems, such as deterministic and stochastic shortest
path problems with some zero length cycles. To address the difficul-
ties, we will consider a restricted problem, where the only admissible
policies are the ones that are S-regular . Under reasonable conditions
we show that this problem is better-behaved. In particular, J*

S , the
optimal cost function over the S-regular policies only, is the unique
solution of Bellman’s equation among functions J ∈ S with J ≥ J*

S ,
while VI converges to J*

S starting from any J ∈ S with J ≥ J*
S .

We will also derive a variety of PI approaches for finding J*
S and an

S-regular policy that is optimal within the class of S-regular policies.

We will illustrate our analysis in Section 3.5, both under favorable and
unfavorable assumptions, by means of four classes of practical problems.
Some of these problems relate to finding a path to a destination in a graph
under stochastic or set membership uncertainty, while others relate to the
control of a continuous-state system to a terminal state. In particular, we
will consider SSP problems, affine monotonic problems, including problems
with multiplicative or risk-sensitive exponential cost function, minimax-
type shortest path problems, and continuous-state deterministic problems
with nonnegative cost, such as linear-quadratic problems.

The chapter is organized as follows. In Section 3.1, we illustrate the
pathologies regarding solutions of Bellman’s equation, and the VI and PI
algorithms. To this end, we use four simple examples, ranging from finite-
state shortest path problems, to continuous-state linear-quadratic prob-
lems. These examples provide orientation and motivation for S-regular
policies later. In Section 3.2, we formally introduce our abstract DP model,
and the notion of an S-regular policy. We then develop some of the basic
associated results relating to Bellman’s equation, and the convergence of
VI and PI, based primarily on the ideas underlying the PI algorithm. In
Section 3.3 we refine the results of Section 3.2 under favorable conditions,
obtaining results and algorithms that are almost as powerful as the ones for
contractive models. In Section 3.4 we develop a complementary analytical
approach, which is based on the use of perturbations and applies under less
favorable assumptions. In Section 3.5, we discuss in detail the application
and refinement of the results of Sections 3.2-3.4 in some important shortest
path-type practical contexts. In Section 3.6, we focus on variants of VI and
PI-type algorithms for semicontractive DP models, including some that are
suitable for asynchronous distributed computation.

3.1 PATHOLOGIES OF NONCONTRACTIVE DP MODELS

In this section we provide a general overview of the analytical and compu-
tational difficulties in noncontractive DP models, using for the most part
shortest path-type problems. For illustration we will first use two of the
simplest and most widely encountered finite-state DP problems: deter-
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ministic and SSP problems, whereby we are aiming to reach a destination
state at minimum cost. † We will also discuss an example of continuous-
state shortest path problem that involves a linear system and a quadratic
cost function.

We will adopt the general abstract DP model of Section 1.2. We give
a brief description that is adequate for the purposes of this section, and
defer a more formal definition to Section 3.2. In particular, we introduce
a set of states X , and for each x ∈ X , the nonempty control constraint set
U(x). For each policy µ, the mapping Tµ is given by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X,

where H is a suitable function of (x, u, J). The mapping T is given by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X.

The cost function of a policy π = {µ0, µ1, . . .} is

Jπ(x) = lim sup
N→∞

Jπ,N(x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

where J̄ is some function. ‡ We want to minimize Jπ over π, i.e., to find

J*(x) = inf
π

Jπ(x), x ∈ X,

and a policy that attains the infimum.
For orientation purposes, we recall from Chapter 1 (Examples 1.2.1

and 1.2.2) that for a stochastic optimal control problem involving a finite-
state Markov chain with state spaceX = {1, . . . , n}, transition probabilities
pxy(u), and expected one-stage cost function g, the mapping H is given by

H(x, u, J) = g(x, u) +
n∑

y=1

pxy(u)J(y), x ∈ X,

and J̄(x) ≡ 0. The SSP problem arises when there is an additional ter-
mination state that is cost-free, and corresponding transition probabilities
pxt(u), x ∈ X .

† These problems are naturally undiscounted, and cannot be readily ad-

dressed by introducing a discount factor close to 1, because then the optimal
policies may exhibit undesirable behavior. In particular, in the presence of dis-

counting, they may involve moving initially along a small-length cycle in order

to postpone the use of an optimal but unavoidably costly path until later, when
the discount factor will reduce substantially the cost of that path.

‡ In the contractive models of Chapter 2, the choice of J̄ is immaterial, as we

discussed in Section 2.1. Here, however, the choice of J̄ is important, and affects
important characteristics of the model, as we will see later.
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A more general undiscounted stochastic optimal control problem in-
volves a stationary discrete-time dynamic system where the state is an
element of a space X , and the control is an element of a space U . The
control uk is constrained to take values in a given set U(xk) ⊂ U , which
depends on the current state xk [uk ∈ U(xk), for all xk ∈ X ]. For a policy
π = {µ0, µ1, . . .}, the state evolves according to a system equation

xk+1 = f
(
xk, µk(xk), wk

)
, k = 0, 1, . . . , (3.1)

where wk is a random disturbance that takes values from a space W . We
assume that wk, k = 0, 1, . . ., are characterized by probability distributions
P (· | xk, uk) that are identical for all k, where P (wk | xk, uk) is the prob-
ability of occurrence of wk, when the current state and control are xk and
uk, respectively. Here, we allow infinite state and control spaces, as well as
problems with discrete (finite or countable) state space (in which case the
underlying system is a Markov chain). However, for technical reasons that
relate to measure-theoretic issues, we assume that W is a countable set. †

Given an initial state x0, we want to find a policy π = {µ0, µ1, . . .},
where µk : X &→ U , µk(xk) ∈ U(xk), for all xk ∈ X , k = 0, 1, . . ., that
minimizes

Jπ(x0) = lim sup
k→∞

E

{
k∑

t=0

g
(
xt, µt(xt), wt

)
}
, (3.2)

subject to the system equation constraint (3.1), where g is the one-stage
cost function. The corresponding mapping of the abstract DP problem is

H(x, u, J) = E
{
g(x, u, w) + J

(
f(x, u, w)

)}
,

and J̄(x) ≡ 0. Again here, (Tµ0 · · ·Tµk
J̄)(x) is the expected cost of the

first k + 1 periods using π starting from x, and with terminal cost 0.
A discounted version of the problem is defined by the mapping

H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
,

where α ∈ (0, 1) is the discount factor. It corresponds to minimization of

Jπ(x0) = lim sup
k→∞

E

{
k∑

t=0

αtg
(
xt, µt(xt), wt

)
}
.

If the cost per stage g is bounded, then a problem that fits the contractive
framework of Chapter 2 is obtained, and can be analyzed using the methods
of that chapter. However, there are interesting infinite-state discounted
optimal control problems where g is not bounded.

† Measure-theoretic issues are not addressed at all in this third edition of the

book. The first edition addressed some of these issues within an abstract DP
context in its Chapter 5 and Appendix C (this material is posted at the book’s

web site); see also the monograph by Bertsekas and Shreve [BeS78], and the paper

by Yu and Bertsekas [YuB15]. An orientation summary is given in Appendix A
of the author’s textbook [Ber12a].
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A Summary of Pathologies

The four examples to be discussed in Sections 3.1.1-3.1.4 are special cases
of deterministic and stochastic optimal control problems of the type just
described. In each of these examples, we will introduce a subclass of
“well-behaved” policies and a restricted optimization problem, which is
to minimize the cost over the “well-behaved” subclass (in Section 3.2 the
property of being “well-behaved” will be formalized through the notion
of S-regularity). The optimal cost function over just the “well-behaved”
policies is denoted Ĵ (we will also use the notation J*

S later). Here is a
summary of the examples and the pathologies that they reveal:

(a) A finite-state, finite-control deterministic shortest path problem (Sec-
tion 3.1.1). Here the mapping T can have infinitely many fixed points,
including J* and Ĵ . There exist policies that attain the optimal costs
J* and Ĵ . Depending on the starting point, the VI algorithm may
converge to J* or to Ĵ or to a third fixed point of T (for cases where
J* (= Ĵ , VI converges to Ĵ starting from any J ≥ Ĵ). The PI algo-
rithm can oscillate between two policies that attain J* and Ĵ , respec-
tively.

(b) A finite-state, finite-control stochastic shortest path problem (Section
3.1.2). The salient feature of this example is that J* is not a fixed
point of the mapping T . By contrast Ĵ is a fixed point of T . The VI
algorithm converges to Ĵ starting from any J ≥ Ĵ , while it does not
converge otherwise.

(c) A finite-state, continuous-control stochastic shortest path problem (Sec-
tion 3.1.3). We give three variants of this example. In the first variant
(a classical problem known as the “blackmailer’s dilemma”), all the
policies are “well-behaved,” so J* = Ĵ , and VI converges to J* start-
ing from any real-valued initial condition, while PI also succeeds in
finding J* as the limit of the generated sequence {Jµk}. However, PI
cannot find an optimal policy, because there is no optimal stationary
policy. In a second variant of this example, PI generates a sequence of
“well-behaved” policies {µk} such that Jµk ↓ Ĵ , but {µk} converges
to a policy that is either infeasible or is strictly suboptimal. In the
third variant of this example, the problem data can strongly affect
the multiplicity of the fixed points of T , and the behavior of the VI
and PI algorithms.

(d) A continuous-state, continuous-control deterministic linear-quadratic
problem (Section 3.1.4). Here the mapping T has exactly two fixed
points, J* and Ĵ , within the class of positive semidefinite quadratic
functions. The VI algorithm converges to Ĵ starting from all positive
initial conditions, and to J* starting from all other initial conditions.
Moreover, starting with a “well-behaved” policy (one that is stable),
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the PI algorithm converges to Ĵ and to an optimal policy within the
class of “well-behaved” (stable) policies.

It can be seen that the examples exhibit wide-ranging pathological
behavior. In Section 3.2, we will aim to construct a theoretical framework
that explains this behavior. Moreover, in Section 3.3, we will derive condi-
tions guaranteeing that much of this type of behavior does not occur. These
conditions are natural and broadly applicable. They are used to exclude
from optimality the policies that are not “well-behaved,” and to obtain
results that are nearly as powerful as their counterparts for the contractive
models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t, and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. Thus we will not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undiscounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

{
axu + J(u) if u (= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
(
x, µ(x)

)
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
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a

t b
a 1 2 1 2 t b

t b Destination

u Cost 1 Cost 1

u Cost 1 Cost 1

Figure 3.1.1. A deterministic shortest path problem with a single node 1 and a
termination node t. At 1 there are two choices; a self-transition, which costs a,
and a transition to t, which costs b.

proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than −∞ starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
self-transition, which costs a, and a transition to t, which costs b. The
mapping H , abbreviating J(1) with just the scalar J , is

H(1, u, J) =

{
a+ J if u: self transition,
b if u: transition to t,

J ∈ ,.

There are two policies here: the policy µ that transitions from 1 to t,
which is proper, and the policy µ′ that self-transitions at state 1, which is
improper. We have

TµJ = b, Tµ′J = a+ J, J ∈ ,,

and

TJ = min{b, a+ J}, J ∈ ,.

Note that for the proper policy µ, the mapping Tµ : , &→ , is a contraction.
For the improper policy µ′, the mapping Tµ′ : , &→ , is not a contraction,
and it has a fixed point within , only if a = 0, in which case every J ∈ ,
is a fixed point.

We now consider the optimal cost J*, the fixed points of T within ,,
and the behavior of the VI and PI methods for different combinations of
values of a and b.

(a) If a > 0, the optimal cost, J* = b, is the unique fixed point of T , and
the proper policy is optimal.
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(b) If a = 0, the set of fixed points of T (within ,) is the interval (−∞, b].
Here the improper policy is optimal if b ≥ 0, and the proper policy is
optimal if b ≤ 0 (both policies are optimal if b = 0).

(c) If a = 0 and b > 0, the proper policy is strictly suboptimal, yet its cost
at state 1 (which is b) is a fixed point of T . The optimal cost, J* = 0,
lies in the interior of the set of fixed points of T , which is (−∞, b].
Thus the VI method that generates {T kJ} starting with J (= J*

cannot find J*. In particular if J is a fixed point of T , VI stops at J ,
while if J is not a fixed point of T (i.e., J > b), VI terminates in two
iterations at b (= J*. Moreover, the standard PI method is unreliable
in the sense that starting with the suboptimal proper policy µ, it
may stop with that policy because TµJµ = b = min{b, Jµ} = TJµ
(the improper/optimal policy µ′ also satisfies Tµ′Jµ = TJµ, so a rule
for breaking the tie in favor of µ is needed but such a rule may not
be obvious in general).

(d) If a = 0 and b < 0, the improper policy is strictly suboptimal, and
we have J* = b. Here it can be seen that the VI sequence {T kJ}
converges to J* for all J ≥ b, but stops at J for all J < b, since the
set of fixed points of T is (−∞, b]. Moreover, starting with either
the proper policy or the improper policy, the standard form of PI
may oscillate, since TµJµ′ = TJµ′ and Tµ′Jµ = TJµ, as can be easily
verified [the optimal policy µ also satisfies TµJµ = TJµ but it is not
clear how to break the tie; compare also with case (c) above].

(e) If a < 0, the improper policy is optimal and we have J* = −∞.
There are no fixed points of T within ,, but J* is the unique fixed
point of T within the set [−∞,∞]. The VI method will converge to
J* starting from any J ∈ [−∞,∞]. The PI method will also converge
to the optimal policy starting from either policy.

3.1.2 Stochastic Shortest Path Problems

We consider the SSP problem, which was described in Example 1.2.6 and
will be revisited in Section 3.5.1. Here a policy is associated with a station-
ary Markov chain whose states are 1, . . . , n, plus the cost-free termination
state t. The cost of a policy starting at a state x is the sum of the expected
cost of its transitions up to reaching t. A policy is said to be proper , if in
its Markov chain, every state is connected with t with a path of positive
probability transitions, and otherwise it is called improper . Equivalently, a
policy is proper if its Markov chain has t as its unique ergodic state, with
all other states being transient.

In deterministic shortest path problems, it turns out that Jµ is always
a fixed point of Tµ, and J* is always a fixed point of T . This is a generic
feature of deterministic problems, which was illustrated in Section 1.1 (see
Exercise 3.1 for a rigorous proof). However, in SSP problems where the
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Figure 3.1.2. An example of an improper policy µ, where Jµ is not a fixed
point of Tµ. All transitions under µ are shown with solid lines. These transitions
are deterministic, except at state 1 where the next state is 2 or 5 with equal
probability 1/2. There are additional high cost transitions from nodes 1, 4, and
7 to the destination (shown with broken lines), which create a suboptimal proper
policy. We have J∗ = Jµ and J∗ is not a fixed point of T .

cost per stage can take both positive and negative values this need not be
so, as we will now show with an example due to [BeY16].

Let us consider the problem of Fig. 3.1.2. It involves an improper
policy µ, whose transitions are shown with solid lines in the figure, and
form the two zero length cycles shown. All the transitions under µ are
deterministic, except at state 1 where the successor state is 2 or 5 with
equal probability 1/2. The problem has been deliberately constructed so
that corresponding costs at the nodes of the two cycles are negatives of
each other. As a result, the expected cost at each time period starting
from state 1 is 0, implying that the total cost over any number or even
infinite number of periods is 0.

Indeed, to verify that Jµ(1) = 0, let ck denote the cost incurred at

time k, starting at state 1, and let sN (1) =
∑N−1

k=0 ck denote the N -step
accumulation of ck starting from state 1. We have

sN (1) = 0 if N = 1 or N = 4 + 3t, t = 0, 1, . . .,

sN (1) = 1 or sN (1) = −1 with probability 1/2 each

if N = 2 + 3t or N = 3 + 3t, t = 0, 1, . . ..
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Thus E
{
sN (1)

}
= 0 for all N , and

Jµ(1) = lim sup
N→∞

E
{
sN (1)

}
= 0.

On the other hand, using the definition of Jµ in terms of lim sup, we
have

Jµ(2) = Jµ(5) = 1,

(the sequence of N -stage costs undergoes a cycle {1,−1, 0, 1,−1, 0, . . .}
when starting from state 2, and undergoes a cycle {−1, 1, 0,−1, 1, 0, . . .}
when starting from state 5). Thus the Bellman equation at state 1,

Jµ(1) = 1
2

(
Jµ(2) + Jµ(5)

)
,

is not satisfied, and Jµ is not a fixed point of Tµ.
The mathematical reason why Bellman’s equation Jµ = TµJµ may

not hold for stochastic problems is that lim sup may not commute with the
expected value operation that is inherent in Tµ, and the proof argument
given for deterministic problems in Section 1.1 breaks down. We can also
modify this example so that there are multiple policies. To this end, we can
add for i = 1, 4, 7, another control that leads from i to t with a cost c > 1
(cf. the broken line arcs in Fig. 3.1.2). Then we create a proper policy that
is strictly suboptimal, while not affecting J*, which again is not a fixed
point of T .

Let us finally note an anomaly around randomized policies in noncon-
tractive models. The improper policy shown in Fig. 3.1.2 may be viewed as
a randomized policy for a deterministic shortest path problem: this is the
problem for which at state 1 we must (deterministically) choose one of the
two successor states 2 and 5. For this deterministic problem, J* takes the
same values as before for all i (= 1, but it takes the value J*(1) = 1 rather
than J*(1) = 0. Thus, remarkably, once we allow randomized policies into
the problem, the optimal cost function ceases to be a solution of Bellman’s
equation and simultaneously the optimal cost at state 1 is improved!

In subsequent sections we will see that favorable results hold in SSP
problems where the restricted optimal cost function over just the proper
policies is equal to the overall optimal J*. This can be guaranteed by
assumptions that essentially imply that improper polices cannot be optimal
(see Sections 3.3 and 3.5.1). We will then see that not only is J* a fixed
point of T , but it is also the unique fixed point (within the class of real-
valued functions), and that the VI and PI algorithms yield J* and an
optimal proper policy in the limit.

3.1.3 The Blackmailer’s Dilemma

This is a classical example involving a profit maximizing blackmailer. We
formulate it as an SSP problem involving cost minimization, with a single
state x = 1, in addition to the termination state t.
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Figure 3.1.3. Transition diagram for the first variant of the blackmailer problem.
At state 1, the blackmailer may demand any amount u ∈ (0, 1]. The victim will
comply with probability 1−u2 and will not comply with probability u2, in which
case the process will terminate.

In a first variant of the problem, at state 1, we can choose a control u ∈
(0, 1], while incurring a cost −u; we then move to state t with probability
u2, and stay in state 1 with probability 1−u2; see Fig. 3.1.3. We may regard
u as a demand made by the blackmailer, and state 1 as the situation where
the victim complies. State t is arrived at when the victim (permanently)
refuses to yield to the blackmailer’s demand. The problem then can be
viewed as one where the blackmailer tries to maximize his expected total
gain by balancing his desire for increased demands (large u) with keeping
his victim compliant (small u).

For notational simplicity, let us abbreviate J(1) and µ(1) with just
the scalars J and µ, respectively. Then in terms of abstract DP we have

X = {1}, U = (0, 1], J̄ = 0, H(1, u, J) = −u+ (1 − u2)J,

and for every stationary policy µ, we have

TµJ = −µ+ (1− µ2)J. (3.3)

Clearly Tµ, viewed as a mapping from , to ,, is a contraction with modulus
1− µ2, and its unique fixed point within ,, Jµ, is the solution of

Jµ = TµJµ = −µ+ (1− µ2)Jµ,

which yields

Jµ = −
1

µ
.

Here all policies are proper in the sense that they lead asymptotically to
t with probability 1, and the infimum of Jµ over µ is −∞, implying also
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that J* = −∞. However, there is no optimal stationary policy within the
class of proper policies. †

Another interesting fact about this problem is that Tµ is a contrac-
tion for all µ. However the theory of contractive models does not apply
because there is no uniform modulus of contraction (α < 1) that applies
simultaneously to all µ ∈ (0, 1] [cf. Eq. (3.3)]. As a result, the contraction
Assumption 2.1.2 of Section 2.1 does not hold.

Let us now consider Bellman’s equation. The mapping T is given by

TJ = inf
0<u≤1

{
− u+ (1 − u2)J

}
,

and Bellman’s equation is written as

J = J − sup
0<u≤1

{u+ u2J}.

It can be verified that this equation has no real-valued solution. How-
ever, J∗ = −∞ is a solution within the set of extended real numbers
[−∞,∞]. Moreover the VI method will converge to J* starting from any
J ∈ [−∞,∞). The PI method, starting from any policy µ0, will pro-
duce the ever improving sequence of policies {µk} with µk+1 = µk/2 and
Jµk ↓ J*, while µk will converge to 0, which is not a feasible policy.

A Second Problem Variant

Consider next a variant of the problem where at state 1, we terminate at
no cost with probability u, and stay in state 1 at a cost −u with probability
1− u. The control constraint is still u ∈ (0, 1].

Here we have

H(1, u, J) = (1− u)(−u) + (1− u)J.

It can be seen that for every policy µ, Tµ is again a contraction and we have
Jµ = µ−1. Thus J* = −1, but again there is no optimal policy, stationary
or not. Moreover, T has multiple fixed points: its set of fixed points within
, is {J | J ≤ −1}. Here the VI method will converge to J* starting from
any J ∈ [−1,∞). The PI method will produce an ever improving sequence
of policies {µk} with Jµk ↓ J*, starting from any policy µ0, while µk will
converge to 0, which is not a feasible policy.

† An unusual fact about this problem is that there exists a nonstationary pol-
icy π∗ that is optimal in the sense that Jπ∗ = J∗ = −∞ (for a proof see [Ber12a],

Section 3.2). The underlying intuition is that when the amount demanded u is

decreased toward 0, the probability of noncompliance, u2, decreases much faster.
This fact, however, will not be significant in the context of our analysis.
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A Third Problem Variant

Finally, let us again assume that

H(1, u, J) = (1 − u)(−u) + (1− u)J, ∀ u ∈ (0, 1],

but also allow, in addition to u ∈ (0, 1], the choice u = 0 that self-transitions
to state 1 at a cost c (this is the choice where the blackmailer can forego
blackmail for a single period in exchange for a fixed payment −c). Here
there is the extra (improper) policy µ′ that chooses µ′(1) = 0. We have

Tµ′J = c+ J,

and the mapping T is given by

TJ = min

{
c+ J, inf

0<u≤1

{
− u+ u2 + (1− u)J

}}
. (3.4)

Let us consider the optimal policies and the fixed points of T in the two
cases where c ≥ 0 and c < 0.

When c ≥ 0, we have J* = −1, while Jµ′ = ∞ (if c > 0) or Jµ′ = 0
(if c = 0). It can be seen that there is no optimal policy, and that all
J ∈ (−∞,−1] are fixed points of T , including J*. Here the VI method will
converge to J* starting from any J ∈ [−1,∞). The PI method will produce
an ever improving sequence of policies {µk}, with Jµk ↓ J*. However, µk

will converge to 0, which is a feasible but strictly suboptimal policy.
When c < 0, we have Jµ′ = −∞, and the improper policy µ′ is

optimal. Here the optimal cost over just the proper policies is Ĵ = −1,
while J* = −∞. Moreover Ĵ is not a fixed point of T , and in fact T
has no real-valued fixed points, although J* is a fixed point. It can be
verified that the VI algorithm will converge to J* starting from any scalar
J . Furthermore, starting with a proper policy, the PI method will produce
the optimal (improper) policy within a finite number of iterations.

3.1.4 Linear-Quadratic Problems

One of the most important optimal control problems involves a linear sys-
tem and a cost per stage that is positive semidefinite quadratic in the state
and the control. The objective here is roughly to bring the system at or
close to the origin, which can be viewed as a cost-free and absorbing state.
Thus the problem has a shortest path character, even though the state
space is continuous.

Under reasonable assumptions (involving the notions of system con-
trollability and observability; see e.g., [Ber17a], Section 3.1), the problem
admits a favorable analysis and an elegant solution: the optimal cost func-
tion is positive semidefinite quadratic and the optimal policy is a linear
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function of the state. Moreover, Bellman’s equation can be equivalently
written as an algebraic Riccati equation, which admits a unique solution
within the class of nonnegative cost functions.

On the other hand, the favorable results just noted depend on the
assumptions and the structure of the linear-quadratic problem. There is
no corresponding analysis for more general deterministic continuous-state
optimal control problems. Moreover, even for linear-quadratic problems,
when the aforementioned controllability and observability assumptions do
not hold, the favorable results break down and pathological behavior can
occur. This suggests analytical difficulties in more general continuous-state
contexts, which we will discuss later in Section 3.5.5.

To illustrate what can happen, consider the scalar system

xk+1 = γxk + uk, xk ∈ ,, uk ∈ ,,

with X = U(x) = ,, and a cost per stage equal to u2. Here we have
J*(x) = 0 for all x ∈ ,, while the policy that applies control u = 0 at
every state x is optimal. This is reminiscent of the deterministic shortest
path problem of Section 3.1.1, for the case where a = 0 and there is a zero
length cycle. Bellman’s equation has the form

J(x) = min
u∈(

{
u2 + J(γx+ u)

}
, x ∈ ,,

and it is seen that J* is a solution. We will now show that there is another
solution, which has an interesting interpretation.

Let us assume that γ > 1 so the system is unstable (the instability of
the system is important for the purpose of this example). It is well-known
that for linear-quadratic problems the class of quadratic cost functions,

S =
{
J | J(x) = px2, p ≥ 0

}
,

plays a special role. Linear policies of the form

µ(x) = rx,

where r is a scalar, also play a special role, particularly the subclass L of
linear policies that are stable, in the sense that the closed-loop system

xk+1 = (γ + r)xk

is stable, i.e., |γ+r| < 1. For such a policy, the generated system trajectory
{xk}, starting from an initial state x0, is

{
(γ+r)kx0

}
, and the correspond-

ing cost function is quadratic as shown by the following calculation,

Jµ(x0) =
∞∑

k=0

(
µ(xk)

)2
=

∞∑

k=0

r2x2
k =

∞∑

k=0

r2(γ + r)2kx2
0 =

r2

1− (γ + r)2
x2
0.

(3.5)
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Note that there is no policy in L that is optimal, since the optimal policy
µ∗(x) ≡ 0 is unstable and does not belong to L.

Let us consider fixed points of the mapping T ,

(TJ)(x) = inf
u∈(

{
u2 + J(γx+ u)

}
,

within the class of nonnegative quadratic functions S. For J(x) = px2 with
p ≥ 0, we have

(TJ)(x) = inf
u∈(

{
u2 + p(γx+ u)2

}
,

and by setting to 0 the derivative with respect to u, we see that the infimum
is attained at

u∗ = −
pγ

1 + p
x.

By substitution into the formula for TJ , we obtain

(TJ)(x) =
pγ2

1 + p
x2. (3.6)

Thus the function J(x) = px2 is a fixed point of T if and only if p solves
the equation

p =
pγ2

1 + p
.

This equation has two solutions:

p = 0 and p = γ2 − 1,

as shown in Fig. 3.1.4. Thus there are exactly two fixed points of T within
S: the functions

J*(x) ≡ 0 and Ĵ(x) = (γ2 − 1)x2.

The fixed point Ĵ has some significance. It turns out to be the optimal
cost function within the subclass L of linear policies that are stable. This
can be verified by minimizing the expression (3.5) over the parameter r. In
particular, by setting to 0 the derivative with respect to r of

r2

1− (γ + r)2
,

we obtain after a straightforward calculation that it is minimized for r =
(1− γ2)/γ, which corresponds to the policy

µ̂(x) =
(1− γ2)

γ
x,
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Figure 3.1.4. Illustrating the fixed points of T , and the convergence of the VI
algorithm for the one-dimensional linear-quadratic problem.

while from Eq. (3.5), we can verify that

Jµ̂(x) = (γ2 − 1)x2.

Thus, we have

Jµ̂(x) = inf
µ∈L

Jµ(x) = Ĵ(x), x ∈ ,.

Let us turn now to the VI algorithm starting from a function in S.
Using Eq. (3.6), we see that it generates a sequence of functions Jk ∈ S of
the form

Jk(x) = pkx2,

where the sequence {pk} is generated by

pk+1 =
pkγ2

1 + pk
, k = 0, 1, . . . .

From Fig. 3.1.4 it can be seen that starting with p0 > 0, the sequence {pk}
converges to

p̂ = γ2 − 1,
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which corresponds to Ĵ . In summary, starting from any nonzero function
in S, the VI algorithm converges to the optimal cost function Ĵ over the
linear stable policies L, while starting from the zero function, it converges
to the optimal cost function J*.

Finally, let us consider the PI algorithm starting from a linear stable
policy. We first note that given any µ ∈ L, i.e.,

µ(x) = rx with |γ + r| < 1,

we can compute Jµ as the limit of the VI sequence {T k
µJ}, where J is any

function in S, i.e.,

J(x) = px2 with p ≥ 0.

This can be verified by writing

(TµJ)(x) =
(
r2 + p(γ + r)2

)
x2,

and noting that the iteration that maps p to r2 + p(γ + r)2 converges to

pµ =
r2

1− (γ + r)2
,

in view of |γ + r| < 1. Thus,

T k
µJ → Jµ, ∀ µ ∈ L, J ∈ S.

Moreover, we have Jµ = TµJµ.
We now use a standard proof argument to show that PI generates

a sequence of linear stable policies starting from a linear stable policy.
Indeed, we have for all k,

Jµ0 = Tµ0Jµ0 ≥ TJµ0 = Tµ1Jµ0 ≥ T k
µ1Jµ0 ≥ T kĴ = Ĵ ,

where the second inequality follows by the monotonicity of Tµ1 and the

third inequality follows from the fact Jµ0 ≥ Ĵ . By taking the limit as
k → ∞, we obtain

Jµ0 ≥ TJµ0 ≥ Jµ1 ≥ Ĵ .

It can be verified that µ1 is a nonzero linear policy, so the preceding relation
implies that µ1 is linear stable. Continuing similarly, it follows that the
policies µk generated by PI are linear stable and satisfy for all k,

Jµk ≥ TJµk ≥ Jµk+1 ≥ Ĵ .

By taking the limit as k → ∞, we see that the sequence of quadratic
functions {Jµk} converges monotonically to a quadratic function J∞, which
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is a fixed point of T and satisfies J∞ ≥ Ĵ . Since we have shown that Ĵ is
the only fixed point of T in the range [Ĵ ,∞), it follows that J∞ = Ĵ . In
summary, the PI algorithm starting from a linear stable policy converges
to Ĵ , the optimal cost function over linear stable policies.

In Section 3.5.4, we will consider a more general multidimensional
version of the linear-quadratic problem, using in part the analysis of Section
3.4. We will then explain the phenomena described in this section within
a more general setting. We will also see there that the unusual behavior in
the present example is due to the fact that there is no penalty for a nonzero
state. For example, if the cost per stage is δx2 + u2, where δ > 0, rather
than u2, then the corresponding Bellman equation has a unique solution
with the class of positive semidefinite quadratic functions. We will analyze
this case within a more general setting of deterministic optimal control
problems in Section 3.5.5.

3.1.5 An Intuitive View of Semicontractive Analysis

In the preceding sections we have demonstrated various aspects of the char-
acter of semicontractive analysis in the context of several examples. The
salient feature is a class of “well-behaved” policies (e.g., proper policies in
shortest path problems, stable policies in linear-quadratic problems), and
the restricted optimal cost function Ĵ over just these policies. The main
results we typically derived were that Ĵ is a fixed point of T , and that the
VI and PI algorithms are attracted to Ĵ , at least from within some suitable
class of initial conditions. In the favorable case where Ĵ = J*, these results
hold also for J*, but in general J* need not be a fixed point of T .

The central issue of semicontractive analysis is the choice of a class
of “well-behaved” policies M̂ ⊂ M such that the corresponding restricted
optimal cost function Ĵ is a fixed point of T . Such a choice is often fairly ev-
ident, but there are also several systematic approaches to identify a suitable
class M̂ and to show its fixed point property; see the end of Section 3.2.2
for a discussion of various alternatives. As an example, let us introduce a
class of policies M̂ ⊂ M for which we assume the following:

(a) M̂ is well-behaved with respect to VI: For all µ ∈ M̂ and real-valued
functions J , we have

Jµ = TµJµ, Jµ = lim
k→∞

T k
µJ. (3.7)

Moreover Jµ is real-valued.

(b) M̂ is well-behaved with respect to PI: For each µ ∈ M̂, any policy µ′

such that
Tµ′Jµ = TJµ

belongs to M̂, and there exists at least one such µ′.
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We can show that Ĵ is a fixed point of T and obtain our main results
with the following line of argument. The first step in this argument is
to show that the cost functions of a PI-generated sequence {µk} ⊂ M̂

(starting from a µ0 ∈ M̂) are monotonically nonincreasing. Indeed, we
have using Eq. (3.7),

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk .

Using the monotonicity property of Tµk+1 , it follows that

Jµk ≥ TJµk ≥ lim
k→∞

T k
µk+1Jµk = Jµk+1 ≥ Ĵ , (3.8)

where the equality holds by Eq. (3.7), and the rightmost inequality holds

since µk+1 ∈ M̂ [by assumption (b) above]. Thus we obtain Jµk ↓ J∞ ≥ Ĵ ,
for some function J∞.

Now by taking the limit as k → ∞ in the relation Jµk ≥ TJµk ≥ Jµk+1

[cf. Eq. (3.8)], it follows (under a mild continuity assumption) that J∞ is
a fixed point of T with J∞ ≥ Ĵ . † We claim that J∞ = Ĵ . Indeed we have

Ĵ ≤ J∞ = T kJ∞ ≤ T k
µJ∞ ≤ T k

µJµ0 , ∀ µ ∈ M̂, k = 0, 1, . . . .

By taking the limit as k → ∞, and using the fact µ ∈ M̂ [cf. Eq. (3.7)], we

obtain Ĵ ≤ J∞ ≤ Jµ for all µ ∈ M̂. By taking the infimum over µ ∈ M̂, it
follows that J∞ = Ĵ .

Finally, let J be real-valued and satisfy J ≥ Ĵ . We claim that T kJ →
Ĵ . Indeed, since we have shown that Ĵ is a fixed point of T , we have

T k
µJ ≥ T kJ ≥ T kĴ = Ĵ , ∀ µ ∈ M̂, k ≥ 0,

† We elaborate on this argument; see also the proof of Prop. 3.2.4 in the
next section. From Eq. (3.8), we have Jµk ≥ TJµk ≥ TJ∞, so by letting k → ∞,
we obtain J∞ ≥ TJ∞. For the reverse inequality, we assume that H has the
property that H(x, u, J) = limm→∞ H(x, u, Jm) for all x ∈ X, u ∈ U(x), and
sequence {Jm} of real-valued functions with Jm ↓ J . Thus we have

H(x, u, J∞) = lim
k→∞

H(x, u, Jµk ) ≥ lim
k→∞

(TJµk )(x), x ∈ X, u ∈ U(x).

By taking the limit in Eq. (3.8), we obtain

lim
k→∞

(TJµk )(x) ≥ lim
k→∞

Jµk+1(x) = J∞(x), x ∈ X,

and from the preceding two relations we have H(x, u, J∞) ≥ J∞(x). By taking

the infimum over u ∈ U(x), it follows that TJ∞ ≥ J∞. Combined with the
relation J∞ ≥ TJ∞ shown earlier, this implies that J∞ is a fixed point of T .
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so by taking the limit as k → ∞ and using Eq. (3.7), we obtain

Jµ ≥ lim
k→∞

T kJ ≥ Ĵ , ∀ µ ∈ M̂.

By taking the infimum over µ ∈ M̂, it follows that T kJ → Ĵ , i.e., that VI
converges to Ĵ stating from all initial conditions J ≥ Ĵ .

The analysis of the following two sections will be based to a large ex-
tent on refinements of the preceding argument. Note that in this argument
we have not assumed that Ĵ = J*, which leaves open the possibility that
J* is not a fixed point of T . Indeed this can happen, as we have seen in the
SSP example of Section 3.1.2. Moreover, we have not assumed that Ĵ is
real-valued. In fact Ĵ may not be real-valued even though all Jµ, µ ∈ M̂,
are; see the first variant of the blackmailer problem of Section 3.1.3.

An alternative analytical approach, which does not rely on M̂ being
well-behaved with respect to PI, is given in Section 3.4. The idea there is to
introduce a small δ-perturbation to the mappingH and a corresponding “δ-
perturbed” problem. The perturbation is chosen so that the cost function
of some policies, the “well-behaved” ones, is minimally affected [say by
O(δ)], while the cost function of the policies that are not “well-behaved” is
driven to ∞ for some initial states, thereby excluding these policies from
optimality. Thus as δ ↓ 0, the optimal cost function Ĵδ of the δ-perturbed
problem approaches Ĵ (not J*). Assuming that Ĵδ is a solution of the
δ-perturbed Bellman equation, and we can then use a limiting argument
to show that Ĵ is a fixed point of T , as well as other results relating to
the VI and PI algorithms. The perturbation approach will become more
prominent in our semicontractive analysis of Chapter 4 (Sections 4.5 and
4.6), where we will consider “well-behaved” policies that are nonstationary,
and thus do not lend themselves to a PI-based analysis.

3.2 SEMICONTRACTIVE MODELS AND REGULAR POLICIES

In the preceding section we illustrated a general pattern of pathologies in
noncontractive models, involving the solutions of Bellman’s equation, and
the convergence of the VI and PI algorithms. To summarize:

(a) Bellman’s equation may have multiple solutions (equivalently, T may
have multiple fixed points). Often but not always, J* is a fixed point
of T . Moreover, a restricted problem, involving policies that are “well-
behaved” (proper in shortest path problems, or linear stable in the
linear-quadratic case), may be meaningful and play an important role.

(b) The optimal cost function over all policies, J*, may differ from Ĵ , the
optimal cost function over the “well-behaved” policies. Furthermore,
it may be that Ĵ (not J*) is “well-behaved” from the algorithmic
point of view. In particular, Ĵ is often a fixed point of T , in which
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case it is the likely limit of the VI and the PI algorithms, starting
from an appropriate set of initial conditions.

In this section we will provide an analytical framework that explains
this type of phenomena, and develops the kind of assumptions needed in or-
der to avoid them. We will introduce a concept of regularity that formalizes
mathematically the notion of “well-behaved” policy, and we will consider
a restricted optimization problem that involves regular policies only. We
will show that the optimal cost function of the restricted problem is a fixed
point of T under several types of fairly natural assumptions. Moreover, we
will show that it can be computed by versions of VI and PI, starting from
suitable initial conditions.

Problem Formulation

Let us first introduce formally the model that we will use in this chap-
ter. Compared to the contractive model of Chapter 2, it maintains the
monotonicity assumption, but not the contraction assumption.

We introduce the set X of states and the set U of controls, and for
each x ∈ X , the nonempty control constraint set U(x) ⊂ U . Since in
the absence of the contraction assumption, the cost function Jµ of some
policies µ may take infinite values for some states, we will use the set of
extended real numbers ,∗ = ,∪ {∞,−∞} = [−∞,∞]. The mathematical
operations with ∞ and −∞ are standard and are summarized in Appendix
A. We consider the set of all extended real-valued functions J : X &→ ,∗,
which we denote by E(X). We also denote by R(X) the set of real-valued
functions J : X &→ ,.

As earlier, when we write lim, lim sup, or lim inf of a sequence of
functions we mean it to be pointwise. We also write Jk → J to mean that
Jk(x) → J(x) for each x ∈ X ; see Appendix A.

We denote byM the set of all functions µ : X &→ U with µ(x) ∈ U(x),
for all x ∈ X , and by Π the set of policies π = {µ0, µ1, . . .}, where µk ∈ M
for all k. We refer to a stationary policy {µ, µ, . . .} simply as µ. We
introduce a mapping H : X × U × E(X) &→ ,∗ that satisfies the following.

Assumption 3.2.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

The preceding monotonicity assumption will be in effect throughout
this chapter. Consequently, we will not mention it explicitly in various
propositions . We define the mapping T : E(X) &→ E(X) by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X),
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and for each µ ∈ M the mapping Tµ : E(X) &→ E(X) by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X, J ∈ E(X).

The monotonicity assumption implies the following properties for all J, J ′ ∈
E(X) and k = 0, 1, . . .,

J ≤ J ′ ⇒ T kJ ≤ T kJ ′, T k
µJ ≤ T k

µJ ′, ∀ µ ∈ M,

J ≤ TJ ⇒ T kJ ≤ T k+1J, T k
µJ ≤ T k+1

µ J, ∀ µ ∈ M,

which we will use extensively in various proof arguments.
We now define cost functions associated with Tµ and T . In Chapter

2 our starting point was to define Jµ and J* as the unique fixed points of
Tµ and T , respectively, based on the contraction assumption used there.
However, under our assumptions in this chapter this is not possible, so we
use a different definition, which nonetheless is consistent with the one of
Chapter 2 (see the discussion of Section 2.1, following Prop. 2.1.2). We
introduce a function J̄ ∈ E(X), and we define the infinite horizon cost of a
policy in terms of the limit of its finite horizon costs with J̄ being the cost
function at the end of the horizon. Note that in the case of the optimal
control problems of the preceding section we have taken J̄ to be the zero
function, J̄(x) ≡ 0 [cf. Eq. (3.2)].

Definition 3.2.1: Given a function J̄ ∈ E(X), for a policy π ∈ Π
with π = {µ0, µ1, . . .}, we define the cost function of π by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

In the case of a stationary policy µ, the cost function of µ is denoted
by Jµ and is given by

Jµ(x) = lim sup
k→∞

(T k
µ J̄)(x), ∀ x ∈ X.

The optimal cost function J* is given by

J*(x) = inf
π∈Π

Jπ(x), ∀ x ∈ X.

An optimal policy π∗ ∈ Π is one for which Jπ∗ = J*.
Note two important differences from Chapter 2:

(1) Jµ is defined in terms of a pointwise lim sup rather than lim, since we
don’t know whether the limit exists.
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µJ J

Set S
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J J T

S-regular policy µ µ S-irregular policy µ̄

Figure 3.2.1. Illustration of S-regular and S-irregular policies. Policy µ is S-
regular because Jµ ∈ S and T k

µJ → Jµ for all J ∈ S. Policy µ is S-irregular.

(2) Jπ and Jµ in general depend on J̄ , so J̄ becomes an important part
of the problem definition.

Similar to Chapter 2, under the assumptions to be introduced in this chap-
ter, stationary policies will typically turn out to be “sufficient” in the sense
that the optimal cost obtained with nonstationary policies that depend on
the initial state is matched by the one obtained by stationary ones.

3.2.1 S-Regular Policies

Our objective in this chapter is to construct an analytical framework with
a strong connection to fixed point theory, based on the idea of separating
policies into those that have “favorable” characteristics and those that do
not. Clearly, a favorable property for a policy µ is that Jµ is a fixed point
of Tµ. However, Jµ may depend on J̄ , even though Tµ does not depend on
J̄ . It would thus appear that a related favorable property for µ is that Jµ
stays the same if J̄ is changed arbitrarily within some set S. We express
these two properties with the following definition (see Fig. 3.2.1).

Definition 3.2.2: Given a set of functions S ⊂ E(X), we say that a
stationary policy µ is S-regular if:

(a) Jµ ∈ S and Jµ = TµJµ.

(b) T k
µJ → Jµ for all J ∈ S.

A policy that is not S-regular is called S-irregular .

Thus a policy µ is S-regular if the VI algorithm corresponding to
µ, Jk+1 = TµJk, represents a dynamic system that has Jµ as its unique



Sec. 3.2 Semicontractive Models and Regular Policies 145

J TJ

= 0 TµJ

= 0

−

"-regular

−

-regular "-irregular

) Jµ

Figure 3.2.2. Illustration of S-regular and S-irregular policies for the case where
there is only one state and S = $. There are three mappings Tµ corresponding
to S-irregular policies: one crosses the 45-degree line at multiple points, another
crosses at a single point but at an angle greater than 45 degrees, and the third is
discontinuous and does not cross at all. The mapping Tµ of the $-regular policy
has Jµ as its unique fixed point and satisfies T k

µJ → Jµ for all J ∈ $.

equilibrium within S, and is asymptotically stable in the sense that the
iteration converges to Jµ, starting from any J ∈ S.

For orientation purposes, we note the distinction between the set S
and the problem data: S is not part of the problem’s definition. Its choice,
however, can enable analysis and clarify properties of Jµ and J*. For
example, we will later prove local fixed point statements such as

“J* is the unique fixed point of T within S”

or local region of attraction assertions such as

“the VI sequence {T kJ} converges to J* starting from any J ∈ S.”

Results of this type and their proofs depend on the choice of S: they may
hold for some choices but not for others.

Generally, with our selection of S we will aim to differentiate between
S-regular and S-irregular policies in a manner that produces useful results
for the given problem and does not necessitate restrictive assumptions.
Examples of sets S that we will use are R(X), B(X), E(X), and subsets of
R(X), B(X), and E(X) involving functions J satisfying J ≥ J* or J ≥ J̄ .
However, there is a diverse range of other possibilities, so it makes sense to
postpone making the choice of S more specific. Figure 3.2.2 illustrates the
mappings Tµ of some S-regular and S-irregular policies for the case where
there is a single state and S = ,. Figure 3.2.3 illustrates the mapping
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J TJ

= 0 TµJ

= 0 J̄ = 0 ) Jµ

S

S S-regular

Ĵ T k
µ J̄

J̃ J

Figure 3.2.3. Illustration of a mapping Tµ where there is only one state and S
is a subset of the real line. Here Tµ has two fixed points, Jµ and J̃ . If S is as
shown, µ is S-regular. If S is enlarged to include J̃ , µ becomes S-irregular.

Tµ of an S-regular policy µ, where Tµ has multiple fixed points, and upon
changing S, the policy may become S-irregular.

3.2.2 Restricted Optimization over S-Regular Policies

We will now introduce a restricted optimization framework where S-regular
policies are central. Given a nonempty set S ⊂ E(X), let MS denote the
set of policies that are S-regular, and consider optimization over just the
set MS. The corresponding optimal cost function is denoted J*

S :

J*
S(x) = inf

µ∈MS

Jµ(x), ∀ x ∈ X. (3.9)

We say that µ∗ is MS-optimal if †

µ∗ ∈ MS and Jµ∗ = J*
S .

An important question is whether J*
S is a fixed point of T and can

be obtained by the VI algorithm. Naturally, this depends on the choice of
S, but it turns out that reasonable choices can be readily found in several
important contexts, so the consequences of J*

S being a fixed point of T are

† Note that while S is assumed nonempty, it is possible that MS is empty.

In this case our results will not be useful, but J*
S is still defined by Eq. (3.9) as

J*
S(x) ≡ ∞. This is convenient in various proof arguments.
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Jµ for µ ∈ MS

J J∗

S

Well-Behaved Region Fixed Point of T

Well-Behaved Region WS

∗ J ∈ E(X)

J̃ ∈ S

Figure 3.2.4. Interpretation of Prop. 3.2.1, where for illustration purposes, E(X)
is represented by the extended real line. A set S ⊂ E(X) such that J∗

S is a fixed
point of T , demarcates the well-behaved region WS [cf. Eq. (3.10)], within which
T has a unique fixed point, and starting from which the VI algorithm converges
to J∗

S .

interesting. The next proposition shows that if J*
S is a fixed point of T ,

then the VI algorithm is convergent starting from within the set

WS = {J ∈ E(X) | J*
S ≤ J ≤ J̃ for some J̃ ∈ S}, (3.10)

which we refer to as the well-behaved region (see Fig. 3.2.4). Note that by
the definition of S-regularity, the cost functions Jµ, µ ∈ MS , belong to
S and hence also to WS . The proposition also provides a necessary and
sufficient condition for an S-regular policy µ∗ to be MS-optimal.

Proposition 3.2.1: (Well-Behaved Region Theorem) Given a
set S ⊂ E(X), assume that J*

S is a fixed point of T . Then:

(a) (Uniqueness of Fixed Point) If J ′ is a fixed point of T and there
exists J̃ ∈ S such that J ′ ≤ J̃ , then J ′ ≤ J*

S . In particular, if
WS is nonempty, J*

S is the unique fixed point of T within WS .

(b) (VI Convergence) We have T kJ → J*
S for every J ∈ WS .

(c) (Optimality Condition) If µ is S-regular, J*
S ∈ S, and TµJ*

S =
TJ*

S , then µ is MS-optimal. Conversely, if µ is MS-optimal,
then TµJ*

S = TJ*
S .

Proof: (a) For every µ ∈ MS , we have using the monotonicity of Tµ,

J ′ = TJ ′ ≤ TµJ ′ ≤ · · · ≤ T k
µJ ′ ≤ T k

µ J̃ , k = 1, 2, . . . .

Taking limit as k → ∞, and using the S-regularity of µ, we obtain J ′ ≤ Jµ
for all µ ∈ MS . Taking the infimum over µ ∈ MS , we have J ′ ≤ J*

S .
Assume that WS is nonempty. Then J*

S is a fixed point of T that
belongs to WS . To show its uniqueness, let J ′ be another fixed point that
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belongs to WS , so that J*
S ≤ J ′ and there exists J̃ ∈ S such that J ′ ≤ J̃ .

By what we have shown so far, J ′ ≤ J*
S , implying that J ′ = J*

S .

(b) Let J ∈ WS , so that J*
S ≤ J ≤ J̃ for some J̃ ∈ S. We have for all k ≥ 1

and µ ∈ MS ,
J*
S = T kJ*

S ≤ T kJ ≤ T kJ̃ ≤ T k
µ J̃ ,

where the equality follows from the fixed point property of J*
S , while the

inequalities follow from the monotonicity and the definition of T . The
right-hand side tends to Jµ as k → ∞, since µ is S-regular and J̃ ∈ S.
Hence the infimum over µ ∈ MS of the limit of the right-hand side tends
to the left-hand side J*

S . It follows that T
kJ → J*

S .

(c) From the assumptions TµJ*
S = TJ*

S and TJ*
S = J*

S , we have TµJ*
S = J*

S ,
and since J*

S ∈ S and µ is S-regular, we have J*
S = Jµ. Thus µ is MS-

optimal. Conversely, if µ is MS-optimal, we have Jµ = J*
S , so that the

fixed point property of J*
S and the S-regularity of µ imply that

TJ*
S = J*

S = Jµ = TµJµ = TµJ*
S .

Q.E.D.

Some useful extensions and modified versions of the preceding propo-
sition are given in Exercises 3.2-3.5. Let us illustrate the proposition in the
context of the deterministic shortest path example of Section 3.1.1.

Example 3.2.1

Consider the deterministic shortest path example of Section 3.1.1 for the case
where there is a zero length cycle (a = 0), and let S be the real line (. There
are two policies: µ which moves from state 1 to the destination at cost b, and
µ′ which stays at state 1 at cost 0. We use X = {1} (i.e., we do not include
t in X, since all function values of interest are 0 at t). Then by abbreviating
function values J(1) with J , we have

Jµ = b, Jµ′ = 0, J∗ = min{b, 0};

cf. Fig. 3.2.5. The corresponding mappings Tµ, Tµ′ , and T are

TµJ = b, Tµ′J = J, J = TJ = min{b, J}, J ∈ E(X),

and the initial function J̄ is taken to be 0. It can be seen from the definition of
S-regularity that µ is S–regular, while the policy µ′ is not. The cost functions
Jµ, Jµ′ , and J∗ are fixed points of the corresponding mappings, but the sets of
fixed points of Tµ′ and T within S are ( and (−∞, b], respectively. Moreover,
J∗
S = Jµ = b, so J∗

S is a fixed point of T and Prop. 3.2.1 applies.
The figure also shows the well-behaved regions for the two cases b > 0

and b < 0. It can be seen that the results of Prop. 3.2.1 are consistent with
the discussion of Section 3.1.1. In particular, the VI algorithm fails when
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1 2 t b
a 1 2

t b Destination

t b c u′, Cost 0
Stationary policy costs Prob.

Jµ(1) = b, Jµ′(1) = 0 Optimal cost

(1) = 0 Optimal cost J∗(1) = min{b, 0} a destination t

Well-Behaved Region

Well-Behaved Region

J* = Jµ′ = 0

b Jµ′ = 0

Set of Fixed Points of T

Set of Fixed Points of T

J*
S = Jµ = b > 0

J* = J*
S = Jµ = b < 0

u, Cost b J

Figure 3.2.5. The well-behaved region of Eq. (3.10) for the deterministic shortest
path example of Section 3.1.1 when where there is a zero length cycle (a = 0). For
S = $, the policy µ is S-regular, while the policy µ′ is not. The figure illustrates
the two cases where b > 0 and b < 0.

started outside the well-behaved region, while when started from within the
region, it is attracted to J∗

S rather than to J∗.

Let us now discuss some of the fine points of Prop. 3.2.1. The salient
assumption of the proposition is that J∗

S is a fixed point of T . Depending on
the choice of S, this may or may not be true, and much of the subsequent
analysis in this chapter is geared towards the development of approaches
to choose S so that J∗

S is a fixed point of T and has some other interesting
properties. As an illustration of the range of possibilities, consider the three
variants of the blackmailer problem of Section 3.1.3 for the choice S = ,:

(a) In the first variant, we have J* = J*
S = −∞, and J*

S is a fixed point
of T that lies outside S. Here parts (a) and (b) of Prop. 3.2.1 apply.
However, part (c) does not apply (even though we have TµJ*

S = TJ*
S

for all policies µ) because J*
S /∈ S, and in fact there is no MS-optimal

policy. In the subsequent analysis, we will see that the condition
J*
S ∈ S plays an important role in being able to assert existence of an

MS-optimal policy (see the subsequent Props. 3.2.5 and 3.2.6).

(b) In the second variant, we have J* = J*
S = −1, and J*

S is a fixed point
of T that lies within S. Here parts (a) and (b) of Prop. 3.2.1 apply,
but part (c) still does not apply because there is no S-regular µ such
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that TµJ*
S = TJ*

S, and in fact there is no MS-optimal policy.

(c) In the third variant with c < 0, we have J* = −∞, J*
S = −1, and J*

S

is not a fixed point of T . Thus Prop. 3.2.1 does not apply, and in fact
we have T kJ → J* for every J ∈ WS (and not T kJ → J*

S).

Another fine point is that Prop. 3.2.1(b) asserts convergence of the
VI algorithm to J*

S only for initial conditions J satisfying J*
S ≤ J ≤ J̃ for

some J̃ ∈ S. For an illustrative example of an S-regular µ, where {T k
µJ}

does not converge to Jµ starting from some J ≥ Jµ that lies outside S,
consider a case where there is a single state and a single policy µ that is
S-regular, so J*

S = Jµ. Suppose that Tµ : , &→ , has two fixed points: Jµ
and another fixed point J ′ > Jµ. Let

J̃ = (Jµ + J ′)/2, S = (−∞, J̃ ],

and assume that Tµ is a contraction mapping within S (an example of this
type can be easily constructed graphically). Then starting from any J ∈ S,
we have T kJ → Jµ, so that µ is S-regular. However, since J ′ is a fixed
point of T , the sequence {T kJ ′} stays at J ′ and does not converge to Jµ.
The difficulty here is that WS = [Jµ, J̃ ] and J ′ /∈ WS .

Still another fine point is that if there exists an MS-optimal policy µ,
we have J*

S = TµJ*
S (since J*

S = Jµ and µ is S-regular), but this does not
guarantee that J*

S is a fixed point of T , which is essential for Prop. 3.2.1.
This can be seen from an example given in Fig. 3.2.6, where there exists
an MS-optimal policy, but both J*

S and J* are not fixed points of T (in
this example the MS-optimal policy is also overall optimal so J*

S = J*). In
particular, starting from J*

S , the VI algorithm converges to some J ′ (= J*
S

that is a fixed point of T .

Convergence Rate when a Contractive Policy is MS-Optimal

In many contexts where Prop. 3.2.1 applies, there exists an MS-optimal
policy µ such that Tµ is a contraction with respect to a weighted sup-norm.
This is true for example in the shortest path problem to be discussed in
Section 3.5.1. In such cases, the rate of convergence of VI to J*

S is linear,
as shown in the following proposition.

Proposition 3.2.2: (Convergence Rate of VI) Let S be equal to
B(X), the space of all functions over X that are bounded with respect
to a weighted sup-norm ‖ · ‖v corresponding to a positive function
v : X &→ ,. Assume that J*

S is a fixed point of T , and that there exists
an MS-optimal policy µ such that Tµ is a contraction with respect to
‖ · ‖v, with modulus of contraction β. Then J*

S ∈ B(X), WS ⊂ B(X),
and
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Figure 3.2.6. Illustration of why the assumption that J∗
S is a fixed point of T is

essential for Prop. 3.2.1. In this example there is only one state and S = $. There
are two stationary policies: µ for which Tµ is a contraction, so µ is $-regular,
and µ for which Tµ has multiple fixed points, so µ is $-irregular. Moreover,
Tµ is discontinuous from above at Jµ as shown. Here, it can be verified that
Tµ0

· · · Tµk
J̄ ≥ Jµ for all µ0, . . . , µk and k, so that Jπ ≥ Jµ for all π and the S-

regular policy µ is optimal, so J∗
S = J∗. However, as can be seen from the figure,

we have J∗
S = J∗ '= TJ∗ = TJ∗

S . Moreover, starting at J∗
S , the VI sequence T kJ∗

S
converges to J ′, the fixed point of T shown in the figure, and all parts of Prop.
3.2.1 fail.

∥∥TJ − J*
S‖v ≤ β‖J − J*

S‖v, ∀ J ∈ WS . (3.11)

Moreover, we have

‖J − J*
S‖v ≤

1

1− β
sup
x∈X

J(x) − (TJ)(x)

v(x)
, ∀ J ∈ WS . (3.12)

Proof: Since µ is S-regular and S = B(X), we have J*
S = Jµ ∈ B(X) as

well as WS ⊂ B(X). By using the MS-optimality of µ and Prop. 3.2.1(c),

J*
S = TµJ*

S = TJ*
S,

so for all x ∈ X and J ∈ WS ,

(TJ)(x)− J*
S(x)

v(x)
≤

(TµJ)(x) − (TµJ*
S)(x)

v(x)
≤ βmax

x∈X

J(x)− J*
S(x)

v(x)
,

where the second inequality holds by the contraction property of Tµ. By
taking the supremum of the left-hand side over x ∈ X , and by using the
fact TJ ≥ TJ*

S = J*
S for all J ∈ WS , we obtain Eq. (3.11).
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By using again the relation TµJ*
S = TJ*

S, we have for all x ∈ X and
all J ∈ WS ,

J(x)− J*
S(x)

v(x)
=

J(x)− (TJ)(x)

v(x)
+

(TJ)(x)− J*
S(x)

v(x)

≤
J(x)− (TJ)(x)

v(x)
+

(TµJ)(x) − (TµJ*
S)(x)

v(x)

≤
J(x)− (TJ)(x)

v(x)
+ β‖J − J*

S‖v.

By taking the supremum of both sides over x, we obtain Eq. (3.12). Q.E.D.

Approaches to Show that J*
S is a Fixed Point of T

The critical assumption of Prop. 3.2.1 is that J*
S is a fixed point of T . For

a specific application, this must be proved with a separate analysis after a
suitable set S is chosen. To this end, we will provide several approaches
that guide the choice of S and facilitate the analysis.

One approach applies to problems where J* is generically a fixed
point of T , in which case for every set S such that J*

S = J*, Prop. 3.2.1
applies and shows that J* can be obtained by the VI algorithm starting
from any J ∈ WS . Exercise 3.1 provides some conditions that guarantee
that J* is a fixed point of T . These conditions can be verified in wide
classes of problems such as deterministic models. Sections 3.5.4 and 3.5.5
illustrate this approach. Other important models where J* is guaranteed to
be a fixed point of T are the monotone increasing and monotone decreasing
models of Section 4.3. We will discuss the application of Prop. 3.2.1 and
other related results to these models in Chapter 4.

In the present chapter the approach for showing that J*
S is a fixed

point of T will be mostly based on the PI algorithm; cf. the discussion of
Section 3.1.5. An alternative and complementary approach is the perturba-
tion-based analysis to be given in Section 3.4. This approach will be applied
to a variety of problems in Section 3.5, and will also be prominent in
Sections 4.5 and 4.6 of the next chapter.

3.2.3 Policy Iteration Analysis of Bellman’s Equation

We will develop a PI-based approach for showing that J*
S is a fixed point

of T . The approach is applicable under assumptions that guarantee that
there is a sequence {µk} of S-regular policies that can be generated by PI.
The significance of S-regularity of all µk lies in that the corresponding cost
function sequence {Jµk} belongs to the well-behaved region of Eq. (3.10),
and is monotonically nonincreasing (see the subsequent Prop. 3.2.3). Un-
der an additional mild technical condition, the limit of this sequence is a
fixed point of T and is in fact equal to J*

S (see the subsequent Prop. 3.2.4).



Sec. 3.2 Semicontractive Models and Regular Policies 153

Let us consider the standard form of the PI algorithm, which starts
with a policy µ0 and generates a sequence {µk} of stationary policies ac-
cording to

Tµk+1Jµk = TJµk , k = 0, 1, . . . . (3.13)

This iteration embodies both the policy evaluation step, which computes
Jµk in some way, and the policy improvement step, which computes µk+1(x)
as a minimum over u ∈ U(x) of H(x, u, Jµk ) for each x ∈ X . Of course, to
be able to carry out the policy improvement step, there should be enough
assumptions to guarantee that the minimum is attained for every x. One
such assumption is that U(x) is a finite set for each x ∈ X . A more general
assumption, which applies to the case where the constraint sets U(x) are
infinite, will be given in Section 3.3.

The evaluation of the cost function Jµ of a policy µ may be done
by solving the equation Jµ = TµJµ, which holds when µ is an S-regular
policy. An important fact is that if the PI algorithm generates a sequence
{µk} consisting exclusively of S-regular policies, then not only the policy
evaluation is facilitated through the equation Jµ = TµJµ, but also the
sequence of cost functions {Jµk} is monotonically nonincreasing, as we
will show next.

Proposition 3.2.3: (Policy Improvement Under S-Regularity)
Given a set S ⊂ E(X), assume that {µk} is a sequence generated by
the PI algorithm (3.13) that consists of S-regular policies. Then

Jµk ≥ Jµk+1 , k = 0, 1, . . . .

Proof: Using the S-regularity of µk and Eq. (3.13), we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk . (3.14)

By using the monotonicity of Tµk+1 , we obtain

Jµk ≥ TJµk ≥ lim
m→∞

Tm
µk+1Jµk = Jµk+1 , (3.15)

where the equation on the right holds since µk+1 is S-regular and Jµk ∈ S
(in view of the S-regularity of µk). Q.E.D.

The preceding proposition shows that if a sequence of S-regular poli-
cies {µk} is generated by PI, the corresponding cost function sequence
{Jµk} is monotonically nonincreasing and hence converges to a limit J∞.
Under mild conditions, we will show that J∞ is a fixed point of T and is
equal to J*

S . This is important as it brings to bear Prop. 3.2.1, and the
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associated results on VI convergence and optimality conditions. Let us first
formalize the property that the PI algorithm can generate a sequence of
S-regular policies.

Definition 3.2.3: (Weak PI Property) We say that a set S ⊂
E(X) has the weak PI property if there exists a sequence of S-regular
policies that can be generated by the PI algorithm [i.e., a sequence
{µk} that satisfies Eq. (3.13) and consists of S-regular policies].

Note a fine point here. For a given starting policy µ0, there may be
many different sequences {µk} that can be generated by PI [i.e., satisfy Eq.
(3.13)]. While the weak PI property guarantees that some of these consist
of S-regular policies exclusively, there may be some that do not. The policy
improvement property shown in Prop. 3.2.3 holds for the former sequences,
but not necessarily for the latter. The following proposition provides the
basis for showing that J*

S is a fixed point of T based on the weak PI
property.

Proposition 3.2.4: (Weak PI Property Theorem) Given a set
S ⊂ E(X), assume that:

(1) S has the weak PI property.

(2) For each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ E(X),
we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x). (3.16)

Then:

(a) J*
S is a fixed point of T and the conclusions of Prop. 3.2.1 hold.

(b) (PI Convergence) Every sequence of S-regular policies {µk} that
can be generated by PI satisfies Jµk ↓ J*

S . If in addition the set

of S-regular policies is finite, there exists k̄ ≥ 0 such that µk̄ is
MS-optimal.

Proof: (a) Let {µk} be a sequence of S-regular policies generated by the
PI algorithm (there exists such a sequence by the weak PI property). Then
by Prop. 3.2.3, the sequence {Jµk} is monotonically nonincreasing and must

converge to some J∞ ≥ J*
S .

We first show that J∞ is a fixed point of T . Indeed, from Eq. (3.14),
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we have
Jµk ≥ TJµk ≥ TJ∞,

so by letting k → ∞, we obtain J∞ ≥ TJ∞. From Eq. (3.15) we also have
TJµk ≥ Jµk+1 Taking the limit in this relation as k → ∞, we obtain

lim
k→∞

(TJµk)(x) ≥ lim
k→∞

Jµk+1(x) = J∞(x), x ∈ X.

By using Eq. (3.16) we also have

H(x, u, J∞) = lim
k→∞

H(x, u, Jµk) ≥ lim
k→∞

(TJµk)(x), x ∈ X, u ∈ U(x).

By combining the preceding two relations, we obtain

H(x, u, J∞) ≥ J∞(x), x ∈ X, u ∈ U(x),

and by taking the infimum of the left-hand side over u ∈ U(x), it follows
that TJ∞ ≥ J∞. Thus J∞ is a fixed point of T .

Finally, we show that J∞ = J*
S . Indeed, since J*

S ≤ Jµk , we have

J*
S ≤ J∞ = T kJ∞ ≤ T k

µJ∞ ≤ T k
µJµ0 , ∀ µ ∈ MS , k = 0, 1, . . . .

By taking the limit as k → ∞, and using the fact µ ∈ MS and Jµ0 ∈ S, it

follows that J*
S ≤ J∞ ≤ Jµ, for all µ ∈ MS . By taking the infimum over

µ ∈ MS, it follows that J∞ = J*
S , so J*

S is a fixed point of T .

(b) The limit of {Jµk} was shown to be equal to J*
S in the preceding proof.

Moreover, the finiteness of MS and the policy improvement property of
Prop. 3.2.3 imply that some µk̄ is MS-optimal. Q.E.D.

Note that under the weak PI property, the preceding proposition
shows convergence of the PI-generated cost functions Jµk to J*

S but not
necessarily to J*. An example of this type of behavior was seen in the
linear-quadratic problem of Section 3.1.4 (where S is the set of nonnega-
tive quadratic functions). Let us describe another example, which shows
in addition that under the weak PI property, it is possible for the PI algo-
rithm to generate a nonmonotonic sequence of policy cost functions that
includes both optimal and strictly suboptimal policies.

Example 3.2.2: (Weak PI Property and the Deterministic
Shortest Path Example)

Consider the deterministic shortest path example of Section 3.1.1 for the case
where there is a zero length cycle (a = 0), and let S be the real line (, as
in Example 3.2.1. There are two policies: µ which moves from state 1 to the
destination at cost b, and µ′ which stays at state 1 at cost 0. Starting with
the S-regular policy µ, the PI algorithm generates the policy that corresponds
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to the minimum in TJµ = min{b, Jµ} = min{b, b}. Thus both the S-regular
policy µ and the S-irregular µ′ can be generated at the first iteration. This
means that the weak PI property holds (although the strong PI property,
which will be introduced shortly, does not hold). Indeed, consistent with
Prop. 3.2.4, we have that J∗

S = Jµ = b is a fixed point of T , in fact the only
fixed point of T in the well-behaved region {J | J ≥ b}.

An interesting fact here is that when b < 0, and PI is started with the
optimal S-regular policy µ, then it may generate the S-irregular policy µ′,
and from that policy, it will generate µ again. Thus the weak PI property
does not preclude the PI algorithm from generating a policy sequence that
includes S-irregular policies, with corresponding policy cost functions that
are oscillating.

Let us also revisit the blackmailer example of Section 3.1.3. In the first
variant of that example, when S = ,, all policies are S-regular, the weak
PI property holds, and Prop. 3.2.4 applies. In this case, PI will generate a
sequence of S-regular policies that converges to J*

S = −∞, which is a fixed
point of T , consistent with Prop. 3.2.4 (even though J*

S /∈ S and there is
no MS-optimal policy).

Analysis Under the Strong PI Property

Proposition 3.2.4(a) does not guarantee that every sequence {µk} generated
by the PI algorithm satisfies Jµk ↓ J*

S . This is true only for the sequences
that consist of S-regular policies. We know that when the weak PI property
holds, there exists at least one such sequence, but PI can also generate
sequences that contain S-irregular policies, even when started with an S-
regular policy, as we have seen in Example 3.2.2. We thus introduce a
stronger type of PI property, which will guarantee stronger conclusions.

Definition 3.2.4: (Strong PI Property) We say that a set S ⊂
E(X) has the strong PI property if:

(a) There exists at least one S-regular policy.

(b) For every S-regular policy µ, any policy µ′ such that Tµ′Jµ =
TJµ is S-regular, and there exists at least one such µ′.

The strong PI property implies that every sequence that can be gen-
erated by PI starting from an S-regular policy consists exclusively of S-
regular policies. Moreover, there exists at least one such sequence. Hence
the strong PI property implies the weak PI property. Thus if the strong
PI property holds together with the mild continuity condition (2) of Prop.
3.2.4, it follows that J*

S is a fixed point of T and Prop. 3.2.1 applies. We
will see that the strong PI property implies additional results, relating to
the uniqueness of the fixed point of T .



Sec. 3.2 Semicontractive Models and Regular Policies 157

The following proposition provides conditions guaranteeing that S
has the strong PI property. The salient feature of these conditions is that
they preclude optimality of an S-irregular policy [see condition (4) of the
proposition].

Proposition 3.2.5: (Verifying the Strong PI Property) Given
a set S ⊂ E(X), assume that:

(1) J(x) < ∞ for all J ∈ S and x ∈ X .

(2) There exists at least one S-regular policy.

(3) For every J ∈ S there exists a policy µ such that TµJ = TJ .

(4) For every J ∈ S and S-irregular policy µ, there exists a state
x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞. (3.17)

Then:

(a) A policy µ satisfying TµJ ≤ J for some function J ∈ S is S-
regular.

(b) S has the strong PI property.

Proof: (a) By the monotonicity of Tµ, we have lim supk→∞ T k
µJ ≤ J , and

since by condition (1), J(x) < ∞ for all x, it follows from Eq. (3.17) that
µ is S-regular.

(b) In view of condition (3), it will suffice to show that for every S-regular
policy µ, any policy µ′ such that Tµ′Jµ = TJµ is also S-regular. Indeed

Tµ′Jµ = TJµ ≤ TµJµ = Jµ,

so µ′ is S-regular by part (a). Q.E.D.

A representative example where the preceding proposition applies is
a deterministic shortest path problem where all cycles have positive length
(see the subsequent Example 3.2.3, and other examples later that involve
SSP problems; see Sections 3.3 and 3.5). For an example where the as-
sumptions of the proposition fail, consider the linear-quadratic problem of
Section 3.1.4. Here S is the set of nonnegative quadratic functions, but
the optimal policy µ∗ that applies control u = 0 at all states is S-irregular,
since we do not have T k

µ∗J → Jµ∗ = 0 for J equal to a positive quadratic
function, while condition (4) of the proposition does not hold. Thus we can-
not conclude that the strong PI property holds in the absence of additional
analysis.
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We next derive some of the implications of the strong PI property
regarding fixed properties of J*

S . In particular, we show that if J*
S ∈ S,

then J*
S is the unique fixed point of T within S. This result will be the

starting point for the analysis of Section 3.3.

Proposition 3.2.6: (Strong PI Property Theorem) Let S sat-
isfy the conditions of Prop. 3.2.5.

(a) (Uniqueness of Fixed Point) If T has a fixed point within S, then
this fixed point is equal to J*

S .

(b) (Fixed Point Property and Optimality Condition) If J*
S ∈ S, then

J*
S is the unique fixed point of T within S and the conclusions of

Prop. 3.2.1 hold. Moreover, every policy µ that satisfies TµJ*
S =

TJ*
S is MS-optimal and there exists at least one such policy.

(c) (PI Convergence) If for each sequence {Jm} ⊂ S with Jm ↓ J for
some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x),

then J*
S is a fixed point of T , and every sequence {µk} generated

by the PI algorithm starting from an S-regular policy µ0 satisfies
Jµk ↓ J*

S . Moreover, if the set of S-regular policies is finite, there

exists k̄ ≥ 0 such that µk̄ is MS-optimal.

Proof: (a) Let J ′ ∈ S be a fixed point of T . Then for every µ ∈ MS and
k ≥ 1, we have J ′ = T kJ ′ ≤ T k

µJ ′. By taking the limit as k → ∞, we have
J ′ ≤ Jµ, and by taking the infimum over µ ∈ MS , we obtain J ′ ≤ J*

S . For
the reverse inequality, let µ′ be such that J ′ = TJ ′ = Tµ′J ′ [cf. condition
(3) of Prop. 3.2.5]. Then by Prop. 3.2.5(a), it follows that µ′ is S-regular,
and since J ′ ∈ S, by the definition of S-regularity, we have J ′ = Jµ′ ≥ J*

S ,
showing that J ′ = J*

S .

(b) For every µ ∈ MS we have Jµ ≥ J*
S , so that

Jµ = TµJµ ≥ TµJ*
S ≥ TJ*

S.

Taking the infimum over all µ ∈ MS , we obtain J*
S ≥ TJ*

S. Let µ be a policy
such that TJ*

S = TµJ*
S , [there exists one by condition (3) of Prop. 3.2.5,

since we assume that J*
S ∈ S]. The preceding relations yield J*

S ≥ TµJ*
S ,

so by Prop. 3.2.5(a), µ is S-regular. Therefore, we have

J*
S ≥ TJ*

S = TµJ*
S ≥ lim

k→∞
T k
µJ*

S = Jµ ≥ J*
S ,

where the second equality holds since µ was proved to be S-regular, and
J*
S ∈ S by assumption. Hence equality holds throughout in the above
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relation, which proves that J*
S is a fixed point of T (implying the conclusions

of Prop. 3.2.1) and that µ is MS-optimal.

(c) Since the strong PI property [which holds by Prop. 3.2.5(b)] implies the
weak PI property, the result follows from Prop. 3.2.4(b). Q.E.D.

The preceding proposition does not address the question whether J*

is a fixed point of T , and does not guarantee that VI converges to J*
S or

J* starting from every J ∈ S. We will consider both of these issues in the
next section. Note, however, a consequence of part (a): if J* is known to
be a fixed point of T and J* ∈ S, then J* = J*

S .
Let us now illustrate with examples some of the fine points of the

analysis. For an example where the preceding proposition does not apply,
consider the first two variants of the blackmailer problem of Section 3.1.3.
Let us take S = ,, so that all policies are S-regular and the strong PI
property holds. In the first variant of the problem, we have J* = J*

S =
−∞, and consistent with Prop. 3.2.4, J*

S is a fixed point of T . However,
J*
S /∈ S, and T has no fixed points within S. On the other hand if we

change S to be [−∞,∞), there are no S-regular policies at all, since for
J = −∞ ∈ S, we have T k

µJ = −∞ < Jµ for all µ. As noted earlier, both
Props. 3.2.1 and 3.2.4 do apply. In the second variant of the problem, we
have J* = J*

S = −1, while the set of fixed points of T within S is (−∞,−1],
so Prop. 3.2.6(a) fails. The reason is that the condition (3) of Prop. 3.2.5
is violated.

The next example, when compared with Example 3.2.2, illustrates
the difference in PI-related results obtained under the weak and the strong
PI properties. Moreover it highlights a generic difficulty in applying PI,
even if the strong PI property holds, namely that an initial S-regular policy
must be available.

Example 3.2.3: (Strong PI Property and the Deterministic
Shortest Path Example)

Consider the deterministic shortest path example of Section 3.1.1 for the case
where the cycle has positive length (a > 0), and let S be the real line (, as
in Example 3.2.1. The two policies are: µ which moves from state 1 to the
destination at cost b and is S-regular, and µ′ which stays at state 1 at cost
a, which is S-irregular. However, µ′ has infinite cost and satisfies Eq (3.17).
As a result, Prop. 3.2.5 applies and the strong PI property holds. Consistent
with Prop. 3.2.6, J∗

S is the unique fixed point of T within S.
Turning now to the PI algorithm, we see that starting from the S-regular

µ, which is optimal, it stops at µ, consistent with Prop. 3.2.6(c). However,
starting from the S-irregular policy µ′ the policy evaluation portion of the
PI algorithm must be able to deal with the infinite cost values associated
with µ′. This is a generic difficulty in applying PI to problems where there
are irregular policies: we either need to know an initial S-regular policy, or
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appropriately modify the PI algorithm. See the discussions in Sections 3.5.1
and 3.6.2.

3.2.4 Optimistic Policy Iteration and λ-Policy Iteration

We have already shown the validity of the VI and PI algorithms for com-
puting J*

S (subject to various assumptions, and restrictions involving the
starting points). In this section and the next one we will consider some ad-
ditional algorithmic approaches that can be justified based on the preceding
analysis.

An Optimistic Form of PI

Let us consider an optimistic variant of PI, where policies are evaluated
inexactly, with a finite number of VIs. In particular, this algorithm starts
with some J0 ∈ E(X) such that J0 ≥ TJ0, and generates a sequence
{Jk, µk} according to

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . . , (3.18)

where mk is a positive integer for each k.
The following proposition shows that optimistic PI converges under

mild assumptions to a fixed point of T , independently of any S-regularity
framework. However, when such a framework is introduced, and the se-
quence generated by optimistic PI generates a sequence of S-regular poli-
cies, then the algorithm converges to J*

S , which is in turn a fixed point of
T , similar to the PI convergence result under the weak PI property; cf.
Prop. 3.2.4(b).

Proposition 3.2.7: (Convergence of Optimistic PI) Let J0 ∈
E(X) be a function such that J0 ≥ TJ0, and assume that:

(1) For all µ ∈ M, we have Jµ = TµJµ, and for all J ∈ E(X) with
J ≤ J0, there exists µ̄ ∈ M such that Tµ̄J = TJ .

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X),
we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x).

Then the optimistic PI algorithm (3.18) is well defined and the follow-
ing hold:

(a) The sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞,
where J∞ is a fixed point of T .
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(b) If for a set S ⊂ E(X), the sequence {µk} generated by the algo-
rithm consists of S-regular policies, and we have Jk ∈ S for all
k, then Jk ↓ J*

S and J*
S is a fixed point of T .

Proof: (a) Condition (1) guarantees that the sequence {Jk, µk} is well
defined in the following argument. We have

J0 ≥ TJ0 = Tµ0J0 ≥ Tm0
µ0 J0 = J1

≥ Tm0+1
µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

(3.19)
and continuing similarly, we obtain

Jk ≥ TJk ≥ Jk+1, k = 0, 1, . . . . (3.20)

Thus Jk ↓ J∞ for some J∞.
The proof that J∞ is a fixed point of T is similar to the case of the

PI algorithm (3.13) in Prop. 3.2.4. In particular, from Eq. (3.20), we have
Jk ≥ TJ∞, and by taking the limit as k → ∞,

J∞ ≥ TJ∞.

For the reverse inequality, we use Eq. (3.20) to write

H(x, u, Jk) ≥ (TJk)(x) ≥ J∞(x), ∀ x ∈ X, u ∈ U(x).

By taking the limit as k → ∞ and using condition (2), we have that

H(x, u, J∞) ≥ J∞(x), ∀ x ∈ X, u ∈ U(x).

By taking the infimum over u ∈ U(x), we obtain

TJ∞ ≥ J∞,

thus showing that TJ∞ = J∞.

(b) In the case where all the policies µk are S-regular and {Jk} ⊂ S, from
Eq. (3.19), we have Jk+1 ≥ Jµk for all k, so it follows that

J∞ = lim
k→∞

Jk ≥ lim inf
k→∞

Jµk ≥ J*
S .

We will also show that the reverse inequality holds, so that J∞ = J*
S .

Indeed, for every S-regular policy µ and all k ≥ 0, we have

J∞ = T kJ∞ ≤ T k
µJ∞ ≤ T k

µJ0,
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from which by taking limit as k → ∞ and using the assumption J0 ∈ S,
we obtain

J∞ ≤ lim
k→∞

T k
µJ0 = Jµ, ∀ µ ∈ MS .

Taking infimum over µ ∈ MS , we have J∞ ≤ J*
S . Thus, J∞ = J*

S , and by
using the properties of J∞ proved in part (a), the result follows. Q.E.D.

Note that, in general, the fixed point J∞ in Prop. 3.2.7(a) need not be
equal to J*

S or J*. As an illustration, consider the shortest path Example
3.2.1 with S = ,, and a = 0, b > 0. Then if 0 < J0 < b, it can be seen
that Jk = J0 for all k, so J* = 0 < J∞ and J∞ < J*

S = b.

λ-Policy Iteration

We next consider λ-policy iteration (λ-PI for short), which was described
in Section 2.5. It involves a scalar λ ∈ (0, 1) and it is defined by

TµkJk = TJk, Jk+1 = T (λ)

µk Jk, (3.21)

where for any policy µ and scalar λ ∈ (0, 1), T (λ)
µ is the multistep mapping

discussed in Section 1.2.5:

(T (λ)
µ J)(x) = (1− λ)

∞∑

t=0

λt(T t+1
µ J)(x), x ∈ X. (3.22)

Here we assume that the limit of the series above is well-defined as a func-
tion in E(X) for all x ∈ X , µ ∈ M, and J ∈ E(X).

We will also assume that Tµ and T (λ)
µ commute, i.e.,

Tµ(T
(λ)
µ J) = T (λ)

µ (TµJ), ∀ µ ∈ M, J ∈ E(X). (3.23)

This assumption is commonly satisfied in DP problems where Tµ is linear,
such as the stochastic optimal control problem of Example 1.2.1.

To compare the λ-PI method (3.21) with the exact PI algorithm
(3.13), note that by the analysis of Section 1.2.5 (see also Exercise 1.2),

the mapping T (λ)

µk is an extrapolated version of the proximal mapping for

solving the fixed point equation J = TµkJ . Thus in λ-PI, the policy evalua-
tion phase is done approximately with a single iteration of the (extrapolated)
proximal algorithm.

As noted in Section 2.5, the λ-PI and the optimistic PI methods are

related. The reason is that both mappings T (λ)

µk and Tmk

µk involve multiple

applications of the VI mapping Tµk : a fixed number mk in the latter case,
and a geometrically weighted infinite number in the former case [cf. Eq.
(3.22)]. Thus λ-PI and optimistic PI use VI in alternative ways to evaluate
Jµk approximately.
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Since λ-PI and optimistic PI are related, it is not surprising that
they have the same type of convergence properties. We have the following
proposition, which is similar to Prop. 3.2.7.

Proposition 3.2.8: (Convergence of λ-PI) Let J0 ∈ E(X) be a
function such that J0 ≥ TJ0, assume that the limit in the series (3.22)
is well defined and Eq. (3.23) holds. Assume further that:

(1) For all µ ∈ M, we have Jµ = TµJµ, and for all J ∈ E(X) with
J ≤ J0, there exists µ̄ ∈ M such that Tµ̄J = TJ .

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X),
we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x).

Then the λ-PI algorithm (3.21) is well defined and the following hold:

(a) A sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞,
where J∞ is a fixed point of T .

(b) If for a set S ⊂ E(X), the sequence {µk} generated by the algo-
rithm consists of S-regular policies, and we have Jk ∈ S for all
k, then Jk ↓ J*

S and J*
S is a fixed point of T .

Proof: (a) We first note that for all µ ∈ M and J ∈ E(X) such that
J ≥ TµJ , we have

TµJ ≥ T (λ)
µ J.

This follows from the power series expansion (3.22) and the fact that J ≥
TµJ implies that

TµJ ≥ T 2
µJ ≥ · · · ≥ Tm+1

µ J, ∀ m ≥ 1.

Using also the monotonicity of Tµ and T (λ)
µ , and Eq. (3.23), we have that

J ≥ TµJ ⇒ TµJ ≥ T (λ)
µ J ≥ T (λ)

µ (TµJ) = Tµ(T
(λ)
µ J).

The preceding relation and our assumptions imply that

J0 ≥ TJ0 = Tµ0J0 ≥ T (λ)
µ0 J0 = J1

≥ Tµ0(T
(λ)
µ0 J0) = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2.

Continuing similarly, we obtain Jk ≥ TJk ≥ Jk+1 for all k. Thus Jk ↓ J∞
for some J∞. From this point, the proof that J∞ is a fixed point of T is
similar to the one of Prop. 3.2.7(a).

(b) Similar to the proof of Prop. 3.2.7(b). Q.E.D.
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3.2.5 A Mathematical Programming Approach

Let us finally consider an alternative to the VI and PI approaches. It is
based on the fact that J*

S is an upper bound to all functions J ∈ S that
satisfy J ≤ TJ , as we will show shortly. We will exploit this fact to obtain a
method to compute J*

S that is based on solution of a related mathematical
programming problem. We have the following proposition.

Proposition 3.2.9: Given a set S ⊂ E(X), for all functions J ∈ S
satisfying J ≤ TJ , we have J ≤ J*

S .

Proof: If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides
and using the monotonicity of T , we obtain J ≤ T kJ ≤ T k

µJ for all k and
S-regular policies µ. Taking the limit as k → ∞, we obtain J ≤ Jµ, so by
taking the infimum over µ ∈ MS, we obtain J ≤ J*

S . Q.E.D.

Thus if J*
S is a fixed point of T , it is the “largest” fixed point of T , and

we can use the preceding proposition to compute J*
S by maximizing an ap-

propriate monotonically increasing function of J subject to the constraints
J ∈ S and J ≤ TJ . † This approach, when applied to finite-spaces Marko-
vian decision problems, is usually referred to as the linear programming
solution method , since then the resulting optimization problem is a linear
program (see e.g., see Exercise 2.5 for the case of contractive problems or
[Ber12a], Ch. 2).

Suppose now that X = {1, . . . , n}, S = ,n, and J*
S is a fixed point of

T . Then Prop. 3.2.9 shows that J*
S =

(
J*
S(1), . . . , J

*
S(n)

)
is the unique solu-

tion of the following optimization problem in the vector J =
(
J(1), . . . , J(n)

)
:

maximize
n∑

i=1

βiJ(i)

subject to J(i) ≤ H(i, u, J), i = 1, . . . , n, u ∈ U(i),

where β1, . . . ,βn are any positive scalars. If H is linear in J and each
U(i) is a finite set, this is a linear program, which can be solved by using
standard linear programming methods.

† For the mathematical programming approach to apply, it is sufficient that
J∗
S ≤ TJ∗

S . However, we generally have J∗
S ≥ TJ∗

S (this follows by writing

Jµ = TµJµ ≥ TJµ ≥ TJ∗
S , ∀ µ ∈ MS,

and taking the infimum over all µ ∈ MS), so the condition J∗
S ≤ TJ∗

S is equivalent
to J∗

S being a fixed point of T .
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3.3 IRREGULAR POLICIES/INFINITE COST CASE

The results of the preceding section guarantee (under various conditions)
that J*

S is a fixed point of T , and can be found by the VI and PI algorithms,
but they do not assert that J* is a fixed point of T or that J* = J*

S . In this
section we address these issues by carrying the strong PI property analysis
further with some additional assumptions. A critical part of the analysis
is based on the strong PI property theorem of Prop. 3.2.6. We first collect
all of our assumptions. We will verify these assumptions in the context of
several applications in Section 3.5.

Assumption 3.3.1: We have a subset S ⊂ R(X) satisfying the fol-
lowing:

(a) S contains J̄ , and has the property that if J1, J2 are two functions
in S, then S contains all functions J with J1 ≤ J ≤ J2.

(b) The function J*
S = infµ∈MS

Jµ belongs to S.

(c) For each S-irregular policy µ and each J ∈ S, there is at least
one state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞.

(d) The control set U is a metric space, and the set

{
u ∈ U(x) | H(x, u, J) ≤ λ

}

is compact for every J ∈ S, x ∈ X , and λ ∈ ,.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that
J ′ ≤ J and J ′ ≤ TJ ′.

An important restriction of the preceding assumption is that S con-
sists of real-valued functions . This underlies the mechanism of differenti-
ating between S-regular and S-irregular policies that is embodied in As-
sumption 3.3.1(c).

The conditions (b) and (c) of the preceding assumption have been in-
troduced in Props. 3.2.5 and 3.2.6 in the context of the strong PI property-
related analysis. New conditions, not encountered earlier, are (a), (e), and
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(f). They will be used to assert that J* = J*
S , that J

* is the unique fixed
point of T within S, and that the VI and PI algorithms have improved
convergence properties compared with the ones of Section 3.2.

Note that in the case where S is the set of real-valued functions R(X)
and J̄ ∈ R(X), condition (a) is automatically satisfied, while condition
(e) is typically verified easily. The verification of condition (f) may be
nontrivial in some cases. We postpone the discussion of this issue for later
(see the subsequent Prop. 3.3.2).

The main result of this section is the following proposition, which
provides results that are almost as strong as the ones for contractive models.

Proposition 3.3.1: Let Assumption 3.3.1 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
the set S.

(b) We have T kJ → J* for all J ∈ S.

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover, there
exists an optimal policy that is S-regular.

(d) For any J ∈ S, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we
have J ≥ J*.

(e) If in addition for each sequence {Jm} ⊂ S with Jm ↓ J for some
J ∈ S, we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x),

then every sequence {µk} generated by the PI algorithm starting
from an S-regular policy µ0 satisfies Jµk ↓ J*. Moreover, if the

set of S-regular policies is finite, there exists k̄ ≥ 0 such that µk̄

is optimal.

We will prove Prop. 3.3.1 through a sequence of lemmas, which delin-
eate the assumptions that are needed for each part of the proof. Our first
lemma guarantees that starting from an S-regular policy, the PI algorithm
is well defined.

Lemma 3.3.1: Let Assumption 3.3.1(d) hold. For every J ∈ S, there
exists a policy µ such that TµJ = TJ .

Proof: For any x ∈ X with (TJ)(x) < ∞, let
{
λm(x)

}
be a decreasing
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scalar sequence with

λm(x) ↓ inf
u∈U(x)

H(x, u, J).

The set

Um(x) =
{
u ∈ U(x) | H(x, u, J) ≤ λm(x)

}
,

is nonempty, and by assumption it is compact. The set of points attain-
ing the infimum of H(x, u, J) over U(x) is ∩∞

m=0Um(x), and is therefore
nonempty. Let ux be a point in this intersection. Then we have

H(x, ux, J) ≤ λm(x), ∀ m ≥ 0. (3.24)

Consider now a policy µ, which is formed by the point ux for x with
(TJ)(x) < ∞, and by any point ux ∈ U(x) for x with (TJ)(x) = ∞. Taking
the limit in Eq. (3.24) asm → ∞ shows that µ satisfies (TµJ)(x) = (TJ)(x)
for x with (TJ)(x) < ∞. For x with (TJ)(x) = ∞, we also have trivially
(TµJ)(x) = (TJ)(x), so TµJ = TJ . Q.E.D.

The next two lemmas follow from the analysis of the preceding section.

Lemma 3.3.2: Let Assumption 3.3.1(c) hold. A policy µ that satis-
fies TµJ ≤ J for some J ∈ S is S-regular.

Proof: This is Prop. 3.2.5(a). Q.E.D.

Lemma 3.3.3: Let Assumption 3.3.1(b),(c),(d) hold. Then:

(a) The function J*
S of Assumption 3.3.1(b) is the unique fixed point

of T within S.

(b) Every policy µ satisfying TµJ*
S = TJ*

S is optimal within the set
of S-regular policies, i.e., µ is S-regular and Jµ = J*

S . Moreover,
there exists at least one such policy.

Proof: This is Prop. 3.2.6(b) [Assumption 3.3.1(d) guarantees that for
every J ∈ S, there exists a policy µ such that TµJ = TJ (cf. Lemma
3.3.1), which is part of the assumptions of Prop. 3.2.6]. Q.E.D.

Let us also prove the following technical lemma, which makes use of
the additional part (e) of Assumption 3.3.1.
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Lemma 3.3.4: Let Assumption 3.3.1(b),(c),(d),(e) hold. Then if J ∈
S, {T kJ} ⊂ S, and T kJ ↑ J∞ for some J∞ ∈ S, we have J∞ = J*

S .

Proof: We fix x ∈ X , and consider the sets

Uk(x) =
{
u ∈ U(x) | H(x, u, T kJ) ≤ J∞(x)

}
, k = 0, 1, . . . , (3.25)

which are compact by assumption. Let uk ∈ U(x) be such that

H(x, uk, T kJ) = inf
u∈U(x)

H(x, u, T kJ) = (T k+1J)(x) ≤ J∞(x)

(such a point exists by Lemma 3.3.1). Then uk ∈ Uk(x).
For every k, consider the sequence {ui}∞i=k. Since T

kJ ↑ J∞, it follows
using the monotonicity of H , that for all i ≥ k,

H(x, ui, T kJ) ≤ H(x, ui, T iJ) ≤ J∞(x).

Therefore from the definition (3.25), we have {ui}∞i=k ⊂ Uk(x). Since Uk(x)
is compact, all the limit points of {ui}∞i=k belong to Uk(x) and at least one
limit point exists. Hence the same is true for the limit points of the whole
sequence {ui}. Thus if ũ is a limit point of {ui}, we have

ũ ∈ ∩∞
k=0Uk(x).

By Eq. (3.25), this implies that

H
(
x, ũ, T kJ

)
≤ J∞(x), k = 0, 1, . . . .

Taking the limit as k → ∞ and using Assumption 3.3.1(e), we obtain

(TJ∞)(x) ≤ H(x, ũ, J∞) ≤ J∞(x).

Thus, since x was chosen arbitrarily within X , we have TJ∞ ≤ J∞. To
show the reverse inequality, we write T kJ ≤ J∞, apply T to this inequality,
and take the limit as k → ∞, so that J∞ = limk→∞ T k+1J ≤ TJ∞. It
follows that J∞ = TJ∞. Since J∞ ∈ S by assumption, by applying Lemma
3.3.3(a) we have J∞ = J*

S . Q.E.D.

We are now ready to prove Prop. 3.3.1 by making use of the additional
parts (a) and (f) of Assumption 3.3.1.

Proof of Prop. 3.3.1: (a), (b) We will first prove that T kJ → J*
S for all

J ∈ S, and we will use this to prove that J*
S = J* and that there exists
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an optimal S-regular policy. Thus parts (a) and (b), together with the
existence of an optimal S-regular policy, will be shown simultaneously.

We fix J ∈ S, and choose J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′

[cf. Assumption 3.3.1(f)]. By the monotonicity of T , we have T kJ ′ ↑ J∞
for some J∞ ∈ E(X). Let µ be an S-regular policy such that Jµ = J*

S [cf.
Lemma 3.3.3(b)]. Then we have, using again the monotonicity of T ,

J∞ = lim
k→∞

T kJ ′ ≤ lim sup
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ = J*

S . (3.26)

Since J ′ and J*
S belong to S, and J ′ ≤ T kJ ′ ≤ J∞ ≤ J*

S , Assumption
3.3.1(a) implies that {T kJ ′} ⊂ S, and J∞ ∈ S. From Lemma 3.3.4, it
then follows that J∞ = J*

S . Thus equality holds throughout in Eq. (3.26),
proving that limk→∞ T kJ = J*

S .
There remains to show that J*

S = J* and that there exists an optimal
S-regular policy. To this end, we note that by the monotonicity Assumption
3.2.1, for any policy π = {µ0, µ1, . . .}, we have

Tµ0 · · ·Tµk−1 J̄ ≥ T kJ̄ .

Taking the limit of both sides as k → ∞, we obtain

Jπ ≥ lim
k→∞

T kJ̄ = J*
S ,

where the equality follows since T kJ → J*
S for all J ∈ S (as shown earlier),

and J̄ ∈ S [cf. Assumption 3.3.1(a)]. Thus for all π ∈ Π, Jπ ≥ J*
S = Jµ,

implying that the policy µ that is optimal within the class of S-regular
policies is optimal over all policies, and that J*

S = J*.

(c) If µ is optimal, then Jµ = J* ∈ S, so by Assumption 3.3.1(c), µ is
S-regular and therefore TµJµ = Jµ. Hence,

TµJ* = TµJµ = Jµ = J* = TJ*.

Conversely, if
J* = TJ* = TµJ*,

µ is S-regular (cf. Lemma 3.3.2), so J* = limk→∞ T k
µJ* = Jµ. Therefore,

µ is optimal.

(d) If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using
the monotonicity of T , we obtain J ≤ T kJ for all k. Taking the limit as
k → ∞ and using the fact T kJ → J* [cf. part (b)], we obtain J ≤ J*. The
proof that J ≥ TJ implies J ≥ J* is similar.

(e) As in the proof of Prop. 3.2.4(b), the sequence {Jµk} converges mono-
tonically to a fixed point of T , call it J∞. Since J∞ lies between Jµ0 ∈ S

and J*
S ∈ S, it must belong to S, by Assumption 3.3.1(a). Since the only
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fixed point of T within S is J* [cf. part (a)], it follows that J∞ = J*.
Q.E.D.

Note that Prop. 3.3.1(d) provides the basis for a solution method
based on mathematical programming; cf. the discussion following Prop.
3.2.9. Here is an example where Prop. 3.3.1 does not apply, because the
compactness condition of Assumption 3.3.1(d) fails.

Example 3.3.1

Consider the third variant of the blackmailer problem (Section 3.1.3) for the
case where c > 0 and S = (. Then the (nonoptimal) S-irregular policy µ̄
whereby at each period, the blackmailer may demand no payment (u = 0)
and pay cost c > 0, has infinite cost (Jµ̄ = ∞). However, T has multiple fixed
points within the real line, namely the set (−∞,−1]. By choosing S = (, we
see that the uniqueness of fixed point part (a) of Prop. 3.3.1 fails because the
compactness part (d) of Assumption 3.3.1 is violated (all other parts of the
assumption are satisfied). In this example, the results of Prop. 3.2.1 apply
with S = (, because J∗

S is a fixed point of T .

In various applications, the verification of part (f) of Assumption 3.3.1
may not be simple. The following proposition is useful in several contexts,
including some that we will encounter in Section 3.5.

Proposition 3.3.2: Let S be equal to Rb(X), the subset of R(X)
that consists of functions J that are bounded above and below, in the
sense that for some b ∈ ,, we have

∣∣J(x)
∣∣ ≤ b for all x ∈ X . Let parts

(b), (c), and (d) of Assumption 3.3.1 hold, and assume further that
for all scalars r > 0, we have

TJ*
S − re ≤ T (J*

S − re), (3.27)

where e is the unit function, e(x) ≡ 1. Then part (f) of Assumption
3.3.1 also holds.

Proof: Let J ∈ Rb(x), and let r > 0 be a scalar such that J*
S − re ≤ J

[such a scalar exists since J*
S ∈ Rb(x) by Assumption 3.3.1(b)]. Define

J ′ = J*
S − re, and note that by Lemma 3.3.3, J*

S is a fixed point of T . By
using Eq. (3.27), we have

J ′ = J*
S − re = TJ*

S − re ≤ T (J*
S − re) = TJ ′,

while J ′ ∈ Rb(x), thus proving part (f) of Assumption 3.3.1. Q.E.D.

The relation (3.27) is satisfied among others in stochastic optimal
control problems (cf. Example 1.2.1), where

(TJ)(x) = inf
u∈U(x)

E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
, x ∈ X,
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with α ∈ (0, 1]. Note that application of the preceding proposition is
facilitated when X is a finite set, in which case Rb(X) = R(X). This
fact will be used in the context of some of the applications of Sections
3.5.1-3.5.4.

3.4 IRREGULAR POLICIES/FINITE COST CASE -
A PERTURBATION APPROACH

In this section, we address problems where some S-irregular policies may
have finite cost for all states [thus violating Assumption 3.3.1(c)], so Prop.
3.3.1 cannot be used. Our approach instead will be to assert that J*

S is a
fixed point of T , so that Prop. 3.2.1 applies and can be used to guarantee
convergence of VI to J*

S starting from J0 ≥ J*
S .

Our line of analysis is quite different from the one of Sections 3.2.3
and 3.3, which was based on PI ideas. Instead, we add a perturbation to
the mapping H , designed to provide adequate differentiation between S-
regular and S-irregular policies. Using a limiting argument, as the size of
the perturbation diminishes to 0, we are able to prove that J*

S is a fixed
point of T . Moreover, we provide a perturbation-based PI algorithm that
may be more reliable than the standard PI algorithm, which can fail for
problems where irregular policies may have finite cost for all states; cf.
Example 3.2.2. We will also use the perturbation approach in Sections 4.5
and 4.6, where we will extend the notion of S-regularity to nonstationary
policies that do not lend themselves to a PI-based analysis.

An example where the approach of this section will be shown to apply
is an SSP problem where Assumption 3.3.1 is violated while J*(x) > −∞
for all x (see also Section 3.5.1). Here is a classical problem of this type.

Example 3.4.1 (Search Problem)

Consider a situation where the objective is to move within a finite set of
states searching for a state to stop while minimizing the expected cost. We
formulate this as a DP problem with finite state space X, and two controls
at each x ∈ X: stop, which yields an immediate cost s(x), and continue, in
which case we move to a state f(x,w) at cost g(x,w), where w is a random
variable with given distribution that may depend on x. The mapping H is

H(x, u, J) =

{
s(x) if u = stop,

E
{
g(x,w) + J

(
f(x,w)

)}
if u = continue,

and the function J̄ is identically 0.
Letting S = R(X), we note that the policy µ that stops nowhere is

S-irregular, since Tµ cannot have a unique fixed point within S (adding any
unit function multiple to J adds to TµJ the same multiple). This policy may
violate Assumption 3.3.1(c) of the preceding section, because its cost may be
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finite for all states. A special case where this occurs is when g(x,w) ≡ 0 for
all x. Then the cost function of µ is identically 0.

Note that case (b) of the deterministic shortest path problem of Sec-
tion 3.1.1, which involves a zero length cycle, is a special case of the search
problem just described. Therefore, the anomalous behavior we saw there
(nonconvergence of VI to J∗ and oscillation of PI; cf. Examples 3.2.1 and
3.2.2) may also arise in the context of the present example. We will see that
by adding a small positive constant to the length of the cycle we can rectify
the difficulties of VI and PI, at least partially; this is the idea behind the
perturbation approach that we will use in this section.

We will address the finite cost issue for irregular policies by intro-
ducing a perturbation that makes their cost infinite for some states. We
can then use Prop. 3.3.1 of the preceding section. The idea is that with a
perturbation, the cost functions of S-irregular policies may increase dispro-
portionately relative to the cost functions of the S-regular policies, thereby
making the problem more amenable to analysis.

We introduce a nonnegative “forcing function” p : X &→ [0,∞), and
for each δ > 0 and policy µ, we consider the mappings

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δp(x), x ∈ X, TδJ = inf

µ∈M
Tµ,δJ.

We refer to the problem associated with the mappings Tµ,δ as the δ-
perturbed problem. The cost functions of policies π = {µ0, µ1, . . .} ∈ Π
and µ ∈ M for this problem are

Jπ,δ = lim sup
k→∞

Tµ0,δ · · ·Tµk,δJ̄ , Jµ,δ = lim sup
k→∞

T k
µ,δJ̄ ,

and the optimal cost function is Ĵδ = infπ∈Π Jπ,δ.
The following proposition shows that if the δ-perturbed problem is

“well-behaved” with respect to a subset of S-regular policies, then its cost
function Ĵδ can be used to approximate the optimal cost function over this
subset of policies only. Moreover J*

S is a fixed point of T . Note that the
unperturbed problem need not be as well-behaved, and indeed J* need not
be a fixed point of T .

Proposition 3.4.1: Given a set S ⊂ E(X), let M̂ be a subset of S-
regular policies, and let Ĵ be the optimal cost function over the policies
in M̂ only, i.e.,

Ĵ = inf
µ∈M̂

Jµ.

Assume that for every δ > 0:

(1) The optimal cost function Ĵδ of the δ-perturbed problem satisfies
the corresponding Bellman equation Ĵδ = TδĴδ.
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(2) We have inf
µ∈M̂

Jµ,δ = Ĵδ, i.e., for every x ∈ X and ε > 0, there

exists a policy µx,ε ∈ M̂ such that Jµx,ε,δ(x) ≤ Ĵδ(x) + ε.

(3) For every µ ∈ M̂, we have

Jµ,δ ≤ Jµ + wµ,δ,

where wµ,δ is a function such that limδ↓0 wµ,δ = 0.

(4) For every sequence {Jm} ⊂ S with Jm ↓ J , we have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x).

Then J*
S is a fixed point of T and the conclusions of Prop. 3.2.1 hold.

Moreover, we have
J*
S = Ĵ = lim

δ↓0
Ĵδ.

Proof: For every x ∈ X , using conditions (2) and (3), we have for all

δ > 0, ε > 0, and µ ∈ M̂,

Ĵ(x)−ε ≤ Jµx,ε(x)−ε ≤ Jµx,ε,δ(x)−ε ≤ Ĵδ(x) ≤ Jµ,δ(x) ≤ Jµ(x)+wµ,δ(x).

By taking the limit as ε ↓ 0, we obtain for all δ > 0 and µ ∈ M̂,

Ĵ ≤ Ĵδ ≤ Jµ,δ ≤ Jµ + wµ,δ.

By taking the limit as δ ↓ 0 and then the infimum over all µ ∈ M̂, it follows
[using also condition (3)] that

Ĵ ≤ lim
δ↓0

Ĵδ ≤ inf
µ∈M̂

lim
δ↓0

Jµ,δ ≤ inf
µ∈M̂

Jµ = Ĵ ,

so that Ĵ = limδ↓0 Ĵδ.
Next we prove that Ĵ is a fixed point of T and use this fact to show

that Ĵ = J*
S , thereby concluding the proof. Indeed, from condition (1) and

the fact Ĵδ ≥ Ĵ shown earlier, we have for all δ > 0,

Ĵδ = TδĴδ ≥ T Ĵδ ≥ T Ĵ,

and by taking the limit as δ ↓ 0 and using part (a), we obtain Ĵ ≥ T Ĵ. For
the reverse inequality, let {δm} be a sequence with δm ↓ 0. Using condition
(1) we have for all m,

H(x, u, Ĵδm) + δmp(x) ≥ (Tδm Ĵδm)(x) = Ĵδm(x), ∀ x ∈ X, u ∈ U(x).
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Taking the limit as m → ∞, and using condition (4) and the fact Ĵδm ↓ Ĵ
shown earlier, we have

H(x, u, Ĵ) ≥ Ĵ(x), ∀ x ∈ X, u ∈ U(x),

so that T Ĵ ≥ Ĵ . Thus Ĵ is a fixed point of T .
Finally, to show that Ĵ = J*

S , we first note that J*
S ≤ Ĵ since every

policy in M̂ is S-regular. For the reverse inequality, let µ be S-regular.
We have Ĵ = T Ĵ ≤ TµĴ ≤ T k

µ Ĵ for all k ≥ 1, so that for all µ′ ∈ M̂,

Ĵ ≤ lim
k→∞

T k
µ Ĵ ≤ lim

k→∞
T k
µJµ′ = Jµ,

where the equality follows since µ and µ′ are S-regular (so Jµ′ ∈ S). Taking

the infimum over all S-regular µ, we obtain Ĵ ≤ J*
S , so that J*

S = Ĵ .
Q.E.D.

Aside from S-regularity of the set M̂, a key assumption of the pre-
ceding proposition is that inf

µ∈M̂
Jµ,δ = Ĵδ, i.e., that with a perturbation

added, the subset of policies M̂ is sufficient (the optimal cost of the δ-

perturbed problem can be achieved using the policies in M̂). This is the

key insight to apply when selecting M̂.
Note that the preceding proposition applies even if

lim
δ↓0

Ĵδ(x) > J*(x)

for some x ∈ X . This is illustrated by the deterministic shortest path
example of Section 3.1.1, for the zero-cycle case where a = 0 and b > 0.
Then for S = ,, we have J*

S = b > 0 = J*, while the proposition applies
because its assumptions are satisfied with p(x) ≡ 1. Consistently with the
conclusions of the proposition, we have Ĵδ = b + δ, so J*

S = Ĵ = limδ↓0 Ĵδ
and J*

S is a fixed point of T .
Proposition 3.4.1 also applies to Example 3.4.1. In particular, it can

be used to assert that J*
S is a fixed point of T , and hence also that the

conclusions of Prop. 3.2.1 hold. These conclusions imply that J*
S is the

unique fixed point of T within the set {J | J ≥ J*
S} and that the VI

algorithm converges to J*
S starting from within this set.

We finally note that while Props. 3.3.1 and 3.4.1 relate to qualitatively
different problems, they can often be used synergistically. In particular,
Prop. 3.3.1 may be applied to the δ-perturbed problem in order to verify
the assumptions of Prop. 3.4.1.

A Policy Iteration Algorithm with Perturbations

We now consider a subset M̂ of S-regular policies, and introduce a ver-
sion of the PI algorithm that uses perturbations and generates a sequence
{µk} ⊂ M̂ such that Jµk → J*

S . We assume the following.
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Assumption 3.4.1: The subset of S-regular policies M̂ is such that:

(a) The conditions of Prop. 3.4.1 are satisfied.

(b) Every policy µ ∈ M̂ is S-regular for all the δ-perturbed problems,
δ > 0.

(c) Given a policy µ ∈ M̂ and a scalar δ > 0, every policy µ′ such
that

Tµ′Jµ,δ = TJµ,δ

belongs to M̂, and at least one such policy exists.

The perturbed version of the PI algorithm is defined as follows. Let
{δk} be a positive sequence with δk ↓ 0, and let µ0 be a policy in M̂. At

iteration k, we have a policy µk ∈ M̂, and we generate µk+1 ∈ M̂ according
to

Tµk+1Jµk,δk
= TJµk,δk

. (3.28)

Note that by Assumption 3.4.1(c) the algorithm is well-defined, and is

guaranteed to generate a sequence of policies {µk} ⊂ M̂. We have the
following proposition.

Proposition 3.4.2: Let Assumption 3.4.1 hold. Then J*
S is a fixed

point of T and for a sequence of S-regular policies {µk} generated by
the perturbed PI algorithm (3.28), we have Jµk ,δk

↓ J*
S and Jµk → J*

S .

Proof: We have that J*
S is a fixed point of T by Prop. 3.4.1. The algorithm

definition (3.28) implies that for all m ≥ 1 we have

Tm
µk+1,δk

Jµk,δk
≤ Tµk+1,δk

Jµk ,δk
= TJµk,δk

+ δk p ≤ Jµk,δk
.

From this relation it follows that

Jµk+1,δk+1
≤ Jµk+1,δk

= lim
m→∞

Tm
µk+1,δk

Jµk ,δk
≤ Jµk ,δk

,

where the equality holds because µk+1 and µk are S-regular for all the δ-
perturbed problems. It follows that {Jµk,δk

} is monotonically nonincreas-

ing, so that Jµk,δk
↓ J∞ for some J∞. Moreover, we must have J∞ ≥ J*

S

since Jµk ,δk
≥ Jµk ≥ J*

S . Thus

J*
S ≤ J∞ = lim

k→∞
TJµk,δk

. (3.29)
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We also have

inf
u∈U(x)

H(x, u, J∞) ≤ lim
k→∞

inf
u∈U(x)

H
(
x, u, Jµk,δk

)

≤ inf
u∈U(x)

lim
k→∞

H
(
x, u, Jµk,δk

)

= inf
u∈U(x)

H
(
x, u, lim

k→∞
Jµk ,δk

)

= inf
u∈U(x)

H(x, u, J∞),

where the first inequality follows from the fact J∞ ≤ Jµk ,δk
, which implies

that H(x, u, J∞) ≤ H
(
x, u, Jµk,δk

)
, and the first equality follows from the

continuity property that is assumed in Prop. 3.4.1. Thus equality holds
throughout above, so that

lim
k→∞

TJµk,δk
= TJ∞. (3.30)

Combining Eqs. (3.29) and (3.30), we obtain J*
S ≤ J∞ = TJ∞. By re-

placing Ĵ with J∞ in the last part of the proof of Prop. 3.4.1, we obtain
J*
S = J∞. Thus Jµk ,δk

↓ J*
S , which in view of the fact Jµk,δk

≥ Jµk ≥ J*
S ,

implies that Jµk → J*
S . Q.E.D.

When the control space U is finite, Prop. 3.4.2 also implies that the
generated policies µk will be optimal for all k sufficiently large. The reason
is that the set of policies is finite and there exists a sufficiently small ε > 0,
such that for all nonoptimal µ there is some state x such that Jµ(x) ≥
Ĵ(x)+ε. This convergence behavior should be contrasted with the behavior
of PI without perturbations, which may lead to oscillations, as noted earlier.

However, when the control space U is infinite, the generated sequence
{µk} may exhibit some serious pathologies in the limit. If {µk}K is a
subsequence of policies that converges to some µ̄, in the sense that

lim
k→∞, k∈K

µk(x) = µ̄(x), ∀ x = 1, . . . , n,

it does not follow that µ̄ is S-regular. In fact it is possible that the generated
sequence of S-regular policies {µk} satisfies limk→∞ Jµk → J*

S = J*, yet
{µk} may converge to an S-irregular policy whose cost function is strictly
larger than J*

S , as illustrated by the following example.

Example 3.4.2

Consider the third variant of the blackmailer problem (Section 3.1.3) for the
case where c = 0 (the blackmailer may forgo demanding a payment at cost
c = 0); see Fig. 3.4.1. Here the mapping T is given by

TJ = min

{
J, inf

0<u≤1

{
− u+ u2 + (1− u)J

}}
,
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a 1 2 1 2 t b

u Destination

1] Cost −u

Prob. u

u Prob. 1− u

u Control u ∈ [0, 1] Cost

u Cost 0 Destination

Figure 3.4.1. Transition diagram for a blackmailer problem (the third variant
of Section 3.1.3 in the case where c = 0). At state 1, the blackmailer may
demand any amount u ∈ [0, 1]. The victim will comply with probability
1 − u and will not comply with probability u, in which case the process will
terminate.

[cf. Eq. (3.4)], and can be written as

TJ = min
0≤u≤1

{
− u+ u2 + (1− u)J

}
.

Letting S = (, it can be seen that the set of fixed points of T within S
is (−∞,−1]. Here the policy whereby the blackmailer demands no payment
(u = 0) and pays no cost at each period, is S-irregular and strictly suboptimal,
yet has finite (zero) cost, so part (c) of Assumption 3.3.1 is violated (all other
parts of the assumption are satisfied).

It can be seen that

J∗ = J∗
S = −1,

J∗
S is a fixed point of T , Prop. 3.2.1 applies, and VI converges to J∗ starting

from any J ≥ J∗. Moreover, starting from any policy (including the S-
irregular one that applies u = 0), the PI algorithm (3.28) generates a sequence
of S-regular policies {µk} with Jµk → J∗

S. However, {µk} converges to the
S-irregular and strictly suboptimal policy that applies u = 0.

Here a phenomenon of “oscillation in the limit” is observed: starting
with the S-irregular policy that applies u = 0, we generate a sequence of
S-regular policies that converges to the S-irregular policy we started from!
The perturbation-based PI algorithm of this section cannot rectify this type
of behavior; it can only guarantee that a sequence of S-regular policies with
Jµk → J∗

S is generated.

3.5 APPLICATIONS IN SHORTEST PATH AND OTHER
CONTEXTS

In this section we will apply the results of the preceding sections to various
problems with a semicontractive character, including shortest path and
deterministic optimal control problems of various types.
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As we are about to apply the theory developed so far in this chapter,
it may be helpful to summarize our results. Given a suitable set of functions
S, we have been dealing with two problems. These are the original prob-
lem whose optimal cost function is J*, and the restricted problem whose
optimal cost function is J*

S , the optimal cost over the S-regular policies.
In summary, the aims of our analysis have been the following:

(a) To establish the fixed point properties of T . We have showed under
various conditions (cf. Prop. 3.2.1) that J*

S is the unique fixed point
of T within the well-behaved region WS , and moreover the VI algo-
rithm converges from above to J*

S . Related analyses involve the use
of infinite cost assumptions for S-irregular policies (Section 3.3), pos-
sibly in conjunction with the use of perturbations (Section 3.4). A
favorable case is when J*

S = J*. However, we may also have J*
S (= J*.

Generally, proving that J* is a fixed point of T is a separate issue,
which may either be addressed in conjunction with the analysis of
properties of J*

S as in Section 3.3 (cf. Prop. 3.3.1), or independently
of J*

S (for example J* is generically a fixed point of T in deterministic
problems, among other classes of problems; see Exercise 3.1).

(b) To delineate the initial conditions under which the VI and PI algo-
rithms are guaranteed to converge to J*

S or to J*. This was done in
conjunction with the analysis of the fixed point properties of T . For
example, a major line of analysis for establishing that J*

S is a fixed
point of T is based on the PI algorithm (cf. Sections 3.2.3 and 3.3).
We have also obtained several other results relating to the conver-
gence of variants of PI (the optimistic version, cf. Prop. 3.2.7, the
λ-PI version, cf. Prop. 3.2.8, and the perturbation-based version, cf.
Prop. 3.4.2), and to the mathematical programming-based solution,
cf. Section 3.2.5.

(c) To establish the existence of optimal policies for the original or for
the restricted problem, and the associated optimality conditions . This
was accomplished in conjunction with the analysis of the fixed points
of T , and under special compactness-like conditions (cf. Props. 3.2.1,
3.2.6, and 3.3.1).

As we apply our analysis to various specific contexts in this section, we
will make frequent reference to the pathological behavior that we witnessed
in the examples of Section 3.1. In particular, we will explain this behavior
through our theoretical results, and we will discuss how to preclude this
behavior through appropriate assumptions.

3.5.1 Stochastic Shortest Path Problems

Let us consider the SSP problem that we discussed in Section 1.3.2. It
involves a directed graph with nodes x = 1, . . . , n, plus a destination node
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t that is cost-free and absorbing. At each node x, we must select a control
u ∈ U(x), which defines a probability distribution pxy(u) over all possible
successor nodes y = 1, . . . , n, t, while a cost g(x, u) is incurred. We wish to
minimize the expected cost of the traversed path, with cost accumulated
up to reaching the destination.

Note that if for every feasible control the corresponding probability
distribution assigns probability 1 to a single successor node, we obtain the
deterministic shortest path problem of Section 3.1.1. This problem admits
a relatively simple analysis, yet exhibits pathological behavior that we have
described. The pathologies exhibited by SSP problems are more severe, and
were illustrated in Sections 3.1.2 and 3.1.3.

We formulate the SSP problem as an abstract DP problem where:

(a) The state space is X = {1, . . . , n} and the control constraint set is
U(x) for all x ∈ X . (For technical reasons, it is convenient to exclude
from X the destination t; we know that the optimal cost starting from
t is 0, and including t within X would just complicate the notation
and the analysis, with no tangible benefit.)

(b) The mapping H is given by

H(x, u, J) = g(x, u) +
n∑

y=1

pxy(u)J(y), x = 1, . . . , n.

(c) The function J̄ is identically 0, J̄(x) = 0 for all x.

We continue to denote by E(X) the set of all extended real-valued
functions J : X &→ ,∗, and by R(X) the set of real-valued functions J :
X &→ ,. Note that since X = {1, . . . , n}, R(X) is essentially the n-
dimensional space Rn.

Here the mapping Tµ corresponding to a policy µ maps R(X) to
R(X), and is given by

(TµJ)(x) = g
(
x, µ(x)

)
+

n∑

y=1

pxy
(
µ(x)

)
J(y), x = 1, . . . , n.

The corresponding cost for a given initial state x0 ∈ {1, . . . , n} is

Jµ(x0) = lim sup
k→∞

(T k
µ J̄)(x0) = lim sup

k→∞

k−1∑

m=0

E
{
g
(
xm, µ(xm)

)}
,

where {xm} is the (random) state trajectory generated under policy µ,
starting from initial state x0. The expected value E

{
g(xm, µ(xm))

}
above

is defined in the natural way: it is the weighted sum of the numerical values
g
(
x, µ(x)

)
, x = 1, . . . , n, weighted by the probabilities p(xm = x | x0, µ)
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that xm = x given that the initial state is x0 and policy µ is used. Thus
Jµ(x0) is the upper limit as k → ∞ of the cost for the first k steps or up
to reaching the destination, whichever comes first.

A stationary policy µ is said to be proper if for every initial state
there is positive probability that the destination will be reached under that
policy after at most n stages. A stationary policy that is not proper is said
to be improper . The relation between proper policies and S-regularity is
given in the following proposition.

Proposition 3.5.1: (Proper Policies and Regularity) A policy
is proper if and only if it is R(X)-regular.

Proof: Clearly µ is R(X)-regular if and only if the n×n matrix Pµ, whose
components are pxy

(
µ(x)

)
, x, y = 1, . . . , n, is a contraction (since Tµ is a

linear mapping with matrix Pµ). If µ is proper then Pµ is a contraction
mapping with respect to some weighted sup-norm; this is a classical result,
given for example in [BeT89], Section 4.2. Conversely, it can be seen that
if µ is improper, Pµ is not a contraction mapping since the Markov chain
corresponding to µ has multiple ergodic classes and hence the equilibrium
equation ξ′ = ξ′Pµ has multiple solutions. Q.E.D.

Looking back to the shortest path examples of Sections 3.1.1-3.1.3,
we can make some observations. In deterministic shortest path problems,
µ(x) can be identified with the single successor node of node x. Thus µ is
proper if and only if the corresponding graph of arcs

(
x, µ(x)

)
is acyclic.

Moreover, there exists a proper policy if and only if each node is connected
to the destination with a sequence of arcs. Every improper policy involves
at least one cycle. Depending on the sign of the length of their cycle(s),
improper policies can be strictly suboptimal (if all cycles have positive
length), or may be optimal (possibly together with some proper policies,
if all cycles have nonnegative length). Moreover, if there are cycles with
negative length, no proper policy can be optimal and for the states x that
lie on some negative length cycle we have J*(x) = −∞.

A further characterization of the optimal solution is possible in deter-
ministic shortest path problems. Since the sets U(x) are finite, there exists
an optimal policy, which can be separated into a “proper” part consisting
of arcs that form an acyclic subgraph, and an “improper” part consisting
of cycles that have negative or zero length. These facts can be proved with
simple arguments, which will not be given here (deterministic shortest path
theory and algorithms are developed in detail in the author’s text [Ber98]).

In SSP problems, the situation is more complicated. In particular,
the cost function of an improper policy µ may not be a fixed point of
Tµ while J* may not be a fixed point of T (cf. the example of Section
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3.1.2). Moreover, there may not exist an optimal stationary policy even if
all policies are proper (cf. the three variants of the blackmailer example of
Section 3.1.3).

In this section we will use various assumptions, which we will in turn
translate into the conditions and corresponding results of Sections 3.2-3.4.
Throughout this section we will assume the following.

Assumption 3.5.1: There exists at least one proper policy.

Depending on the circumstances, we will also consider the use of one
or both of the following assumptions.

Assumption 3.5.2: The control space U is a metric space. Moreover,
for each state x, the set U(x) is a compact subset of U , the functions
pxy(·), y = 1, . . . , n, are continuous over U(x), and the function g(x, ·)
is lower semicontinuous over U(x).

Assumption 3.5.3: For every improper policy µ and function J ∈
R(X), there exists at least one state x ∈ X such that Jµ(x) = ∞.

An important consequence of Assumption 3.5.2 is that it implies the
compactness condition (d) of Assumption 3.3.1. We will also see from the
proof of the following proposition that Assumption 3.5.3 implies the infinite
cost condition (c) of Assumption 3.3.1.

Analysis Under the Strong SSP Conditions

The preceding three assumptions, referred to as the strong SSP condi-
tions , † were introduced in the paper [BeT91], and they were used to show
strong results for the SSP problem. In particular, the following proposition
was shown.

Proposition 3.5.2: Let the strong SSP conditions hold. Then:

(a) The optimal cost function J* is the unique solution of Bellman’s
equation J = TJ within R(X).

† The strong SSP conditions and the weak SSP conditions, which will be
introduced shortly, relate to the strong and weak PI properties of Section 3.2.
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(b) The VI sequence {T kJ} converges to J* starting from any J ∈
R(X).

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover, there
exists an optimal policy that is proper.

(d) The PI algorithm, starting from any proper policy, is valid in the
sense described by the conclusions of Prop. 3.3.1(e).

We will prove the proposition by using the strong SSP conditions to
verify Assumption 3.3.1 for S = R(X), and then by applying Prop. 3.3.1.
To this end, we first state without proof the following result relating to
proper policies from [BeT91].

Proposition 3.5.3: Under the strong SSP conditions, the optimal
cost function Ĵ over proper policies only,

Ĵ(x) = inf
µ: proper

Jµ(x), x ∈ X,

is real-valued.

The preceding proposition holds trivially if the control space U is
finite (since then the set of all policies is finite), or if J* is somehow known to
be real-valued [for example if g(x, u) ≥ 0 for all (x, u)]. The three variants
of the blackmailer problem of Section 3.1.3 provide examples illustrating
what can happen if U is infinite. In particular, in the first variant of the
blackmailer problem all policies are proper (and hence Assumptions 3.5.1
and 3.5.3 are satisfied), but Ĵ is not real-valued. The proof of Prop. 3.5.3
in the case of an infinite control space U was given as part of Prop. 2 of
the paper [BeT91]. Despite the intuitive nature of Prop. 3.5.3, the proof
embodies a fairly complicated argument (see Lemma 3 of [BeT91]).

Another related result is that if all policies are proper, then for all
µ ∈ M, Tµ is a contraction mapping with respect to a common weighted
sup-norm, so the contractive model analysis and algorithms of Chapter 2
apply (see [BeT96], Prop. 2.2). However, this fact will not be useful to us
in this section.

Proof of Prop. 3.5.2: In the context of Section 3.3, let us choose S =
R(X), so the proper policies are identified with the S-regular policies by
Prop. 3.5.1. We will verify Assumption 3.3.1.

Indeed parts (a) and (e) are trivially satisfied, part (b) is satisfied
by Prop. 3.5.3, part (d) can be easily verified by using Assumption 3.5.2.
To verify part (f), we use Prop. 3.3.2, which applies because S = R(X) =
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Rb(X) (since X is finite) and Eq. (3.27) clearly holds. Finally, to verify part
(c) we must show that given an improper policy µ, for every J ∈ R(X) there
exists an x ∈ X such that lim supk→∞(T k

µJ)(x) = ∞. This follows since
by Assumption 3.5.3, Jµ(x) = lim supk→∞(T k

µ J̄)(x) = ∞, for some x ∈ X ,
and (T k

µJ)(x) and (T k
µ J̄)(x) differ by E

{
J(xk)

}
, an amount that is finite

since J is real-valued and has a finite number of components J(x). Thus
Assumption 3.3.1 holds and the result follows from Prop. 3.3.1. Q.E.D.

Analysis Under the Weak SSP Conditions

Under the strong SSP conditions, we showed in Prop. 3.5.2 that J* is the
unique fixed point of T within R(X). Moreover, we showed that a policy µ∗

is optimal if and only if Tµ∗J* = TJ*, and an optimal proper policy exists
(so in particular J*, being the cost function of a proper policy, is real-
valued). In addition, J* can be computed by the VI algorithm starting
with any J ∈ ,n.

We will now replace Assumption 3.5.3 (improper policies have cost
∞ for some initial states) with the following weaker assumption:

Assumption 3.5.4: The optimal cost function J* is real-valued.

We will refer to the Assumptions 3.5.1, 3.5.2, and 3.5.4 as the weak
SSP conditions . The examples of Sections 3.1.1 and 3.1.2 show that under
these assumptions, it is possible that

J* (= Ĵ = inf
µ: proper

Jµ,

while J* need not be a fixed point of T (Section 3.1.2). The key fact is that
under Assumption 3.5.4, we can use the perturbation approach of Section
3.4, whereby adding δ > 0 to the mapping Tµ makes all improper policies
have infinite cost for some initial states, so the results of Prop. 3.5.2 can be
used for the δ-perturbed problem. In particular, Prop. 3.5.1 implies that
J*
S = Ĵ , so from Prop. 3.4.1 it follows that Ĵ is a fixed point of T and the

conclusions of Prop. 3.2.1 hold. We thus obtain the following proposition,
which provides additional results, not implied by Prop. 3.2.1; see Fig. 3.5.1.

Proposition 3.5.4: Let the weak SSP conditions hold. Then:

(a) The optimal cost function over proper policies, Ĵ , is the largest
solution of Bellman’s equation J = TJ within R(X), i.e., Ĵ is
a solution that belongs to R(X), and if J ′ ∈ R(X) is another
solution, we have J ′ ≤ Ĵ .
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Paths of VI Unique solution of Bellman’s equation

Fixed Points of T

S = !2

2 Ĵ JĴ : Largest fixed point of T J

Figure 3.5.1. Schematic illustration of Prop. 3.5.4 for a problem with two states,
so R(X) = $2 = S. We have that Ĵ is the largest solution of Bellman’s equation,
while VI converges to Ĵ starting from J ≥ Ĵ . As shown in Section 3.1.2, J∗ need
not be a solution of Bellman’s equation.

(b) The VI sequence {T kJ} converges linearly to Ĵ starting from any
J ∈ R(X) with J ≥ Ĵ .

(c) Let µ be a proper policy. Then µ is optimal within the class of
proper policies (i.e., Jµ = Ĵ) if and only if TµĴ = T Ĵ .

(d) For every J ∈ R(X) such that J ≤ TJ , we have J ≤ Ĵ .

Proof: (a), (b) Let S = R(X), so the proper policies are identified with
the S-regular policies by Prop. 3.5.1. We use the perturbation framework
of Section 3.4 with forcing function p(x) ≡ 1. From Prop. 3.5.2 it follows
that Prop. 3.4.1 applies so that Ĵ is a fixed point of T , and the conclusions
of Prop. 3.2.1 hold, so T kJ → Ĵ starting from any J ∈ R(X) with J ≥ Ĵ .
The convergence rate of VI is linear in view of Prop. 3.2.2 and the existence
of an optimal proper policy to be shown in part (c). Finally, let J ′ ∈ R(X)
be another solution of Bellman’s equation, and let J ∈ R(X) be such that
J ≥ Ĵ and J ≥ J ′. Then T kJ → Ĵ , while T kJ ≥ T kJ ′ = J ′. It follows
that Ĵ ≥ J ′.

(c) If the proper policy µ satisfies Jµ = Ĵ , we have Ĵ = Jµ = TµJµ = TµĴ ,
so, using also the relation Ĵ = T Ĵ [cf. part (a)], we obtain TµĴ = T Ĵ .
Conversely, if µ satisfies TµĴ = T Ĵ , then using part (a), we have TµĴ = Ĵ
and hence limk→∞ T k

µ Ĵ = Ĵ . Since µ is proper, we have Jµ = limk→∞ T k
µ Ĵ ,

so Jµ = Ĵ .

(d) Let J ≤ TJ and δ > 0. We have J ≤ TJ + δe = TδJ , and hence
J ≤ T k

δ J for all k. Since the strong SSP conditions hold for the δ-perturbed
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problem, it follows that T k
δ J → Ĵδ, so J ≤ Ĵδ. By taking δ ↓ 0 and using

Prop. 3.4.1, it follows that J ≤ Ĵ . Q.E.D.

The first variant of the blackmailer Example 3.4.2 shows that un-
der the weak SSP conditions there may not exist an optimal policy or an
optimal policy within the class of proper policies if the control space is
infinite. This is consistent with Prop. 3.5.4(c). Another interesting fact is
provided by the third variant of this example in the case where c < 0. Then
J*(1) = −∞ (violating Assumption 3.5.4), but Ĵ is real-valued and does
not solve Bellman’s equation, contrary to the conclusion of Prop. 3.5.4(a).

Part (d) of Prop. 3.5.4 shows that Ĵ is the unique solution of the
problem of maximizing

∑n
i=1 βiJ(i) over all J =

(
J(1), . . . , J(n)

)
such

that J ≤ TJ , where β1, . . . ,βn are any positive scalars (cf. Prop. 3.2.9).
This problem can be written as

maximize
n∑

i=1

J(i)

subject to J(x) ≤ g(x, u) +
n∑

y=1

pij(u)J(j), i = 1, . . . , n, u ∈ U(i),

and is a linear program if each U(i) is a finite set.
Generally, under the weak SSP conditions the strong PI property may

not hold, so a sequence generated by PI starting from a proper policy need
not have the cost improvement property. An example is the deterministic
shortest path problem of Section 3.1.1, when there is a zero length cycle
(a = 0) and the only optimal policy is proper (b = 0). Then the PI
algorithm may oscillate between the optimal proper policy and the strictly
suboptimal improper policy. We will next consider the modified version of
the PI algorithm that is based on the use of perturbations (Section 3.4).

Policy Iteration with Perturbations

To deal with the oscillatory behavior of PI, which was illustrated in the de-
terministic shortest path Example 3.2.2, we may use the perturbed version
of the PI algorithm of Section 3.4, with forcing function p(x) ≡ 1. Thus,
we have

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δ, x ∈ X, TδJ = inf

µ∈M
Tµ,δJ.

The algorithm generates the sequence {µk} as follows.
Let {δk} be a positive sequence with δk ↓ 0, and let µ0 be any proper

policy. At iteration k, we have a proper policy µk, and we generate µk+1

according to
Tµk+1Jµk,δk

= TJµk,δk
, (3.31)
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where Jµk,δk
is computed as the unique fixed point of the mapping Tµk,δk

given by
Tµk,δk

J = TµkJ + δke.

The policy µk+1 of Eq. (3.31) exists by the compactness Assumption
3.5.2. We claim that µk+1 is proper. To see this, note that

Tµk+1,δk
Jµk,δk

= TJµk,δk
+ δk e ≤ TµkJµk,δk

+ δk e = Jµk,δk
,

so that by the monotonicity of T k+1
µ ,

Tm
µk+1,δk

Jµk ,δk
≤ Tµk+1,δk

Jµk,δk
= TJµk,δk

+ δk e ≤ Jµk ,δk
, ∀ m ≥ 1.

Since Jµk ,δk
forms an upper bound to Tm

µk+1,δk
Jµk ,δk

, it follows that µk+1

is proper [if it were improper, we would have (Tm
µk+1,δk

Jµk ,δk
)(x) → ∞ for

some x, because of the perturbation δk]. Thus the sequence {µk} generated
by the perturbed PI algorithm (3.31) is well-defined and consists of proper
policies. We have the following proposition.

Proposition 3.5.5: Let the weak SSP conditions hold. Then the se-
quence {Jµk} generated by the perturbed PI algorithm (3.31) satisfies

Jµk → Ĵ .

Proof: We apply the perturbation framework of Section 3.4 with S =
R(X), M̂ equal to the set of proper policies, and the forcing function
p(x) ≡ 1. Clearly Assumption 3.4.1 holds, so Prop. 3.4.2 applies. Q.E.D.

When the control space U is finite, the generated policies µk will be
optimal for all k sufficiently large, as noted following Prop. 3.4.2. However,
when the control space U is infinite, the generated sequence {µk} may
exhibit some serious pathologies in the limit, as we have seen in Example
3.4.2.

3.5.2 Affine Monotonic Problems

In this section, we consider a class of semicontractive models, called affine
monotonic, where the abstract mapping Tµ associated with a stationary
policy µ is affine and maps nonnegative functions to nonnegative functions.
These models include as special cases stochastic undiscounted nonnegative
cost problems, and multiplicative cost problems, such as risk-averse prob-
lems with exponentiated additive cost and a termination state (see Example
1.2.8). Here we will focus on the special case where the state space is finite
and a certain compactness condition holds.
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We consider a finite state space X = {1, . . . , n} and a (possibly in-
finite) control constraint set U(x) for each state x. For each µ ∈ M the
mapping Tµ is given by

TµJ = bµ +AµJ,

where bµ is a vector of ,n with components b
(
x, µ(x)

)
, x = 1, . . . , n, and

Aµ is an n× n matrix with scalar components Axy

(
µ(x)

)
, x, y = 1, . . . , n.

We assume that b(x, u) and Axy(u) are nonnegative,

b(x, u) ≥ 0, Axy(u) ≥ 0, ∀ x, y = 1, . . . , n, u ∈ U(x).

Thus Tµ maps E+(X) into E+(X), where E+(X) denotes the set of non-
negative extended real-valued functions J : X &→ [0,∞]. Moreover Tµ

also maps R+(X) to R+(X), where R+(X) denotes the set of nonnegative
real-valued functions J : X &→ [0,∞).

The mapping T : E+(X) &→ E+(X) is given by

(TJ)(x) = inf
µ∈M

(TµJ)(x), x ∈ X,

or equivalently,

(TJ)(x) = inf
u∈U(x)

[
b(x, u) +

n∑

y=1

Axy(u)J(y)

]
, x ∈ X.

Multiplicative and Exponential Cost SSP Problems

Affine monotonic models appear in several contexts. In particular, finite-
state sequential stochastic control problems (including SSP problems) with
nonnegative cost per stage (see, e.g., [Ber12a], Chapter 3, and Section 4.1)
are special cases where J̄ is the identically zero function [J̄(x) ≡ 0]. We
will describe another type of SSP problem, where the cost function of a
policy accumulates over time multiplicatively, rather than additively.

As in the SSP problems of the preceding section, we assume that there
are n states x = 1, . . . , n, and a cost-free and absorbing state t. There are
probabilistic state transitions among the states x = 1, . . . , n, up to the
first time a transition to state t occurs, in which case the state transitions
terminate. We denote by pxt(u) and pxy(u) the probabilities of transition
under u from x to t and to y, respectively, so that

pxt(u) +
n∑

y=1

pxy(u) = 1, x = 1, . . . , n, u ∈ U(x).

We introduce nonnegative scalars h(x, u, t) and h(x, u, y),

h(x, u, t) ≥ 0, h(x, u, y) ≥ 0, ∀ x, y = 1, . . . , n, u ∈ U(x),
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and we consider the affine monotonic problem where the scalars Axy(u)
and b(x, u) are defined by

Axy(u) = pxy(u)h(x, u, y), x, y = 1, . . . , n, u ∈ U(x),

and
b(x, u) = pxt(u)h(x, u, t), x = 1, . . . , n, u ∈ U(x),

and the vector J̄ is the unit vector,

J̄(x) = 1, x = 1, . . . , n.

The cost function of this problem has a multiplicative character as we show
next.

Indeed, with the preceding definitions of Axy(u), b(x, u), and J̄ , we
will prove that the expression for the cost function of a policy π = {µ0, µ1, . . .},

Jπ(x0) = lim sup
N→∞

(Tµ0 · · ·TµN−1 J̄)(x0), x0 = 1, . . . , n,

can be written in the multiplicative form

Jπ(x0) = lim sup
N→∞

E

{
N−1∏

k=0

h
(
xk, µk(xk), xk+1

)
}
, x0 = 1, . . . , n,

(3.32)
where:

(a) {x0, x1, . . .} is the random state trajectory generated starting from
x0, using π.

(b) The expected value is with respect to the probability distribution of
that trajectory.

(c) We use the notation

h
(
xk, µk(xk), xk+1

)
= 1, if xk = xk+1 = t,

(so that the multiplicative cost accumulation stops once the state
reaches t).

Thus, we claim that Jπ(x0) can be viewed as the expected value of cost ac-
cumulated multiplicatively, starting from x0 up to reaching the termination
state t (or indefinitely accumulated multiplicatively, if t is never reached).

To verify the formula (3.32) for Jπ , we use the definition TµJ =
bµ +AµJ, to show by induction that for every π = {µ0, µ1, . . .}, we have

Tµ0 · · ·TµN−1 J̄ = Aµ0 · · ·AµN−1 J̄ + bµ0 +
N−1∑

k=1

Aµ0 · · ·Aµk−1bµk
. (3.33)
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We then interpret the n components of each vector on the right as condi-
tional expected values of the expression

N−1∏

k=0

h
(
xk, µk(xk), xk+1

)
(3.34)

multiplied with the appropriate conditional probability. In particular:

(a) The ith component of the vector Aµ0 · · ·AµN−1 J̄ in Eq. (3.33) is the
conditional expected value of the expression (3.34), given that x0 = i
and xN (= t, multiplied with the conditional probability that xN (= t,
given that x0 = i.

(b) The ith component of the vector bµ0 in Eq. (3.33) is the conditional
expected value of the expression (3.34), given that x0 = i and x1 = t,
multiplied with the conditional probability that x1 = t, given that
x0 = i.

(c) The ith component of the vector Aµ0 · · ·Aµk−1bµk
in Eq. (3.33) is

the conditional expected value of the expression (3.34), given that
x0 = i, x1, . . . , xk−1 (= t, and xk = t, multiplied with the conditional
probability that x1, . . . , xk−1 (= t, and xk = t, given that x0 = i.

By adding these conditional probability expressions, we obtain the ith com-
ponent of the unconditional expected value

E

{
N−1∏

k=0

h
(
xk, µk(xk), xk+1

)
}
,

thus verifying the formula (3.32).
A special case of multiplicative cost problem is the risk-sensitive SSP

problem with exponential cost function, where for all x = 1, . . . , n, and
u ∈ U(x),

h(x, u, y) = exp
(
g(x, u, y)

)
, y = 1, . . . , n, t,

and the function g can take both positive and negative values. The mapping
Tµ has the form

(TµJ)(x) = pxt
(
µ(x)

)
exp
(
g(x, µ(x), t)

)

+
n∑

y=1

pxy
(
µ(x)

)
exp
(
g(x, µ(x), y)

)
J(y), x = 1, . . . , n,

(3.35)
where pxy(u) is the probability of transition from x to y under u, and
g(x, u, y) is the cost of the transition. The Bellman equation is

J(x) = inf
u∈U(x)

[
pxt(u)exp

(
g(x, u, t)

)
+

n∑

y=1

pxy(u)exp
(
g(x, u, y)

)
J(y)

]
.
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Based on Eq. (3.32), we have that Jπ(x0) is the limit superior of the ex-
pected value of the exponential of the N -step additive finite horizon cost

up to termination, i.e.,
∑k̄

k=0 g
(
xk, µk(xk), xk+1

)
, where k̄ is equal to the

first index prior to N − 1 such that xk̄+1 = t, or is equal to N − 1 if there
is no such index. The use of the exponential introduces risk aversion, by
assigning a strictly convex increasing penalty for large rather than small
cost of a trajectory up to termination (and hence a preference for small
variance of the additive cost up to termination).

The deterministic version of the exponential cost problem where for
each u ∈ U(x), one of the transition probabilities pxt(u), px1(u), . . . , pxn(u)
is equal to 1 and all others are equal to 0, is mathematically equivalent
to the classical deterministic shortest path problem (since minimizing the
exponential of a deterministic expression is equivalent to minimizing that
expression). For this problem a standard assumption is that there are
no cycles that have negative total length to ensure that the shortest path
length is finite. However, it is interesting that this assumption is not re-
quired for the analysis of the present section: when there are paths that
travel perpetually around a negative length cycle we simply have J*(x) = 0
for all states x on the cycle, which is permissible within our context.

Assumptions on Policies - Contractive Policies

Let us now derive an expression for the cost function of a policy. By
repeatedly applying the mapping Tµ to the equation TµJ = bµ + AµJ , we
have

TN
µ J = AN

µ J +
N−1∑

k=0

Ak
µbµ, ∀ J ∈ E+(X), N = 1, 2, . . . ,

and hence

Jµ = lim sup
N→∞

TN
µ J̄ = lim sup

N→∞
AN

µ J̄ +
∞∑

k=0

Ak
µbµ (3.36)

(the series converges since Aµ and bµ have nonnegative components).
We say that µ is contractive if Aµ has eigenvalues that are strictly

within the unit circle. In this case Tµ is a contraction mapping with re-
spect to some weighted sup-norm (see Prop. B.3 in Appendix B). If µ is
contractive, then AN

µ J̄ → 0 and from Eq. (3.36), it follows that

Jµ =
∞∑

k=0

Ak
µbµ = (I −Aµ)−1bµ,

and Jµ is real-valued as well as nonnegative, i.e., Jµ ∈ R+(X). Moreover, a
contractive µ is alsoR+(X)-regular, since Jµ does not depend on the initial
function J̄ . The reverse is also true as shown by the following proposition.
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Proposition 3.5.6: A policy µ is contractive if and only if it is
R+(X)-regular. Moreover, if µ is noncontractive and all the com-
ponents of bµ are strictly positive, there exists a state x such that the
corresponding component of the vector

∑∞
k=0 A

k
µbµ is ∞.

Proof: As noted earlier, if µ is contractive it is R+(X)-regular. It will
thus suffice to show that for a noncontractive µ and strictly positive com-
ponents of bµ, some component of

∑∞
k=0 A

k
µbµ is ∞. Indeed, according

to the Perron-Frobenius Theorem, the nonnegative matrix Aµ has a real
eigenvalue λ, which is equal to its spectral radius, and an associated non-
negative eigenvector ξ (= 0 [see Prop. B.3(a) in Appendix B]. Choose γ > 0
to be such that bµ ≥ γξ, so that

∞∑

k=0

Ak
µbµ ≥ γ

∞∑

k=0

Ak
µξ = γ

(
∞∑

k=0

λk

)
ξ.

Since some component of ξ is positive while λ ≥ 1 (since µ is noncon-
tractive), the corresponding component of the infinite sum on the right is
infinite, and the same is true for the corresponding component of the vector∑∞

k=0 A
k
µbµ on the left. Q.E.D.

Let us introduce some assumptions that are similar to the ones of the
preceding section.

Assumption 3.5.5: There exists at least one contractive policy.

Assumption 3.5.6: (Compactness and Continuity) The control
space U is a metric space, and Axy(·) and b(x, ·) are continuous func-
tions of u over U(x), for all x and y. Moreover, for each state x, the
sets {

u ∈ U(x)
∣∣∣ b(x, u) +

n∑

y=1

Axy(u)J(y) ≤ λ

}

are compact subsets of U for all scalars λ ∈ , and J ∈ R+(X).

Case of Infinite Cost Noncontractive Policies

We now turn to questions relating to Bellman’s equation, the convergence of
the VI and PI algorithms, as well as conditions for optimality of a stationary
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policy. We first consider the following assumption, which parallels the
infinite cost Assumption 3.5.3 for SSP problems.

Assumption 3.5.7: (Infinite Cost Condition) For every noncon-
tractive policy µ, there is at least one state such that the corresponding
component of the vector

∑∞
k=0 A

k
µbµ is equal to ∞.

We will now show that for S = R+(X), Assumptions 3.5.5, 3.5.6,
and 3.5.7 imply all the parts of Assumption 3.3.1 of Section 3.3, so Prop.
3.3.1 can be applied to the affine monotonic model. Indeed parts (a), (e)
of Assumption 3.3.1 clearly hold. Part (b) also holds, since by Assumption
3.5.5 there exists a contractive and hence S-regular policy, so we have J*

S ∈
R+(X). Moreover Assumption 3.5.6 implies part (d), while Assumption
3.5.7 implies part (c). Finally part (f) holds since for every J ∈ R+(X), the
zero function, J ′(x) ≡ 0, lies in R+(X), and satisfies J ′ ≤ J and J ′ ≤ TJ ′.
Thus Prop. 3.3.1 yields the following result.

Proposition 3.5.7: (Bellman’s Equation, Policy Iteration, Va-
lue Iteration, and Optimality Conditions) Let Assumptions 3.5.5,
3.5.6, and 3.5.7 hold.

(a) The optimal cost vector J* is the unique fixed point of T within
R+(X).

(b) We have T kJ → J* for all J ∈ R+(X).

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover there
exists an optimal policy that is contractive.

(d) For any J ∈ R+(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ
we have J ≥ J*.

(e) Every sequence {µk} generated by the PI algorithm starting from
a contractive policy µ0 satisfies Jµk ↓ J*. Moreover, if the set of

contractive policies is finite, there exists k̄ ≥ 0 such that µk̄ is
optimal.

Example 3.5.1 (Exponential Cost Shortest Path Problem)

Consider the deterministic shortest path example of Section 3.1.1, but with
the exponential cost function of the present subsection; cf. Eq. (3.35). There
are two policies denoted µ and µ′; see Fig. 3.5.2. The corresponding mappings
and costs are shown in the figure, and Bellman’s equation is given by

J(1) = (TJ)(1) = min
{
exp(b), exp(a)J(1)

}
.
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a 1 2 1 2 t b

t b Destination

Policy µ

Jµ(1) = exp(b)

) (TµJ)(1) = exp(b) (

a Length b

Length a

) and Policy µ′

) Jµ′(1) = limN→∞ exp(aN)

(Tµ′J)(1) = exp(a)J(1)

Figure 3.5.2. Shortest path problem with exponential cost function.

We consider three cases:

(a) a > 0: Here the proper policy µ is optimal, and the improper policy
µ′ is R+(X)-irregular (noncontractive) and has infinite cost, Jµ′(1) =
∞. The assumptions of Prop. 3.5.7 hold, and consistently with the
conclusions of the proposition, J∗(1) = exp(b) is the unique solution of
Bellman’s equation.

(b) a = 0: Here the improper policy µ′ is R+(X)-irregular (noncontractive)
and has finite cost, Jµ′(1) = 1, so the assumptions of Prop. 3.5.7 are
violated. The set of solutions of Bellman’s equation within S = R+(X)
is the interval

[
0, exp(b)

]
.

(c) a < 0: Here both policies are contractive, including the improper pol-
icy µ′. The assumptions of Prop. 3.5.7 hold, and consistently with
the conclusions of the proposition, J∗(1) = 0 is the unique solution of
Bellman’s equation.

The reader may also verify that in the cases where a += 0, the assumptions
and the results of Prop. 3.5.7 hold.

Case of Finite Cost Noncontractive Policies

We will now eliminate Assumption 3.5.7, thus allowing noncontractive poli-
cies with real-valued cost functions, similar to the corresponding case of the
preceding section, under the weak SSP conditions. Let us denote by Ĵ the
optimal cost function that can be achieved with contractive policies only,

Ĵ(x) = inf
µ: contractive

Jµ(x), x = 1, . . . , n. (3.37)

We use the perturbation approach of Section 3.4 and Prop. 3.4.1 to show
that Ĵ is a solution of Bellman’s equation. In particular, we add a constant
δ > 0 to all components of bµ. By using arguments that are entirely
analogous to the ones for the SSP case of Section 3.5.1, we obtain the
following proposition, which is illustrated in Fig. 3.5.3. A detailed analysis
and proof is given in the exercises.
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Paths of VI Unique solution of Bellman’s equation

Fixed Points of T

2 Ĵ JĴ : Largest fixed point of T J

b < 0

Figure 3.5.3. Schematic illustration of Prop. 3.5.8 for a problem with two states.
The optimal cost function over contractive policies, Ĵ , is the largest solution of
Bellman’s equation, while VI converges to Ĵ starting from J ≥ Ĵ.

Proposition 3.5.8: (Bellman’s Equation, Value Iteration, and
Optimality Conditions)Let Assumptions 3.5.5 and 3.5.6 hold. Then:

(a) The optimal cost function over contractive policies, Ĵ , is the
largest solution of Bellman’s equation J = TJ within R+(X),
i.e., Ĵ is a solution that belongs to R+(X), and if J ′ ∈ R+(X)
is another solution, we have J ′ ≤ Ĵ .

(b) We have T kJ → Ĵ for every J ∈ R+(X) with J ≥ Ĵ .

(c) Let µ be a contractive policy. Then µ is optimal within the class
of contractive policies (i.e., Jµ = Ĵ) if and only if TµĴ = T Ĵ .

(d) For every J ∈ R+(X) such that J ≤ TJ , we have J ≤ Ĵ .

The other results of Section 3.5.1 for SSP problems also have straight-
forward analogs. Moreover, there is an adaptation of the example of Section
3.1.2, which provides an affine monotonic model for which J* is not a fixed
point of T (see the author’s paper [Ber16a], to which we refer for further
discussion).

Example 3.5.2 (Deterministic Shortest Path Problem with
Exponential Cost - Continued)

Consider the problem of Fig. 3.5.2, for the case a = 0. This is the case where
the noncontractive policy µ′ has finite cost, so Assumption 3.5.7 is violated
and Prop. 3.5.7 does not apply. However, it can be seen that the assumptions
of Prop. 3.5.8 hold. Consistent with part (a) of the proposition, the optimal
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cost over contractive policies, Ĵ(1) = exp(b), is the largest of the fixed points
of T . The other parts of Prop. 3.5.8 may also be easily verified.

We note that in the absence of the infinite cost Assumption 3.5.7,
it is possible that the only optimal policy is noncontractive, even if the
compactness Assumption 3.5.6 holds and Ĵ = J*. This is shown in the
following example.

Example 3.5.3 (A Counterexample on the Existence of an
Optimal Contractive Policy)

Consider the exponential cost version of the blackmailer problem of Example
3.4.2 (cf. Fig. 3.4.1). Here there is a single state 1, at which we must choose
u ∈ [0, 1]. Then, we terminate at no cost [g(1, u, t) = 0 in Eq. (3.35)] with
probability u, and we stay at state 1 at cost −u [i.e., g(1, u, 1) = −u in Eq.
(3.35)] with probability 1− u. We have

b(i, u) = u exp (0) = u, A11(u) = (1− u) exp (−u),

so that
H(1, u, J) = u+ (1− u) exp (−u)J.

Here there is a unique noncontractive policy µ′: it chooses u = 0 at state 1,
and has cost Jµ′(1) = 1. Every policy µ with µ(1) ∈ (0, 1] is contractive, and
Jµ can be obtained by solving the equation Jµ = TµJµ, i.e.,

Jµ(1) = µ(1) +
(
1− µ(1)

)
exp
(
− µ(1)

)
Jµ(1).

We thus obtain

Jµ(1) =
µ(1)

1−
(
1− µ(1)

)
exp
(
− µ(1)

) .

By minimizing over µ(1) ∈ (0, 1] this expression, it can be seen that Ĵ(1) =
J∗(1) = 1

2 , but there exists no optimal policy, and no optimal policy within
the class of contractive policies [Jµ(1) decreases monotonically to 1

2 as µ(1) →
0].

3.5.3 Robust Shortest Path Planning

We will now discuss how the analysis of Sections 3.3 and 3.4 applies to min-
imax shortest path-type problems, following the author’s paper [Ber19c],
to which we refer for further discussion. To formally describe the problem,
we consider a graph with a finite set of nodes X ∪ {t} and a finite set of
directed arcs A ⊂

{
(x, y) | x, y ∈ X ∪ {t}

}
, where t is a special node called

the destination. At each node x ∈ X we may choose a control u from a
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nonempty set U(x), which is a subset of a finite set U . Then a succes-
sor node y is selected by an antagonistic opponent from a nonempty set
Y (x, u) ⊂ X ∪ {t} and a cost g(x, u, y) is incurred. The destination node
t is absorbing and cost-free, in the sense that the only outgoing arc from t
is (t, t), and we have Y (t, u) = {t} and g(t, u, t) = 0 for all u ∈ U(t).

As earlier, we denote the set of all policies by Π, and the finite set of
all stationary policies by M. Also, we denote the set of functions J : X &→
[−∞,∞] by E(X), and the set of functions J : X &→ (−∞,∞) by R(X).
We introduce the mapping H : X × U × E(X) &→ [−∞,∞] given by

H(x, u, J) = max
y∈Y (x,u)

[
g(x, u, y) + J̃(y)

]
, x ∈ X, (3.38)

where for any J ∈ E(X) we denote by J̃ the function given by

J̃(y) =

{
J(y) if y ∈ X ,
0 if y = t.

(3.39)

We consider the mapping T : E(X) &→ E(X) defined by

(TJ)(x) = min
u∈U(x)

H(x, u, J), x ∈ X, (3.40)

and for each policy µ, the mapping Tµ : E(X) &→ E(X), defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, x ∈ X. (3.41)

We let J̄ be the zero function,

J̄(x) = 0, ∀ x ∈ X.

The cost function of a policy π = {µ0, µ1, . . .} is

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), x ∈ X,

and J*(x) = infπ∈Π Jπ(x), cf. Definition 3.2.1.
For a policy µ ∈ M, we define a possible path under µ starting at

node x0 ∈ X to be an arc sequence of the form

p =
{
(x0, x1), (x1, x2), . . .

}
,

such that xk+1 ∈ Y
(
xk, µ(xk)

)
for all k ≥ 0. The set of all possible

paths under µ starting at x0 is denoted by P (x0, µ). The length of a path
p ∈ P (x0, µ) is defined by

Lµ(p) = lim sup
m→∞

m∑

k=0

g
(
xk, µ(xk), xk+1

)
.
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Using Eqs. (3.38)-(3.41), we see that for any µ ∈ M and x ∈ X , (T k
µ J̄)(x)

is the result of the k-stage DP algorithm that computes the length of the
longest path under µ that starts at x and consists of k arcs.

For completeness, we also define the length of a portion

{
(xi, xi+1), (xi+1, xi+2), . . . , (xm, xm+1)

}

of a path p ∈ P (x0, µ), consisting of a finite number of consecutive arcs, by

m∑

k=i

g
(
xk, µ(xk), xk+1

)
.

When confusion cannot arise we will also refer to such a finite-arc por-
tion as a path. Of special interest are cycles , i.e., paths of the form{
(xi, xi+1), (xi+1, xi+2), . . . , (xi+m, xi)

}
. Paths that do not contain any

cycle other than the self-cycle (t, t) are called simple.
For a given policy µ ∈ M and x0 (= t, a path p ∈ P (x0, µ) is said to

be terminating if it has the form

p =
{
(x0, x1), (x1, x2), . . . , (xm, t), (t, t), . . .

}
, (3.42)

where m is a positive integer, and x0, . . . , xm are distinct nondestination
nodes. Since g(t, u, t) = 0 for all u ∈ U(t), the length of a terminating path
p of the form (3.42), corresponding to µ, is given by

Lµ(p) = g
(
xm, µ(xm), t

)
+

m−1∑

k=0

g
(
xk, µ(xk), xk+1

)
,

and is equal to the finite length of its initial portion that consists of the
first m+ 1 arcs.

An important characterization of a policy µ ∈ M is provided by the
subset of arcs

Aµ = ∪x∈X

{
(x, y) | y ∈ Y

(
x, µ(x)

)}
.

Thus Aµ ∪ (t, t) can be viewed as the set of all possible paths under µ,
∪x∈XP (x, µ), in the sense that it contains this set of paths and no other
paths. We refer to Aµ as the characteristic graph of µ. We say that Aµ is
destination-connected if for each x ∈ X there exists a terminating path in
P (x, µ).

We say that µ is proper if the characteristic graph Aµ is acyclic
(i.e., contains no cycles). Thus µ is proper if and only if all the paths
in ∪x∈XP (x, µ) are simple and hence terminating (equivalently µ is proper
if and only if Aµ is destination-connected and has no cycles). The term
“proper” is consistent with the one used in Section 3.5.1 for SSP prob-
lems, where it indicates a policy under which the destination is reached
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a 1 2

1 2 t b

t b Destination

0 1 2

1 2 t b

t b Destination

Improper policy µ

a 1 2

0 1 2

b Proper Policy µ′

Figure 3.5.4. A robust shortest path problem with X = {1, 2}, two controls at
node 1, and one control at node 2. The two policies, µ and µ′, correspond to the
two controls at node 1. The figure shows the characteristic graphs Aµ and Aµ′ .

with probability 1. If µ is not proper, it is called improper , in which case
the characteristic graph Aµ must contain a cycle; see the examples of Fig.
3.5.4. Intuitively, a policy is improper, if and only if under that policy there
are initial states such that the antagonistic opponent can force movement
along a cycle without ever reaching the destination.

The following proposition clarifies the properties of Jµ when µ is
improper.

Proposition 3.5.9: Let µ be an improper policy.

(a) If all cycles in the characteristic graphAµ have nonpositive length,
Jµ(x) < ∞ for all x ∈ X .

(b) If all cycles in the characteristic graph Aµ have nonnegative
length, Jµ(x) > −∞ for all x ∈ X .

(c) If all cycles in the characteristic graph Aµ have zero length, Jµ
is real-valued.

(d) If there is a positive length cycle in the characteristic graph Aµ,
we have Jµ(x) = ∞ for at least one node x ∈ X . More generally,
for each J ∈ R(X), we have lim supk→∞(T k

µJ)(x) = ∞ for at
least one x ∈ X .

Proof: Any path with a finite number of arcs, can be decomposed into a
simple path, and a finite number of cycles (see e.g., the path decomposition
theorem of [Ber98], Prop. 1.1, and Exercise 1.4). Since there is only a
finite number of simple paths under µ, their length is bounded above and
below. Thus in part (a) the length of all paths with a finite number of
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arcs is bounded above, and in part (b) it is bounded below, implying that
Jµ(x) < ∞ for all x ∈ X or Jµ(x) > −∞ for all x ∈ X , respectively. Part
(c) follows by combining parts (a) and (b).

To show part (d), consider a path p, which consists of an infinite
repetition of the positive length cycle that is assumed to exist. Let Ck

µ(p)
be the length of the path that consists of the first k cycles in p. Then
Ck

µ(p) → ∞ and Ck
µ(p) ≤ Jµ(x) for all k, where x is the first node in the

cycle, thus implying that Jµ(x) = ∞. Moreover for every J ∈ R(X) and
all k, (T k

µJ)(x) is the maximum over the lengths of the k-arc paths that
start at x, plus a terminal cost that is equal to either J(y) (if the terminal
node of the k-arc path is y ∈ X), or 0 (if the terminal node of the k-arc
path is the destination). Thus we have,

(T k
µ J̄)(x) + min

{
0, min

x∈X
J(x)

}
≤ (T k

µJ)(x).

Since lim supk→∞(T k
µ J̄)(x) = Jµ(x) = ∞ as shown earlier, it follows that

lim supk→∞(T k
µJ)(x) = ∞ for all J ∈ R(X). Q.E.D.

Note that if there is a negative length cycle in the characteristic graph
Aµ, it is not necessarily true that for some x ∈ X we have Jµ(x) = −∞.
Even for x on the negative length cycle, the value of Jµ(x) is determined
by the longest path in P (x, µ), which may be simple in which case Jµ(x)
is a real number, or contain an infinite repetition of a positive length cycle
in which case Jµ(x) = ∞.

Properness and Regularity

We will now make a formal connection between the notions of properness
and R(X)-regularity. We recall that µ is R(X)-regular if Jµ ∈ R(X),
Jµ = TµJµ, and T k

µJ → Jµ for all J ∈ R(X) (cf. Definition 3.2.2). Clearly
if µ is proper, we have Jµ ∈ R(X) and the equation Jµ = TµJµ holds (this
is Bellman’s equation for the longest path problem involving the acyclic
graph Aµ). We will also show that T k

µJ → Jµ for all J ∈ R(X), so that a
proper policy is R(X)-regular. However, the following proposition shows
that there may be someR(X)-regular policies that are improper, depending
on the sign of the lengths of their associated cycles.

Proposition 3.5.10: The following are equivalent for a policy µ:

(i) µ is R(X)-regular.

(ii) The characteristic graph Aµ is destination-connected and all its
cycles have negative length.

(iii) µ is either proper or else it is improper, all the cycles of the
characteristic graph Aµ have negative length, and Jµ ∈ R(X).
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Proof: To show that (i) implies (ii), let µ be R(X)-regular and to arrive
at a contradiction, assume that Aµ contains a nonnegative length cycle.
Let x be a node on the cycle, consider the path p that starts at x and
consists of an infinite repetition of this cycle, and let Lk

µ(p) be the length
of the first k arcs of that path. Let also J be a constant function, J(x) ≡ r,
where r is a scalar. Then we have

Lk
µ(p) + r ≤ (T k

µJ)(x),

since from the definition of Tµ, we have that (T k
µJ)(x) is the maximum

over the lengths of all k-arc paths under µ starting at x, plus r, if the last
node in the path is not the destination. Since µ is R(X)-regular, we have
Jµ ∈ R(X) and lim supk→∞(T k

µJ)(x) = Jµ(x) < ∞, so that for all scalars
r,

lim sup
k→∞

(
Lk
µ(p) + r

)
≤ Jµ(x) < ∞.

Taking supremum over r ∈ ,, it follows that lim supk→∞ Lk
µ(p) = −∞,

which contradicts the nonnegativity of the cycle of p. Thus all cycles of Aµ

have negative length. To show that Aµ is destination-connected, assume
the contrary. Then there exists some node x ∈ X such that all paths in
P (x, µ) contain an infinite number of cycles. Since the length of all cycles
is negative, as just shown, it follows that Jµ(x) = −∞, which contradicts
the R(X)-regularity of µ.

To show that (ii) implies (iii), we assume that µ is improper and show
that Jµ ∈ R(X). By (ii) Aµ is destination-connected, so the set P (x, µ)
contains a simple path for all x ∈ X . Moreover, since by (ii) the cycles
of Aµ have negative length, each path in P (x, µ) that is not simple has
smaller length than some simple path in P (x, µ). This implies that Jµ(x)
is equal to the largest path length among simple paths in P (x, µ), so Jµ(x)
is a real number for all x ∈ X .

To show that (iii) implies (i), we note that if µ is proper, it is R(X)-
regular, so we focus on the case where µ is improper. Then by (iii), Jµ ∈
R(X), so to show R(X)-regularity of µ, we must show that (T k

µJ)(x) →
Jµ(x) for all x ∈ X and J ∈ R(X), and that Jµ = TµJµ. Indeed, from the
definition of Tµ, we have

(T k
µJ)(x) = sup

p∈P (x,µ)

[
Lk
µ(p) + J(xk

p)
]
, (3.43)

where Lk
µ(p) is the length of the first k arcs of path p, xk

p is the node reached
after k arcs along the path p, and J(t) is defined to be equal to 0. Thus as
k → ∞, for every path p that contains an infinite number of cycles (each
necessarily having negative length), the sequence Lk

p(µ)+J(xk
p) approaches

−∞. It follows that for sufficiently large k, the supremum in Eq. (3.43) is
attained by one of the simple paths in P (x, µ), so xk

p = t and J(xk
p) = 0.

Thus the limit of (T k
µJ)(x) does not depend on J , and is equal to the limit
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a

a 1 2 1 2 t b

t b Destination

a 0 1 2

Figure 3.5.5. The characteristic graph Aµ corresponding to an improper policy,
for the case of a single node 1 and a destination node t. The arcs lengths are
shown in the figure.

of (T k
µ J̄)(x), i.e., Jµ(x). To show that Jµ = TµJµ, we note that by the

preceding argument, Jµ(x) is the length of the longest path among paths
that start at x and terminate at t. Moreover, we have

(TµJµ)(x) = max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + Jµ(y)

]
,

where we denote Jµ(t) = 0. Thus (TµJµ)(x) is also the length of the longest
path among paths that start at x and terminate at t, and hence it is equal
to Jµ(x). Q.E.D.

We illustrate the preceding proposition, in relation to the infinite
cost condition of Assumption 3.3.1, with a two-node example involving
an improper policy with a cycle that may have positive, zero, or negative
length.

Example 3.5.4:

Let X = {1}, and consider the policy µ where at state 1, the antagonistic
opponent may force either staying at 1 or terminating, i.e., Y

(
1, µ(1)

)
=

{1, t}; cf. Fig. 3.5.5. Then µ is improper since its characteristic graph Aµ

contains the self-cycle (1, 1). Let

g
(
1, µ(1), 1

)
= a, g

(
1, µ(1), t

)
= 0.

Then,
(TµJµ)(1) = max

[
0, a+ Jµ(1)

]
,

and

Jµ(1) =
{
∞ if a > 0,
0 if a ≤ 0.

Consistently with Prop. 3.5.10, the following hold:

(a) For a > 0, the cycle (1, 1) has positive length, and µ is R(X)-irregular.
Here we have Jµ(1) = ∞, and the infinite cost condition of Assumption
3.3.1 is satisfied.
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(b) For a = 0, the cycle (1, 1) has zero length, and µ is R(X)-irregular.
Here we have Jµ(1) = 0, and the infinite cost condition of Assumption
3.3.1 is violated because for a function J ∈ R(X) with J(1) > 0,

lim sup
k→∞

(T k
µJ)(x) = J(1) > 0 = Jµ(1).

(c) For α < 0, the cycle (1, 1) has negative length, and µ is R(X)-regular.
Here we have Jµ ∈ R(X), Jµ(1) = max

[
0, a + Jµ(1)

]
= (TµJµ)(1),

and for all J ∈ R(X),

lim
k→∞

(T k
µJ)(1) = 0 = Jµ(1).

We will now apply the regularity results of Sections 3.2-3.4 with S =
R(X). To this end, we introduce assumptions that will allow the use of
Prop. 3.3.1.

Assumption 3.5.8:

(a) There exists at least one R(X)-regular policy.

(b) For every R(X)-irregular policy µ, some cycle in the character-
istic graph Aµ has positive length.

Assumption 3.5.8 is implied by the weaker conditions given in the
following proposition. These conditions may be more easily verifiable in
some contexts.

Proposition 3.5.11: Assumption 3.5.8 holds if anyone of the follow-
ing two conditions is satisfied.

(1) There exists at least one proper policy, and for every improper
policy µ, all cycles in the characteristic graph Aµ have positive
length.

(2) Every policy µ is either proper or else it is improper and its
characteristic graph Aµ is destination-connected with all cycles
having negative length, and Jµ ∈ R(X).

Proof: Under condition (1), by Prop. 3.5.10, a policy is R(X)-regular if
and only if it is proper. Moreover, since each R(X)-irregular and hence
improper policy µ has cycles with positive length, it follows that for all
J ∈ R(X), we have

lim sup
k→∞

(T k
µJ)(x) = ∞
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for some x ∈ X . The proof under condition (2) is similar, using Prop.
3.5.10. Q.E.D.

We now show our main result for the problem of this section.

Proposition 3.5.12: Let Assumption 3.5.8 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
R(X).

(b) We have T kJ → J* for all J ∈ R(X).

(c) A policy µ∗ is optimal if and only if Tµ∗J* = TJ*. Moreover,
there exists an optimal proper policy.

(d) For any J ∈ R(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ
we have J ≥ J*.

Proof: We verify the parts (a)-(f) of Assumption 3.3.1 with S = R(X),
and we then use Prop. 3.3.1. To this end we argue as follows:

(1) Part (a) is satisfied since S = R(X).

(2) Part (b) is satisfied since by Assumption 3.5.8(a), there exists at least
one R(X)-regular policy. Moreover, for each R(X)-regular policy µ,
we have Jµ ∈ R(X). Since the number of all policies is finite, it
follows that J*

S ∈ R(X).

(3) To show that part (c) is satisfied, note that by Prop. 3.5.10 ev-
ery R(X)-irregular policy µ must be improper, so by Assumption
3.5.8(b), the characteristic graph Aµ contains a cycle of positive
length. By Prop. 3.5.9(d), this implies that for each J ∈ R(X) and
for at least one x ∈ X , we have lim supk→∞(T k

µJ)(x) = ∞.

(4) Part (d) is satisfied since U(x) is a finite set.

(5) Part (e) is satisfied since X is finite and Tµ is a continuous function
that maps the finite-dimensional space R(X) into itself.

(6) Part (f) follows from Prop. 3.3.2, which applies because S = R(X) =
Rb(X) (since X is finite) and Eq. (3.27) clearly holds.

Thus all parts of Assumption 3.3.1 are satisfied, and Prop. 3.3.1 applies
with S = R(X). The conclusions of this proposition are precisely the
results we want to prove [since improper policies have infinite cost for some
initial states, as argued earlier, optimal S-regular policies must be proper;
cf. the conclusion of part (c)]. Q.E.D.

The following example illustrates what may happen in the absence of
Assumption 3.5.8(b), when there may exist improper policies that involve
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a

a 1 2 1 2 t b

t b Destination

a 0 1 20 1 2
a 1 2 1 2 t b

t b Destination

Proper Policy µ Improper Policy µ′

Figure 3.5.6. A counterexample involving a single node 1 in addition to the
destination t. There are two policies, µ and µ′, with corresponding characteristic
graphs Aµ and Aµ′ , and arc lengths shown in the figure. The improper policy µ′

is optimal when a ≤ 0. It is R(X)-irregular if a = 0, and it is R(X)-regular if
a < 0.

a nonpositive length cycle.

Example 3.5.5:

Let X = {1}, and consider the proper policy µ with Y
(
1, µ(1)

)
= {t} and

the improper policy µ′ with Y
(
1, µ′(1)

)
= {1, t} (cf. Fig. 3.5.6). Let

g
(
1, µ(1), t

)
= 1, g

(
1, µ′(1), 1

)
= a ≤ 0, g

(
1, µ′(1), t

)
= 0.

The improper policy is the same as the one of Example 3.5.4. It can be seen
that under both policies, the longest path from 1 to t consists of the arc (1, t).
Thus,

Jµ(1) = 1, Jµ′(1) = 0,

so the improper policy µ′ is optimal, and strictly dominates the proper policy
µ. To explain what is happening here, we consider two different cases:

(1) a = 0: In this case, the optimal policy µ′ is both improper and R(X)-
irregular, but with finite cost Jµ′(1) < ∞. Thus the conditions of Props.
3.3.1 and 3.5.12 do not hold because Assumptions 3.3.1(c) and 3.5.9(b)
are violated.

(2) a < 0: In this case, µ′ is improper but R(X)-regular, so there are no
R(X)-irregular policies. Then all the conditions of Assumption 3.5.8
are satisfied, and Prop. 3.5.12 applies. Consistent with this proposition,
there exists an optimal R(X)-regular policy (i.e., optimal over both
proper and improper policies), which however is improper.

For further analysis and algorithms for the robust shortest path plan-
ning problem, we refer to the paper [Ber19c]. In particular, this paper
applies the perturbation approach of Section 3.4 to the case where it may
be easier to guarantee nonnegativity rather than positivity of the lengths
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of cycles corresponding to improper policies, which is required by Assump-
tion 3.5.8(b). The paper shows that the VI algorithm terminates in a finite
number of iterations starting from the initial function J with J(x) = ∞
for all x ∈ X . Moreover the paper provides a Dijkstra-like algorithm for
problems with nonnegative arc lengths.

3.5.4 Linear-Quadratic Optimal Control

In this subsection, we consider a classical problem from control theory,
which involves the deterministic linear system

xk+1 = Axk +Buk, k = 0, 1, . . . ,

where xk ∈ ,n, uk ∈ ,m for all k, and A and B are given matrices. The
cost function of a policy π = {µ0, µ1, . . .} has the form

Jπ(x0) = lim
N→∞

N−1∑

k=0

(
x′
kQxk + µk(xk)′Rµk(xk)

)
,

where x′ denotes the transpose of a column vector x, Q is a positive semidef-
inite symmetric n×n matrix, and R is a positive definite symmetric m×m
matrix. This is a special case of the deterministic optimal control prob-
lem of Section 1.1, and was discussed briefly in the context of the one-
dimensional example of Section 3.1.4.

The theory of this problem is well-known and is discussed in vari-
ous forms in many sources, including the textbooks [AnM79] and [Ber17a]
(Section 3.1). The solution revolves around stationary policies µ that are
linear , in the sense that

µ(x) = Lx,

where L is some m × n matrix, and stable, in the sense that the matrix
A+BL has eigenvalues that are strictly within the unit circle. Thus for a
linear stable policy, the closed loop system

xk+1 = (A+BL)xk

is stable. We assume that there exists at least one linear stable policy.
Among others, this guarantees that the optimal cost function J∗ is real-
valued (it is bounded above by the real-valued cost function of every linear
stable policy).

The solution also revolves around the algebraic matrix Riccati equa-
tion, which is given by

P = A′
(
P − PB(B′PB +R)−1B′P

)
A+Q,

where the unknown is P , a symmetric n× n matrix. It is well-known that
if Q is positive definite, then the Riccati equation has a unique solution P ∗
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within the class of positive semidefinite symmetric matrices, and that the
optimal cost function has the form

J*(x) = x′P ∗x.

Moreover, there is a unique optimal policy, and this policy is linear stable
of the form

µ∗(x) = Lx, L = −(B′P ∗B +R)−1B′P ∗A.

The existence of an optimal linear stable policy can be extended to the case
where Q is instead positive semidefinite, but satisfies a certain “detectabil-
ity” condition; see the textbooks cited earlier.

However, in the general case where Q is positive semidefinite without
further assumptions (e.g., Q = 0), the example of Section 3.1.4 shows that
the optimal policy need not be stable, and in fact the optimal cost function
over just the linear stable policies may be different than J*.† We will
discuss this case by using the perturbation-based approach of Section 3.4,
and provide results that are consistent with the behavior observed in the
example of Section 3.1.4.

To convert the problem to our abstract format, we let

X = ,n, U(x) = ,m, J̄(x) = 0, ∀ x ∈ X,

H(x, u, J) = x′Qx+ u′Ru+ J(Ax+Bu).

Let S be the set of positive semidefinite quadratic functions, i.e.,

S =
{
J | J(x) = x′Px, P : positive semidefinite symmetric

}
.

Let M̂ be the set of linear stable policies, and note that every linear stable
policy is S-regular. This is due to the fact that for every quadratic function
J(x) = x′Px and linear stable policy µ(x) = Lx, the k-stage costs (T k

µJ)(x)
and (T k

µ J̄)(x) differ by the term

x′(A+BL)k′P (A+BL)kx,

which vanishes in the limit as k → ∞, since µ is stable.
Consider the perturbation framework of Section 3.4, with forcing

function
p(x) = ‖x‖2.

† This is also true in the discounted version of the example of Section 3.1.4,
where there is a discount factor α ∈ (0, 1). The Riccati equation then takes

the form P = A′
(
αP − α2PB(αB′PB + R)−1B′P

)
A + Q, and for the given

system and cost per stage, it has two solutions, P ∗ = 0 and P̂ = αγ2−1
α

. The VI
algorithm converges to P̂ starting from any P > 0.
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Then for δ > 0, the mapping Tµ,δ has the form

(Tµ,δJ)(x) = x′(Q+ δI)x+ µ(x)′Rµ(x) + J
(
Ax+Bµ(x)

)
,

where I is the identity, and corresponds to the linear-quadratic problem
where Q is replaced by the positive definite matrix Q + δI. This problem
admits a quadratic positive definite optimal cost Ĵδ(x) = x′P ∗

δ x, and an
optimal linear stable policy. Moreover, all the conditions of Prop. 3.4.1 can
be verified. It follows that J*

S is equal to the optimal cost over just the

linear stable policies Ĵ , and is obtained as limδ→0 Ĵδ, which also implies
that Ĵ(x) = x′P̂ x where P̂ = limδ→0 P ∗

δ .
The perturbation line of analysis of the linear-quadratic problem will

be generalized in Section 4.5. This generalization will address a determin-
istic discrete-time infinite horizon optimal control problem involving the
system

xk+1 = f(xk, uk), k = 0, 1, . . . ,

a nonnegative cost per stage g(x, u), and a cost-free termination state. We
will introduce there a notion of stability, and we will show that the optimal
cost function over the stable policies is the largest solution of Bellman’s
equation. Moreover, we will show that the VI algorithm and several ver-
sions of the PI algorithm are valid for suitable initial conditions.

3.5.5 Continuous-State Deterministic Optimal Control

In this section, we consider an optimal control problem, where the objective
is to steer a deterministic system towards a cost-free and absorbing set of
states. The system equation is

xk+1 = f(xk, uk), k = 0, 1, . . . , (3.44)

where xk and uk are the state and control at stage k, belonging to sets
X and U , respectively, and f is a function mapping X × U to X . The
control uk must be chosen from a constraint set U(xk). No restrictions are
placed on the nature of X and U : for example, they may be finite sets as
in deterministic shortest path problems, or they may be continuous spaces
as in classical problems of control to the origin or some other terminal set,
including the linear-quadratic problem of Section 3.5.4. The cost per stage
is denoted by g(x, u), and is assumed to be a real number. †

Because the system is deterministic, given an initial state x0, a policy
π = {µ0, µ1, . . .} when applied to the system (3.44), generates a unique se-
quence of state-control pairs

(
xk, µk(xk)

)
, k = 0, 1, . . . . The corresponding

† In Section 4.5, we will consider a similar problem where the cost per stage

will be assumed to be nonnegative, but some other assumptions from the present
section (e.g., the subsequent Assumption 3.5.9) will be relaxed.
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cost function is

J⇡(x0) = lim sup
N!1

N�1X

k=0

g
�
xk, µk(xk)

�
, x0 2 X.

We assume that there is a nonempty stopping set X0 ⇢ X, which consists
of cost-free and absorbing states in the sense that

g(x, u) = 0, x = f(x, u), 8 x 2 X0, u 2 U(x). (3.45)

Based on our assumptions to be introduced shortly, the objective will be
roughly to reach or asymptotically approach the set X0 at minimum cost.

To formulate a corresponding abstract DP problem, we introduce the
mapping Tµ : R(X) 7! R(X) by

(TµJ)(x) = g
�
x, µ(x)

�
+ J

�
f
�
x, µ(x)

��
, x 2 X,

and the mapping T : E(X) 7! E(X) given by

(TJ)(x) = inf
u2U(x)

�
g(x, u) + J

�
f(x, u)

� 
, x 2 X.

Here as earlier, we denote by R(X) the set of real-valued functions over
X, and by E(X) the set of extended real-valued functions over X. The
initial function J̄ is the zero function [J̄(x) ⌘ 0]. An important fact is that
because the problem is deterministic, J* is a fixed point of T (cf. Exercise
3.1).

The analysis of the linear-quadratic problem of the preceding section
has revealed two distinct types of behavior for the case where g � 0:

(a) J* is the unique fixed point of T within the set S (the set of nonneg-
ative definite quadratic functions).

(b) J* and the optimal cost function Ĵ over a restricted subset of S-
regular policies (the linear stable policies) are both fixed points of T
within the set S, but J* 6= Ĵ , and the VI algorithm converges to Ĵ
when started with a function J � Ĵ .

In what follows we will introduce assumptions that preclude case (b); we
will postpone the discussion of of problems where we can have J* 6= Ĵ for
Section 4.5, where we will use a perturbation-based line of analysis. Similar
to the linear-quadratic problem, the restricted set of policies that we will
consider have some “stability” property: they are either terminating (reach
X0 in a finite number of steps), or else they asymptotically approach X0

in a manner to be made precise later.
As a first step in the analysis, let us introduce the e↵ective domain

of J*, i.e., the set
X* =

�
x 2 X | J*(x) < 1

 
.
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Ordinarily, in practical applications, the states in X* are those from which
one can reach the stopping set X0, at least asymptotically. We say that a
policy µ is terminating if starting from any x0 → X*, the state sequence
{xk} generated using µ reaches X0 in finite time, i.e., satisfies xk̄ → X0 for

some index k̄. The set of terminating policies is denoted by M̂.
Our key assumption in this section is that for all x → X*, the optimal

cost J*(x) can be approximated arbitrarily closely by using terminating
policies. In Section 4.5 we will relax this assumption.

Assumption 3.5.9: (Near-Optimal Termination) For every pair
(x, ε) with x → X* and ε > 0, there exists a terminating policy µ
[possibly dependent on (x, ε)] that satisfies Jµ(x) ↑ J*(x) + ε.

This assumption implies in particular that the optimal cost function
over terminating policies,

Ĵ(x) = inf
µ→M̂

Jµ(x), x → X,

is equal to J*. Note that Assumption 3.5.9 is equivalent to a seemingly
weaker assumption where nonstationary policies can be used for termina-
tion (see Exercise 3.7).

Specific and easily verifiable conditions that imply Assumption 3.5.9
are given in the exercises. A prominent case is when X and U are finite, so
the problem becomes a deterministic shortest path problem. If all cycles
of the state transition graph have positive length, then for every π and
x with Jπ(x) < ↓ the generated path starting from x and using π must
reach the destination, and this implies that there exists an optimal policy
that terminates from all x → X*. Thus, in this case Assumption 3.5.9 is
naturally satisfied.

Another interesting case arises when g(x, u) = 0 for all (x, u) except if
x /→ X0 and the next state f(x, u) is a termination state, in which case the
cost of the stage is strictly negative, i.e., g(x, u) < 0 only when f(x, u) →
X0. Thus no cost is incurred except for a negative cost upon termination.
Intuitively, this is the problem of trying to find the best state from which
to terminate, out of all states that are reachable from the initial state x0.
Then, assuming that X0 can be reached from all states, Assumption 3.5.9
is satisfied.

When X is the n-dimensional Euclidean space $n, it may easily hap-
pen that the optimal policies are not terminating from some x → X*, but
instead the optimal state trajectories may approach X0 asymptotically.
This is true for example in the linear-quadratic problem of the preceding
section, whereX = $n, X0 = {0}, U = $m, the system is linear of the form
xk+1 = Axk+Buk, where A and B are given matrices, and the optimal cost
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function is positive definite quadratic. There the optimal policy is linear
stable of the form µ∗(x) = Lx, where L is some matrix obtained through
the steady-state solution of the Riccati equation. Since the optimal closed-
loop system has the form xk+1 = (A+BL)xk, the state will typically never
reach the termination set X0 = {0} in finite time, although it will approach
it asymptotically. However, the Assumption 3.5.9 is satisfied under some
natural and easily verifiable conditions (see Exercise 3.8).

Let us consider the set of functions

S =
{
J → E(X) | J(x) = 0, ∀ x → X0, J(x) → $, ∀ x → X*

}
.

Since X0 consists of cost-free and absorbing states [cf. Eq. (3.45)], and
J*(x) > −↓ for all x → X (by Assumption 3.5.9), the set S contains the
cost functions Jµ of all terminating policies µ, as well as J*. Moreover

it can be seen that every terminating policy is S-regular, i.e., M̂ ⊂ MS ,
implying that J*

S = J*. The reason is that the terminal cost is zero after
termination for any terminal cost function J → S, i.e.,

(T k
µJ)(x) = (T k

µ J̄)(x) = Jµ(x),

for µ → M̂, x → X*, and k sufficiently large.
The following proposition is a consequence of the well-behaved region

theorem (Prop. 3.2.1), the deterministic character of the problem (which
guarantees that J* is a fixed point of T ; Exercise 3.1), and Assumption
3.5.9 (which guarantees that J*

S = J*).

Proposition 3.5.13: Let Assumption 3.5.9 hold. Then:

(a) J* is the unique solution of the Bellman equation J = TJ within
the set of all J → S such that J ≥ J*.

(b) We have T kJ ⇒ J* for every J → S such that J ≥ J*.

(c) If µ∗ is terminating and Tµ→J* = TJ*, then µ∗ is optimal. Con-
versely, if µ∗ is terminating and is optimal, then Tµ→J* = TJ*.

Generally, the convergence T kJ ⇒ J* for every J → S [Prop. 3.5.13(b)]
cannot be shown except in special cases, such as finite-state problems (see
Prop. 1.1(b), Ch. 4, of the book by Bertsekas and Tsitsiklis [BeT89]). To
see what may happen in the absence of Assumption 3.5.9, consider the de-
terministic shortest path example of Section 3.1.1 with a = 0, b > 0, and
S = $. Here Assumption 3.5.9 is violated and we have 0 = J* < Ĵ = b,
while the set of fixed points of T is the interval (−↓, b]. However, for the
same example, but with b ↑ 0 instead of b > 0, Assumption 3.5.9 is satis-
fied and Prop. 3.5.13 applies. Consider also the linear-quadratic example of
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Section 3.1.4. Here Assumption 3.5.9 is violated. This results in multiple
fixed points of T within S: the functions J*(x) ≡ 0 and Ĵ(x) = (γ2− 1)x2.
In Section 4.5, we will reconsider this example, as well as the problem of
this section for the case g(x, u) ≥ 0 for all (x, u), but under assumptions
that are much weaker than Assumption 3.5.9. There, we will make a con-
nection between regularity, perturbations like the ones of Section 3.4, and
traditional notions of stability.

Another interesting fact is that when the model of this section is
extended in the natural way to a stochastic model with infinite state space,
then under the analog of Assumption 3.5.9, J* need not be the unique
solution of Bellman’s equation within the set of all J → S such that J ≥ J*.
Indeed, we will show this in Section 4.6.1 with a stochastic example that
involves a single control per state and nonnegative but unbounded cost per
stage (if the cost per stage is nonnegative and bounded, and the optimal
cost over the proper policies only is equal to J*, then J* will be proved to
be the unique solution of Bellman’s equation within the set of all bounded
J such that J ≥ 0). This is a striking difference between deterministic
and stochastic optimal control problems with infinite state space. Another
striking difference is that J* is always a solution of Bellman’s equation in
deterministic problems (cf. Exercise 3.1), but this is not so in stochastic
problems, even when the state space is finite (cf. Section 3.1.2).

3.6 ALGORITHMS

We have already discussed some VI and PI algorithms for finding J* and
an optimal policy as part of our analysis under the weak and strong PI
properties in Section 3.2. Moreover, we have shown that the VI algorithm
converges to the optimal cost function J* for any starting function J → S in
the case of Assumption 3.3.1 (cf. Prop. 3.3.1), or to the restricted optimal
cost function J*

S under the assumptions of Prop. 3.4.1(b).
In this section, we will introduce additional algorithms. In Section

3.6.1, we will discuss asynchronous versions of VI and will prove satisfactory
convergence properties under reasonable assumptions. In Section 3.6.2, we
will focus on a modified version of PI that is unaffected by the presence of
S-irregular policies. This algorithm is similar to the optimistic PI algorithm
with uniform fixed point (cf. Section 2.6.3), and can also be implemented
in a distributed asynchronous computing environment.

3.6.1 Asynchronous Value Iteration

Let us consider the model of Section 2.6.1 for asynchronous distributed
computation of the fixed point of a mapping T , and the asynchronous
distributed VI method described there. The model involves a partition ofX
into disjoint nonempty subsets X1, . . . , Xm, and a corresponding partition
of J as J = (J1, . . . , Jm), where J" is the restriction of J on the set X".
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We consider a network ofm processors, each updating asynchronously
corresponding components of J . In particular, we assume that J" is up-
dated only by processor $, and only for times t in a selected subset R" of it-
erations. Moreover, as in Section 2.6.1, processor $ uses components Jj sup-
plied by other processors j += $ with communication “delays” t−τ"j(t) ≥ 0:

J t+1
" (x) =

{
T
(
Jτ!1(t)
1 , . . . , Jτ!m(t)

m

)
(x) if t → R", x → X",

J t
" (x) if t /→ R", x → X".

(3.46)

We can prove convergence within the frameworks of Sections 3.3 and
3.4 by using the asynchronous convergence theorem (cf. Prop. 2.6.1), and
the fact that T is monotone and has J* as its unique fixed point within the
appropriate set. We assume that the continuous updating and information
renewal Assumption 2.6.1 holds. For simplicity we restrict attention to the
framework of Section 3.3, under Assumption 3.3.1 with S = B(X). Assume
further that we have two functions V , V → S such that

V ↑ TV ↑ TV ↑ V , (3.47)

so that, by Prop. 3.3.1, T kV ↑ J* ↑ T kV for all k, and

T kV ↑ J*, T kV ↓ J*.

Then we can show asynchronous convergence of the VI algorithm (3.46),
starting from any function J0 with V ↑ J0 ↑ V .

Indeed, let us apply Prop. 2.6.1 with the sets S(k) given by

S(k) =
{
J → S | T kV ↑ J ↑ T kV

}
, k = 0, 1, . . . .

The sets S(k) satisfy S(k+ 1) ⊂ S(k) in view of Eq. (3.47) and the mono-
tonicity of T . Using Prop. 3.3.1, we also see that S(k) satisfy the syn-
chronous convergence and box conditions of Prop. 2.6.1. Thus, together
with Assumption 2.6.1, all the conditions of Prop. 2.6.1 are satisfied, and
the convergence of the algorithm follows starting from any J0 → S(0).

3.6.2 Asynchronous Policy Iteration

In this section, we focus on PI methods, under Assumption 3.3.1 and some
additional assumptions to be introduced shortly. We first discuss briefly
a natural form of PI algorithm, which generates S-regular policies exclu-
sively. Let µ0 be an initial S-regular policy [there exists one by Assumption
3.3.1(b)]. At the typical iteration k, we have an S-regular policy µk, and
we compute a policy µk+1 such that Tµk+1Jµk = TJµk (this is possible by
Lemma 3.3.1). Then µk+1 is S-regular, by Lemma 3.3.2, and we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk ≥ lim
m↓∞

T k
µk+1Jµk = Jµk+1 .



Sec. 3.6 Algorithms 213

We can thus construct a sequence of S-regular policies {µk} and a cor-
responding nonincreasing sequence {Jµk}. Under some additional mild
conditions it is then possible to show that Jµk ↓ J*, cf. Prop. 3.3.1(e).

Unfortunately, when there are S-irregular policies, the preceding PI
algorithm is somewhat limited, because an initial S-regular policy may not
be known. Moreover, when asynchronous versions of the algorithm are
implemented, it is difficult to guarantee that all the generated policies are
S-regular.

In what follows in this section, we will discuss a PI algorithm that
works in the presence of S-irregular policies, and can operate in a dis-
tributed asynchronous environment, like the PI algorithm for contractive
models of Section 2.6.3. The main assumption is that J* is the unique fixed
point of T within R(X), the set of real-valued functions over X . This as-
sumption holds under Assumption 3.3.1 with S = R(X), but it also holds
under weaker conditions. Our assumptions also include finiteness of U ,
which among others facilitates the policy evaluation and policy improve-
ment operations, and ensures that the algorithm generates iterates that
lie in R(X). The algorithm and its analysis also go through if R(X) is
replaced by R+(X) (the set of all nonnegative real-valued functions) in the
following assumptions, arguments, and propositions.

Assumption 3.6.1: In addition to the monotonicity Assumption 3.2.1,
the following hold.

(a) H(x, u, J) is real-valued for all J → R(X), x → X , and u → U(x).

(b) U is a finite set.

(c) For each sequence {Jm} ⊂ R(X) with either Jm ↑ J or Jm ↓ J
for some J → R(X), we have

lim
m↓∞

H(x, u, Jm) = H (x, u, J) , ∀ x → X, u → U(x).

(d) For all scalars r > 0 and functions J → R(X), we have

H(x, u, J + r e) ↑ H(x, u, J) + r e, ∀ x → X, u → U(x),
(3.48)

where e is the unit function.

(e) J* is the unique fixed point of T within R(X).

Part (d) of the preceding assumption is a nonexpansiveness condition
for H(x, u, ·), and can be easily verified in many DP models, including
deterministic, minimax, and stochastic optimal control problems. It is not
readily satisfied, however, in the affine monotonic model of Section 3.5.2.
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Similar to Section 2.6.3, we introduce a new mapping that is parametri-
zed by µ and can be shown to have a common fixed point for all µ. It
operates on a pair (V,Q) where:

• V is a real-valued function with a component denoted V (x) for each
x → X .

• Q is a real-valued function with a component denoted Q(x, u) for each
pair (x, u) with x → X , u → U(x).

The mapping produces a pair

(
MFµ(V,Q), Fµ(V,Q)

)
,

where

• Fµ(V,Q) is a function with a component Fµ(V,Q)(x, u) for each (x, u),
defined by

Fµ(V,Q)(x, u) = H
(
x, u,min{V,Qµ}

)
, (3.49)

where for any Q and µ, we denote by Qµ the function of x defined by

Qµ(x) = Q
(
x, µ(x)

)
, x → X,

and for any two functions V1 and V2, we denote by min{V1, V2} the
function of x given by

min{V1, V2}(x) = min
{
V1(x), V2(x)

}
, x → X.

• MFµ(V,Q) is a function with a component
(
MFµ(V,Q)

)
(x) for each

x, where M is the operator of pointwise minimization over u:

(MQ)(x) = min
u→U(x)

Q(x, u),

so that (
MFµ(V,Q)

)
(x) = min

u→U(x)
Fµ(V,Q)(x, u).

Note that under Assumption 3.6.1, M maps real-valued functions
to real-valued functions, since by part (b) of that assumption, U is
assumed finite.

We consider an algorithm that is similar to the asynchronous PI al-
gorithm given in Section 2.6.3 for contractive models. It applies asyn-
chronously the mapping MFµ(V,Q) for local policy improvement and up-
date of V and µ, and the mapping Fµ(V,Q) for local policy evaluation
and update of Q. The algorithm involves a partition of the state space
into sets X1, . . . , Xm, and assignment of each subset X" to a processor
$ → {1, . . . ,m}. For each $, there are two infinite disjoint subsets of times
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R",R" ⊂ {0, 1, . . .}, corresponding to policy improvement and policy eval-
uation iterations, respectively. At time t, each processor $ operates on
V t(x), Qt(x, u), and µt(x), only for x in its “local” state space X". In
particular, at each time t, each processor $ does one of the following:

(a) Local policy improvement : If t → R", processor $ sets for all x → X",

V t+1(x) = min
u→U(x)

H
(
x, u,min{V t, Qt

µt}
)
=
(
MFµt(V t, Qt)

)
(x),

(3.50)
sets µt+1(x) to a u that attains the minimum, and leaves Q un-
changed, i.e., Qt+1(x, u) = Qt(x, u) for all x → X" and u → U(x).

(b) Local policy evaluation: If t → R", processor $ sets for all x → X" and
u → U(x),

Qt+1(x, u) = H
(
x, u,min{V t, Qt

µt}
)
= Fµt(V t, Qt)(x, u), (3.51)

and leaves V and µ unchanged, i.e., V t+1(x) = V t(x) and µt+1(x) =
µt(x) for all x → X".

(c) No local change: If t /→ R" ∪ R", processor $ leaves Q, V , and µ
unchanged, i.e., Qt+1(x, u) = Qt(x, u) for all x → X" and u → U(x),
V t+1(x) = V t(x), and µt+1(x) = µt(x) for all x → X".

Under Assumption 3.6.1, the algorithm generates real-valued func-
tions if started with real-valued V 0 and Q0. We will prove that it con-
verges to (J*, Q*), where J* is the unique fixed point of T within R(X)
[cf. Assumption 3.6.1(e)], and Q* is defined by

Q*(x, u) = H(x, u, J*), x → X, u → U(x). (3.52)

To this end, we introduce the mapping F defined by

(FQ)(x, u) = H
(
x, u,MQ

)
, x → X, u → U(x), (3.53)

and we show the following proposition.

Proposition 3.6.1: Let Assumption 3.6.1 hold. Then Q* is the
unique fixed point of F within the class of real-valued functions.

Proof: By minimizing over u → U(x) in Eq. (3.52) and noting that J* is a
fixed point of T , we have MQ* = TJ* = J*. Thus, by applying Eq. (3.53)
and then Eq. (3.52), we obtain

(FQ∗)(x, u) = H(x, u, J*) = Q∗(x, u), ∀ x → X, u → U(x).
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Thus Q* is a fixed point of F , and it is real-valued since J* is real-valued
and H is real-valued.

To show uniqueness, let Q′ be any real-valued fixed point of F . Then
Q′(x, u) = H(x, u,MQ′) for all x → X , u → U(x), and by minimization over
u → U(x), we have MQ′ = T (MQ′). Hence MQ′ is equal to the unique
fixed point J* of T , so that the equation Q′ = FQ′ yields Q′(x, u) =
H(x, u,MQ′) = H(x, u, J*), for all (x, u). From the definition (3.52) of
Q*, it then follows that Q′ = Q∗. Q.E.D.

We introduce the µ-dependent mapping

Lµ(V,Q) =
(
MQ,Fµ(V,Q)

)
, (3.54)

where Fµ(V,Q) is given by Eq. (3.49). For this mapping and other re-
lated mappings to be defined shortly, we implicitly assume that it operates
on real-valued functions, so by Assumption 3.6.1(a),(b), it produces real-
valued functions. Note that the policy evaluation part of the algorithm [cf.
Eq. (3.51)] amounts to applying the second component of Lµ, while the
policy improvement part of the algorithm [cf. Eq. (3.50)] amounts to ap-
plying the second component of Lµ, and then applying the first component
of Lµ. The following proposition shows that (J*, Q*) is the common fixed
point of the mappings Lµ, for all µ.

Proposition 3.6.2: Let Assumption 3.6.1 hold. Then for all µ → M,
the mapping Lµ of Eq. (3.54) is monotone, and (J*, Q*) is its unique
fixed point within the class of real-valued functions.

Proof: Monotonicity of Lµ follows from the monotonicity of the operators
M and Fµ. To show that Lµ has (J*, Q*) as its unique fixed point, we first
note that J* = MQ* and Q* = FQ*; cf. Prop. 3.6.1. Then, using also the
definition of Fµ, we have

J* = MQ*, Q* = FQ* = Fµ(J*, Q*),

which shows that (J*, Q*) is a fixed point of Lµ.
To show uniqueness, let (V ′, Q′) be a real-valued fixed point of Lµ,

i.e., V ′ = MQ′ and Q′ = Fµ(V ′, Q′). Then

Q′ = Fµ(V ′, Q′) = FQ′,

where the last equality follows from V ′ = MQ′. Thus Q′ is a fixed point
of F , and since Q* is the unique fixed point of F (cf. Prop. 3.6.1), we have
Q′ = Q*. It follows that V ′ = MQ* = J*, so (J*, Q*) is the unique fixed
point of Lµ within the class of real-valued functions. Q.E.D.
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The uniform fixed point property of Lµ just shown is, however, in-
sufficient for the convergence proof of the asynchronous algorithm, in the
absence of a contraction property. For this reason, we introduce two map-
pings L and L that are associated with the mappings Lµ and satisfy

L(V,Q) ↑ Lµ(V,Q) ↑ L(V,Q), ∀ µ → M. (3.55)

These are the mappings defined by

L(V,Q) =

(
MQ, min

µ→M
Fµ(V,Q)

)
, L(V,Q) =

(
MQ,max

µ→M
Fµ(V,Q)

)
,

(3.56)
where the min and max over µ are attained in view of the finiteness of M
[cf. Assumption 3.6.1(b)]. We will show that L and L also have (J*, Q*) as
their unique fixed point. Note that there exists µ̄ that attains the maximum
in Eq. (3.56), uniformly for all V and (x, u), namely a policy µ̄ for which

Q
(
x, µ̄(x)

)
= max

u→U(x)
Q(x, u), ∀ x → X,

[cf. Eq. (3.49)]. Similarly, there exists µ that attains the minimum in Eq.
(3.56), uniformly for all V and (x, u). Thus for any given (V,Q), we have

L(V,Q) = Lµ(V,Q), L(V,Q) = Lµ̄(V,Q), (3.57)

where µ and µ̄ are some policies. The following proposition shows that
(J*, Q*), the common fixed point of the mappings Lµ, for all µ, is also the
unique fixed point of L and L.

Proposition 3.6.3: Let Assumption 3.6.1 hold. Then the mappings
L and L of Eq. (3.56) are monotone, and have (J*, Q*) as their unique
fixed point within the class of real-valued functions.

Proof: Monotonicity of L and L follows from the monotonicity of the
operators M and Fµ. Since (J*, Q*) is the common fixed point of Lµ for
all µ (cf. Prop. 3.6.2), and there exists µ such that L(J*, Q*) = Lµ(J*, Q*)

[cf. Eq. (3.57)], it follows that (J*, Q*) is a fixed point of L. To show
uniqueness, suppose that (V,Q) is a fixed point, so (V,Q) = L(V,Q). Then
by Eq. (3.57), we have

(V,Q) = L(V,Q) = Lµ(V,Q)

for some µ → M. Since by Prop. 3.6.2, (J*, Q*) is the only fixed point of
Lµ, it follows that (V,Q) = (J*, Q*), so (J*, Q*) is the only fixed point of

L. Similarly, we show that (J*, Q*) is the unique fixed point of L. Q.E.D.
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We are now ready to construct a sequence of sets needed to apply
Prop. 2.6.1 and prove convergence. For a scalar c ≥ 0, we denote

J−
c = J* − c e, Q−

c = Q* − c eQ,

J+
c = J* + c e, Q+

c = Q* + c eQ,

with e and eQ are the unit functions in the spaces of J and Q, respectively.

Proposition 3.6.4: Let Assumption 3.6.1 hold. Then for all c > 0,

Lk(J−
c , Q−

c ) ↑ (J*, Q*), L
k
(J+

c , Q+
c ) ↓ (J*, Q*), (3.58)

where Lk (or L
k
) denotes the k-fold composition of L (or L, respec-

tively).

Proof: For any µ → M, using the assumption (3.48), we have for all (x, u),

Fµ(J
+
c , Q+

c )(x, u) = H
(
x, u,min{J+

c , Q+
c }
)

= H
(
x, u,min{J*, Q*}+ c e

)

↑ H
(
x, u,min{J*, Q*}

)
+ c

= Q*(x, u) + c

= Q+
c (x, u),

and similarly
Q−

c (x, u) ↑ Fµ(J
−
c , Q−

c )(x, u).

We also have MQ+
c = J+

c and MQ−
c = J−

c . From these relations, the
definition of Lµ, and the fact Lµ(J*, Q*) = (J*, Q*) (cf. Prop. 3.6.2), we
have

(J−
c , Q−

c ) ↑ Lµ(J
−
c , Q−

c ) ↑ (J*, Q*) ↑ Lµ(J
+
c , Q+

c ) ↑ (J+
c , Q+

c ).

Using this relation and Eqs. (3.55) and (3.57), we obtain

(J−
c , Q−

c ) ↑ L(J−
c , Q−

c ) ↑ (J*, Q*) ↑ L(J+
c , Q+

c ) ↑ (J+
c , Q+

c ). (3.59)

Denote for k = 0, 1, . . . ,

(V k, Qk) = L
k
(J+

c , Q+
c ), (V k, Qk

) = Lk(J−
c , Q−

c ).

From the monotonicity of L and L and Eq. (3.59), we have that (V k, Qk)
converges monotonically from above to some pair

(V ,Q) ≥ (J*, Q*),
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while (V k, Qk
) converges monotonically from below to some pair

(V ,Q) ↑ (J*, Q*).

By taking the limit in the equation

(V k+1, Qk+1) = L(V k, Qk),

and using the continuity from above and below property of L, implied
by Assumption 3.6.1(c), it follows that (V ,Q) = L(V ,Q), so (V ,Q) must

be equal to (J*, Q*), the unique fixed point of L. Thus, L
k
(J+

c , Q+
c ) ↓

(J*, Q*). Similarly, Lk(J−
c , Q−

c ) ↑ (J*, Q*). Q.E.D.

To show asynchronous convergence of the algorithm (3.50)-(3.51),
consider the sets

S(k) =
{
(V,Q) | Lk(J−

c , Q−
c ) ↑ (V,Q) ↑ L

k
(J+

c , Q+
c )
}
, k = 0, 1, . . . ,

whose intersection is (J*, Q*) [cf. Eq. (3.58)]. By Prop. 3.6.4 and Eq. (3.55),
this set sequence together with the mappings Lµ satisfy the synchronous
convergence and box conditions of the asynchronous convergence theorem
of Prop. 2.6.1 (more precisely, its time-varying version of Exercise 2.2). This
proves the convergence of the algorithm (3.50)-(3.51) for starting points
(V,Q) → S(0). Since c can be chosen arbitrarily large, it follows that the
algorithm is convergent from an arbitrary starting point.

Finally, let us note some variations of the asynchronous PI algorithm.
One such variation is to allow “communication delays” t− τ"j(t). Another
variation, for the case where we want to calculate just J*, is to use a
reduced space implementation similar to the one discussed in Section 2.6.3.
There is also a variant with interpolation, cf. Section 2.6.3.

3.7 NOTES, SOURCES, AND EXERCISES

The semicontractive model framework of this chapter was first formulated
in the 2013 edition of the book, and it has since been extended through
a series of papers and reports by the author: [Ber15], [Ber16a], [BeY16],
[Ber17c], [Ber17d], [Ber19c]. The framework is inspired from the analysis of
the SSP problem of Example 1.2.6, which involves finite state and control
spaces, as well as a termination state. In the absence of a termination
state, a key idea has been to generalize the notion of a proper policy from
one that leads to termination with probability 1, to one that is S-regular
for an appropriate set of functions S.

Section 3.1: The counterexample showing that J* may fail to solve Bell-
man’s equation in SSP problems is due to Bertsekas and Yu [BeY16]. The
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blackmailer’s dilemma is a classic problem in the DP literature. The book
by Whittle [Whi82] has a substantial discussion. The set of solutions of the
Riccati equation in continuous-time linear-quadratic optimal control (cf.
Section 3.1.4) has been described in the paper by Willems [Wil71], which
stimulated considerable further work on the subject (see the book by Lan-
caster and Rodman [LaR95] for an extensive account). The pathologies of
infinite horizon linear-quadratic optimal control problems can be largely
eliminated under some well-studied controllability and observability condi-
tions (see, e.g., [Ber17a], Section 3.1).

Section 3.2: The PI-based analysis of Section 3.2 was developed in the
author’s paper [Ber15] after the 2013 edition of the book was published.
The author’s joint work with H. Yu [BeY16] was also influential. In partic-
ular, the SSP example of Section 3.1.2, where J* does not satisfy Bellman’s
equation, and the perturbation analysis of Section 3.4 were given in the pa-
per [BeY16]. This is also the source for the convergence rate result of Prop.
3.2.2. The λ-PI method was introduced by Bertsekas and Ioffe [BeI96] in
the context of discounted and SSP problems, and subsequent work includes
the papers by Nedić and Bertsekas [NeB03], and by Bertsekas, Borkar, and
Nedić [BBN04] on the LSPE(λ) method. The analysis of λ-PI in Section
3.2.4 is new and is related to an analysis of a linearized form of the proximal
algorithm given in the author’s papers [Ber16b], [Ber18c].

Section 3.3: The central result of Section 3.3, Prop. 3.3.1, was given in
the 2013 edition of the book. It is patterned after a result of Bertsekas and
Tsitsiklis [BeT91] for SSP problems with finite state space and compact
control constraint sets, which is reproduced in Section 3.5.1. The proof
given there contains an intricate demonstration of a real-valued lower bound
on the cost functions of proper policies (Lemma 3 of [BeT91], which implies
Prop. 3.5.3).

Section 3.4: The perturbation approach of Section 3.4 was introduced in
the 2013 edition of the book. It is presented here in somewhat stronger
form, which will also be applied to nonstationary S-regular policies in the
next chapter.

Section 3.5: The SSP problem analysis of Section 3.5.1 for the case of
the strong SSP conditions is due to Bertsekas and Tsitsiklis [BeT91]. For
the case of the weak SSP conditions it is due to Bertsekas and Yu [BeY16].
The perturbation-based PI algorithm was given in Section 3.3.3 of the 2013
edition of the book. A different PI algorithm that embodies a mechanism
for breaking ties in the policy improvement step was given by Guillot and
Stauffer [GuS17] for the case of finite state and control spaces.

The affine monotonic model of Section 3.5.2 was initially formulated
and analyzed in the 2013 edition of the book, in a more general setting
where the state space can be an infinite set. The analysis of Section 3.5.2
of the finite-state case comes from the author’s paper [Ber16a], which con-
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tains more details. The exponentiated cost version of the SSP problem was
analyzed in the papers by Denardo and Rothblum [DeR79], and by Patek
[Pat01]. The paper [DeR79] assumes that the state and control spaces are
finite, that there exists at least one contractive policy (a transient policy
in the terminology of [DeR79]), and that every improper policy is noncon-
tractive and has infinite cost from some initial state. These assumptions
bypass the pathologies around infinite control spaces and multiple solu-
tions or no solution of Bellman’s equation. Also the approach of [DeR79]
is based on linear programming (relying on the finite control space), and
is thus quite different from ours. The paper [Pat01] assumes that the state
space is finite, that the control constraint set is compact, and that the ex-
pected one-stage cost is strictly positive for all state-control pairs, which is
much stronger than what we have assumed. Our results of Section 3.5.2,
when specialized to the exponential cost problem, are consistent with and
subsume the results of Denardo and Rothblum [DeR79], and Patek [Pat01].

The discussion on robust shortest path planning in Section 3.5.3 fol-
lows the author’s paper [Ber19c]. This paper contains further analysis
and computational methods, including a finitely terminating Dijkstra-like
algorithm for problems with nonnegative arc lengths.

The deterministic optimal control model of Section 3.5.5 is discussed
in more detail in the author’s paper [Ber17b] under Assumption 3.5.9 for the
case where g ≥ 0; see also Section 4.5 and the paper [Ber17c]. The analysis
under the more general assumptions given here is new. Deterministic and
minimax infinite-spaces optimal control problems have also been discussed
by Reissig [Rei16] under assumptions different than ours.

Section 3.6: The asynchronous VI algorithm of Section 3.6.1 was first
given in the author’s paper on distributed DP [Ber82]. It was further
formalized in the paper [Ber83], where a DP problem was viewed as a
special case of a fixed point problem, involving monotonicity and possibly
contraction assumptions.

The analysis of Section 3.6.2, parallels the one of Section 2.6.3, and is
due to joint work of the author with H. Yu, presented in the papers [BeY12]
and [YuB13a]. In particular, the algorithm of Section 3.6.2 is one of the op-
timistic PI algorithms in [YuB13a], which was applied to the SSP problem
of Section 3.5.1 under the strong SSP conditions. We have followed the line
of analysis of that paper and the related paper [BeY12], which focuses on
discounted problems. These papers also analyzed asynchronous stochastic
iterative versions of PI, and proved convergence results that parallel those
for classical Q-learning for SSP, given in Tsitsiklis [Tsi94], and Yu and
Bertsekas [YuB13b]. An earlier paper, which deals with a slightly differ-
ent asynchronous abstract PI algorithm without a contraction structure, is
Bertsekas and Yu [BeY10].

By allowing an infinite state space, the analysis of the present chapter
applies among others to SSP problems with a countable state space. Such



222 Semicontractive Models Chap. 3

problems often arise in queueing control settings where the termination
state corresponds to an empty queue. The problem then is to empty the
queue with minimum expected cost. Generalized forms of SSP problems,
which involve an infinite (uncountable) number of states, in addition to
the termination state, were analyzed by Pliska [Pli78], Hernandez-Lerma
et al. [HCP99], and James and Collins [JaC06]. The latter paper allows
improper policies, assumes that g is bounded and J* is bounded below,
and generalizes the results of [BeT91] to infinite (Borel) state spaces, using
a similar line of proof. Infinite spaces SSP problems will also be discussed
in Section 4.6.

A notable SSP problem with infinite state space arises under imper-
fect state information. There the problem is converted to a perfect state
information problem whose states are belief states, i.e., posterior probabil-
ity distributions of the original state given the observations thus far. The
paper by Patek [Pat07] addresses SSP problems with imperfect state in-
formation and proves results that are similar to the ones for their perfect
state information counterparts. These results can also be derived using the
line of analysis of this chapter. In particular, the critical condition that the
cost functions of proper policies are bounded below by some real-valued
function [cf. Assumption 3.3.1(b)] is proved as Lemma 5 in [Pat07], using
the fact that the cost functions of the proper policies are bounded below
by the optimal cost function of a corresponding perfect state information
problem.

E X E R C I S E S

3.1 (Conditions for J* to be a Fixed Point of T )

The purpose of this exercise is to show that the optimal cost function J→ is a fixed
point of T under some assumptions, which among others, are satisfied generically
in deterministic optimal control problems. Let Π̂ be a subset of policies such that:

(1) We have
(µ,π) → Π̂ if and only if µ → M, π → Π̂,

where for µ → M and π = {µ0, µ1, . . .}, we denote by (µ, π) the policy
{µ, µ0, µ1, . . .}. Note: This condition precludes the possibility that Π̂ is
the set of all stationary policies (unless there is only one stationary policy).

(2) For every π = {µ0, µ1, . . .} → Π̂, we have

Jπ = Tµ0Jπ1 ,

where π1 is the policy π1 = {µ1, µ2, . . .}.
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(3) We have
inf

µ∈M,π∈Π̂
TµJπ = inf

µ∈M
TµĴ ,

where the function Ĵ is given by

Ĵ(x) = inf
π∈Π̂

Jπ(x), x → X.

Show that:

(a) Ĵ is a fixed point of T . In particular, if Π̂ = Π, then J→ is a fixed point of
T .

(b) The assumptions (1)-(3) hold with Π̂ = Π in the case of the deterministic
mapping

H(x, u, J) = g(x, u)+J
(
f(x, u)

)
, x → X, u → u(x), J → E(X). (3.60)

(c) Consider the SSP example of Section 3.1.2, where J→ is not a fixed point
of T . Which of the conditions (1)-(3) is violated?

Solution: (a) For every x → X, we have

Ĵ(x) = inf
π∈Π̂

Jπ(x) = inf
µ∈M, π∈Π̂

(TµJπ)(x) = inf
µ∈M

(TµĴ)(x) = (T Ĵ)(x),

where the second equality holds by conditions (1) and (2), and the third equality
holds by condition (3).

(b) This is evident in the case of the deterministic mapping (3.60). Notes: (i)
If Π̂ = Π, parts (a) and (b) show that J→, which is equal to Ĵ , is a fixed point
of T . Moreover, if we choose a set S such that J→

S can be shown to be equal to
J→, then Prop. 3.2.1 applies and shows that J→ is the unique fixed point of T
with the set

{
J → E(X) | J→

S ≤ J ≤ J̃
}

for some J̃ → S. In addition the VI

sequence {T kJ} converges to J→ starting from every J within that set. (ii) The
assumptions (1)-(3) of this exercise also hold for other choices of Π̂. For example,
when Π̂ is the set of all eventually stationary policies, i.e., policies of the form
{µ0, . . . , µk, µ, µ, . . .}, where µ0, . . . , µk, µ → M and k is some positive integer.

(c) For the SSP problem of Section 3.1.1, condition (2) of the preceding proposi-
tion need not be satisfied (because the expected value operation need not com-
mute with lim sup).

3.2 (Alternative Semicontractive Conditions I)

This exercise provides a different starting point for the semicontractive analysis of
Section 3.2. In particular, the results of Prop. 3.2.1 are shown without assuming
that J→

S is a fixed point of T , but by making different assumptions, which include
the existence of an S-regular policy that is optimal. Let S be a given subset of
E(X). Assume that:
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(1) There exists an S-regular policy µ→ that is optimal, i.e., Jµ→ = J→.

(2) The policy µ→ satisfies Tµ→J
→ = TJ→.

Show that the following hold:

(a) The optimal cost function J→ is the unique fixed point of T within the set
{J → S | J ↓ J→}.

(b) We have T kJ → J→ for every J → S with J ↓ J→.

(c) An S-regular policy µ that satisfies TµJ
→ = TJ→ is optimal. Conversely if

µ is an S-regular optimal policy, it satisfies TµJ
→ = TJ→.

Note: Part (a) and the assumptions show that J→
S is a fixed point of T (as well

as that J→
S = J→ → S), so parts (b) and (c) also follow from Prop. 3.2.1.

Solution: (a) We first show that any fixed point J of T that lies in S satisfies
J ≤ J→. Indeed, if J = TJ , then for the optimal S-regular policy µ→, we have
J ≤ Tµ→J , so in view of the monotonicity of Tµ→ and the S-regularity of µ→,

J ≤ lim
k↓∞

T k
µ→J = Jµ→ = J→.

Thus the only function within {J → S | J ↓ J→} that can be a fixed point of T is
J→. Using the optimality and S-regularity of µ→, and condition (2), we have

J→ = Jµ→ = Tµ→Jµ→ = Tµ→J
→ = TJ→,

so J→ is a fixed point of T . Finally, J→ → S since J→ = Jµ→ and µ→ is S-regular,
so J→ is the unique fixed point of T within {J → S | J ↓ J→}.

(b) For the optimal S-regular policy µ→ and any J → S with J ↓ J→, we have

T k
µ→J ↓ T kJ ↓ T kJ→ = J→, k = 0, 1, . . . .

Taking the limit as k → ∞, and using the fact limk↓∞ T k
µ→J = Jµ→ = J→, which

holds since µ→ is S-regular and optimal, we see that T kJ → J→.

(c) If µ satisfies TµJ
→ = TJ→, then using part (a), we have TµJ

→ = J→ and hence
limk↓∞ T k

µJ
→ = J→. If µ is in addition S-regular, then Jµ = limk↓∞ T k

µJ
→ = J→

and µ is optimal. Conversely, if µ is optimal and S-regular, then Jµ = J→ and
Jµ = TµJµ, which combined with J→ = TJ→ [cf. part (a)], yields TµJ

→ = TJ→.

3.3 (Alternative Semicontractive Conditions II)

Let S be a given subset of E(X). Show that the assumptions of Exercise 3.2 hold
if and only if J→ → S, TJ→ ≤ J→, and there exists an S-regular policy µ such that
TµJ

→ = TJ→.

Solution: Let the conditions (1) and (2) of Exercise 3.2 hold, and let µ→ be the
S-regular policy that is optimal. Then condition (1) implies that J→ = Jµ→ → S
and J→ = Tµ→J

→ ↓ TJ→, while condition (2) implies that there exists an S-regular
policy µ such that TµJ

→ = TJ→.
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Conversely, assume that J→ → S, TJ→ ≤ J→, and there exists an S-regular
policy µ such that TµJ→ = TJ→. Then we have TµJ→ = TJ→ ≤ J→. Hence
T k
µJ

→ ≤ J→ for all k, and by taking the limit as k → ∞, we obtain Jµ ≤ J→.
Hence the S-regular policy µ is optimal, and the conditions of Exercise 3.2 hold.

3.4 (Alternative Semicontractive Conditions III)

Let S be a given subset of E(X). Assume that:

(1) There exists an optimal S-regular policy.

(2) For every S-irregular policy µ, we have TµJ
→ ↓ J→.

Show that the assumptions of Exercise 3.2 hold.

Solution: It will be sufficient to show that conditions (1) and (2) imply that
J→ = TJ→. Assume to obtain a contradiction, that J→ &= TJ→. Then J→ ↓ TJ→,
as can be seen from the relations

J→ = Jµ→ = Tµ→Jµ→ ↓ TJµ→ = TJ→,

where µ→ is an optimal S-regular policy. Thus the relation J→ &= TJ→ implies
that there exists µ′ and x → X such that

J→(x) ↓ (Tµ′J
→)(x), ∀ x → X,

with strict inequality for some x [note here that we can choose µ(x) = µ→(x) for
all x such that J→(x) = (TJ→)(x), and we can choose µ(x) to satisfy J→(x) >
(TµJ

→)(x) for all other x]. If µ were S-regular, we would have

J→ ↓ TµJ
→ ↓ lim

k↓∞
T k
µJ

→ = Jµ′ ,

with strict inequality for some x → X, which is impossible. Hence µ′ is S-irregular,
which contradicts condition (2).

3.5 (Restricted Optimization over a Subset of S-Regular
Policies)

This exercise provides a useful extension of Prop. 3.2.1. Given a set S, it may be

more convenient to work with a subset M̂ ⊂ MS . Let Ĵ denote the corresponding
restricted optimal value:

Ĵ(x) = inf
µ∈M̂

Jµ(x),

and assume that Ĵ is a fixed point of T . Show that the following analogs of the
conclusions of Prop. 3.2.1 hold:

(a) (Uniqueness of Fixed Point) If J ′ is a fixed point of T and there exists

J̃ → S such that J ′ ≤ J̃ , then J ′ ≤ Ĵ . In particular, if the set Ŵ given by

Ŵ =
{
J → E(X) | Ĵ ≤ J ≤ J̃ for some J̃ → S

}
,
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is nonempty, then Ĵ is the unique fixed point of T within Ŵ.

(b) (VI Convergence) We have T kJ → Ĵ for every J → Ŵ .

Solution: The proof is nearly identical to the one of Prop. 3.2.1. Let J → Ŵ, so
that

Ĵ ≤ J ≤ J̃

for some J̃ → S. We have for all k ↓ 1 and µ → M̂,

Ĵ = T kĴ ≤ T kJ ≤ T kJ̃ ≤ T k
µ J̃ ,

where the equality follows from the fixed point property of Ĵ , while the inequal-
ities follow by using the monotonicity and the definition of T . The right-hand
side tends to Jµ as k → ∞, since µ is S-regular and J̃ → S. Hence the infimum

over µ → M̂ of the limit of the right-hand side tends to the left-hand side Ĵ . It
follows that T kJ → Ĵ , proving part (b). To prove part (a), let J ′ be a fixed

point of T that belongs to Ŵ. Then J ′ is equal to limk↓∞ T kJ ′, which has been
proved to be equal to Ĵ .

3.6 (The Case J∗
S ↑ J̄)

Within the framework of Section 3.2, assume that J→
S ≤ J̄ . (This occurs in

particular in the monotone decreasing model where J̄ ↓ TµJ̄ for all µ → M; see
Section 4.3.) Show that if J→

S is a fixed point of T , then we have J→
S = J→. Note:

This result manifests itself in the shortest path Example 3.2.1 for the case where
b < 0.

Solution: For all k and policies π = {µ0, µ1, . . .}, we have

J→
S = lim

k↓∞
T kJ→

S ≤ lim sup
k↓∞

T kJ̄ ≤ lim sup
k↓∞

Tµ0 · · ·Tµk−1 J̄ = Jπ ,

and by taking the infimum over π → Π, we obtain J→
S ≤ J→. Since generically we

have J→
S ↓ J→, it follows that J→

S = J→.

3.7 (Weakening the Near-Optimal Termination Assumption)

Consider the deterministic optimal control problem of Section 3.5.5. The purpose
of this exercise is to show that the Assumption 3.5.9 is equivalent to a seemingly
weaker assumption where nonstationary policies can be used for termination.
Given a state x → X→, we say that a (possibly nonstationary) policy π → Π
terminates from x if the sequence {xk}, which is generated starting from x and
using π, reaches X0 in the sense that xk̄ → X0 for some index k̄. Assume that for
every x → X→, there exists a policy π → Π that terminates from x. Show that:

(a) The set M̂ of terminating stationary policies is nonempty, i.e., there exists
a stationary policy that terminates from every x → X→.
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(b) Assumption 3.5.9 is satisfied if for every pair (x, ε) with x → X→ and ε > 0,
there exists a policy π → Π that terminates from x and satisfies Jπ(x) ≤
J→(x) + ε.

Solution: (a) Consider the sequence of subsets of X defined for k = 0, 1, . . . , by

Xk = {x → X→ | there exists π → Π that terminates from x in k steps or less},

starting with the stopping set X0. Note that ∪∞
k=0Xk = X→. Define a stationary

policy µ̄ as follows: For each x → Xk with x /→ Xk−1, let {µ0, µ1, . . .} be a policy
that terminates from x in the minimum possible number of steps (which is k),
and let µ̄ = µ0. For each x /→ X→, let µ̄(x) be an arbitrary control in U(x). It
can be seen that µ̄ is a terminating stationary policy.

(b) Given any state x̄ → X→ with x̄ /→ X0, and a nonstationary policy π =
{µ0, µ1, . . .} that terminates from x̄, we construct a stationary policy µ that
terminates from every x → X→ and generates essentially the same trajectory as
π starting from x̄ (i.e., after cycles are subtracted). To construct such a µ, we
consider the sequence generated by π starting from x̄. If this sequence contains
cycles, we shorten the sequence by eliminating the cycles, and we redefine π so
that starting from x̄ it generates a terminating trajectory without cycles. This
redefined version of π, denoted π′ = {µ′

0, µ
′
1, . . .}, terminates from x̄ and has cost

Jπ′(x̄) ≤ Jπ(x̄) [since all the eliminated transitions that belonged to cycles have
nonnegative cost, in view of the fact J→(x) > −∞ for all x, which is implied by
Assumption 3.5.9]. We now consider the sequence of subsets of X defined by

Xk = {x → X | π′ terminates from x in k steps or less}, k = 0, 1, . . . ,

where X0 is the stopping set. Let k̄ be the first k ↓ 1 such that x̄ → Xk. Construct
the stationary policy µ as follows: for x → ∪k̄

k=1Xk, let

µ(x) = µ′
k̄−k(x), if x → Xk and x /→ Xk−1, k = 1, 2, . . . ,

and for x /→ ∪k̄
k=1Xk, let µ(x) = µ̄(x), where µ̄ is a stationary policy that termi-

nates from every x → X→ [and was shown to exist in part (a)]. Then it is seen
that µ terminates from every x → X→, and generates the same sequence as π′

starting from the state x̄, so it satisfies Jµ(x̄) = Jπ′(x̄) ≤ Jπ(x̄).

3.8 (Verifying the Near-Optimal Termination Assumption)

In the context of the deterministic optimal control problem of Section 3.5.5,
assume that X is a normed space with norm denoted ‖ · ‖. We say that π
asymptotically terminates from x if the sequence {xk} generated starting from x
and using π converges to X0 in the sense that

lim
k↓∞

dist(xk, X0) = 0,

where dist(x,X0) denotes the minimum distance from x to X0,

dist(x,X0) = inf
y∈X0

‖x− y‖, x → X.
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The purpose of this exercise is to provide a readily verifiable condition that
guarantees Assumption 3.5.9. Assume that

0 ≤ g(x,u), x → X, u → U(x),

and that
J→(x) > 0, ∀ x /→ X0.

Assume further the following:

(1) For every x → X→ =
{
x → X | J→(x) < ∞

}
and ε > 0, there exits a policy

π that asymptotically terminates from x and satisfies Jπ(x) ≤ J→(x) + ε.

(2) For every ε > 0, there exists a δε > 0 such that for each x → X→ with

dist(x,X0) ≤ δε,

there is a policy π that terminates from x and satisfies Jπ(x) ≤ ε.

Then:

(a) Show that Assumption 3.5.9 holds.

(b) Show that condition (1) holds if for each δ > 0 there exists ε > 0 such that

inf
u∈U(x)

g(x, u) ↓ ε, ∀ x → X such that dist(x,X0) ↓ δ.

Note: For further discussion, analysis, and application to the case of a linear
system, see the author’s paper [Ber17b].

Solution: (a) Fix x → X→ and ε > 0. Let π be a policy that asymptotically
terminates from x, and satisfies Jπ(x) ≤ J→(x)+ ε, as per condition (1). Starting
from x, this policy will generate a sequence {xk} such that for some index k̄ we
have dist(xk̄, X0) ≤ δε, so by condition (2), there exists a policy π̄ that terminates
from xk̄ and is such that Jπ̄(xk̄) ≤ ε. Consider the policy π′ that follows π up to
index k̄ and follows π̄ afterwards. This policy terminates from x and satisfies

Jπ′(x) = Jπ,k̄(x) + Jπ̄(xk̄) ≤ Jπ(x) + Jπ̄(xk̄) ≤ J→(x) + 2ε,

where Jπ,k̄(x) is the cost incurred by π starting from x up to reaching xk̄. From
Exercise 3.7 it follows that Assumption 3.5.9 holds.

(b) For any x and policy π that does not asymptotically terminate from x, we
will have Jπ(x) = ∞, so that if x → X→, all policies π with Jπ(x) < ∞ must be
asymptotically terminating from x.

3.9 (Perturbations and S-Regular Policies)

The purpose of this exercise is to illustrate that the set of S-regular policies may
be different in the perturbed and unperturbed problems of Section 3.4. Consider
a single-state problem with J̄ = 0 and two policies µ and µ′, where

TµJ = min{1, J}, Tµ′J = β > 0.
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Let S = ,.

(a) Verify that µ is S-irregular and Jµ = J→ = 0.

(b) Verify that µ′ is S-regular and Jµ′ = J→
S = β.

(c) For δ > 0 consider the δ-perturbed problem with p(x) = 1, where x is
the only state. Show that both µ and µ′ are S-regular for this problem.
Moreover, we have Ĵδ = min{1, β}+ δ.

(d) Verify that Prop. 3.4.1 applies for M̂ = {µ′} and β ≤ 1, but does not

apply if M̂ = {µ, µ′} or β > 1. Which assumptions of the proposition are
violated in the latter case?

Solution: Parts (a) and (b) are straightforward. It is also straightforward to
verify the definition of S-regularity for both policies in the δ-perturbed problem,
and that Jµ,δ = 1 + δ and Jµ′,δ = β + δ. If β ≤ 1, the policy µ′ is optimal

for the δ-perturbed problem, and Prop. 3.4.1 applies for M̂ = {µ′} because all

its assumptions are satisfied. However, when β > 1 and M̂ = {µ′} there is no

ε-optimal policy in M̂ for the δ-perturbed problem (contrary to the assumption

of Prop. 3.4.1), and indeed we have β = J→
S > limδ↓0 Ĵδ = 1. Also when M̂ =

{µ, µ′}, the policy µ is not S-regular, contrary to the assumption of Prop. 3.4.1.

3.10 (Perturbations in Affine Monotonic Models [Ber16a])

Consider the affine monotonic model of Section 3.5.2, and let Assumptions 3.5.5
and 3.5.6 hold. In a perturbed version of this model we add a constant δ > 0 to all
components of bµ, thus obtaining what we call the δ-perturbed affine monotonic

problem. We denote by Ĵδ and Jµ,δ the corresponding optimal cost function and
policy cost functions, respectively.

(a) Show that for all δ > 0, Ĵδ is the unique solution within ,n
+ of the equation

J(i) = (TJ)(i) + δ, i = 1, . . . , n.

(b) Show that for all δ > 0, a policy µ is optimal for the δ-perturbed problem
(i.e., Jµ,δ = Ĵδ) if and only if TµĴδ = T Ĵδ. Moreover, for the δ-perturbed
problem, all optimal policies are contractive and there exists at least one
contractive policy that is optimal.

(c) The optimal cost function over contractive policies Ĵ [cf. Eq. (3.37)] satisfies

Ĵ(i) = lim
δ↓0

Ĵδ(i), i = 1, . . . , n.

(d) If the control constraint set U(i) is finite for all states i = 1, . . . , n, there
exists a contractive policy µ̂ that attains the minimum over all contractive
policies, i.e., Jµ̂ = Ĵ .

(e) Show Prop. 3.5.8.
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Solution: (a), (b) By Prop. 3.5.6, we have that Assumption 3.3.1 holds for the
δ-perturbed problem. The results follow by applying Prop. 3.5.7 [the equation of
part (a) is Bellman’s equation for the δ-perturbed problem].

(c) For an optimal contractive policy µ→
δ of the δ-perturbed problem [cf. part (b)],

we have

Ĵ = inf
µ: contractive

Jµ ≤ Jµ→
δ
≤ Jµ→

δ
,δ = Ĵδ ≤ Jµ′,δ, ∀ µ′ : contractive.

Since for every contractive policy µ′, we have limδ↓0 Jµ′,δ = Jµ′ , it follows that

Ĵ ≤ lim
δ↓0

Ĵδ ≤ Jµ′ , ∀ µ′ : contractive.

By taking the infimum over all µ′ that are contractive, the result follows.

(d) Let {δk} be a positive sequence with δk ↓ 0, and consider a corresponding se-
quence {µk} of optimal contractive policies for the δk-perturbed problems. Since
the set of contractive policies is finite [in view of the finiteness of U(i)], some
policy µ̂ will be repeated infinitely often within the sequence {µk}, and since
{J→

δk
} is monotonically nonincreasing, we will have

Ĵ ≤ Jµ̂ ≤ J→
δk
,

for all k sufficiently large. Since by part (c), J→
δk

↓ Ĵ , it follows that Jµ̂ = Ĵ .

(e) For all contractive µ, we have Jµ = TµJµ ↓ TµĴ ↓ T Ĵ. Taking the infimum
over contractive µ, we obtain Ĵ ↓ T Ĵ. Conversely, for all δ > 0 and µ → M, we
have

Ĵδ = T Ĵδ + δe ≤ TµĴδ + δe.

Taking limit as δ ↓ 0, and using part (c), we obtain Ĵ ≤ TµĴ for all µ → M.
Taking infimum over µ → M, it follows that Ĵ ≤ T Ĵ . Thus Ĵ is a fixed point of
T .

For all J → ,n with J ↓ Ĵ and contractive µ, we have by using the relation
Ĵ = T Ĵ just shown,

Ĵ = lim
k↓∞

T kĴ ≤ lim
k↓∞

T kJ ≤ lim
k↓∞

T k
µJ = Jµ.

Taking the infimum over all contractive µ, we obtain

Ĵ ≤ lim
k↓∞

T kJ ≤ Ĵ , ∀ J ↓ Ĵ .

This proves that T kJ → Ĵ . Finally, let J ′ → R(X) be another solution of
Bellman’s equation, and let J → R(X) be such that J ↓ Ĵ and J ↓ J ′. Then
T kJ → Ĵ , while T kJ ↓ T kJ ′ = J ′. It follows that Ĵ ↓ J ′.

To prove Prop. 3.5.8(c) note that if µ is a contractive policy with Jµ = Ĵ ,
we have Ĵ = Jµ = TµJµ = TµĴ , so, using also the relation Ĵ = T Ĵ [cf. part (a)],
we obtain TµĴ = T Ĵ . Conversely, if µ satisfies TµĴ = T Ĵ , then from part (a),
we have TµĴ = Ĵ and hence limk↓∞ T k

µ Ĵ = Ĵ . Since µ is contractive, we obtain

Jµ = limk↓∞ T k
µ Ĵ , so Jµ = Ĵ .

The proof of Prop. 3.5.8(d) is nearly identical to the one of Prop. 3.5.4(d).
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In this chapter, we consider abstract DP models that are similar to the
ones of the earlier chapters, but we do not assume any contraction-like
property. We discuss both finite and infinite horizon models, and introduce
just enough assumptions (including monotonicity) to obtain some minimal
results, which we will strengthen as we go along.

In Section 4.2, we consider a general type of finite horizon problem.
Under some reasonable assumptions, we show the standard results that one
may expect in an abstract setting.

In Section 4.3, we discuss an infinite horizon problem that is moti-
vated by the well-known positive and negative DP models (see [Ber12a],
Chapter 4). These are the special cases of the infinite horizon stochastic
optimal control problem of Example 1.2.1, where the cost per stage g is
uniformly nonpositive or uniformly nonnegative. For these models there is
interesting theory (the validity of Bellman’s equation and the availability
of optimality conditions in a DP context), which originated with the works
of Blackwell [Bla65b] and Strauch [Str66], and is discussed in Section 4.3.1.
There are also interesting computational methods, patterned after the VI
and PI algorithms, which are discussed in Sections 4.3.2 and 4.3.3. How-
ever, the performance guarantees for these methods are not as powerful as
in the contractive case, and their validity hinges upon certain additional
assumptions.

In Section 4.4, we extend the notion of regularity of Section 3.2 so that
it applies more broadly, including situations where nonstationary policies
need to be considered. The mathematical reason for considering nonsta-
tionary policies is that for some of the noncontractive models of Section
4.3, stationary policies are insufficient in the sense that there may not exist
ε-optimal policies that are stationary. In this section, we also discuss some
applications, including some general types of optimal control problems with
nonnegative cost per stage. Principal results here are that J* is the unique
solution of Bellman’s equation within a certain class of functions, and other
related results regarding the convergence of the VI algorithm.

In Section 4.5, we discuss a nonnegative cost deterministic optimal
control problem, which combines elements of the noncontractive models
of Section 4.3, and the semicontractive models of Chapter 3 and Section
4.4. Within this setting we explore the structure and the multiplicity of
solutions of Bellman’s equation. We draw inspiration from the analysis of
Section 4.4, but we also use a perturbation-based line of analysis, similar
to the one of Section 3.4. In particular, our starting point is a perturbed
version of the mapping Tµ that defines the “stable” policies, in place of a
subset S that defines the S-regular policies. Still with a proper definition
of S, the “stable” policies are S-regular.

Finally, in Section 4.6, we extend the ideas of Section 4.5 to stochastic
optimal control problems, by generalizing the notion of a proper policy to
the case of infinite state and control spaces. This analysis is considerably
more complex than the finite-spaces SSP analysis of Section 3.5.1.
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4.1 NONCONTRACTIVE MODELS - PROBLEM FORMULATION

Throughout this chapter we will continue to use the model of Section 3.2,
which involves the set of extended real numbers !∗ = ! ∪ {∞,−∞}. To
repeat some of the basic definitions, we denote by E(X) the set of all
extended real-valued functions J : X %→ !∗, by R(X) the set of real-
valued functions J : X %→ !, and by B(X) the set of real-valued functions
J : X %→ ! that are bounded with respect to a given weighted sup-norm.

We have a set X of states and a set U of controls, and for each x ∈ X ,
the nonempty control constraint set U(x) ⊂ U . We denote by M the set
of all functions µ : X %→ U with µ(x) ∈ U(x), for all x ∈ X , and by Π the
set of “nonstationary policies” π = {µ0, µ1, . . .}, with µk ∈ M for all k.
We refer to a stationary policy {µ, µ, . . .} simply as µ.

We introduce a mapping H : X ×U × E(X) %→ !∗, and we define the
mapping T : E(X) %→ E(X) by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X),

and for each µ ∈ M the mapping Tµ : E(X) %→ E(X) by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X, J ∈ E(X).

We continue to use the following assumption throughout this chapter, with-
out mentioning it explicitly in various propositions.

Assumption 4.1.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

A fact that we will be using frequently is that for each J ∈ E(X) and
scalar ε > 0, there exists a µε ∈ M such that for all x ∈ X ,

(TµεJ)(x) ≤





(TJ)(x) + ε if (TJ)(x) > −∞,

−(1/ε) if (TJ)(x) = −∞.

In particular, if J is such that

(TJ)(x) > −∞, ∀ x ∈ X,

then for each ε > 0, there exists a µε ∈ M such that

(TµεJ)(x) ≤ (TJ)(x) + ε, ∀ x ∈ X.
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We will often use in our analysis the unit function e, defined by e(x) ≡ 1,
so for example, we write the preceding relation in shorthand as

TµεJ ≤ TJ + ε e.

We define cost functions for policies consistently with Chapters 2 and
3. In particular, we are given a function J̄ ∈ E(X), and we consider for
every policy π = {µ0, µ1, . . .} ∈ Π and positive integer N the function
JN,π ∈ E(X) defined by

JN,π(x) = (Tµ0 · · ·TµN−1 J̄)(x), ∀ x ∈ X,

and the function Jπ ∈ E(X) defined by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

We refer to JN,π as the N -stage cost function of π and to Jπ as the infinite
horizon cost function of π (or just “cost function” if the length of the
horizon is clearly implied by the context). For a stationary policy π =
{µ, µ, . . .} we also write Jπ as Jµ.

In Section 4.2, we consider the N -stage optimization problem

minimize JN,π(x)

subject to π ∈ Π,
(4.1)

while in Sections 4.3 and 4.4 we discuss its infinite horizon version

minimize Jπ(x)

subject to π ∈ Π.
(4.2)

For a fixed x ∈ X , we denote by J*
N (x) and J*(x) the optimal costs

for these problems, i.e.,

J*
N (x) = inf

π∈Π
JN,π(x), J*(x) = inf

π∈Π
Jπ(x), ∀ x ∈ X.

We say that a policy π∗ ∈ Π is N -stage optimal if

JN,π∗(x) = J*
N (x), ∀ x ∈ X,

and (infinite horizon) optimal if

Jπ∗(x) = J*(x), ∀ x ∈ X.

For a given ε > 0, we say that πε is N -stage ε-optimal if

JN,πε(x) ≤





J*
N (x) + ε if J*

N (x) > −∞,

−(1/ε) if J*
N (x) = −∞,

and we say that πε is ε-optimal if

Jπε(x) ≤





J*(x) + ε if J*(x) > −∞,

−(1/ε) if J*(x) = −∞.
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4.2 FINITE HORIZON PROBLEMS

Consider the N -stage problem (4.1), where the cost function JN,π is defined
by

JN,π(x) = (Tµ0 · · ·TµN−1 J̄)(x), ∀ x ∈ X.

Based on the theory of finite horizon DP, we expect that (at least under
some conditions) the optimal cost function J*

N is obtained by N successive
applications of the DP mapping T on the initial function J̄ , i.e.,

J*
N = inf

π∈Π
JN,π = TN J̄ .

This is the analog of Bellman’s equation for the finite horizon problem in
a DP context.

The Case Where Uniformly N-Stage Optimal Policies Exist

A favorable case where the analysis is simplified and we can easily show that
J*
N = TN J̄ is when the finite horizon DP algorithm yields an optimal policy

during its execution. By this we mean that the algorithm that starts with
J̄ , and sequentially computes T J̄, T 2J̄ , . . . , TN J̄ , also yields corresponding
µ∗
N−1, µ

∗
N−2, . . . , µ

∗
0 ∈ M such that

Tµ∗
k
TN−k−1J̄ = TN−kJ̄ , k = 0, . . . , N − 1. (4.3)

While µ∗
N−1, . . . , µ

∗
0 ∈ M satisfying this relation need not exist (because

the corresponding infimum in the definition of T is not attained), if they
do exist, they both form an optimal policy and also guarantee that

J*
N = TN J̄ .

The proof is simple: we have for every π = {µ0, µ1, . . .} ∈ Π

JN,π = Tµ0 · · ·TµN−1 J̄ ≥ TN J̄ = Tµ∗
0
· · ·Tµ∗

N−1
J̄ , (4.4)

where the inequality follows from the monotonicity assumption and the def-
inition of T , and the last equality follows from Eq. (4.3). Thus {µ∗

0, µ
∗
1, . . .}

has no worse N -stage cost function than every other policy, so it is N -stage
optimal and J*

N = Tµ∗
0
· · ·Tµ∗

N−1
J̄ . By taking the infimum of the left-hand

side over π ∈ Π in Eq. (4.4), we obtain J*
N = TN J̄ .

The preceding argument can also be used to show that {µ∗
k, µ

∗
k+1, . . .}

is (N − k)-stage optimal for all k = 0, . . . , N − 1. Such a policy is called
uniformly N -stage optimal . The fact that the finite horizon DP algorithm
provides an optimal solution of all the k-stage problems for k = 1, . . . , N ,
rather than just the last one, is a manifestation of the classical principle
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of optimality, expounded by Bellman in the early days of DP (the tail
portion of an optimal policy obtained by DP minimizes the corresponding
tail portion of the finite horizon cost). Note, however, that there may exist
an N -stage optimal policy that is not k-stage optimal for some k < N .

We state the result just derived as a proposition.

Proposition 4.2.1: Suppose that a policy {µ∗
0, µ

∗
1, . . .} satisfies the

condition (4.3). Then this policy is uniformly N -stage optimal, and
we have J*

N = TN J̄ .

While the preceding result is theoretically limited, it is very useful in
practice, because the existence of a policy satisfying the condition (4.3) can
often be established with a simple analysis. For example, this condition is
trivially satisfied if the control space is finite. The following proposition
provides a generalization.

Proposition 4.2.2: Let the control space U be a metric space, and
assume that for each x ∈ X , λ ∈ !, and k = 0, 1, . . . , N − 1, the set

Uk(x,λ) =
{
u ∈ U(x) | H(x, u, T kJ̄) ≤ λ

}

is compact. Then there exists a uniformly N -stage optimal policy.

Proof: We will show that the infimum in the relation

(T k+1J̄)(x) = inf
u∈U(x)

H
(
x, u, T kJ̄

)

is attained for all x ∈ X and k. Indeed if H
(
x, u, T kJ̄

)
= ∞ for all

u ∈ U(x), then every u ∈ U(x) attains the infimum. If for a given x ∈ X ,

inf
u∈U(x)

H
(
x, u, T kJ̄

)
< ∞,

the corresponding part of the proof of Lemma 3.3.1 applies and shows that
the above infimum is attained. The result now follows from Prop. 4.2.1.
Q.E.D.

The General Case

We now consider the case where there may not exist a uniformly N -stage
optimal policy. By using the definitions of J∗

N and TN J̄ , the equation
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J∗
N = TN J̄ , which we want to prove, can be equivalently written as

inf
µ0,...,µN−1∈M

Tµ0 · · ·TµN−1 J̄ = inf
µ0∈M

Tµ0

(
inf

µ1∈M
Tµ1

(
· · · inf

µN−1∈M
TµN−1 J̄

))
.

Thus we have J∗
N = TN J̄ if the operations inf and Tµ can be interchanged

in the preceding equation. We will introduce two alternative assumptions,
which guarantee that this interchange is valid. Our first assumption is a
form of continuity from above of H with respect to J .

Assumption 4.2.1: For each sequence {Jm} ⊂ E(X) with Jm ↓ J
and H(x, u, J0) < ∞ for all x ∈ X and u ∈ U(x), we have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x). (4.5)

Note that if {Jm} is monotonically nonincreasing, the same is true
for {TµJm}. It follows that

inf
m

Jm = lim
m→∞

Jm, inf
m

(TµJm) = lim
m→∞

(TµJm),

so for all µ ∈ M, Eq. (4.5) implies that

inf
m

(TµJm) = lim
m→∞

(TµJm) = Tµ

(
lim

m→∞
Jm
)
= Tµ

(
inf
m

Jm
)
.

This equality can be extended for any µ1, . . . , µk ∈ M as follows:

inf
m

(Tµ1 · · ·Tµk
Jm) = Tµ1

(
inf
m

(Tµ1 · · ·Tµk
Jm)

)

= · · ·

= Tµ1Tµ1 · · ·Tµk−1

(
inf
m

(Tµk
Jm)

)

= Tµ1 · · ·Tµk

(
inf
m

Jm
)
.

(4.6)

We use this relation to prove the following proposition.

Proposition 4.2.3: Let Assumption 4.2.1 hold, and assume further
that Jk,π(x) < ∞, for all x ∈ X , π ∈ Π, and k ≥ 1. Then J*

N = TN J̄ .

Proof: We select for each k = 0, . . . , N − 1, a sequence {µm
k } ⊂ M such

that
lim

m→∞
Tµm

k
(TN−k−1J̄) ↓ TN−kJ̄ .
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Since J∗
N ≤ Tµ0 · · ·TµN−1 J̄ for all µ0, . . . , µN−1 ∈ M, we have using also

Eq. (4.6) and the assumption Jk,π(x) < ∞, for all k, π, and x,

J∗
N ≤ inf

m0
· · · inf

mN−1
Tµ

m0
0

· · ·T
µ
mN−1
N−1

J̄

= inf
m0

· · · inf
mN−2

Tµ
m0
0

· · ·T
µ
mN−2
N−2

(
inf

mN−1
T
µ
mN−1
N−1

J̄

)

= inf
m0

· · · inf
mN−2

Tµ
m0
0

· · ·T
µ
mN−2
N−2

T J̄

...

= inf
m0

Tµ
m0
0

(TN−1J̄)

= TN J̄ .

On the other hand, it is clear from the definitions that TN J̄ ≤ JN,π for all
N and π ∈ Π, so that TN J̄ ≤ J*

N . Thus, J*
N = TN J̄ . Q.E.D.

We now introduce an alternative assumption, which in addition to
J*
N = TN J̄ , guarantees the existence of an ε-optimal policy.

Assumption 4.2.2: We have

J*
k (x) > −∞, ∀ x ∈ X, k = 1, . . . , N.

Moreover, there exists a scalar α ∈ (0,∞) such that for all scalars
r ∈ (0,∞) and functions J ∈ E(X), we have

H(x, u, J + r e) ≤ H(x, u, J) + α r, ∀ x ∈ X, u ∈ U(x). (4.7)

Proposition 4.2.4: Let Assumption 4.2.2 hold. Then J*
N = TN J̄ ,

and for every ε > 0, there exists an ε-optimal policy.

Proof: Note that since by assumption, J*
N (x) > −∞ for all x ∈ X , an

N -stage ε-optimal policy πε ∈ Π is one for which

J*
N ≤ JN,πε ≤ J*

N + ε e.

We use induction. The result clearly holds for N = 1. Assume that it
holds for N = k, i.e., J*

k = T kJ̄ and for any given ε > 0, there is a πε ∈ Π
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with Jk,πε ≤ J*
k + ε e. Using Eq. (4.7), we have for all µ ∈ M,

J*
k+1 ≤ TµJk,πε ≤ TµJ*

k + αε e.

Taking the infimum over µ and then the limit as ε → 0, we obtain J*
k+1 ≤

TJ*
k . By using the induction hypothesis J*

k = T kJ̄ , it follows that J*
k+1 ≤

T k+1J̄ . On the other hand, we have clearly T k+1J̄ ≤ Jk+1,π for all π ∈ Π,
so that T k+1J̄ ≤ J*

k+1, and hence T k+1J̄ = J*
k+1.

We now turn to the existence of an ε-optimal policy part of the in-
duction argument. Using the assumption J*

k (x) > −∞ for all x ∈ x ∈ X ,
for any ε > 0, we can choose π = {µ0, µ1, . . .} such that

Jk,π ≤ J*
k +

ε

2α
e, (4.8)

and µ ∈ M such that

TµJ*
k ≤ TJ*

k +
ε

2
e.

Let πε = {µ, µ0, µ1, . . .}. Then

Jk+1,πε
= TµJk,π ≤ TµJ*

k +
ε

2
e ≤ TJ*

k + ε e = J*
k+1 + ε e,

where the first inequality is obtained by applying Tµ to Eq. (4.8) and using
Eq. (4.7). The induction is complete. Q.E.D.

We now provide some counterexamples showing that the conditions
of the preceding propositions are necessary, and that for exceptional (but
otherwise very simple) problems, the Bellman equation J*

N = TN J̄ may
not hold and/or there may not exist an ε-optimal policy.

Example 4.2.1 (Counterexample to Bellman’s Equation I)

Let
X = {0}, U(0) = (−1, 0], J̄(0) = 0,

H(0, u, J) =

{
u if −1 < J(0),
J(0) + u if J(0) ≤ −1.

Then
(Tµ0 · · ·TµN−1 J̄)(0) = µ0(0),

and J∗
N (0) = −1, while (TN J̄)(0) = −N for every N . Here Assumption 4.2.1,

and the condition (4.7) (cf. Assumption 4.2.2) are violated, even though the
condition J∗

k (x) > −∞ for all x ∈ X (cf. Assumption 4.2.2) is satisfied.
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Example 4.2.2 (Counterexample to Bellman’s Equation II)

Let

X = {0, 1}, U(0) = U(1) = (−∞, 0], J̄(0) = J̄(1) = 0,

H(0, u, J) =

{
u if J(1) = −∞,
0 if J(1) > −∞,

H(1, u, J) = u.

Then

(Tµ0 · · ·TµN−1 J̄)(0) = 0, (Tµ0 · · ·TµN−1 J̄)(1) = µ0(1), ∀ N ≥ 1.

It can be seen that for N ≥ 2, we have J∗
N (0) = 0 and J∗

N (1) = −∞, but
(TN J̄)(0) = (TN J̄)(1) = −∞. Here Assumption 4.2.1, and the condition
J∗
k (x) > −∞ for all x ∈ X (cf. Assumption 4.2.2) are violated, even though

the condition (4.7) of Assumption 4.2.2 is satisfied.

In the preceding two examples, the anomalies are due to discontinu-
ity of the mapping H with respect to J . In classical finite horizon DP, the
mapping H is usually continuous when it takes finite values, but counterex-
amples arise in unusual problems where infinite values occur. The next ex-
ample is a simple stochastic optimal control problem, which involves some
infinite expected values of random variables and we have J*

2 /= T 2J̄ .

Example 4.2.3 (Counterexample to Bellman’s Equation III)

Let
X = {0, 1}, U(0) = U(1) = ', J̄(0) = J̄(1) = 0,

let w be a real-valued random variable with E{w} = ∞, and let

H(x, u, J) =

{
E
{
w + J(1)

}
if x = 0,

u+ J(1) if x = 1,
∀ x ∈ X, u ∈ U(x).

Then if Jm is real-valued for all m, and Jm(1) ↓ J(1) = −∞, we have

lim
m→∞

H(0, u, Jm) = lim
m→∞

E
{
w + Jm(1)

}
= ∞,

while

H
(
0, u, lim

m→∞
Jm

)
= E

{
w + J(1)

}
= −∞,

so Assumption 4.2.1 is violated. Indeed, the reader may verify with a straight-
forward calculation that J∗

2 (0) = ∞, J∗
2 (1) = −∞, while (T 2J̄)(0) = −∞,

(T 2J̄)(1) = −∞, so J∗
2 )= T 2J̄ . Note that Assumption 4.2.2 is also violated

because J∗
2 (1) = −∞.

In the next counterexample, Bellman’s equation holds, but there is
no ε-optimal policy. This is an undiscounted deterministic optimal control
problem of the type discussed in Section 1.1, where J∗

k (x) = −∞ for some
x and k, so Assumption 4.2.2 is violated. We use the notation introduced
there.
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Example 4.2.4 (Counterexample to Existence of an
ε-Optimal Policy)

Let α = 1 and

N = 2, X = {0, 1, . . .}, U(x) = (0,∞), J̄(x) = 0, ∀ x ∈ X,

f(x, u) = 0, ∀ x ∈ X, u ∈ U(x),

g(x, u) =
{
−u if x = 0,
x if x )= 0,

∀ u ∈ U(x),

so that
H(x, u, J) = g(x, u) + J(0).

Then for π ∈ Π and x )= 0, we have J2,π(x) = x−µ1(0), so that J∗
2 (x) = −∞

for all x )= 0. Clearly, we also have J∗
2 (0) = −∞. Here Assumption 4.2.1,

as well as Eq. (4.7) (cf. Assumption 4.2.2) are satisfied, and indeed we have
J∗
2 (x) = (T 2J̄)(x) = −∞ for all x ∈ X. However, the condition J∗

k (x) > −∞
for all x and k (cf. Assumption 4.2.2) is violated, and it is seen that there
does not exist a two-stage ε-optimal policy for any ε > 0. The reason is that
an ε-optimal policy π = {µ0, µ1} must satisfy

J2,π(x) = x− µ1(0) ≤ −
1
ε
, ∀ x ∈ X,

[in view of J∗
2 (x) = −∞ for all x ∈ X], which is impossible since the left-hand

side above can become positive for x sufficiently large.

4.3 INFINITE HORIZON PROBLEMS

We now turn to the infinite horizon problem (4.2), where the cost function
of a policy π = {µ0, µ1, . . .} is

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

In this section one of the following two assumptions will be in effect.

Assumption I: (Monotone Increase)

(a) We have

−∞ < J̄(x) ≤ H(x, u, J̄), ∀ x ∈ X, u ∈ U(x).

(b) For each convergent sequence {Jm} ⊂ E(X) with Jm ↑ J and
J̄ ≤ Jm for all m ≥ 0, we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).



242 Noncontractive Models Chap. 4

(c) There exists a scalar α ∈ (0,∞) such that for all scalars r ∈
(0,∞) and functions J ∈ E(X) with J̄ ≤ J , we have

H(x, u, J + r e) ≤ H(x, u, J) + α r, ∀ x ∈ X, u ∈ U(x).

Assumption D: (Monotone Decrease)

(a) We have

J̄(x) ≥ H(x, u, J̄), ∀ x ∈ X, u ∈ U(x).

(b) For each convergent sequence {Jm} ⊂ E(X) with Jm ↓ J and
Jm ≤ J̄ for all m ≥ 0, we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

Assumptions I and D apply to the positive and negative cost DP
models, respectively (see [Ber12a], Chapter 4). These are the special cases
of the infinite horizon stochastic optimal control problem of Example 1.2.1,
where J̄(x) ≡ 0 and the cost per stage g is uniformly nonnegative or uni-
formly nonpositive, respectively. The latter arises often when we want to
maximize positive rewards.

It is important to note that Assumptions I and D allow Jπ to be
defined as a limit rather than as a lim sup. In particular, part (a) of the
assumptions and the monotonicity of H imply that

J̄ ≤ Tµ0 J̄ ≤ Tµ0Tµ1 J̄ ≤ · · · ≤ Tµ0 · · ·Tµk
J̄ ≤ · · ·

under Assumption I, and

J̄ ≥ Tµ0 J̄ ≥ Tµ0Tµ1 J̄ ≥ · · · ≥ Tµ0 · · ·Tµk
J̄ ≥ · · ·

under Assumption D. Thus we have

Jπ(x) = lim
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X,

with the limit being a real number or ∞ or −∞, respectively.
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J TJ

= 0 TµJ

JµJ̄ J̄ J TJ

= 0 TµJ

Jµ

Figure 4.3.1. Illustration of the consequences of lack of continuity of Tµ from
below or from above [cf. part (b) of Assumption I or D, respectively]. In the
figure on the left, we have J̄ ≤ TµJ̄ but Tµ is discontinuous from below at Jµ, so
Assumption I does not hold, and Jµ is not a fixed point of Tµ. In the figure on the
right, we have J̄ ≥ TµJ̄ but Tµ is discontinuous from above at Jµ, so Assumption
D does not hold, and Jµ is not a fixed point of Tµ.

The conditions of part (b) of Assumptions I and D are continuity as-
sumptions designed to preclude some of the pathologies of the type encoun-
tered also in Chapter 3, and addressed with the use of S-regular policies.
In particular, these conditions are essential for making a connection with
fixed point theory: they ensure that Jµ is a fixed point of Tµ, as shown in
the following proposition.

Proposition 4.3.1: Let Assumption I or Assumption D hold. Then
for every policy µ ∈ M, we have

Jµ = TµJµ.

Proof: Let Assumption I hold. Then for all k ≥ 0,

(T k+1
µ J̄)(x) = H

(
x, µ(x), T k

µ J̄
)
, x ∈ X,

and by taking the limit as k → ∞, and using part (b) of Assumption I,
and the fact T k

µ J̄ ↑ Jµ, we have for all x ∈ X ,

Jµ(x) = lim
k→∞

H
(
x, µ(x), T k

µ J̄
)
= H

(
x, µ(x), lim

k→∞
T k
µ J̄
)
= H

(
x, µ(x), Jµ

)
,

or equivalently Jµ = TµJµ. The proof for the case of Assumption D is
similar. Q.E.D.
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Figure 4.3.1 illustrates how Jµ may fail to be a fixed point of Tµ if
part (b) of Assumption I or D is violated. Note also that continuity of Tµ

does not imply continuity of T , and for example, under Assumption I, T
may be discontinuous from below. We will see later that as a result, the
value iteration sequence {T kJ̄} may fail to converge to J* in the absence
of additional conditions (see Section 4.3.2). Part (c) of Assumption I is a
technical condition that facilitates the analysis, and assures the existence
of ε-optimal policies.

Despite the similarities between Assumptions I and D, the corre-
sponding results that one may obtain involve some substantial differences.
An important fact, which breaks the symmetry between the two cases, is
that J* is approached by T kJ̄ from below in the case of Assumption I and
from above in the case of Assumption D. Another important fact is that
since the condition J̄(x) > −∞ for all x ∈ X is part of Assumption I, all
the functions J encountered in the analysis under this assumption (such as
T kJ̄ , Jπ , and J*) also satisfy J(x) > −∞, for all x ∈ X. In particular, if
J ≥ J̄ , we have

(TJ)(x) ≥ (T J̄)(x) > −∞, ∀ x ∈ X,

and for every ε > 0 there exists µε ∈ M such that

TµεJ ≤ TJ + ε e.

This property is critical for the existence of an ε-optimal policy under As-
sumption I (see the next proposition) and is not available under Assumption
D. It accounts in part for the different character of the results that can be
obtained under the two assumptions.

4.3.1 Fixed Point Properties and Optimality Conditions

We first consider the question whether the optimal cost function J* is a
fixed point of T . This is indeed true, but the lines of proof are different
under the Assumptions I and D. We begin with the proof under Assumption
I, and as a preliminary step we show the existence of an ε-optimal policy,
something that is of independent theoretical interest.

Proposition 4.3.2: Let Assumption I hold. Then given any ε > 0,
there exists a policy πε ∈ Π such that

J* ≤ Jπε ≤ J* + ε e.

Furthermore, if the scalar α in part (c) of Assumption I satisfies α < 1,
the policy πε can be taken to be stationary.
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Proof: Let {εk} be a sequence such that εk > 0 for all k and

∞∑

k=0

αkεk = ε. (4.9)

For each x ∈ X , consider a sequence of policies
{
πk[x]

}
⊂ Π of the form

πk[x] =
{
µk
0 [x], µ

k
1 [x], . . .

}
, (4.10)

such that for k = 0, 1, . . . ,

Jπk[x](x) ≤ J*(x) + εk. (4.11)

Such a sequence exists, since we have assumed that J̄(x) > −∞, and
therefore J*(x) > −∞, for all x ∈ X .

The preceding notation should be interpreted as follows. The policy
πk[x] of Eq. (4.10) is associated with x. Thus µk

i [x] denotes for each x and
k, a function in M, while µk

i [x](z) denotes the value of µ
k
i [x] at an element

z ∈ X . In particular, µk
i [x](x) denotes the value of µk

i [x] at x ∈ X .
Consider the functions µk defined by

µk(x) = µk
0 [x](x), ∀ x ∈ X, (4.12)

and the functions J̄k defined by

J̄k(x) = H
(
x, µk(x), lim

m→∞
Tµk

1 [x]
· · ·Tµk

m[x]J̄
)
, ∀ x ∈ X, k = 0, 1, . . . .

(4.13)
By using Eqs. (4.11), (4.12), and part (b) of Assumption I, we obtain for
all x ∈ X and k = 0, 1, . . .

J̄k(x) = lim
m→∞

(
Tµk

0 [x]
· · ·Tµk

m[x]J̄
)
(x)

= Jπk[x](x)

≤ J*(x) + εk.

(4.14)

From Eqs. (4.13), (4.14), and part (c) of Assumption I, we have for all
x ∈ X and k = 1, 2, . . .,

(Tµk−1
J̄k)(x) = H

(
x, µk−1(x), J̄k

)

≤ H
(
x, µk−1(x), J* + εk e

)

≤ H
(
x, µk−1(x), J*

)
+ αεk

≤ H
(
x, µk−1(x), lim

m→∞
T
µk−1
1 [x]

· · ·T
µk−1
m [x]

J̄
)
+ αεk

= J̄k−1(x) + αεk,
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and finally

Tµk−1
J̄k ≤ J̄k−1 + αεk e, k = 1, 2, . . . .

Using this inequality and part (c) of Assumption I, we obtain

Tµk−2
Tµk−1

J̄k ≤ Tµk−2
(J̄k−1 + αεk e)

≤ Tµk−2
J̄k−1 + α2εk e

≤ J̄k−2 + (αεk−1 + α2εk) e.

Continuing in the same manner, we have for k = 1, 2, . . . ,

Tµ0
· · ·Tµk−1

J̄k ≤ J̄0 + (αε1 + · · ·+ αkεk) e ≤ J* +

(
k∑

i=0

αiεi

)
e.

Since J̄ ≤ J̄k, it follows that

Tµ0
· · ·Tµk−1

J̄ ≤ J* +

(
k∑

i=0

αiεi

)
e.

Denote πε = {µ0, µ1, . . .}. Then by taking the limit in the preceding in-
equality and using Eq. (4.9), we obtain

Jπε ≤ J* + ε e.

If α < 1, we take εk = ε(1−α) for all k, and πk[x] =
{
µ0[x], µ1[x], . . .

}

in Eq. (4.11). The stationary policy πε = {µ, µ, . . .}, where µ(x) = µ0[x](x)
for all x ∈ X , satisfies Jπε ≤ J* + ε e. Q.E.D.

Note that the assumption α < 1 is essential in order to be able to take
πε stationary in the preceding proposition. As an example, let X = {0},
U(0) = (0,∞), J̄(0) = 0, H(0, u, J) = u + J(0). Then J*(0) = 0, but for
any µ ∈ M, we have Jµ(0) = ∞.

By using Prop. 4.3.2 we can prove the following.

Proposition 4.3.3: Let Assumption I hold. Then

J* = TJ*.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≥ J̄ and J ′ ≥ TJ ′, then
J ′ ≥ J*.
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Proof: For every π = {µ0, µ1, . . .} ∈ Π and x ∈ X , we have using part (b)
of Assumption I,

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J̄)(x)

= Tµ0

(
lim
k→∞

Tµ1 · · ·Tµk
J̄

)
(x)

≥ (Tµ0J*)(x)

≥ (TJ*)(x).

By taking the infimum of the left-hand side over π ∈ Π, we obtain

J* ≥ TJ*.

To prove the reverse inequality, let ε1 and ε2 be any positive scalars,
and let π = {µ0, µ1, . . .} be such that

Tµ0
J* ≤ TJ* + ε1 e, Jπ1 ≤ J* + ε2 e,

where π1 = {µ1, µ2, . . .} (such a policy exists by Prop. 4.3.2). The sequence
{Tµ1

· · ·Tµk
J̄} is monotonically nondecreasing, so by using the preceding

relations and part (c) of Assumption I, we have

Tµ0
Tµ1

· · ·Tµk
J̄ ≤ Tµ0

(
lim
k→∞

Tµ1
· · ·Tµk

J̄

)

= Tµ0
Jπ1

≤ Tµ0
J* + αε2 e

≤ TJ* + (ε1 + αε2) e.

Taking the limit as k → ∞, we obtain

J* ≤ Jπ = lim
k→∞

Tµ0
Tµ1

· · ·Tµk
J̄ ≤ TJ* + (ε1 + αε2) e.

Since ε1 and ε2 can be taken arbitrarily small, it follows that

J* ≤ TJ*.

Hence J* = TJ*.
Assume that J ′ ∈ E(X) satisfies J ′ ≥ J̄ and J ′ ≥ TJ ′. Let {εk} be

any sequence with εk > 0 for all k, and consider a policy π = {µ0, µ1, . . .} ∈
Π such that

Tµk
J ′ ≤ TJ ′ + εk e, k = 0, 1, . . . .
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We have from part (c) of Assumption I

J* = inf
π∈Π

lim
k→∞

Tµ0 · · ·Tµk
J̄

≤ inf
π∈Π

lim inf
k→∞

Tµ0 · · ·Tµk
J ′

≤ lim inf
k→∞

Tµ0
· · ·Tµk

J ′

≤ lim inf
k→∞

Tµ0
· · ·Tµk−1

(TJ ′ + εk e)

≤ lim inf
k→∞

Tµ0
· · ·Tµk−1

(J ′ + εk e)

≤ lim inf
k→∞

(Tµ0
· · ·Tµk−1

J ′ + αkεk e)

...

≤ lim
k→∞

(
TJ ′ +

(
k∑

i=0

αiεi

)
e

)

≤ J ′ +

(
k∑

i=0

αiεi

)
e.

Since we may choose
∑k

i=0 α
iεi as small as desired, it follows that J* ≤ J ′.

Q.E.D.

The following counterexamples show that parts (b) and (c) of As-
sumption I are essential for the preceding proposition to hold.

Example 4.3.1 (Counterexample to Bellman’s Equation I)

Let

X = {0, 1}, U(0) = U(1) = (−1, 0], J̄(0) = J̄(1) = −1,

H(0, u, J) =

{
u if J(1) ≤ −1,
0 if J(1) > −1,

H(1, u, J) = u.

Then for N ≥ 1,

(Tµ0 · · · TµN−1 J̄)(0) = 0, (Tµ0 · · ·TµN−1 J̄)(1) = µ0(1).

Thus

J∗(0) = 0, J∗(1) = −1, (TJ∗)(0) = −1, (TJ∗)(1) = −1,

and hence J∗ )= TJ∗. Notice also that J̄ is a fixed point of T , while J̄ ≤ J∗

and J̄ )= J∗, so the second part of Prop. 4.3.3 fails when J̄ = J ′. Here
parts (a) and (b) of Assumption I are satisfied, but part (c) is violated, since
H(0, u, ·) is discontinuous at J = −1 when u < 0.
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Example 4.3.2 (Counterexample to Bellman’s Equation II)

Let

X = {0, 1}, U(0) = U(1) = {0}, J̄(0) = J̄(1) = 0,

H(0, 0, J) =

{
0 if J(1) < ∞,
∞ if J(1) = ∞,

H(1, 0, J) = J(1) + 1.

Here there is only one policy, which we denote by µ. For all N ≥ 1, we have

(TN
µ J̄)(0) = 0, (TN

µ J̄)(1) = N,

so J∗(0) = 0, J∗(1) = ∞. On the other hand, we have (TJ∗)(0) = (TJ∗)(1) =
∞ and J∗ )= TJ∗. Here parts (a) and (c) of Assumption I are satisfied, but
part (b) is violated.

As a corollary to Prop. 4.3.3 we obtain the following.

Proposition 4.3.4: Let Assumption I hold. Then for every µ ∈ M,
we have

Jµ = TµJµ.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≥ J̄ and J ′ ≥ TµJ ′, then
J ′ ≥ Jµ.

Proof: Consider the variant of the infinite horizon problem where the
control constraint set is Uµ(x) =

{
µ(x)

}
rather than U(x) for all x ∈ X .

Application of Prop. 4.3.3 yields the result. Q.E.D.

We now provide the counterpart of Prop. 4.3.3 under Assumption D.
We first prove a preliminary result regarding the convergence of the value
iteration method, which is of independent interest (we will see later that
this result need not hold under Assumption I).

Proposition 4.3.5: Let Assumption D hold. Then TN J̄ = J*
N ,

where J*
N is the optimal cost function for the N -stage problem. More-

over
J* = lim

N→∞
J*
N .

Proof: By repeating the proof of Prop. 4.2.3, we have TN J̄ = J*
N [part (b)

of Assumption D is essentially identical to the assumption of that propo-
sition]. Clearly we have J* ≤ J*

N for all N , and hence J* ≤ limN→∞ J*
N .
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To prove the reverse inequality, we note that for all π = {µ0, µ1, . . .} ∈ Π,
we have

Tµ0 · · ·TµN−1 J̄ ≥ J*
N .

By taking the limit of both sides as N → ∞, we obtain Jπ ≥ limN→∞ J*
N ,

and by taking infimum over π, J* ≥ limN→∞ J*
N . Thus J* = limN→∞ J*

N .
Q.E.D.

Proposition 4.3.6: Let Assumption D hold. Then

J* = TJ*.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≤ J̄ and J ′ ≤ TJ ′, then
J ′ ≤ J*.

Proof: For any π = {µ0, µ1, . . .} ∈ Π, we have

Jπ = lim
k→∞

Tµ0Tµ1 · · ·Tµk
J̄ ≥ lim

k→∞
Tµ0T kJ̄ ≥ Tµ0J*,

where the last inequality follows from the fact T kJ̄ ↓ J* (cf. Prop. 4.3.5).
Taking the infimum of both sides over π ∈ Π, we obtain J* ≥ TJ*.

To prove the reverse inequality, we select any µ ∈ M, and we apply
Tµ to both sides of the equation J* = limN→∞ TN J̄ (cf. Prop. 4.3.5). By
using part (b) of assumption D, we obtain

TµJ* = Tµ

(
lim

N→∞
TN J̄

)
= lim

N→∞
TµTN J̄ ≥ lim

N→∞
TN+1J̄ = J*.

Taking the infimum of the left-hand side over µ ∈ M, we obtain TJ* ≥ J*,
showing that TJ* = J*.

To complete the proof, let J ′ ∈ E(X) be such that J ′ ≤ J̄ and
J ′ ≤ TJ ′. Then we have

J* = inf
π∈Π

lim
N→∞

Tµ0 · · ·TµN−1 J̄

≥ lim
N→∞

inf
π∈Π

Tµ0 · · ·TµN−1 J̄

≥ lim
N→∞

inf
π∈Π

Tµ0 · · ·TµN−1J
′

≥ lim
N→∞

TNJ ′

≥ J ′,

where the last inequality follows from the hypothesis J ′ ≤ TJ ′. Thus
J* ≥ J ′. Q.E.D.
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Counterexamples to Bellman’s equation can be readily constructed if
part (b) of Assumption D (continuity from above) is violated. In particular,
in Examples 4.2.1 and 4.2.2, part (a) of Assumption D is satisfied but part
(b) is not. In both cases we have J* /= TJ*, as the reader can verify with
a straightforward calculation.

Similar to Prop. 4.3.4, we obtain the following.

Proposition 4.3.7: Let Assumption D hold. Then for every µ ∈ M,
we have

Jµ = TµJµ.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≤ J̄ and J ′ ≤ TµJ ′, then
J ′ ≤ Jµ.

Proof: Consider the variation of our problem where the control constraint
set is Uµ(x) =

{
µ(x)

}
rather than U(x) for all x ∈ X . Application of Prop.

4.3.6 yields the result. Q.E.D.

An examination of the proof of Prop. 4.3.6 shows that the only point
where we need part (b) of Assumption D was in establishing the relations

lim
N→∞

TJ*
N = T

(
lim

N→∞
J*
N

)

and

J*
N = TN J̄ .

If these relations can be established independently, then the result of Prop.
4.3.6 follows. In this manner we obtain the following proposition.

Proposition 4.3.8: Let part (a) of Assumption D hold, assume that
X is a finite set, and that J*(x) > −∞ for all x ∈ X . Assume further
that there exists a scalar α ∈ (0,∞) such that for all scalars r ∈ (0,∞)
and functions J ∈ E(X) with J ≤ J̄ , we have

H(x, u, J)− α r ≤ H(x, u, J − r e), ∀ x ∈ X, u ∈ U(x). (4.15)

Then
J* = TJ*.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≤ J̄ and J ′ ≤ TJ ′, then
J ′ ≤ J*.



252 Noncontractive Models Chap. 4

Proof: A nearly verbatim repetition of Prop. 4.2.4 shows that under our
assumptions we have J*

N = TN J̄ for all N . We will show that

lim
N→∞

H(x, u, J*
N ) ≤ H

(
x, u, lim

N→∞
J*
N

)
, ∀ x ∈ X, u ∈ U(x).

Then the result follows as in the proof of Prop. 4.3.6.
Assume the contrary, i.e., that for some x̃ ∈ X , ũ ∈ U(x̃), and ε > 0,

there holds

H(x̃, ũ, J*
k )− ε > H

(
x̃, ũ, lim

N→∞
J*
N

)
, k = 1, 2, . . . .

From the finiteness of X and the fact

J*(x) = lim
N→∞

J*
N (x) > −∞, ∀ x ∈ X,

it follows that for some integer k > 0

J*
k − (ε/α)e ≤ lim

N→∞
J*
N , ∀ k ≥ k.

By using the condition (4.15), we obtain for all k ≥ k

H(x̃, ũ, J*
k )− ε ≤ H

(
x̃, ũ, J*

k − (ε/α) e
)
≤ H

(
x̃, ũ, lim

N→∞
J*
N

)
,

which contradicts the earlier inequality. Q.E.D.

Characterization of Optimal Policies

We now provide necessary and sufficient conditions for optimality of a sta-
tionary policy. These conditions are markedly different under Assumptions
I and D.

Proposition 4.3.9: Let Assumption I hold. Then a stationary policy
µ is optimal if and only if

TµJ* = TJ*.

Proof: If µ is optimal, then Jµ = J* so that the equation J* = TJ* (cf.
Prop. 4.3.3) implies that Jµ = TJµ. Since Jµ = TµJµ (cf. Prop. 4.3.4), it
follows that TµJ* = TJ*.
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Conversely, if TµJ* = TJ*, then since J* = TJ*, it follows that
TµJ* = J*. By Prop. 4.3.4, it follows that Jµ ≤ J*, so µ is optimal.
Q.E.D.

Proposition 4.3.10: Let Assumption D hold. Then a stationary
policy µ is optimal if and only if

TµJµ = TJµ.

Proof: If µ is optimal, then Jµ = J*, so that the equation J* = TJ*

(cf. Prop. 4.3.6) can be written as Jµ = TJµ. Since Jµ = TµJµ (cf. Prop.
4.3.4), it follows that TµJµ = TJµ.

Conversely, if TµJµ = TJµ, then since Jµ = TµJµ, it follows that
Jµ = TJµ. By Prop. 4.3.7, it follows that Jµ ≤ J*, so µ is optimal.
Q.E.D.

An example showing that under Assumption I, the condition TµJµ =
TJµ does not guarantee optimality of µ is given in Exercise 4.3. Under
Assumption D, we note that by Prop. 4.3.1, we have Jµ = TµJµ for all µ,
so if µ is a stationary optimal policy, the fixed point equation

J*(x) = inf
u∈U(x)

H(x, u, J*), ∀ x ∈ X, (4.16)

and the optimality condition of Prop. 4.3.10, yield

TJ* = J* = Jµ = TµJµ = TµJ*.

Thus under D, a stationary optimal policy attains the infimum in the fixed
point Eq. (4.16) for all x. However, there may exist nonoptimal stationary
policies also attaining the infimum for all x; an example is the shortest path
problem of Section 3.1.1 for the case where a = 0 and b = 1. Moreover,
it is possible that this infimum is attained but no optimal policy exists, as
shown by Fig. 4.3.2.

Proposition 4.3.9 shows that under Assumption I, there exists a sta-
tionary optimal policy if and only if the infimum in the optimality equation

J*(x) = inf
u∈U(x)

H(x, u, J*)

is attained for every x ∈ X . When the infimum is not attained for some x ∈
X , this optimality equation can still be used to yield an ε-optimal policy,
which can be taken to be stationary whenever the scalar α in Assumption
I(c) is strictly less than 1. This is shown in the following proposition.
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J TJ= 0 J̄ = 0Jµ

J̄ T k
µ J̄

J∗
= TJ∗

Jµ

TµJ T

J TµJ

Figure 4.3.2. An example where nonstationary policies are dominant under As-
sumption D. Here there is only one state and S = #. There are two stationary
policies µ and µ with cost functions Jµ and Jµ as shown. However, by considering
a nonstationary policy of the form πk = {µ, . . . , µ, µ, µ, . . .}, with a number k of
policies µ, we can obtain a sequence {Jπk

} that converges to the value J∗ shown.
Note that here there is no optimal policy, stationary or not.

Proposition 4.3.11: Let Assumption I hold. Then:

(a) If ε > 0, the sequence {εk} satisfies
∑∞

k=0 α
kεk = ε, and εk > 0

for all k, and the policy π∗ = {µ∗
0, µ

∗
1, . . .} ∈ Π is such that

Tµ∗
k
J* ≤ TJ* + εk e, ∀ k = 0, 1, . . . ,

then
J* ≤ Jπ∗ ≤ J* + ε e.

(b) If ε > 0, the scalar α in part (c) of Assumption I is strictly less
than 1, and µ∗ ∈ M is such that

Tµ∗J* ≤ TJ* + ε(1− α) e,

then
J* ≤ Jµ∗ ≤ J* + ε e.
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Proof: (a) Since TJ* = J*, we have

Tµ∗
k
J* ≤ J* + εk e,

and applying Tµ∗
k−1

to both sides, we obtain

Tµ∗
k−1

Tµ∗
k
J* ≤ Tµ∗

k−1
J* + αεk e ≤ J* + (εk−1 + αεk) e.

Applying Tµ∗
k−2

throughout and repeating the process, we obtain for every

k = 1, 2, . . .,

Tµ∗
0
· · ·Tµ∗

k
J* ≤ J* +

(
k∑

i=0

αiεi

)
e, k = 1, 2, . . . .

Since J̄ ≤ J*, it follows that

Tµ∗
0
· · ·Tµ∗

k
J̄ ≤ J* +

(
k∑

i=0

αiεi

)
e, k = 1, 2, . . . .

By taking the limit as k → ∞, we obtain Jπ∗ ≤ J* + ε e.

(b) This part is proved by taking εk = ε(1 − α) and µ∗
k = µ∗ for all k in

the preceding argument. Q.E.D.

Under Assumption D, the existence of an ε-optimal policy is harder
to establish, and requires some restrictive conditions.

Proposition 4.3.12: Let Assumption D hold, and let the additional
assumptions of Prop. 4.3.8 hold. Then for any ε > 0, there exists an
ε-optimal policy.

Proof: For each N , denote

εN =
ε

2(1 + α+ · · ·+ αN−1)
,

and let
πN = {µN

0 , µN
1 , . . . , µN

N−1, µ, µ . . .}

be such that µ ∈ M, and for k = 0, . . . , N − 1, µN
k ∈ M and

TµN
k
TN−k−1J̄ = TN−kJ̄ + εN e.
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We have TN
µN−1 J̄ ≤ T J̄+εN e, and applying TN

µN−2 to both sides, we obtain

TN
µN−2T

N
µN−1 J̄ ≤ TN

µN−2T J̄ + αεN e ≤ T 2J̄ + (1 + α)εN e.

Continuing in the same manner, we have

TN
µ0 · · ·T

N
µN−1 J̄ ≤ TN J̄ + (1 + α+ · · ·+ αN−1)εN e,

from which we obtain for N = 0, 1, . . .,

JπN ≤ TN J̄ + (ε/2) e.

By Prop. 4.3.5, we have J* = limN→∞ TN J̄ , so let N̄ be such that

T N̄ J̄ ≤ J* + (ε/2) e

[such a N̄ exists using the assumptions of finiteness of X and J*(x) > −∞
for all x ∈ X ]. Then we obtain JπN̄

≤ J* + ε e, and πN̄ is the desired
policy. Q.E.D.

4.3.2 Value Iteration

We will now discuss algorithms for abstract DP under Assumptions I and
and D. We first consider the VI algorithm, which consists of successively
generating T J̄, T 2J̄ , . . .. Note that because T need not be a contraction,
it may have multiple fixed points J all of which satisfy J ≥ J* under
Assumption I (cf. Prop. 4.3.3) or J ≤ J* under Assumption D (cf. Prop.
4.3.6). Thus, in the absence of additional conditions (to be discussed in
Sections 4.4 and 4.5), it is essential to start VI with J̄ or an initial J0 such
that J̄ ≤ J0 ≤ J* under Assumption I or J̄ ≥ J0 ≥ J* under Assumption
D. In the next two propositions, we show that for such initial conditions, we
have convergence of VI to J* under Assumption D, and with an additional
compactness condition, under Assumption I.

Proposition 4.3.13: Let Assumption D hold, and assume that J0 ∈
E(X) is such that J̄ ≥ J0 ≥ J*. Then

lim
k→∞

T kJ0 = J*.

Proof: The condition J̄ ≥ J0 ≥ J* implies that T kJ̄ ≥ T kJ0 ≥ J* for all
k. By Prop. 4.3.5, T kJ̄ → J*, and the result follows. Q.E.D.
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The convergence of VI under I requires an additional compactness
condition, which is satisfied in particular if U(x) is a finite set for all x ∈ X .

Proposition 4.3.14: Let Assumption I hold, let U be a metric space,
and assume that the sets

Uk(x,λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

(4.17)

are compact for every x ∈ X , λ ∈ !, and for all k greater than some
integer k. Assume that J0 ∈ E(X) is such that J̄ ≤ J0 ≤ J*. Then

lim
k→∞

T kJ0 = J*.

Furthermore, there exists a stationary optimal policy.

Proof: Similar to the proof of Prop. 4.3.13, it will suffice to show that
T kJ̄ → J*. Since J̄ ≤ J*, we have T kJ̄ ≤ T kJ* = J*, so that

J̄ ≤ T J̄ ≤ · · · ≤ T kJ̄ ≤ · · · ≤ J*.

Thus we have T kJ̄ ↑ J∞ for some J∞ ∈ E(X) satisfying T kJ̄ ≤ J∞ ≤ J*

for all k. Applying T to this relation, we obtain

(T k+1J̄)(x) = min
u∈U(x)

H(x, u, T kJ̄) ≤ (TJ∞)(x),

and by taking the limit as k → ∞, it follows that

J∞ ≤ TJ∞.

Assume to arrive at a contradiction that there exists a state x̃ ∈ X such
that

J∞(x̃) < (TJ∞)(x̃). (4.18)

Similar to Lemma 3.3.1, there exists a point uk attaining the minimum in

(T k+1J̄)(x̃) = inf
u∈U(x̃)

H(x̃, u, T kJ̄);

i.e., uk is such that

(T k+1J̄)(x̃) = H(x̃, uk, T kJ̄).

Clearly, by Eq. (4.18), we must have J∞(x̃) < ∞. For every k, consider
the set

Uk

(
x̃, J∞(x̃)

)
=
{
u ∈ U(x̃)

∣∣ H(x̃, uk, T kJ̄) ≤ J∞(x̃)
}
,
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and the sequence {ui}∞i=k. Since T kJ̄ ↑ J∞, it follows that for all i ≥ k,

H(x̃, ui, T kJ̄) ≤ H(x̃, ui, T iJ̄) ≤ J∞(x̃).

Therefore {ui}∞i=k ⊂ Uk

(
x̃, J∞(x̃)

)
, and since Uk

(
x̃, J∞(x̃)

)
is compact, all

the limit points of {ui}∞i=k belong to Uk

(
x̃, J∞(x̃)

)
and at least one such

limit point exists. Hence the same is true of the limit points of the whole
sequence {ui}. It follows that if ũ is a limit point of {ui} then

ũ ∈ ∩∞
k=0Uk

(
x̃, J∞(x̃)

)
.

By Eq. (4.17), this implies that for all k ≥ k

J∞(x̃) ≥ H(x̃, ũ, T kJ̄) ≥ (T k+1J̄)(x̃).

Taking the limit as k → ∞, and using part (b) of Assumption I, we obtain

J∞(x̃) ≥ H(x̃, ũ, J∞) ≥ (TJ∞)(x̃), (4.19)

which contradicts Eq. (4.18). Hence J∞ = TJ∞, which implies that J∞ ≥
J* in view of Prop. 4.3.3. Combined with the inequality J∞ ≤ J*, which
was shown earlier, we have J∞ = J*.

To show that there exists an optimal stationary policy, observe that
the relation J* = J∞ = TJ∞ and Eq. (4.19) [whose proof is valid for all
x̃ ∈ X such that J*(x̃) < ∞] imply that ũ attains the infimum in

J*(x̃) = inf
u∈U(x̃)

H(x̃, u, J*)

for all x̃ ∈ X with J*(x̃) < ∞. For x̃ ∈ X such that J*(x̃) = ∞, every
u ∈ U(x̃) attains the preceding minimum. Hence by Prop. 4.3.9 an optimal
stationary policy exists. Q.E.D.

The reader may verify by inspection of the preceding proof that if
µk(x̃), k = 0, 1, . . ., attains the infimum in the relation

(T k+1J̄)(x̃) = inf
u∈U(x)

H(x̃, u, T kJ̄),

and µ∗(x̃) is a limit point of {µk(x̃)}, for every x̃ ∈ X , then the stationary
policy µ∗ is optimal. Furthermore, {µk(x̃)} has at least one limit point
for every x̃ ∈ X for which J*(x̃) < ∞. Thus the VI algorithm under the
assumption of Prop. 4.3.14 yields in the limit not only the optimal cost
function J* but also an optimal stationary policy.

On the other hand, under Assumption I but in the absence of the
compactness condition (4.17), T kJ̄ need not converge to J*. What is hap-
pening here is that while the mappings Tµ are continuous from below as
required by Assumption I(b), T may not be, and a phenomenon like the
one illustrated in the left-hand side of Fig. 4.3.1 may occur, whereby

lim
k→∞

T kJ̄ ≤ T

(
lim
k→∞

T kJ̄

)
,

with strict inequality for some x ∈ X . This can happen even in simple
deterministic optimal control problems, as shown by the following example.
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Example 4.3.3 (Counterexample to Convergence of VI)

Let
X = [0,∞), U(x) = (0,∞), J̄(x) = 0, ∀ x ∈ X,

and

H(x, u, J) = min
{
1, x+ J(2x+ u)

}
, ∀ x ∈ X, u ∈ U(x).

Then it can be verified that for all x ∈ X and policies µ, we have Jµ(x) = 1,
as well as J∗(x) = 1, while it can be seen by induction that starting with J̄ ,
the VI algorithm yields

(T kJ̄)(x) = min
{
1, (1 + 2k−1)x

}
, ∀ x ∈ X, k = 1, 2 . . . .

Thus we have 0 = limk→∞ (T kJ̄)(0) )= J∗(0) = 1.

The range of convergence of VI may be expanded under additional as-
sumptions. In particular, in Chapter 3, under various conditions involving
the existence of optimal S-regular policies, we showed that VI converges to
J* assuming that the initial condition J0 satisfies J0 ≥ J*. Thus if the as-
sumptions of Prop. 4.3.14 hold in addition, we are guaranteed convergence
of VI starting from any J satisfying J ≥ J̄ . Results of this type will be
obtained in Sections 4.4 and 4.5, where semicontractive models satisfying
Assumption I will be discussed.

Asynchronous Value Iteration

The concepts of asynchronous VI that we developed in Section 2.6.1 apply
also under the Assumptions I and D of this section. Under Assumption I,
if J* is real-valued, we may apply Prop. 2.6.1 with the sets S(k) defined by

S(k) = {J | T kJ̄ ≤ J ≤ J*}, k = 0, 1, . . . .

Assuming that T kJ̄ → J* (cf. Prop. 4.3.14), it follows that the asyn-
chronous form of VI converges pointwise to J* starting from any func-
tion in S(0). This result can also be shown for the case where J* is not
real-valued, by using a simple extension of Prop. 2.6.1, where the set of
real-valued functions R(X) is replaced by the set of all J ∈ E(X) with
J̄ ≤ J ≤ J*.

Under Assumption D similar conclusions hold for the asynchronous
version of VI that starts with a function J with J* ≤ J ≤ J̄ . Asynchronous
pointwise convergence to J* can be shown, based on an extension of the
asynchronous convergence theorem (Prop. 2.6.1), where R(X) is replaced
by the set of all J ∈ E(X) with J* ≤ J ≤ J̄ .
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4.3.3 Exact and Optimistic Policy Iteration - λ-Policy Iteration

Unfortunately, in the absence of further conditions, the PI algorithm is
not guaranteed to yield the optimal cost function and/or an optimal policy
under either Assumption I or D. However, there are convergence results
for nonoptimistic and optimistic variants of PI under some conditions. In
what follows in this section we will provide an analysis of various types
of PI, mainly under Assumption D. The analysis of PI under Assumption
I will be given primarily in the next two sections, as it requires different
assumptions and methods of proof, and will be coupled with regularity
ideas relating to the semicontractive models of Chapter 3.

Optimistic Policy Iteration Under D

A surprising fact under Assumption D is that nonoptimistic/exact PI may
generate a policy that is strictly inferior over the preceding one. Moreover
there may be an oscillation between nonoptimal policies even when the
state and control spaces are finite. An illustrative example is the shortest
path example of Section 3.1.1, where it can be verified that exact PI may
oscillate between the policy that moves to the destination from node 1 and
the policy that does not. For a mathematical explanation, note that under
Assumption D, we may have TµJ* = TJ* without µ being optimal, so
starting from an optimal policy, we may obtain a nonoptimal policy by PI.

On the other hand optimistic PI under Assumption D has much better
convergence properties, because it embodies the mechanism of VI, which
is convergent to J* as we saw in the preceding subsection. Indeed, let
us consider an optimistic PI algorithm that generates a sequence {Jk, µk}
according to †

TµkJk = TJk, Jk+1 = Tmk

µk Jk, (4.20)

where mk is a positive integer. We assume that the algorithm starts with a
function J0 ∈ E(X) that satisfies J̄ ≥ J0 ≥ J* and J0 ≥ TJ0. For example,
we may choose J0 = J̄ . We have the following proposition.

Proposition 4.3.15: Let Assumption D hold and let {Jk, µk} be a
sequence generated by the optimistic PI algorithm (4.20), assuming
that J̄ ≥ J0 ≥ J* and J0 ≥ TJ0. Then Jk ↓ J∗.

Proof: We have

J0 ≥ Tµ0J0 ≥ Tm0
µ0 J0 = J1 ≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

† As with all PI algorithms in this book, we assume that the policy im-

provement operation is well-defined, in the sense that there exists µk such that
TµkJk = TJk for all k.
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where the first, second, and third inequalities hold because the assumption
J0 ≥ TJ0 = Tµ0J0 implies that

Tm
µ0J0 ≥ Tm+1

µ0 J0, ∀ m ≥ 0.

Continuing similarly we obtain

Jk ≥ TJk ≥ Jk+1, ∀ k ≥ 0.

Moreover, we can show by induction that Jk ≥ J*. Indeed this is true for
k = 0 by assumption. If Jk ≥ J*, we have

Jk+1 = Tmk

µk Jk ≥ TmkJk ≥ TmkJ* = J*, (4.21)

where the last equality follows from the fact TJ* = J* (cf. Prop. 4.3.6),
thus completing the induction. By combining the preceding two relations,
we have

Jk ≥ TJk ≥ Jk+1 ≥ J*, ∀ k ≥ 0. (4.22)

We will now show by induction that

T kJ0 ≥ Jk ≥ J*, ∀ k ≥ 0. (4.23)

Indeed this relation holds by assumption for k = 0, and assuming that it
holds for some k ≥ 0, we have by applying T to it and by using Eq. (4.22),

T k+1J0 ≥ TJk ≥ Jk+1 ≥ J*,

thus completing the induction. By applying Prop. 4.3.13 to Eq. (4.23), we
obtain Jk ↓ J∗. Q.E.D.

λ-Policy Iteration Under D

We now consider the λ-PI algorithm. It involves a scalar λ ∈ (0, 1) and
a corresponding multistep mapping, which bears a relation to temporal
differences and the proximal algorithm (cf. Section 1.2.5). It is defined by

TµkJk = TJk, Jk+1 = T (λ)

µk Jk, (4.24)

where for any policy µ and scalar λ ∈ (0, 1), T (λ)
µ is the mapping defined

by

(T (λ)
µ J)(x) = (1− λ)

∞∑

t=0

λt(T t+1
µ J)(x), x ∈ X.
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Here we assume that Tµ maps R(X) to R(X), and that for all µ ∈ M
and J ∈ R(X), the limit of the series above is well-defined as a function in
R(X).

We discussed the λ-PI algorithm in connection with semicontractive
problems in Section 3.2.4, where we assumed that

Tµ(T
(λ)
µ J) = T (λ)

µ (TµJ), ∀ µ ∈ M, J ∈ E(X). (4.25)

We will show that for undiscounted finite-state MDP, the algorithm can
be implemented by using matrix inversion, just like nonoptimistic PI for
discounted finite-state MDP. It turns out that this can be an advantage in
some settings, including approximate simulation-based implementations.

As noted earlier, λ-PI and optimistic PI are similar: they just use the
mapping Tµk to apply VI in different ways. In view of this similarity, it is
not surprising that it has the same type of convergence properties as the
earlier optimistic PI method (4.20). Similar to Prop. 4.3.15, we have the
following.

Proposition 4.3.16: Let Assumption D hold and let {Jk, µk} be a
sequence generated by the λ-PI algorithm (4.24), assuming Eq. (4.25),
and that J̄ ≥ J0 ≥ J* and J0 ≥ TJ0. Then Jk ↓ J∗.

Proof: As in the proof of Prop. 4.3.15, by using Assumption D, the mono-
tonicity of Tµ, and the hypothesis J0 ≥ TJ0, we have

J0 ≥ TJ0 = Tµ0J0 ≥ T (λ)
µ0 J0 = J1 ≥ Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ T (λ)

µ1 J0 = J2,

where for the third inequality, we use the relation J0 ≥ Tµ0J0, the definition
of J1, and the assumption (4.25). Continuing in the same manner,

Jk ≥ TJk ≥ Jk+1, ∀ k ≥ 0.

Similar to the proof of Prop. 4.3.15, we show by induction that Jk ≥ J*,
using the fact that if Jk ≥ J*, then

Jk+1 = T (λ)

µk Jk ≥ T (λ)

µk J* = (1− λ)
∞∑

t=0

λtT t+1J* = J*,

[cf. the induction step of Eq. (4.21)]. By combining the preceding two
relations, we obtain Eq. (4.22), and the proof is completed by using the
argument following that equation. Q.E.D.

The λ-PI algorithm has a useful property, which involves the mapping
Wk : R(X) %→ R(X) given by

WkJ = (1− λ)TµkJk + λTµkJ. (4.26)
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In particular Jk+1 is a fixed point of Wk. Indeed, using the definition

Jk+1 = T (λ)

µk Jk

[cf. Eq. (4.24)], and the linearity assumption (4.25), we have

WkJk+1 = (1 − λ)TµkJk + λTµk

(
T (λ)

µk Jk
)

= (1 − λ)TµkJk + λT (λ)

µk (TµkJk)

= T (λ)

µk Jk

= Jk+1.

Thus Jk+1 can be calculated as a fixed point of Wk.
Consider now the case where Tµk is nonexpansive with respect to

some norm. Then from Eq. (4.26), it is seen that Wk is a contraction of
modulus λ with respect to that norm, so Jk+1 is the unique fixed point of
Wk. Moreover, if the norm is a weighted sup-norm, Jk+1 can be found using
the methods of Chapter 2 for contractive models. The following example
applies this idea to finite-state SSP problems. The interesting aspect of
this example is that it implements the policy evaluation portion of λ-PI
through solution of a system of linear equations, similar to the exact policy
evaluation method of classical PI.

Example 4.3.4 (Stochastic Shortest Path Problems with
Nonpositive Costs)

Consider the SSP problem of Example 1.2.6 with states 1, . . . , n, plus the
termination state 0. For all u ∈ U(x), the state following x is y with prob-
ability pxy(u) and the expected cost incurred is nonpositive. This problem
arises when we wish to maximize nonnegative rewards up to termination. It
includes a classical search problem where the aim, roughly speaking, is to
move through the state space looking for states with favorable termination
rewards.

We view the problem within our abstract framework with J̄(x) ≡ 0 and

TµJ = gµ + PµJ, (4.27)

with gµ ∈ 'n being the corresponding nonpositive one-stage cost vector, and
Pµ being an n × n substochastic matrix. The components of Pµ are the
probabilities pxy

(
µ(x)

)
, x, y = 1, . . . , n. Clearly Assumption D holds.

Consider the λ-PI method (4.24), with Jk+1 computed by solving the
fixed point equation J = WkJ , cf. Eq. (4.26). This is a nonsingular n-
dimensional system of linear equations, and can be solved by matrix inversion,
just like in exact PI for discounted n-state MDP. In particular, using Eqs.
(4.26) and (4.27), we have

Jk+1 = (I − λPµk )
−1
(
gµk + (1− λ)PµkJk

)
. (4.28)



264 Noncontractive Models Chap. 4

For a small number of states n, this matrix inversion-based policy evaluation
may be simpler than the optimistic PI policy evaluation equation

Jk+1 = T
mk

µk
Jk

[cf. Eq. (4.20)], which points to an advantage of λ-PI.

Note that based on the relation between the multistep mapping T (λ)
µ and

the proximal mapping, discussed in Section 1.2.5 and Exercise 1.2, the policy
evaluation Eq. (4.28) may be viewed as an extrapolated proximal iteration.
Note also that as λ → 1, the policy evaluation Eq. (4.28) resembles the policy
evaluation equation

Jµk = (I − λPµk )
−1gµk

for λ-discounted n-state MDP. An important difference, however, is that for
a discounted finite-state MDP, exact PI will find an optimal policy in a finite
number of iterations, while this is not guaranteed for λ-PI. Indeed λ-PI does
not require that there exists an optimal policy or even that J∗(x) is finite for
all x.

Policy Iteration Under I

Contrary to the case of Assumption D, the important cost improvement
property of PI holds under Assumption I. Thus, if µ is a policy and µ̄
satisfies the policy improvement equation Tµ̄Jµ = TJµ, we have

Jµ = TµJµ ≥ TJµ = Tµ̄Jµ,

from which we obtain
Jµ ≥ lim

k→∞
T k
µ̄Jµ.

Since Jµ ≥ J̄ and Jµ̄ = limk→∞ T k
µ̄ J̄ , it follows that

Jµ ≥ TJµ ≥ Jµ̄. (4.29)

However, this cost improvement property is not by itself sufficient for
the validity of PI under Assumption I (see the deterministic shortest path
example of Section 3.1.1). Thus additional conditions are needed to guar-
antee convergence. To this end we may use the semicontractive framework
of Chapter 3, and take advantage of the fact that under Assumption I, J*

is known to be a fixed point of T .
In particular, suppose that we have a set S ⊂ E(X) such that J*

S = J*.
Then J*

S is a fixed point of T and the theory of Section 3.2 comes into play.
Thus, by Prop. 3.2.1 the following hold:

(a) We have T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃ for
some J̃ ∈ S.

(b) J* is the only fixed point of T within the set of all J ∈ E(X) such
that J* ≤ J ≤ J̃ for some J̃ ∈ S.
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Moreover, by Prop. 3.2.4, if S has the weak PI property and for each
sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm),

then every sequence of S-regular policies {µk} that can be generated by PI
satisfies Jµk ↓ J*. If in addition the set of S-regular policies is finite, there

exists k̄ ≥ 0 such that µk̄ is optimal.
For these properties to hold, it is of course critical that J*

S = J*. If
this is not so, but J*

S is still a fixed point of T , the VI and PI algorithms
may converge to J*

S rather than to J* (cf. the linear quadratic problem of
Section 3.5.4).

4.4 REGULARITY AND NONSTATIONARY POLICIES

In this section, we will extend the notion of regularity of Section 3.2 so
that it applies more broadly. We will use this notion as our main tool
for exploring the structure of the solution set of Bellman’s equation. We
will then discuss some applications involving mostly monotone increasing
models in this section, as well as in Sections 4.5 and 4.6. We continue
to focus on the infinite horizon case of the problem of Section 4.1, but
we do not impose for the moment any additional assumptions, such as
Assumption I or D.

We begin with the following extension of the definition of S-regularity,
which we will use to prove a general result regarding the convergence prop-
erties of VI in the following Prop. 4.4.1. We will apply this result in the
context of various applications in Sections 4.4.2-4.4.4, as well as in Sections
4.5 and 4.6.

Definition 4.4.1: For a nonempty set of functions S ⊂ E(X), we say
that a nonempty collection C of policy-state pairs (π, x), with π ∈ Π
and x ∈ X , is S-regular if

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x), ∀ (π, x) ∈ C, J ∈ S.

The essence of the preceding definition of S-regularity is similar to
the one of Chapter 3 for stationary policies: for an S-regular collection of
pairs (π, x), the value of Jπ(x) is not affected if the starting function is
changed from J̄ to any J ∈ S. It is important to extend the definition
of regularity to nonstationary policies because in noncontractive models,
stationary policies are generally not sufficient, i.e., the optimal cost over
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stationary policies may not be the same as the one over nonstationary
policies (cf. Prop. 4.3.2, and the subsequent example). Generally, when
referring to an S-regular collection C, we implicitly assume that S and C
are nonempty, although on occasion we may state explicitly this fact for
emphasis.

For a given set C of policy-state pairs (π, x), let us consider the func-
tion J*

C ∈ E(X), given by

J*
C(x) = inf

{π | (π,x)∈C}
Jπ(x), x ∈ X.

Note that J*
C (x) ≥ J*(x) for all x ∈ X [for those x ∈ X for which the set

of policies {π | (π, x) ∈ C} is empty, we have by convention J*
C (x) = ∞].

For an important example, note that in the analysis of Chapter 3, the
set of S-regular policies MS of Section 3.2 defines the S-regular collection

C =
{
(µ, x) | µ ∈ MS, x ∈ X

}
,

and the corresponding restricted optimal cost function J*
S is equal to J*

C . In
Sections 3.2-3.4 we saw that when J*

S is a fixed point of T , then favorable
results are obtained. Similarly, in this section we will see that for an S-
regular collection C, when J*

C is a fixed point of T , interesting results are
obtained.

The following two propositions play a central role in our analysis on
this section and the next two, and may be compared with Prop. 3.2.1,
which played a pivotal role in the analysis of Chapter 3.

Proposition 4.4.1: (Well-Behaved Region Theorem) Given a
nonempty set S ⊂ E(X), let C be a nonempty collection of policy-state
pairs (π, x) that is S-regular. Then:

(a) For all J ∈ E(X) such that J ≤ J̃ for some J̃ ∈ S, we have

lim sup
k→∞

T kJ ≤ J*
C .

(b) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, and all J ∈ E(X) such that
J ′ ≤ J ≤ J̃ for some J̃ ∈ S, we have

J ′ ≤ lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J*
C .

Proof: (a) Using the generic relation TJ ≤ TµJ , µ ∈ M, and the mono-
tonicity of T and Tµ, we have for all k

(T kJ̃)(x) ≤ (Tµ0 · · ·Tµk−1 J̃)(x), ∀ (π, x) ∈ C, J̃ ∈ S.
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By letting k → ∞ and by using the definition of S-regularity, it follows
that for all (π, x) ∈ C, J ∈ E(X), and J̃ ∈ S with J ≤ J̃ ,

lim sup
k→∞

(T kJ)(x) ≤ lim sup
k→∞

(T kJ̃)(x) ≤ lim sup
k→∞

(Tµ0 · · ·Tµk−1 J̃)(x) = Jπ(x),

and by taking infimum of the right side over
{
π | (π, x) ∈ C

}
, we obtain

the result.

(b) Using the hypotheses J ′ ≤ TJ ′, and J ′ ≤ J ≤ J̃ for some J̃ ∈ S, and
the monotonicity of T , we have

J ′(x) ≤ (TJ ′)(x) ≤ · · · ≤ (T kJ ′)(x) ≤ (T kJ)(x).

Letting k → ∞ and using part (a), we obtain the result. Q.E.D.

Let us discuss some interesting implications of part (b) of the propo-
sition. Suppose we are given a set S ⊂ E(X), and a collection C that is
S-regular. Then:

(1) J*
C is an upper bound to every fixed point J ′ of T that lies below

some J̃ ∈ S (i.e., J ′ ≤ J̃). Moreover, for such a fixed point J ′, the
VI algorithm, starting from any J with J*

C ≤ J ≤ J̃ for some J̃ ∈ S,
ends up asymptotically within the region

{
J ∈ E(X) | J ′ ≤ J ≤ J*

C

}
.

Thus the convergence of VI is characterized by the well-behaved region

WS,C =
{
J ∈ E(X) | J*

C ≤ J ≤ J̃ for some J̃ ∈ S
}
, (4.30)

(cf. the corresponding definition in Section 3.2), and the limit region

{
J ∈ E(X) | J ′ ≤ J ≤ J*

C for all fixed points J ′ of T

with J ′ ≤ J̃ for some J̃ ∈ S
}
.

The VI algorithm, starting from the former, ends up asymptotically
within the latter; cf. Figs. 4.4.1 and 4.4.2.

(2) If J*
C is a fixed point of T (a common case in our subsequent analysis),

then the VI-generated sequence {T kJ} converges to J*
C starting from

any J in the well-behaved region. If J*
C is not a fixed point of T , we

only have lim supk→∞ T kJ ≤ J*
C for all J in the well-behaved region.

(3) If the well-behaved region is unbounded above in the sense that
WS,C =

{
J ∈ E(X) | J*

C ≤ J
}
, which is true for example if S = E(X),

then J ′ ≤ J*
C for every fixed point J ′ of T . The reason is that for

every fixed point J ′ of T we have J ′ ≤ J for some J ∈ WS,C, and
hence also J ′ ≤ J̃ for some J̃ ∈ S, so observation (1) above applies.
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J ′ J J

VI Optimal Cost over CFixed Point of T

C E(X)

VI: T kJ

J̃ ∈ S

be a fixed point of
, we have J*

C
≤

Well-Behaved RegionWS,CWell-Behaved Region Limit Region

Figure 4.4.1. Schematic illustration of Prop. 4.4.1. Neither J∗
C nor J∗ need to

be fixed points of T , but if C is S-regular, and there exists J̃ ∈ S with J∗
C ≤ J̃ ,

then J∗
C demarcates from above the range of fixed points of T that lie below J̃ .

For future reference, we state these observations as a proposition, which
should be compared to Prop. 3.2.1, the stationary special case where C is
defined by the set of S-regular stationary policies, i.e., C =

{
(µ, x) | µ ∈

MS , x ∈ X
}
. Figures 4.4.2 and 4.4.3 illustrate some of the consequences

of Prop. 4.4.1 for two cases, respectively: when S = E(X) while J*
C is not

a fixed point of T , and when S is a strict subset of E(X) while J*
C is a fixed

point of T .

Proposition 4.4.2: (Uniqueness of Fixed Point of T and Con-
vergence of VI) Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular. Then:

(a) If J ′ is a fixed point of T with J ′ ≤ J̃ for some J̃ ∈ S, then
J ′ ≤ J*

C . Moreover, J*
C is the only possible fixed point of T

within WS,C.

(b) We have lim supk→∞ T kJ ≤ J*
C for all J ∈ WS,C , and if J*

C is a
fixed point of T , then T kJ → J*

C for all J ∈ WS,C.

(c) If WS,C is unbounded from above in the sense that

WS,C =
{
J ∈ E(X) | J*

C ≤ J
}
,

then J ′ ≤ J*
C for every fixed point J ′ of T . In particular, if J*

C is
a fixed point of T , then J*

C is the largest fixed point of T .

Proof: (a) The first statement follows from Prop. 4.4.1(b). For the second
statement, let J ′ be a fixed point of T with J ′ ∈ WS,C. Then from the
definition of WS,C , we have J*

C ≤ J ′ as well as J ′ ≤ J̃ for some J̃ ∈ S, so
from Prop. 4.4.1(b) it follows that J ′ ≤ J*

C . Hence J ′ = J*
C .
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Path of VI Set of solutions of Bellman’s equation J*
C

Paths of VI Unique solution of Bellman’s equation

Limit Region

Fixed Points of T

T S = E(X)

Well-Behaved Region

WS,C =

{

J | J*
C
≤ J

}

Figure 4.4.2. Schematic illustration of Prop. 4.4.2, for the case where S = E(X)

so that WS,C is unbounded above, i.e., WS,C =
{
J ∈ E(X) | J∗

C ≤ J
}
. In

this figure J∗
C is not a fixed point of T . The VI algorithm, starting from the

well-behaved region WS,C , ends up asymptotically within the limit region.

(b) The result follows from Prop. 4.4.1(a), and in the case where J*
C is a

fixed point of T , from Prop. 4.4.1(b), with J ′ = J*
C .

(c) See observation (3) in the discussion preceding the proposition. Q.E.D.

Examples and counterexamples illustrating the preceding proposition
are provided by the problems of Section 3.1 for the stationary case where

C =
{
(µ, x) | µ ∈ MS, x ∈ X

}
.

Similar to the analysis of Chapter 3, the preceding proposition takes special
significance when J* is a fixed point of T and C is rich enough so that
J*
C = J*, as for example in the case where C is the set Π×X of all (π, x),

or other choices to be discussed later. It then follows that every fixed
point J ′ of T that belongs to S satisfies J ′ ≤ J*, and that VI converges
to J* starting from any J ∈ E(X) such that J* ≤ J ≤ J̃ for some J̃ ∈ S.
However, there will be interesting cases where J*

C /= J*, as in shortest
path-type problems (see Sections 3.5.1, 4.5, and 4.6).

Note that Prop. 4.4.2 does not say anything about fixed points of
T that lie below J*

C , and does not give conditions under which J*
C is a

fixed point. Moreover, it does not address the question whether J* is a
fixed point of T , or whether VI converges to J* starting from J̄ or from
below J*. Generally, it can happen that both, only one, or none of the two
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that belongs to S
Path of VI Set of solutions of Bellman’s equation J*

C

Fixed Points of T S

Fixed Points of T S

Well-Behaved Region

Paths of VI Unique solution of Bellman’s equation

WS,C =
{

J | J*
C
≤ J ≤ J̃ for some J̃ ∈ S

}

Figure 4.4.3. Schematic illustration of Prop. 4.4.2, and the set WS,C of Eq.
(4.30), for a case where J∗

C is a fixed point of T and S is a strict subset of E(X).

Every fixed point of T that lies below some J̃ ∈ S should lie below J∗
C . Also, the

VI algorithm converges to J∗
C starting from within WS,C . If S were unbounded

from above, as in Fig. 4.4.2, J∗
C would be the largest fixed point of T .

functions J*
C and J* is a fixed point of T , as can be seen from the examples

of Section 3.1.

The Case Where J*
C ≤ J̄

We have seen in Section 4.3 that the results for monotone increasing and
monotone decreasing models are markedly different. In the context of S-
regularity of a collection C, it turns out that there are analogous significant
differences between the cases J*

C ≥ J̄ and J*
C ≤ J̄ . The following propo-

sition establishes some favorable aspects of the condition J*
C ≤ J̄ in the

context of VI. These can be attributed to the fact that J̄ can always be
added to S without affecting the S-regularity of C, so J̄ can serve as the
element J̃ of S in Props. 4.4.1 and 4.4.2 (see the subsequent proof). The
following proposition may also be compared with the result on convergence
of VI under Assumption D (cf. Prop. 4.3.13).

Proposition 4.4.3: Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular, and assume that J*

C ≤ J̄ .
Then:



Sec. 4.4 Regularity and Nonstationary Policies 271

(a) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, we have

J ′ ≤ lim inf
k→∞

T kJ̄ ≤ lim sup
k→∞

T kJ̄ ≤ J*
C .

(b) If J*
C is a fixed point of T , then J*

C = J* and we have T kJ̄ → J*

as well as T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃
for some J̃ ∈ S.

Proof: (a) If S does not contain J̄ , we can replace S with S̄ = S ∪ {J̄},
and C will still be S̄-regular. By applying Prop. 4.4.1(b) with S replaced
by S̄ and J̃ = J̄ , the result follows.

(b) Assume without loss of generality that J̄ ∈ S [cf. the proof of part (a)].
By using Prop. 4.4.2(b) with J̃ = J̄ , we have J*

C = limk→∞ T kJ̄ . Thus for
every policy π = {µ0, µ1, . . .} ∈ Π,

J*
C = lim

k→∞
T kJ̄ ≤ lim sup

k→∞
Tµ0 · · ·Tµk−1 J̄ = Jπ ,

so by taking the infimum over π ∈ Π, we obtain J*
C ≤ J*. Since generically

J*
C ≥ J*, it follows that J*

C = J*. Finally, from Prop. 4.4.2(b), T kJ → J*

for all J ∈ WS,C , implying the result. Q.E.D.

As a special case of the preceding proposition, we have that if J* ≤ J̄
and J* is a fixed point of T , then J* = limk→∞ T kJ̄ , and for every other
fixed point J ′ of T we have J ′ ≤ J* (apply the proposition with C = Π×X
and S = {J̄}, in which case J*

C = J* ≤ J̄). This occurs, among others, in
the monotone decreasing models, where TµJ̄ ≤ J̄ for all µ ∈ M. A special
case is the convergence of VI under Assumption D (cf. Prop. 4.3.5).

The preceding proposition also applies to a classical type of search
problem with both positive and negative costs per stage. This is the SSP
problem, where at each x ∈ X we have cost E

{
g(x, u, w)

}
≥ 0 for all u

except one that leads to a termination state with probability 1 and non-
positive cost; here J̄(x) = 0 and J*

C(x) ≤ 0 for all x ∈ X , but Assumption
D need not hold.

4.4.1 Regularity and Monotone Increasing Models

We will now return to the monotone increasing model, cf. Assumption
I. For this model, we know from Section 4.3 that J* is the smallest fixed
point of T within the class of functions J ≥ J̄ , under certain relatively mild
assumptions. However, VI may not converge to J* starting from below J*

(e.g., starting from J̄), and also starting from above J*. In this section
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we will address the question of convergence of VI from above J* by using
regularity ideas, and in Section 4.5 we will consider the characterization of
the largest fixed point of T in the context of deterministic optimal control
and infinite-space shortest path problems. We summarize the results of
Section 4.3 that are relevant to our development in the following proposition
(cf. Props. 4.3.2, 4.3.3, 4.3.9, and 4.3.14).

Proposition 4.4.4: Let Assumption I hold. Then:

(a) J* = TJ*, and if J ′ ∈ E(X) is such that J ′ ≥ J̄ and J ′ ≥ TJ ′,
then J ′ ≥ J*.

(b) For all µ ∈ M we have Jµ = TµJµ, and if J ′ ∈ E(X) is such that
J ′ ≥ J̄ and J ′ ≥ TµJ ′, then J ′ ≥ Jµ.

(c) µ∗ ∈ M is optimal if and only if Tµ∗J* = TJ*.

(d) If U is a metric space and the sets

Uk(x,λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

are compact for all x ∈ X , λ ∈ !, and k, then there exists at
least one optimal stationary policy, and we have T kJ → J* for
all J ∈ E(X) with J ≤ J*.

(e) Given any ε > 0, there exists a policy πε ∈ Π such that

J* ≤ Jπε ≤ J* + ε e.

Furthermore, if the scalar α in part (c) of Assumption I satisfies
α < 1, the policy πε can be taken to be stationary.

Since under Assumption I there may exist fixed points J ′ of T with
J* ≤ J ′, VI may not converge to J* starting from above J*. However,
convergence of VI to J* from above, if it occurs, is often much faster than
convergence from below, so starting points J ≥ J* may be desirable. One
well-known such case is deterministic finite-state shortest path problems
where major algorithms, such as the Bellman-Ford method or other label
correcting methods have polynomial complexity, when started from J above
J*, but only pseudopolynomial complexity when started from J below J*

[see e.g., [BeT89] (Prop. 1.2 in Ch.4), [Ber98] (Exercise 2.7)].
In the next two subsections, we will consider discounted and undis-

counted optimal control problems with nonnegative cost per stage, and we
will establish conditions under which J* is the unique nonnegative fixed
point of T , and VI converges to J* from above. Our analysis will proceed
as follows:
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(a) Define a collection C such that J*
C = J*.

(b) Define a set S ⊂ E+(X) such that J* ∈ S and C is S-regular.

(c) Use Prop. 4.4.2 (which shows that J*
C is the largest fixed point of T

within S) in conjunction with Prop. 4.4.4(a) (which shows that J* is
the smallest fixed point of T within S) to show that J* is the unique
fixed point of T within S. Use also Prop. 4.4.2(b) to show that the
VI algorithm converges to J* starting from J ∈ S such that J ≥ J*.

(d) Use the compactness condition of Prop. 4.4.4(d), to enlarge the set of
functions starting from which VI converges to J*.

4.4.2 Nonnegative Cost Stochastic Optimal Control

Let us consider the undiscounted stochastic optimal control problem that
involves the mapping

H(x, u, J) = E
{
g(x, u, w) + J

(
f(x, u, w)

)}
, (4.31)

where g is the one-stage cost function and f is the system function. The
expected value is taken with respect to the distribution of the random
variable w (which takes values in a countable set W ). We assume that

0 ≤ E
{
g(x, u, w)

}
< ∞, ∀ x ∈ X, u ∈ U(x), w ∈ W.

We consider the abstract DP model with H as above, and with J̄(x) ≡ 0.
Using the nonnegativity of g, we can write the cost function of a policy
π = {µ0, µ1, . . .} in terms of a limit,

Jπ(x0) = lim
k→∞

Eπ
x0

{
k∑

m=0

g
(
xm, µm(xm), wm

)
}
, x0 ∈ X, (4.32)

where Eπ
x0{·} denotes expected value with respect to the probability dis-

tribution induced by π under initial state x0.
We will apply the analysis of this section with

C =
{
(π, x) | Jπ(x) < ∞

}
,

for which J*
C = J*. We assume that C is nonempty, which is true if and

only if J* is not identically ∞, i.e., J*(x) < ∞ for some x ∈ X . Consider
the set

S =
{
J ∈ E+(X) | Eπ

x0

{
J(xk)

}
→ 0, ∀ (π, x0) ∈ C

}
. (4.33)

One interpretation is that the functions J that are in S have the character of
Lyapounov functions for the policies π for which the set

{
x0 | Jπ(x0) < ∞

}

is nonempty.
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Note that S is the largest set with respect to which C is regular in the
sense that C is S-regular and if C is S′-regular for some other set S′, then
S′ ⊂ S. To see this we write for all J ∈ E+(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1J)(x0) = Eπ
x0

{
J(xk)

}
+ Eπ

x0

{
k−1∑

m=0

g
(
xm, µm(xm), wm

)
}
,

where µm, m = 0, 1, . . ., denote generically the components of π. The
rightmost term above converges to Jπ(x0) as k → ∞ [cf. Eq. (4.32)], so by
taking upper limit, we obtain

lim sup
k→∞

(Tµ0 · · ·Tµk−1J)(x0) = lim sup
k→∞

Eπ
x0

{
J(xk)

}
+ Jπ(x0). (4.34)

In view of the definition (4.33) of S, this implies that for all J ∈ S, we have

lim sup
k→∞

(Tµ0 · · ·Tµk−1J)(x0) = Jπ(x0), ∀ (π, x0) ∈ C, (4.35)

so C is S-regular. Moreover, if C is S′-regular and J ∈ S′, Eq. (4.35) holds,
so that [in view of Eq. (4.34) and J ∈ E+(X)] limk→∞ Eπ

x0

{
J(xk)

}
= 0 for

all (π, x0) ∈ C, implying that J ∈ S.
From Prop. 4.4.2, the fixed point property of J* [cf. Prop. 4.4.4(a)],

and the fact J*
C = J*, it follows that T kJ → J* for all J ∈ S that satisfy

J ≥ J*. Moreover, if the sets Uk(x,λ) of Eq. (4.17) are compact, the
convergence of VI starting from below J* will also be guaranteed. We thus
have the following proposition, which in addition shows that J* belongs to
S and is the unique fixed point of T within S.

Proposition 4.4.5: (Uniqueness of Fixed Point of T and Con-
vergence of VI) Consider the problem corresponding to the map-
ping (4.31) with g ≥ 0, and assume that J* is not identically ∞.
Then:

(a) J* belongs to S and is the unique fixed point of T within S.
Moreover, we have T kJ → J* for all J ≥ J* with J ∈ S.

(b) If U is a metric space, and the sets Uk(x,λ) of Eq. (4.17) are
compact for all x ∈ X , λ ∈ !, and k, we have T kJ → J* for all
J ∈ S, and an optimal stationary policy is guaranteed to exist.

Proof: (a) We first show that J* ∈ S. Given a policy π = {µ0, µ1, . . .},
we denote by πk the policy

πk = {µk, µk+1, . . .}.



Sec. 4.4 Regularity and Nonstationary Policies 275

We have for all (π, x0) ∈ C

Jπ(x0) = Eπ
x0

{
g
(
x0, µ0(x0), w0

)}
+ Eπ

x0

{
Jπ1(x1)

}
, (4.36)

and for all m = 1, 2, . . .,

Eπ
x0

{
Jπm(xm)

}
= Eπ

x0

{
g
(
xm, µm(xm), wm

)}
+ Eπ

x0

{
Jπm+1(xm+1)

}
,

(4.37)
where {xm} is the sequence generated starting from x0 and using π. By
using repeatedly the expression (4.37) for m = 1, . . . , k− 1, and combining
it with Eq. (4.36), we obtain for all k = 1, 2, . . . ,

Jπ(x0) = Eπ
x0

{
Jπk

(xk)
}
+

k−1∑

m=0

Eπ
x0

{
g
(
xm, µm(xm), wm

)}
, ∀ (π, x0) ∈ C.

The rightmost term above tends to Jπ(x0) as k → ∞, so we obtain

Eπ
x0

{
Jπk

(xk)
}
→ 0, ∀ (π, x0) ∈ C.

Since 0 ≤ J* ≤ Jπk
, it follows that

Eπ
x0

{
J*(xk)

}
→ 0, ∀ x0 with J*(x0) < ∞.

Thus J* ∈ S while J* (which is equal to J*
C) is a fixed point of T .

For every other fixed point J ′ of T , we have J ′ ≥ J∗ [by Prop. 4.4.4(b)],
so if J ′ belongs to S, by Prop. 4.4.2(a), J ′ ≤ J∗ and thus J ′ = J*. Hence,
J* is the unique fixed point of T within the set S. By Prop. 4.4.2(b), we
also have T kJ → J* for all J ∈ S with J ≥ J*.

(b) This part follows from part (a) and Prop. 4.4.4(d). Q.E.D.

Note that under the assumptions of the preceding proposition, either
T has a unique fixed point within E+(X) (namely J*), or else all the
additional fixed points of T within E+(X) lie outside S. To illustrate the
limitations of this result, consider the shortest path problem of Section
3.1.1 for the case where the choice at state 1 is either to stay at 1 at cost
0, or move to the destination at cost b > 0. Then Bellman’s equation at
state 1 is J(1) = min

{
b, J(1)

}
, and its set of nonnegative solutions is the

interval [0, b], while we have J* = 0. The set S of Eq. (4.33) here consists
of just J* and Prop. 4.4.5 applies, but it is not very useful. Similarly, in
the linear-quadratic example of Section 3.1.4, where T has the two fixed
points J*(x) = 0 and Ĵ(x) = (γ2 − 1)x2, the set S of Eq. (4.33) consists of
just J∗.

Thus the regularity framework of this section is useful primarily in
the favorable case where J* is the unique nonnegative fixed point of T .
In particular, Prop. 4.4.5 cannot be used to differentiate between multiple
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fixed points of T , and to explain the unusual behavior in the preceding
two examples. In Sections 4.5 and 4.6, we address this issue within the
more restricted contexts of deterministic and stochastic optimal control,
respectively.

A consequence of Prop. 4.4.5 is the following condition for VI con-
vergence from above, first discovered and published in the paper by Yu
and Bertsekas [YuB15] (Theorem 5.1) within a broader context that also
addressed universal measurability issues.

Proposition 4.4.6: Under the conditions of Prop. 4.4.5, we have
T kJ → J* for all J ↑ E+(X) satisfying

J* ↓ J ↓ cJ*, (4.38)

for some scalar c > 1. Moreover, J* is the unique fixed point of T
within the set

{
J ↑ E+(X) | J ↓ cJ* for some c > 0

}
.

Proof: Since J* ↑ S as shown in Prop. 4.4.5, any J satisfying Eq. (4.38),
also belongs to the set S of Eq. (4.33), and the result follows from Prop.
4.4.5. Q.E.D.

Note a limitation of the preceding proposition: in order to find func-
tions J satisfying J* ↓ J ↓ c J* we must essentially know the sets of states
x where J*(x) = 0 and J*(x) = ∞.

4.4.3 Discounted Stochastic Optimal Control

We will now consider a discounted version of the stochastic optimal control
problem of the preceding section. For a policy π = {µ0, µ1, . . .} we have

Jπ(x0) = lim
k→∞

Eπ
x0

{
k↓1∑

m=0

αmg
(
xm, µm(xm), wm

)
}
,

where α ↑ (0, 1) is the discount factor, and as earlier Eπ
x0{·} denotes ex-

pected value with respect to the probability measure induced by π ↑ Π
under initial state x0. We assume that the one-stage expected cost is non-
negative,

0 ↓ E
{
g(x, u, w)

}
< ∞, ∀ x ↑ X, u ↑ U(x), w ↑ W.
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By defining the mapping H as

H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
,

and J̄(x) ≡ 0, we can view this problem within the abstract DP framework
of this chapter where Assumption I holds.

Note that because of the discount factor, the existence of a terminal
set of states is not essential for the optimal costs to be finite. Moreover,
the nonnegativity of g is not essential for our analysis. Any problem where
g can take both positive and negative values, but is bounded below, can
be converted to an equivalent problem where g is nonnegative, by adding
a suitable constant c to g. Then the cost of all policies will simply change
by the constant

∑∞
k=0 α

kc = c/(1− α).
The line of analysis of this section makes a connection between the

S-regularity notion of Definition 4.4.1 and a notion of stability, which is
common in feedback control theory and will be explored further in Section
4.5. We assume that X is a normed space, so that boundedness within X
is defined with respect to its norm. We introduce the set

X∗ =
{
x ∈ X | J*(x) < ∞

}
,

which we assume to be nonempty. Given a state x ∈ X∗, we say that a
policy π is stable from x if there exists a bounded subset ofX∗ [that depends
on (π, x)] such that the (random) sequence {xk} generated starting from
x and using π lies with probability 1 within that subset. We consider the
set of policy-state pairs

C =
{
(π, x) | x ∈ X∗, π is stable from x

}
,

and we assume that C is nonempty.
Let us say that a function J ∈ E+(X) is bounded on bounded subsets

of X∗ if for every bounded subset X̃ ⊂ X∗ there is a scalar b such that
J(x) ≤ b for all x ∈ X̃ . Let us also introduce the set

S =
{
J ∈ E+(X) | J is bounded on bounded subsets of X∗

}
.

We assume that C is nonempty, J* ∈ S, and for every x ∈ X∗ and ε > 0,
there exists a policy π that is stable from x and satisfies Jπ(x) ≤ J*(x)+ ε
(thus implying that J*

C = J*). We have the following proposition.

Proposition 4.4.7: Under the preceding assumptions, J* is the uni-
que fixed point of T within S, and we have T kJ → J* for all J ∈ S
with J* ≤ J . If in addition U is a metric space, and the sets Uk(x,λ) of
Eq. (4.17) are compact for all x ∈ X , λ ∈ !, and k, we have T kJ → J*

for all J ∈ S, and an optimal stationary policy is guaranteed to exist.
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Proof: We have for all J ∈ E(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1J)(x0) = αkEπ
x0

{
J(xk)

}
+Eπ

x0

{
k−1∑

m=0

αmg
(
xm, µm(xm), wm

)
}
.

Since (π, x0) ∈ C, there is a bounded subset ofX∗ such that {xk} belongs to
that subset with probability 1, so if J ∈ S it follows that αkEπ

x0

{
J(xk)

}
→

0. Thus by taking limit as k → ∞ in the preceding relation, we have for all
(π, x0) ∈ C and J ∈ S,

lim
k→∞

(Tµ0 · · ·Tµk−1J)(x0) = lim
k→∞

Eπ
x0

{
k−1∑

m=0

αmg
(
xm, µm(xm), wm

)
}

= Jπ(x0),

so C is S-regular. Since J*
C is equal to J*, which is a fixed point of T , the

result follows similar to the proof of Prop. 4.4.5. Q.E.D.

4.4.4 Convergent Models

In this section we consider a case of an abstract DP model that generalizes
both the monotone increasing and the monotone decreasing models. The
model is patterned after the stochastic optimal control problem of Example
1.2.1, where the cost per stage function g can take negative as well as
positive values. Our main assumptions are that the cost functions of all
policies are defined as limits (rather than upper limits), and that −∞ <
J̄(x) ≤ J*(x) for all x ∈ X.

These conditions are somewhat restrictive and make the model more
similar to the monotone increasing than to the monotone decreasing model,
but are essential for the results of this section (for a discussion of the
pathological behaviors that can occur without the condition J̄ ≤ J*, see
the paper by H. Yu [Yu15]). We will show that J* is a fixed point of T ,
and that there exists an ε-optimal policy for every ε > 0. This will bring
to bear the regularity ideas and results of Prop. 4.4.2, and will provide a
convergence result for the VI algorithm.

In particular, we denote

Eb(X) =
{
J ∈ E(X) | J(x) > −∞, ∀ x ∈ X

}
,

and we will assume the following.

Assumption 4.4.1:

(a) For all π = {µ0, µ1, . . .} ∈ Π, Jπ can be defined as a limit:

Jπ(x) = lim
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X. (4.39)
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Furthermore, we have J̄ ∈ Eb(X) and

J̄ ≤ J*.

(b) For each sequence {Jm} ⊂ Eb(X) with Jm → J ∈ Eb(X), we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(c) There exists α > 0 such that for all J ∈ Eb(X) and r ∈ !,

H(x, u, J + re) ≤ H(x, u, J) + αr, ∀ x ∈ X, u ∈ U(x),

where e is the unit function, e(x) ≡ 1.

For an example of a type of problem where the convergence condi-
tion (4.39) is satisfied, consider the stochastic optimal control problem of
Example 1.2.1, assuming that the state space consists of two regions: X1

where the cost per stage is nonnegative under all controls, and X2 where
the cost per stage is nonpositive. Assuming that once the system enters
X1 it can never return to X2, the convergence condition (4.39) is satisfied
for all π. The same is true for the reverse situation, where once the system
enters X2 it can never return to X1. Optimal stopping problems and SSP
problems are often of this type.

We first prove the existence of ε-optimal policies and then use it to
establish that J* is a fixed point of T . The proofs are patterned after the
ones under Assumption I (cf. Props. 4.3.2 and 4.3.3).

Proposition 4.4.8: Let Assumption 4.4.1 hold. Given any ε > 0,
there exists a policy πε ∈ Π such that

J* ≤ Jπε ≤ J* + ε e.

Proof: Let {εk} be a sequence such that εk > 0 for all k and

∞∑

k=0

αkεk = ε, (4.40)

where α is the scalar of Assumption 4.4.1(c). For each x ∈ X , consider a
sequence of policies

{
πk[x]

}
⊂ Π, with components of πk[x] (to emphasize
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their dependence on x) denoted by µk
m[x], m = 0, 1, . . .,

πk[x] =
{
µk
0 [x], µ

k
1 [x], . . .

}
,

such that for k = 0, 1, . . . ,

Jπk[x](x) ≤ J*(x) + εk. (4.41)

Such a sequence exists since J* ∈ Eb(X).
Consider the functions µk defined by

µk(x) = µk
0 [x](x), ∀ x ∈ X, (4.42)

and the functions J̄k defined by

J̄k(x) = H
(
x, µk(x), lim

m→∞
Tµk

1 [x]
· · ·Tµk

m[x]J̄
)
, ∀ x ∈ X, k = 0, 1, . . . .

(4.43)
By using Eqs. (4.41)-(4.43), and the continuity property of Assumption
4.4.1(b), we obtain for all x ∈ X and k = 0, 1, . . .,

J̄k(x) = H
(
x, µk

0 [x](x), lim
m→∞

Tµk
1 [x]

· · ·Tµk
m[x]J̄

)

= lim
m→∞

H
(
x, µk

0 [x](x), Tµk
1 [x]

· · ·Tµk
m[x]J̄

)

= lim
m→∞

(
Tµk

0 [x]
· · ·Tµk

m[x]J̄
)
(x)

= Jπk[x](x)

≤ J*(x) + εk.

(4.44)

From Eqs. (4.43), (4.44), and Assumption 4.4.1(c), we have for all x ∈ X
and k = 1, 2, . . .,

(Tµk−1
J̄k)(x) = H

(
x, µk−1(x), J̄k

)

≤ H
(
x, µk−1(x), J* + εk e

)

≤ H
(
x, µk−1(x), J*

)
+ αεk

≤ H
(
x, µk−1(x), lim

m→∞
T
µk−1
1 [x]

· · ·T
µk−1
m [x]

J̄
)
+ αεk

= J̄k−1(x) + αεk,

and finally
Tµk−1

J̄k ≤ J̄k−1 + αεk e, k = 1, 2, . . . .

Using this inequality and Assumption 4.4.1(c), we obtain

Tµk−2
Tµk−1

J̄k ≤ Tµk−2
(J̄k−1 + αεk e)

≤ Tµk−2
J̄k−1 + α2εk e

≤ J̄k−2 + (αεk−1 + α2εk) e.
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Continuing in the same manner, we have for k = 1, 2, . . . ,

Tµ0
· · ·Tµk−1

J̄k ≤ J̄0 + (αε1 + · · ·+ αkεk) e ≤ J* +

(
k∑

i=0

αiεi

)
e.

Since by Assumption 4.4.1(c), we have J̄ ≤ J* ≤ J̄k, it follows that

Tµ0
· · ·Tµk−1

J̄ ≤ J* +

(
k∑

i=0

αiεi

)
e.

Denote πε = {µ0, µ1, . . .}. Then by taking the limit in the preceding in-
equality and using Eq. (4.40), we obtain

Jπε ≤ J* + ε e.

Q.E.D.

By using Prop. 4.4.8 we can prove the following.

Proposition 4.4.9: Let Assumption 4.4.1 hold. Then J* is a fixed
point of T .

Proof: For every π = {µ0, µ1, . . .} ∈ Π and x ∈ X , we have using the
continuity property of Assumption 4.4.1(b) and the monotonicity of H ,

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J̄)(x)

= Tµ0

(
lim
k→∞

Tµ1 · · ·Tµk
J̄

)
(x)

≥ (Tµ0J*)(x)

≥ (TJ*)(x).

By taking the infimum of the left-hand side over π ∈ Π, we obtain

J* ≥ TJ*.

To prove the reverse inequality, let ε1 and ε2 be any positive scalars,
and let π = {µ0, µ1, . . .} be such that

Tµ0
J* ≤ TJ* + ε1 e, Jπ1 ≤ J* + ε2 e,
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where π1 = {µ1, µ2, . . .} (such a policy exists by Prop. 4.4.8). By using the
preceding relations and Assumption 4.4.1(c), we have

J* ≤ Jπ

= lim
k→∞

Tµ0
Tµ1

· · ·Tµk
J̄

= Tµ0

(
lim
k→∞

Tµ1
· · ·Tµk

J̄

)

= Tµ0
Jπ1

≤ Tµ0
(J* + ε2 e)

≤ Tµ0
J* + αε2 e

≤ TJ* + (ε1 + αε2) e.

Since ε1 and ε2 can be taken arbitrarily small, it follows that

J* ≤ TJ*.

Hence J* = TJ*. Q.E.D.

It is known that J* may not be a fixed point of T if the convergence
condition (a) of Assumption 4.4.1 is violated (see the example of Section
3.1.2). Moreover, J* may not be a fixed point of T if either part (b) or
part (c) of Assumption 4.4.1 is violated, even when the monotone increase
condition J̄ ≤ T J̄ [and hence also the convergence condition of part (a)] is
satisfied (see Examples 4.3.1 and 4.3.2). By applying Prop. 4.4.2, we have
the following proposition.

Proposition 4.4.10: Let Assumption 4.4.1 hold, let C be a set of
policy-state pairs such that J*

C = J*, and let S be any subset of E(X)
such that C is S-regular. Then:

(a) J* is the only possible fixed point of T within the set {J ∈ S |
J ≥ J*}.

(b) We have T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃
for some J̃ ∈ S.

Proof: By Prop. 4.4.9, J* is a fixed point of T . The result follows from
Prop. 4.4.2. Q.E.D.

4.5 STABLE POLICIES AND DETERMINISTIC OPTIMAL
CONTROL

In this section, we will consider the use of the regularity ideas of the preced-
ing section in conjunction with a particularly favorable class of monotone
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Systemuk = µk(xk) xk

) µk

xk+1 = f(xk, uk)

“Destination” t

t (cost-free and absorbing) :

Cost: g(xk, uk) ≥ 0 VI converges to

Figure 4.5.1 A deterministic optimal control problem with nonnegative cost per
stage, and a cost-free and absorbing destination t.

increasing models. These are the discrete-time infinite horizon determinis-
tic optimal control problems with nonnegative cost per stage, and a desti-
nation that is cost-free and absorbing.† Except for the cost nonnegativity,
our assumptions are very general, and allow the possibility that the optimal
policy may not be stabilizing the system, e.g., may not reach the destina-
tion either asymptotically or in a finite number of steps. This situation
is illustrated by the one-dimensional linear-quadratic example of Section
3.1.4, where we saw that the Riccati equation may have multiple nonneg-
ative solutions, with the largest solution corresponding to the restricted
optimal cost over just the stable policies.

Our approach is similar to the one of the preceding section. We use
forcing functions and a perturbation line of analysis like the one of Section
3.4 to delineate collections C of regular policy-state pairs such that the
corresponding restricted optimal cost function J*

C is a fixed point of T , as
required by Prop. 4.4.2.

To this end, we introduce a new unifying notion of p-stability, which in
addition to implying convergence of the generated states to the destination,
quantifies the speed of convergence. Here is an outline of our analysis:

(a) We consider the properties of several distinct cost functions: J*, the
overall optimal, and Ĵp, the restricted optimal over just the p-stable
policies. Different choices of p may yield different classes of p-stable
policies, with different speeds of convergence.

(b) We show that for any p and associated class of p-stable policies, Ĵp is
a solution of Bellman’s equation, and we will characterize the smallest
and the largest solutions: they are J*, the optimal cost function, and
Ĵ+, the restricted optimal cost function over the class of (finitely)
terminating policies.

(c) We discuss modified versions of the VI and PI algorithms, as substi-
tutes for the standard algorithms, which may not work in general.

† A related line of analysis for deterministic problems with both positive and
negative costs per stage is developed in Exercise 4.9.
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Consider a deterministic discrete-time infinite horizon optimal control
problem involving the system

xk+1 = f(xk, uk), k = 0, 1, . . . , (4.45)

where xk and uk are the state and control at stage k, which belong to
sets X and U , referred to as the state and control spaces, respectively,
and f : X × U %→ X is a given function. The control uk must be chosen
from a constraint set U(xk) ⊂ U that may depend on the current state xk.
The cost per stage g(x, u) is assumed nonnegative and possibly extended
real-valued:

0 ≤ g(x, u) ≤ ∞, ∀ x ∈ X, u ∈ U(x), k = 0, 1, . . . . (4.46)

We assume that X contains a special state, denoted t, which is referred to
as the destination, and is cost-free and absorbing:

f(t, u) = t, g(t, u) = 0, ∀ u ∈ U(t).

Except for the cost nonnegativity assumption (4.46), this problem is similar
to the one of Section 3.5.5. It arises in many classical control applications
involving regulation around a set point, and in finite-state and infinite-state
versions of shortest path applications; see Fig. 4.5.1.

As earlier, we denote policies by π and stationary policies by µ. Given
an initial state x0, a policy π = {µ0, µ1, . . .} when applied to the system
(4.45), generates a unique sequence of state-control pairs

(
xk, µk(xk)

)
, k =

0, 1, . . .. The cost of π starting from x0 is

Jπ(x0) =
∞∑

k=0

g
(
xk, µk(xk)

)
, x0 ∈ X,

[the series converges to some number in [0,∞] thanks to the nonnegativity
assumption (4.46)]. The optimal cost function over the set of all policies Π
is

J*(x) = inf
π∈Π

Jπ(x), x ∈ X.

We denote by E+(X) the set of functions J : X %→ [0,∞]. In our analysis,
we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost-free and absorbing, this set contains the cost function Jπ of
every π ∈ Π, as well as J*.

Under the cost nonnegativity assumption (4.46), the problem can be
cast as a special case of the monotone increasing model with

H(x, u, J) = g(x, u) + J
(
f(x, u)

)
,
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and the initial function J̄ being identically zero. Thus Prop. 4.4.4 applies
and in particular J* satisfies Bellman’s equation:

J*(x) = inf
u∈U(x)

{
g(x, u) + J*

(
f(x, u)

)}
, x ∈ X.

Moreover, an optimal stationary policy (if it exists) may be obtained through
the minimization in the right side of this equation, cf. Prop. 4.4.4(c).

The VI method starts from some function J0 ∈ J , and generates a
sequence of functions {Jk} ⊂ J according to

Jk+1(x) = inf
u∈U(x)

{
g(x, u)+Jk

(
f(x, u)

)}
, x ∈ X, k = 0, 1, . . . . (4.47)

From Prop. 4.4.6, we have that the VI sequence {Jk} converges to J*

starting from any function J0 ∈ E+(X) that satisfies

J* ≤ J0 ≤ cJ*,

for some scalar c > 0. We also have that VI converges to J* starting from
any J0 with

0 ≤ J0 ≤ J*

under the compactness condition of Prop. 4.4.4(d). However, {Jk} may not
always converge to J* because, among other reasons, Bellman’s equation
may have multiple solutions within J .

The PI method starts from a stationary policy µ0, and generates a
sequence of stationary policies {µk} via a sequence of policy evaluations to
obtain Jµk from the equation

Jµk (x) = g
(
x, µk(x)

)
+ Jµk

(
f
(
x, µk(x)

))
, x ∈ X, (4.48)

interleaved with policy improvements to obtain µk+1 from Jµk according
to

µk+1(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµk

(
f(x, u)

)}
, x ∈ X. (4.49)

Here, we implicitly assume that the minimum in Eq. (4.49) is attained
for each x ∈ X , which is true under some compactness condition on either
U(x) or the level sets of the function g(x, ·)+Jk

(
f(x, ·)

)
, or both. However,

as noted in Section 4.3.3, PI may not produce a strict improvement of the
cost function of a nonoptimal policy, a fact that was demonstrated with
the simple deterministic shortest path example of Section 3.1.1.

The uniqueness of solution of Bellman’s equation within J , and the
convergence of VI to J* have been investigated as part of the analysis
of Section 3.5.5. There we introduced conditions guaranteeing that J* is
the unique solution of Bellman’s equation within a large set of functions
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[the near-optimal termination Assumption 3.5.10, but not the cost non-
negativity assumption (4.46)]. Our approach here will make use of the
cost nonnegativity but will address the problem under otherwise weaker
conditions.

Our analytical approach will also be different than the approach of
Section 3.5.5. Here, we will implicitly rely on the regularity ideas for non-
stationary policies that we introduced in Section 4.4, and we will make
a connection with traditional notions of feedback control system stability.
Using nonstationary policies may be important in undiscounted optimal
control problems with nonnegative cost per stage because it is not gener-
ally true that there exists a stationary ε-optimal policy [cf. the ε-optimality
result of Prop. 4.4.4(e)].

4.5.1 Forcing Functions and p-Stable Policies

We will introduce a notion of stability that involves a function p : X %→
[0,∞) such that

p(t) = 0, p(x) > 0, ∀ x /= t.

As in Section 3.4, we refer to p as the forcing function, and we associate
with it the p-δ-perturbed optimal control problem, where δ > 0 is a given
scalar. This is the same problem as the original, except that the cost per
stage is changed to

g(x, u) + δp(x).

We denote by Jπ,p,δ the cost function of a policy π ∈ Π in the p-δ-perturbed
problem:

Jπ,p,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk), (4.50)

where {xk} is the sequence generated starting from x0 and using π. We
also denote by Ĵp,δ, the corresponding optimal cost function,

Ĵp,δ(x) = inf
π∈Π

Jπ,p,δ(x), x ∈ X.

Definition 4.5.1: Let p be a given forcing function. For a state
x0 ∈ X , we say that a policy π is p-stable from x0 if for the sequence
{xk} generated starting from x0 and using π we have

Jπ(x0) < ∞ and
∞∑

k=0

p(xk) < ∞, (4.51)

or equivalently [using Eq. (4.50)]
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Jπ,p,δ(x0) < ∞, ∀ δ > 0.

The set of all policies that are p-stable from x0 is denoted by Πp,x0 .
We define the restricted optimal cost function Ĵp by

Ĵp(x) = inf
π∈Πp,x

Jπ(x), x ∈ X, (4.52)

(with the convention that the infimum over the empty set is ∞). We
say that π is p-stable (without qualification) if π ∈ Πp,x for all x ∈ X
such that Πp,x /= Ø. The set of all p-stable policies is denoted by Πp.

Note that since Eq. (4.51) does not depend on δ, we see that an equiv-
alent definition of a policy π that is p-stable from x0 is that Jπ,p,δ(x0) < ∞
for some δ > 0 (rather than all δ > 0). Thus the set Πp,x of p-stable policies
from x depends on p and x but not on δ. Let us make some observations:

(a) Rate of convergence to t using p-stable policies : The relation (4.51)
shows that the forcing function p quantifies the rate at which the
destination is approached using the p-stable policies. As an example,
let X = !n and

p(x) = ‖x‖ρ,

where ρ > 0 is a scalar. Then the policies π ∈ Πp,x0 are the ones that
force xk towards 0 at a rate faster than O(1/kρ), so slower policies
are excluded from Πp,x0 .

(b) Approximation property of Jπ,p,δ(x): Consider a pair (π, x0) with
π ∈ Πp,x0 . By taking the limit as δ ↓ 0 in the expression

Jπ,p,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk),

[cf. Eq. (4.50)] and by using Eq. (4.51), it follows that

lim
δ↓0

Jπ,p,δ(x0) = Jπ(x0), ∀ pairs (π, x0) with π ∈ Πp,x0 . (4.53)

From this equation, we have that if π ∈ Πp,x, then Jπ,p,δ(x) is fi-
nite and differs from Jπ(x) by O(δ). By contrast, if π /∈ Πp,x, then
Jπ,p,δ(x) = ∞ by the definition of p-stability, even though we may
have Jπ(x) < ∞.

(c) Limiting property of Ĵp(xk): Consider a pair (π, x0) with π ∈ Πp,x0 .
By breaking down Jπ,p,δ(x0) into the sum of the costs of the first k
stages and the remaining stages, we have for all δ > 0 and k > 0,

Jπ,p,δ(x0) =
k−1∑

m=0

g
(
xm, µm(xm)

)
+ δ

k−1∑

m=0

p(xm) + Jπk,p,δ(xk),
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where {xk} is the sequence generated starting from x0 and using π,
and πk is the policy {µk, µk+1, . . .}. By taking the limit as k → ∞
and using Eq. (4.50), it follows that

lim
k→∞

Jπk,p,δ(xk) = 0, ∀ pairs (π, x0) with π ∈ Πp,x0 , δ > 0.

Also, since Ĵp(xk) ≤ Ĵp,δ(xk) ≤ Jπk,p,δ(xk), it follows that

lim
k→∞

Jp,δ(xk) = 0, ∀ (π, x0) with x0 ∈ X and π ∈ Πp,x0 , δ > 0,

(4.54)
lim
k→∞

Ĵp(xk) = 0, ∀ (π, x0) with x0 ∈ X and π ∈ Πp,x0 . (4.55)

Terminating Policies and Controllability

An important special case is when p is equal to the function

p+(x) =

{
0 if x = t,
1 if x /= t.

(4.56)

For p = p+, a policy π is p+-stable from x if and only if it is terminating
from x, i.e., reaches t in a finite number of steps starting from x [cf. Eq.
(4.51)]. The set of terminating policies from x is denoted by Π+

x and it is
contained within every other set of p-stable policies Πp,x, as can be seen
from Eq. (4.51). As a result, the restricted optimal cost function over Π+

x ,

Ĵ+(x) = inf
π∈Π+

x

Jπ(x), x ∈ X,

satisfies J*(x) ≤ Ĵp(x) ≤ Ĵ+(x) for all x ∈ X. A policy π is said to be
terminating if it is simultaneously terminating from all x ∈ X such that
Π+

x /= Ø. The set of all terminating policies is denoted by Π+.
Note that if the state space X is finite, we have for every forcing

function p
β p+(x) ≤ p(x) ≤ β̄ p+(x), ∀ x ∈ X,

for some scalars β, β̄ > 0. As a result it can be seen that Πp,x = Π+
x and

Ĵp = Ĵ+, so in effect the case where p = p+ is the only case of interest for
finite-state problems.

The notion of a terminating policy is related to the notion of control-
lability. In classical control theory terms, the system xk+1 = f(xk, uk) is
said to be completely controllable if for every x0 ∈ X , there exists a pol-
icy that drives the state xk to the destination in a finite number of steps.
This notion of controllability is equivalent to the existence of a terminating
policy from each x ∈ X .
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One of our main results, to be shown shortly, is that J*, Ĵp, and Ĵ+

are solutions of Bellman’s equation, with J* being the “smallest” solution
and Ĵ+ being the “largest” solution within J . The most favorable situation
arises when J* = Ĵ+, in which case J* is the unique solution of Bellman’s
equation within J . Moreover, in this case it will be shown that the VI
algorithm converges to J* starting with any J0 ∈ J with J0 ≥ J*, and
the PI algorithm converges to J* as well. Once we prove the fixed point
property of Ĵp, we will be able to bring to bear the regularity ideas of the
preceding section (cf. Prop. 4.4.2).

4.5.2 Restricted Optimization over Stable Policies

For a given forcing function p, we denote by X̂p the effective domain of Ĵp,
i.e., the set of all x where Ĵp is finite,

X̂p =
{
x ∈ X | Ĵp(x) < ∞

}
.

Since Ĵp(x) < ∞ if and only if Πp,x /= Ø [cf. Eqs. (4.51) (4.52)], or equiv-
alently Jπ,p,δ(x) < ∞ for some π and all δ > 0, it follows that X̂p is also
the effective domain of Ĵp,δ,

X̂p =
{
x ∈ X | Πp,x /= Ø} =

{
x ∈ X | Ĵp,δ(x) < ∞

}
, ∀ δ > 0.

Note that X̂p may depend on p and may be a strict subset of the effective
domain of J*, which is denoted by

X* =
{
x ∈ X | J*(x) < ∞

}
;

(cf. Section 3.5.5). The reason is that there may exist a policy π such that
Jπ(x) < ∞, even when there is no p-stable policy from x (for example, no
terminating policy from x).

Our first objective is to show that as δ ↓ 0, the p-δ-perturbed optimal
cost function Ĵp,δ converges to the restricted optimal cost function Ĵp.

Proposition 4.5.1 (Approximation Property of Ĵp,δ): Let p be
a given forcing function and δ > 0.

(a) We have

Jπ,p,δ(x) = Jπ(x) + wπ,p,δ(x), ∀ x ∈ X, π ∈ Πp,x, (4.57)

where wπ,p,δ is a function such that limδ↓0 wπ,p,δ(x) = 0 for all
x ∈ X .

(b) We have
lim
δ↓0

Ĵp,δ(x) = Ĵp(x), ∀ x ∈ X.
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Proof: (a) Follows by using Eq. (4.53) for x ∈ X̂p, and by taking wp,δ(x) =

0 for x /∈ X̂p.

(b) By Prop. 4.4.4(e), there exists an ε-optimal policy πε for the p-δ-
perturbed problem, i.e., Jπε,p,δ(x) ≤ Ĵp,δ(x) + ε for all x ∈ X . Moreover,

for x ∈ X̂p we have Ĵp,δ(x) < ∞, so Jπε,p,δ(x) < ∞. Hence πε is p-stable

from all x ∈ X̂p, and we have Ĵp ≤ Jπε . Using also Eq. (4.57), we have for
all δ > 0, ε > 0, x ∈ X , and π ∈ Πp,x,

Ĵp(x)− ε ≤ Jπε (x)− ε ≤ Jπε,p,δ(x)− ε ≤ Ĵp,δ(x) ≤ Jπ,p,δ(x) = Jπ(x)+wπ,p,δ(x),

where limδ↓0 wπ,p,δ(x) = 0 for all x ∈ X . By taking the limit as ε ↓ 0, we
obtain for all δ > 0 and π ∈ Πp,x,

Ĵp(x) ≤ Ĵp,δ(x) ≤ Jπ(x) + wπ,p,δ(x), ∀ x ∈ X.

By taking the limit as δ ↓ 0 and then the infimum over all π ∈ Πp,x, we
have

Ĵp(x) ≤ lim
δ↓0

Ĵp,δ(x) ≤ inf
π∈Πp,x

Jπ(x) = Ĵp(x), ∀ x ∈ X,

from which the result follows. Q.E.D.

We now consider ε-optimal policies, setting the stage for our main
proof argument. We know that given any ε > 0, by Prop. 4.4.4(e), there
exists an ε-optimal policy for the p-δ-perturbed problem, i.e., a policy π
such that Jπ(x) ≤ Jπ,p,δ(x) ≤ Ĵp,δ(x) + ε for all x ∈ X . We address the
question whether there exists a p-stable policy π that is ε-optimal for the
restricted optimization over p-stable policies, i.e., a policy π that is p-stable
simultaneously from all x ∈ Xp, (i.e., π ∈ Πp) and satisfies

Jπ(x) ≤ Ĵp(x) + ε, ∀ x ∈ X.

We refer to such a policy as a p-ε-optimal policy.

Proposition 4.5.2 (Existence of p-ε-Optimal Policy): Let p be
a given forcing function and δ > 0. For every ε > 0, a policy π that
is ε-optimal for the p-δ-perturbed problem is p-ε-optimal, and hence
belongs to Πp.

Proof: For any ε-optimal policy πε for the p-δ-perturbed problem, we have

Jπε,p,δ(x) ≤ Ĵp,δ(x) + ε < ∞, ∀ x ∈ X̂p.
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This implies that πε ∈ Πp. Moreover, for all sequences {xk} generated from

initial state-policy pairs (π, x0) with x0 ∈ X̂p and π ∈ Πp,x0 , we have

Jπε(x0) ≤ Jπε,p,δ(x0) ≤ Ĵp,δ(x0) + ε ≤ Jπ(x0) + δ
∞∑

k=0

p(xk) + ε.

Taking the limit as δ ↓ 0 and using the fact
∑∞

k=0 p(xk) < ∞ (since π ∈
Πp,x0), we obtain

Jπε(x0) ≤ Jπ(x0) + ε, ∀ x0 ∈ X̂p, π ∈ Πp,x0 .

By taking infimum over π ∈ Πp,x0 , it follows that

Jπε(x0) ≤ Ĵp(x0) + ε, ∀ x0 ∈ X̂p,

which in view of the fact Jπε(x0) = Ĵp(x0) = ∞ for x0 /∈ X̂p, implies that
πε is p-ε-optimal. Q.E.D.

Note that the preceding proposition implies that

Ĵp(x) = inf
π∈Πp

Jπ(x), ∀ x ∈ X, (4.58)

which is a stronger statement than the definition Ĵp(x) = infπ∈Πp,x Jπ(x)
for all x ∈ X . However, it can be shown through examples that there
may not exist a restricted-optimal p-stable policy, i.e., a π ∈ Πp such that
Jπ = Ĵp, even if there exists an optimal policy for the original problem. One
such example is the one-dimensional linear-quadratic problem of Section
3.1.4 for the case where p = p+. Then, there exists a unique linear stable
policy that attains the restricted optimal cost Ĵ+(x) for all x, but this
policy is not terminating. Note also that there may not exist a stationary p-
ε-optimal policy, since generally in undiscounted nonnegative cost optimal
control problems there may not exist a stationary ε-optimal policy (an
example is given following Prop. 4.4.8).

We now take the first steps for bringing regularity ideas into the
analysis. We introduce the set of functions Sp given by

Sp =
{
J ∈ J

∣∣ J(xk) → 0 for all sequences {xk} generated from initial

state-policy pairs (π, x0) with x0 ∈ X and π ∈ Πp,x0

}
.

(4.59)
In words, Sp consists of the functions in J whose value is asymptotically
driven to 0 by all the policies that are p-stable starting from some x0 ∈ X .
Similar to the analysis of Section 4.4.2, we can prove that the collection
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Cp =
{
(π, x0) | π ∈ Πp,x0

}
is Sp-regular. Moreover, Sp is the largest set S

for which Cp is S-regular.
Note that Sp contains Ĵp and Ĵp,δ for all δ > 0 [cf. Eq. (4.54), (4.55)].

Moreover, Sp contains all functions J such that

0 ≤ J ≤ cĴp,δ

for some c > 0 and δ > 0.
We summarize the preceding discussion in the following proposition,

which also shows that Ĵp,δ is the unique solution (within Sp) of Bellman’s
equation for the p-δ-perturbed problem. This will be needed to prove that
Ĵp solves the Bellman equation of the unperturbed problem, but also shows
that the p-δ-perturbed problem can be solved more reliably than the orig-
inal problem (including by VI methods), and yields a close approximation
to Ĵp [cf. Prop. 4.5.1(b)].

Proposition 4.5.3: Let p be a forcing function and δ > 0. The
function Ĵp,δ belongs to the set Sp, and is the unique solution within
Sp of Bellman’s equation for the p-δ-perturbed problem,

Ĵp,δ(x) = inf
u∈U(x)

{
g(x, u)+ δp(x)+ Ĵp,δ

(
f(x, u)

)}
, x ∈ X. (4.60)

Moreover, Sp contains Ĵp and all functions J satisfying

0 ≤ J ≤ cĴp,δ

for some scalar c > 0.

Proof: We have Ĵp,δ ∈ Sp and Ĵp ∈ Sp by Eq. (4.54), as noted earlier.
We also have that Ĵp,δ is a solution of Bellman’s equation (4.60) by Prop.
4.4.4(a). To show that Ĵp,δ is the unique solution within Sp, let J̃ ∈ Sp be
another solution, so that using also Prop. 4.4.4(a), we have

Ĵp,δ(x) ≤ J̃(x) ≤ g(x, u) + δp(x) + J̃
(
f(x, u)

)
, ∀ x ∈ X, u ∈ U(x).

(4.61)
Fix ε > 0, and let π = {µ0, µ1, . . .} be an ε-optimal policy for the p-
δ-perturbed problem. By repeatedly applying the preceding relation, we
have for any x0 ∈ X̂p,

Ĵp,δ(x0) ≤ J̃(x0) ≤ J̃(xk)+δ
k−1∑

m=0

p(xm)+
k−1∑

m=0

g
(
xm, µm(xm)

)
, ∀ k ≥ 1,

(4.62)
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where {xk} is the state sequence generated starting from x0 and using π.
We have J̃(xk) → 0 (since J̃ ∈ Sp and π ∈ Πp by Prop. 4.5.2), so that

lim
k→∞

{
J̃(xk) + δ

k−1∑

m=0

p(xm) +
k−1∑

m=0

g
(
xm, µm(xm)

)
}

= Jπ,δ(x0)

≤ Ĵp,δ(x0) + ε.
(4.63)

By combining Eqs. (4.62) and (4.63), we obtain

Ĵp,δ(x0) ≤ J̃(x0) ≤ Ĵp,δ(x0) + ε, ∀ x0 ∈ X̂p.

By letting ε → 0, it follows that Ĵp,δ(x0) = J̃(x0) for all x0 ∈ X̂p. Also for

x0 /∈ X̂p, we have Ĵp,δ(x0) = J̃(x0) = ∞ [since Ĵp,δ(x0) = ∞ for x0 /∈ X̂p

and Ĵp,δ ≤ J̃ , cf. Eq. (4.61)]. Thus Ĵp,δ = J̃ , proving that Ĵp,δ is the unique
solution of the Bellman Eq. (4.60) within Sp. Q.E.D.

We next show our main result in this section, namely that Ĵp is the
unique solution of Bellman’s equation within the set of functions

Wp = {J ∈ Sp | Ĵp ≤ J}. (4.64)

Moreover, we show that the VI algorithm yields Ĵp in the limit for any initial
J0 ∈ Wp. This result is intimately connected with the regularity ideas of
Section 4.4. The idea is that the collection Cp =

{
(π, x0) | π ∈ Πp,x0

}
is

Sp-regular, as noted earlier. In view of this and the fact that J*
Cp

= Ĵp,

the result will follow from Prop. 4.4.2 once Ĵp is shown to be a solution of
Bellman’s equation. This latter property is shown essentially by taking the
limit as δ ↓ 0 in Eq. (4.60).

Proposition 4.5.4: Let p be a given forcing function. Then:

(a) Ĵp is the unique solution of Bellman’s equation

J(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X, (4.65)

within the set Wp of Eq. (4.64).

(b) (VI Convergence) If {Jk} is the sequence generated by the VI
algorithm (4.47) starting with some J0 ∈ Wp, then Jk → Ĵp.

(c) (Optimality Condition) If µ̂ is a p-stable stationary policy and

µ̂(x) ∈ argmin
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, ∀ x ∈ X, (4.66)
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then µ̂ is optimal over the set of p-stable policies. Conversely, if
µ̂ is optimal within the set of p-stable policies, then it satisfies
the preceding condition (4.66).

Proof: (a), (b) We first show that Ĵp is a solution of Bellman’s equation.
Since Ĵp,δ is a solution of Bellman’s equation for the p-δ-perturbed problem
(cf. Prop. 4.5.3) and Ĵp,δ ≥ Ĵp [cf. Prop. 4.5.1(b)], we have for all δ > 0,

Ĵp,δ(x) = inf
u∈U(x)

{
g(x, u) + δp(x) + Ĵp,δ

(
f(x, u)

)}

≥ inf
u∈U(x)

{
g(x, u) + Ĵp,δ

(
f(x, u)

)}

≥ inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
.

By taking the limit as δ ↓ 0 and using the fact limδ↓0 Ĵp,δ = Ĵp [cf. Prop.
4.5.1(b)], we obtain

Ĵp(x) ≥ inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, ∀ x ∈ X. (4.67)

For the reverse inequality, let {δm} be a sequence with δm ↓ 0. From
Prop. 4.5.3, we have for all m, x ∈ X , and u ∈ U(x),

g(x, u) + δmp(x) + Ĵp,δm
(
f(x, u)

)
≥ inf

v∈U(x)

{
g(x, v) + δmp(x)

+ Ĵp,δm
(
f(x, v)

)}

= Ĵp,δm(x).

Taking the limit as m → ∞, and using the fact limδm↓0 Ĵp,δm = Ĵp [cf.
Prop. 4.5.1(b)], we have

g(x, u) + Ĵp
(
f(x, u)

)
≥ Ĵp(x), ∀ x ∈ X, u ∈ U(x),

so that

inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
≥ Ĵp(x), ∀ x ∈ X. (4.68)

By combining Eqs. (4.67) and (4.68), we see that Ĵp is a solution of Bell-
man’s equation. We also have Ĵp ∈ Sp by Prop. 4.5.3, implying that
Ĵp ∈ Wp and proving part (a) except for the uniqueness assertion. Part
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(b) and the uniqueness part of part (a) follow from Prop. 4.4.2; see the
discussion preceding the proposition.

(c) If µ is p-stable and Eq. (4.66) holds, then

Ĵp(x) = g
(
x, µ(x)

)
+ Ĵp

(
f(x, µ(x))

)
, x ∈ X.

By Prop. 4.4.4(b), this implies that Jµ ≤ Ĵp, so µ is optimal over the set of
p-stable policies. Conversely, assume that µ is p-stable and Jµ = Ĵp. Then
by Prop. 4.4.4(b), we have

Ĵp(x) = g
(
x, µ(x)

)
+ Ĵp

(
f(x, µ(x))

)
, x ∈ X,

and since [by part (a)] Ĵp is a solution of Bellman’s equation,

Ĵp(x) = inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, x ∈ X.

Combining the last two relations, we obtain Eq. (4.66). Q.E.D.

As a supplement to the preceding proposition, we note the special-
ization of Prop. 4.4.5 that relates to the optimal cost function J*.

Proposition 4.5.5: Let S∗ be the set

S∗ =
{
J ∈ J

∣∣ J(xk) → 0 for all sequences {xk} generated from

initial state-policy pairs (π, x0) with Jπ(x0) < ∞
}
,

and W∗ be the set

W∗ =
{
J ∈ S∗ | J* ≤ J

}
.

Then J* belongs to S∗ and is the unique solution of Bellman’s equation
within S∗. Moreover, we have T kJ → J* for all J ∈ W∗.

Proof: Follows from Prop. 4.4.5 in the deterministic special case where
wk takes a single value. Q.E.D.

We now consider the special case where p is equal to the function
p+(x) = 1 for all x /= t [cf. Eq. (4.56)]. Then the set of p+-stable policies
from x is Π+

x , the set of terminating policies from x, and the corresponding
restricted optimal cost is Ĵ+(x):

Ĵ+(x) = Ĵp+(x) = inf
π∈Π+

x

Jπ(x) = inf
π∈Π+

Jπ(x), x ∈ X,
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[the last equality follows from Eq. (4.58)]. In this case, the set Sp+ of Eq.
(4.59) is the entire set J ,

Sp+ = J ,

since for all J ∈ J and all sequences {xk} generated from initial state-policy
pairs (π, x0) with x0 ∈ X and π terminating from x0, we have J(xk) = 0
for k sufficiently large. Thus, the corresponding set of Eq. (4.64) is

W+ = {J ∈ J | Ĵ+ ≤ J}.

By specializing to the case p = p+ the result of Prop. 4.5.4, we obtain the
following proposition, which makes a stronger assertion than Prop. 4.5.4(a),
namely that Ĵ+ is the largest solution of Bellman’s equation within J
(rather than the smallest solution within W+).

Proposition 4.5.6:

(a) Ĵ+ is the largest solution of the Bellman equation (4.65) within
J , i.e., Ĵ+ is a solution and if J ′ ∈ J is another solution, then
J ′ ≤ Ĵ+.

(b) (VI Convergence) If {Jk} is the sequence generated by the VI
algorithm (4.47) starting with some J0 ∈ J with J0 ≥ Ĵ+, then
Jk → Ĵ+.

(c) (Optimality Condition) If µ+ is a terminating stationary policy
and

µ+(x) ∈ argmin
u∈U(x)

{
g(x, u) + Ĵ+

(
f(x, u)

)}
, ∀ x ∈ X, (4.69)

then µ+ is optimal over the set of terminating policies. Con-
versely, if µ+ is optimal within the set of terminating policies,
then it satisfies the preceding condition (4.69).

Proof: In view of Prop. 4.5.4, we only need to show that Ĵ+ is the largest
solution of the Bellman equation. From Prop. 4.5.4(a), Ĵ+ is a solution
that belongs to J . If J ′ ∈ J is another solution, we have J ′ ≤ J̃ for some
J̃ ∈ W+, so J ′ = T kJ ′ ≤ T kJ̃ for all k. Since T kJ̃ → Ĵ+, it follows that
J ′ ≤ Ĵ+. Q.E.D.

We illustrate Props. 4.5.4 and 4.5.6 in Fig. 4.5.2. In particular, each
forcing function p delineates the set of initial functions Wp from which VI
converges to Ĵp. The function Ĵp is the minimal element of Wp. Moreover,
we have Wp ∩Wp′ = Ø if Ĵp /= Ĵp′ , in view of the VI convergence result
of Prop. 4.5.4(b).
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VI converges to J+

from within W+
VI converges to Ĵp

from within Wp

W+ =
{

J | J ≥ J+, J(t) = 0
}

Ĵp

Ĵp′

p Wp
t W+

Wp′

Wp: Functions J ≥ Ĵp with J

with J(xk) → 0 for all p-stable π

C J∗

Ĵ+

W∗

C 0

Path of VI Set of solutions of Bellman’s equation
Set of solutions of Bellman’s equation

Figure 4.5.2 Schematic two-dimensional illustration of the results of Prop. 4.5.4
and 4.5.6. The functions J∗, Ĵ+, and Ĵp are all solutions of Bellman’s equation.
Moreover J∗ and Ĵ+ are the smallest and largest solutions, respectively. Each p

defines the set of initial functions Wp from which VI converges to Ĵp from above.
For two forcing functions p and p′, we have Wp∩Wp′ = Ø if Ĵp &= Ĵp′ . Moreover,

Wp contains no solutions of Bellman’s equation other than Ĵp. It is also possible
that Wp consists of just Ĵp.

Note a significant fact: Proposition 4.5.6(b) implies that VI converges
to Ĵ+ starting from the readily available initial condition

J0(x) =

{
0 if x = t,
∞ if x /= t.

For this choice of J0, the value Jk(x) generated by VI is the optimal cost
that can be achieved starting from x subject to the constraint that t is
reached in k steps or less. As we have noted earlier, in shortest-path type
problems VI tends to converge faster when started from above.

Consider now the favorable case where terminating policies are suf-
ficient, in the sense that Ĵ+ = J*; cf. Fig. 4.5.3. Then, from Prop. 4.5.6,
it follows that J* is the unique solution of Bellman’s equation within J ,
and the VI algorithm converges to J* from above, i.e., starting from any
J0 ∈ J with J0 ≥ J*. Under additional conditions, such as finiteness of
U(x) for all x ∈ X [cf. Prop. 4.4.4(d)], VI converges to J* starting from any
J0 ∈ E+(X) with J0(t) = 0. These results are consistent with our analysis
of Section 3.5.5.

Examples of problems where terminating policies are sufficient in-
clude linear-quadratic problems under the classical conditions of controlla-
bility and observability, and finite-node deterministic shortest path prob-
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C 0

Paths of VI Unique solution of Bellman’s equation

Paths of VI Unique solution of Bellman’s equation
Unique solution of Bellman’s equation

) Ĵ+ = J*

Paths of VI Under Compactness
Paths of VI Under Compactness

Figure 4.5.3 Schematic two-dimensional illustration of the favorable case where
Ĵ+ = J∗. Then J∗ is the unique solution of Bellman’s equation within J , and
the VI algorithm converges to J∗ from above [and also starting from any J0 ≥ 0
under a suitable compactness condition; cf. Prop. 4.4.4(d)].

lems with all cycles having positive length. Note that in the former case,
despite the fact Ĵ+ = J*, there is no optimal terminating policy, since the
only optimal policy is a linear policy that drives the system to the origin
asymptotically, but not in finite time.

Let us illustrate the results of this section with two examples.

Example 4.5.1 (Minimum Energy Stable Control of
Linear Systems)

Consider the linear-quadratic problem of Section 3.5.4. We assume that there
exists at least one linear stable policy, so that J∗ is real-valued. However,
we are making no assumptions on the state weighting matrix Q other than
positive semidefiniteness. This includes the case Q = 0, when J∗(x) ≡ 0. In
this case an optimal policy is µ∗(x) ≡ 0, which may not be stable, yet the
problem of finding a stable policy that minimizes the “control energy” (a cost
that is positive definite quadratic on the control with no penalty on the state)
among all stable policies is meaningful.

We consider the forcing function

p(x) = ‖x‖2,

so the p-δ-perturbed problem includes a positive definite state penalty and
from the classical linear-quadratic results, Ĵp,δ is a positive definite quadratic
function x′Pδx, where Pδ is the unique solution of the δ-perturbed Riccati
equation

Pδ = A′
(
Pδ − PδB(B′PδB +R)−1B′Pδ

)
A+Q+ δI, (4.70)
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within the class of positive semidefinite matrices. By Prop. 4.5.1, we have
Ĵp(x) = x′P̂ x, where P̂ = limδ↓0 Pδ is positive semidefinite, and solves the
(unperturbed) Riccati equation

P = A′
(
P − PB(B′PB +R)−1B′P

)
A+Q.

Moreover, by Prop. 4.5.4(a), P̂ is the largest solution among positive semidef-
inite matrices, since all positive semidefinite quadratic functions belong to the
set Sp of Eq. (4.59). By Prop. 4.5.4(c), any stable stationary policy µ̂ that is
optimal among the set of stable policies must satisfy the optimality condition

µ̂(x) ∈ argmin
u∈(m

{
u′Ru+ (Ax+Bu)′P̂ (Ax+Bu)

}
, ∀ x ∈ 'n,

[cf. Eq. (4.66)], or equivalently, by setting the gradient of the minimized
expression to 0,

(R +B′P̂B)µ̂(x) = −B′P̂Ax. (4.71)

We may solve Eq. (4.71), and check if any of its solutions µ̂ is p-stable; if this
is so, µ̂ is optimal within the class of p-stable policies. Note, however, that in
the absence of additional conditions, it is possible that some policies µ̂ that
solve Eq. (4.71) are p-unstable.

In the case where there is no linear stable policy, the p-δ-perturbed cost
function Ĵp,δ need not be real-valued, and the δ-perturbed Riccati equation
(4.70) may not have any solution (consider for example the case where n = 1,
m = 1, A = 2, B = 0, and Q = R = 1). Then, Prop. 4.5.6 still applies, but
the preceding analytical approach needs to be modified.

As noted earlier, the Bellman equation may have multiple solutions
corresponding to different forcing functions p, with each solution being
unique within the corresponding set Wp of Eq. (4.64), consistently with
Prop. 4.5.4(a). The following is an illustrative example.

Example 4.5.2 (An Optimal Stopping Problem)

Consider an optimal stopping problem where the state space X is 'n. We
identify the destination with the origin of 'n, i.e., t = 0. At each x )= 0, we
may either stop (move to the origin) at a cost c > 0, or move to state γx
at cost ‖x‖, where γ is a scalar with 0 < γ < 1; see Fig. 4.5.4.† Thus the
Bellman equation has the form

J(x) =
{
min

{
c, ‖x‖+ J(γx)

}
if x )= 0,

0 if x = 0.

† In this example, the salient feature of the policy that never stops at an
x )= 0 is that it drives the system asymptotically to the destination according to
an equation of the form xk+1 = f(xk), where f is a contraction mapping. The
example admits generalization to the broader class of optimal stopping problems
that have this property. For simplicity in illustrating our main point, we consider
here the special case where f(x) = γx with γ ∈ (0, 1).
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(0) = 0

x γ

‖ (1 − γ)c

c Cost ‖x‖ (1

‖ γx (1

x c Cost c Cost
Stop Cone

Stop Cone

Stop Cone C

Figure 4.5.4 Illustration of the stopping problem of Example 4.5.2. The
optimal policy is to stop outside the sphere of radius (1− γ)c and to continue
otherwise. Each cone C of the state space defines a different solution Ĵp of
Bellman’s equation, with Ĵp(x) = c for all nonzero x ∈ C, and a corresponding
region of convergence of the VI algorithm.

Let us consider first the forcing function

p(x) = ‖x‖.

Then it can be verified that all policies are p-stable. We have

J∗(x) = Ĵp(x) = min

{
c,

1
1− γ

‖x‖

}
, ∀ x ∈ 'n,

and the optimal cost function of the corresponding p-δ-perturbed problem is

Ĵp,δ(x) = min

{
c+ δ‖x‖,

1 + δ
1− γ

‖x‖

}
, ∀ x ∈ 'n.

Here the set Sp of Eq. (4.59) is given by

Sp =
{
J ∈ J | lim

x→0
J(x) = 0

}
,

and the corresponding set Wp of Eq. (4.64) is given by

Wp =
{
J ∈ J | J∗ ≤ J, lim

x→0
J(x) = 0

}
.

Let us consider next the forcing function

p+(x) =
{
1 if x )= 0,
0 if x = 0.
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(0) = 0 (0) = 0 (0) = 0

Ĵ(x)

x γ x γ x γ

) J∗(x) ) J+(x)

x c Cost x c Cost x c Cost

x0 a

Figure 4.5.5 Illustration of three solutions of Bellman’s equation in the one-
dimensional case (n = 1) of the stopping problem of Example 4.5.2. The solution
in the middle is specified by a scalar x0 > 0, and has the form

Ĵ(x) =

{
0 if x = 0,

1
1−γ

|x| if 0 < x < (1 − γ)c and x = γkx0 for some k ≥ 0,
c otherwise.

Then the p+-stable policies are the terminating policies. Since stopping at
some time and incurring the cost c is a requirement for a p+-stable policy, it
follows that the optimal p+-stable policy is to stop as soon as possible, i.e.,
stop at every state. The corresponding restricted optimal cost function is

Ĵ+(x) =
{
c if x )= 0,
0 if x = 0.

The optimal cost function of the corresponding p+-δ-perturbed problem is

Ĵp+,δ(x) =
{
c+ δ if x )= 0,
0 if x = 0,

since in the p+-δ-perturbed problem it is again optimal to stop as soon as
possible, at cost c+ δ. Here the set Sp+ is equal to J , and the corresponding

set W+ is equal to
{
J ∈ J | Ĵ+ ≤ J

}
.

However, there are infinitely many additional solutions of Bellman’s
equation between the largest and smallest solutions J∗ and Ĵ+. For example,
when n > 1, functions J ∈ J such that J(x) = J∗(x) for x in some cone
and J(x) = Ĵ+(x) for x in the complementary cone are solutions; see Fig.
4.5.4. There is also a corresponding infinite number of regions of convergence
Wp of VI [cf. Eq. (4.64)]. Also VI converges to J∗ starting from any J0 with
0 ≤ J0 ≤ J∗ [cf. Prop. 4.4.4(d)]. Figure 4.5.5 illustrates additional solutions
of Bellman’s equation of a different character.

4.5.3 Policy Iteration Methods

Generally, the standard PI algorithm [cf. Eqs. (4.48), (4.49)] produces un-
clear results under our assumptions. The following example provides an
instance where the PI algorithm may converge to either an optimal or a
strictly suboptimal policy.
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Example 4.5.3 (Counterexample for PI)

Consider the case X = {0, 1}, U(0) = U(1) = {0, 1}, and the destination is
t = 0. Let also

f(x, u) =
{
0 if u = 0,
x if u = 1,

g(x, u) =
{
1 if u = 0, x = 1,
0 if u = 1 or x = 0.

This is a one-state-plus-destination shortest path problem where the control
u = 0 moves the state from x = 1 to x = 0 (the destination) at cost 1,
while the control u = 1 keeps the state unchanged at cost 0 (cf. the problem
of Section 3.1.1). The policy µ∗ that keeps the state unchanged is the only
optimal policy, with Jµ∗(x) = J∗(x) = 0 for both states x. However, under
any forcing function p with p(1) > 0, the policy µ̂, which moves from state 1
to 0, is the only p-stable policy, and we have Jµ̂(1) = Ĵp(1) = 1. The standard
PI algorithm (4.48), (4.49) when started with µ∗, it will repeat µ∗. If this
algorithm is started with µ̂, it may generate µ∗ or it may repeat µ̂, depending
on how the policy improvement iteration is implemented. The reason is that
for both x we have

µ̂(x) ∈ arg min
u∈{0,1}

{
g(x, u) + Ĵp

(
f(x, u)

)}
,

as can be verified with a straightforward calculation. Thus a rule for breaking
a tie in the policy improvement operation is needed, but such a rule may not
be obvious in general.

For another illustration, consider the stopping problem of Example
4.5.2. There if PI is started with the policy that stops at every state, it
repeats that policy, and this policy is not optimal even within the class of
stable policies with respect to the forcing function p(x) = ‖x‖.

Motivated by the preceding examples, we consider several types of
PI methods that bypass the difficulty above either through assumptions
or through modifications. We first consider a favorable case where the
standard PI algorithm is reliable. This is the case where the terminating
policies are sufficient, in the sense that J* = Ĵ+, as in Section 3.5.5.

Policy Iteration for the Case J* = Ĵ+

The standard PI algorithm starts with a stationary policy µ0, and generates
a sequence of stationary policies {µk} via a sequence of policy evaluations
to obtain Jµk from the equation

Jµk (x) = g
(
x, µk(x)

)
+ Jµk

(
f
(
x, µk(x)

))
, x ∈ X, (4.72)

interleaved with policy improvements to obtain µk+1 from Jµk according
to

µk+1(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµk

(
f(x, u)

)}
, x ∈ X. (4.73)
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We implicitly assume here that Eq. (4.72) can be solved for Jµk , and that
the minimum in Eq. (4.73) is attained for each x ∈ X , which is true under
some compactness condition on either U(x) or the level sets of the function
g(x, ·) + Jk

(
f(x, ·)

)
, or both.

Proposition 4.5.7: (Convergence of PI) Assume that J* = Ĵ+.
Then the sequence {Jµk} generated by the PI algorithm (4.72), (4.73),
satisfies Jµk (x) ↓ J*(x) for all x ∈ X .

Proof: For a stationary policy µ, let µ̄ satisfy the policy improvement
equation

µ̄(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
, x ∈ X.

We have shown that

Jµ(x) ≥ inf
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
≥ Jµ̄(x), x ∈ X ; (4.74)

cf. Eq. (4.29). Using µk and µk+1 in place of µ and µ̄, we see that the
sequence {Jµk} generated by PI converges monotonically to some function
J∞ ∈ E+(X), i.e., Jµk ↓ J∞. Moreover, from Eq. (4.74) we have

J∞(x) ≥ inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
, x ∈ X,

as well as

g(x, u) + Jµk

(
f(x, u)

)
≥ J∞(x), x ∈ X, u ∈ U(x).

We now take the limit in the second relation as k → ∞, then take the
infimum over u ∈ U(x), and then combine with the first relation, to obtain

J∞(x) ≥ inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
≥ J∞(x), x ∈ X.

Thus J∞ is a solution of Bellman’s equation, satisfying J∞ ≥ J* (since
Jµk ≥ J* for all k) and J∞ ∈ J (since Jµk ∈ J ), so by Prop. 4.5.6(a), it
must satisfy J∞ = J*. Q.E.D.

A Perturbed Version of Policy Iteration for the Case J* /= Ĵ+

We now consider PI algorithms without the condition J* = Ĵ+. We pro-
vide a version of the PI algorithm, which uses a given forcing function p
that is fixed, and generates a sequence {µk} of p-stable policies such that
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Jµk → Ĵp. Related algorithms were given in Sections 3.4 and 3.5.1. The
following assumption requires that the algorithm generates p-stable policies
exclusively, which can be quite restrictive. For instance it is not satisfied
for the problem of Example 4.5.3.

Assumption 4.5.1: For each δ > 0 there exists at least one p-stable
stationary policy µ such that Jµ,p,δ ∈ Sp. Moreover, given a p-stable
stationary policy µ and a scalar δ > 0, every stationary policy µ such
that

µ(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jµ,p,δ

(
f(x, u)

)}
, ∀ x ∈ X,

is p-stable, and at least one such policy exists.

The perturbed version of the PI algorithm is defined as follows. Let
{δk} be a positive sequence with δk ↓ 0, and let µ0 be a p-stable policy
that satisfies Jµ0,p,δ0

∈ Sp. One possibility is that µ0 is an optimal policy
for the δ0-perturbed problem (cf. the discussion preceding Prop. 4.5.3). At
iteration k, we have a p-stable policy µk, and we generate a p-stable policy
µk+1 according to

µk+1(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµk,p,δk

(
f(x, u)

)}
, x ∈ X. (4.75)

Note that by Assumption 4.5.1 the algorithm is well-defined, and is guar-
anteed to generate a sequence of p-stable stationary policies. We have the
following proposition.

Proposition 4.5.8: Let Assumption 4.5.1 hold. Then for a sequence
of p-stable policies {µk} generated by the perturbed PI algorithm
(4.75), we have Jµk,p,δk

↓ Ĵp and Jµk → Ĵp.

Proof: Since the forcing function p is kept fixed, to simplify notation, we
abbreviate Jµ,p,δ with Jµ,δ for all policies µ and scalars δ > 0. Also, we
will use the mappings Tµ : E+(X) %→ E+(X) and Tµ,δ : E+(X) %→ E+(X)
given by

(TµJ)(x) = g
(
x, µ(x)

)
+ J

(
f(x, µ(x))

)
, x ∈ X,

(Tµ,δJ)(x) = g
(
x, µ(x)

)
+ δp(x) + J

(
f(x, µ(x))

)
, x ∈ X.

Moreover, we will use the mapping T : E+(X) %→ E+(X) given by

(TJ)(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X.
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The algorithm definition (4.75) implies that for all integer m ≥ 1 we
have for all x0 ∈ X ,

Jµk ,δk
(x0) ≥ (TJµk,δk

)(x0) + δkp(x0)

= (Tµk+1,δk
Jµk ,δk

)(x0)

≥ (Tm
µk+1,δk

Jµk ,δk
)(x0)

≥ (Tm
µk+1,δk

J̄)(x0),

where J̄ is the identically zero function [J̄(x) ≡ 0]. From this relation we
obtain

Jµk,δk
(x0) ≥ lim

m→∞
(Tm

µk+1,δk
J̄)(x0)

= lim
m→∞

{
m−1∑

&=0

(
g
(
x&, µk+1(x&)

)
+ δkp(x&)

)
}

≥ Jµk+1,δk+1
(x0),

as well as

Jµk ,δk
(x0) ≥ (TJµk,δk

)(x0) + δkp(x0) ≥ Jµk+1,δk+1
(x0).

It follows that {Jµk,δk
} is monotonically nonincreasing, so that Jµk ,δk

↓ J∞
for some J∞, and

lim
k→∞

TJµk,δk
= J∞. (4.76)

We also have, using the fact J∞ ≤ Jµk ,δk
,

inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
≤ lim

k→∞
inf

u∈U(x)

{
g(x, u) + Jµk,δk

(
f(x, u)

)}

≤ inf
u∈U(x)

lim
k→∞

{
g(x, u) + Jµk,δk

(
f(x, u)

)}

= inf
u∈U(x)

{
g(x, u) + lim

k→∞
Jµk ,δk

(
f(x, u)

)}

= inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
.

Thus equality holds throughout above, so that

lim
k→∞

TJµk,δk
= TJ∞.

Combining this with Eq. (4.76), we obtain J∞ = TJ∞, i.e., J∞ solves
Bellman’s equation. We also note that J∞ ≤ Jµ0,δ0

and that Jµ0,δ0
∈ Sp by

assumption, so that J∞ ∈ Sp. By Prop. 4.5.4(a), it follows that J∞ = Ĵp.
Q.E.D.



306 Noncontractive Models Chap. 4

Note that despite the fact Jµk → Ĵp, the generated sequence {µk}
may exhibit some serious pathologies in the limit. In particular, if U is a
metric space and {µk}K is a subsequence of policies that converges to some
µ̄, in the sense that

lim
k→∞, k∈K

µk(x) = µ̄(x), ∀ x ∈ X,

it does not follow that µ̄ is p-stable. In fact it is possible to construct
examples where the generated sequence of p-stable policies {µk} satisfies
limk→∞ Jµk = Ĵp = J*, yet {µk} may converge to a p-unstable policy

whose cost function is strictly larger than Ĵp.

An Optimistic Policy Iteration Method

Let us consider an optimistic variant of PI, where policies are evaluated
inexactly, with a finite number of VIs. We use a fixed forcing function p.
The algorithm aims to compute Ĵp, the restricted optimal cost function
over the p-stable policies, and generates a sequence {Jk, µk} according to

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . . , (4.77)

where mk is a positive integer for each k. We assume that a policy µk

satisfying TµkJk = TJk can be found for all k, but it need not be p-stable.
However, the algorithm requires that

J0 ∈ Wp, J0 ≥ TJ0. (4.78)

This may be a restrictive assumption. We have the following proposition.

Proposition 4.5.9: (Convergence of Optimistic PI) Assume
that there exists at least one p-stable policy π ∈ Πp, and that J0
satisfies Eq. (4.78). Then a sequence {Jk} generated by the optimistic
PI algorithm (4.77) belongs to Wp and satisfies Jk ↓ Ĵp.

Proof: Since J0 ≥ Ĵp and Ĵp = T Ĵp [cf. Prop. 4.5.6(a)], all operations
on any of the functions Jk with Tµk or T maintain the inequality Jk ≥ Ĵp
for all k, so that Jk ∈ Wp for all k. Also the conditions J0 ≥ TJ0 and
TµkJk = TJk imply that

J0 = J1 ≥ Tm0+1
µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

and continuing similarly,

Jk ≥ TJk ≥ Jk+1, k = 0, 1, . . . . (4.79)
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Thus Jk ↓ J∞ for some J∞, which must satisfy J∞ ≥ Ĵp, and hence belong
to Wp. By taking limit as k → ∞ in Eq. (4.79) and using an argument
similar to the one in the proof of Prop. 4.5.8, it follows that J∞ = TJ∞.
By Prop. 4.5.6(a), this implies that J∞ ≤ Ĵp. Together with the inequality
J∞ ≥ Ĵp shown earlier, this proves that J∞ = Ĵp. Q.E.D.

As an example, for the shortest path problem of Example 4.5.3, the
reader may verify that in the case where p(x) = 1 for x = 1, the optimistic
PI algorithm converges in a single iteration to

Ĵp(x) =

{
1 if x = 1,
0 if x = 0,

provided that J0 ∈ Wp =
{
J | J(1) ≥ 1, J(0) = 0

}
. For other starting

functions J0, the algorithm converges in a single iteration to the function

J∞(1) = min
{
1, J0(1)

}
, J∞(0) = 0.

All functions J∞ of the form above are solutions of Bellman’s equation,
but only Ĵp is restricted optimal.

4.6 INFINITE-SPACES STOCHASTIC SHORTEST PATH
PROBLEMS

In this section we consider a stochastic discrete-time infinite horizon opti-
mal control problem involving the system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (4.80)

where xk and uk are the state and control at stage k, which belong to setsX
and U , wk is a random disturbance that takes values in a countable set W
with given probability distribution P (wk | xk, uk), and f : X×U×W %→ X
is a given function (cf. Example 1.2.1 in Chapter 1). The state and control
spacesX and U are arbitrary, but we assume that W is countable to bypass
complex measurability issues in the choice of control (see [BeS78]).

The control u must be chosen from a constraint set U(x) ⊂ U that
may depend on x. The expected cost per stage, E

{
g(x, u, w)

}
, is assumed

nonnegative:

0 ≤ E
{
g(x, u, w)

}
< ∞, ∀ x ∈ X, u ∈ U(x), w ∈ W.

We assume that X contains a special cost-free and absorbing state t, re-
ferred to as the destination:

f(t, u, w) = t, g(t, u, w) = 0, ∀ u ∈ U(t), w ∈ W.
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This is a special case of an SSP problem, where the cost per stage
is nonnegative, but the state and control spaces are arbitrary. It is also a
special case of the nonnegative cost stochastic optimal control problem of
Section 4.4.2. We adopt the notation and terminology of that section, but
we review it here briefly for convenience.

Given an initial state x0, a policy π = {µ0, µ1, . . .} when applied
to the system (4.80), generates a random sequence of state-control pairs(
xk, µk(xk)

)
, k = 0, 1, . . . , with cost

Jπ(x0) = Eπ
x0

{
∞∑

k=0

g
(
xk, µk(xk), wk

)
}
,

where Eπ
x0{·} denotes expectation with respect to the probability measure

corresponding to initial state x0 and policy π. For a stationary policy µ, the
corresponding cost function is denoted by Jµ. The optimal cost function is

J*(x) = inf
π∈Π

Jπ(x), x ∈ X,

and its effective domain is denoted X∗, i.e.,

X∗ =
{
x ∈ X | J*(x) < ∞

}
.

A policy π∗ is said to be optimal if Jπ∗(x) = J*(x) for all x ∈ X.
We denote by E+(X) the set of functions J : X %→ [0,∞]. In our

analysis, we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost-free and absorbing, this set contains the cost functions Jπ of
all π ∈ Π, as well as J*.

Here the results of Section 4.3 under Assumption I apply, and the
optimal cost function J* is a solution of the Bellman equation

J(x) = inf
u∈U(x)

E
{
g(x, u, w) + J

(
f(x, u, w)

)}
, x ∈ X,

where the expected value is with respect to the distribution P (w | x, u).
Moreover, an optimal stationary policy (if it exists) may be obtained through
the minimization in the right side of this equation (with J replaced by J*,
cf. Prop. 4.4.4). The VI algorithm starts from some function J0 ∈ J , and
generates a sequence {Jk} ⊂ J according to

Jk+1(x) = inf
u∈U(x)

E
{
g(x, u, w) + Jk

(
f(x, u, w)

)}
, x ∈ X, k = 0, 1, . . . .
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Proper Policies and the δ-Perturbed Problem

We will now introduce a notion of proper policy with a definition that
extends the one used for finite-state SSP in Section 3.5.1. For a given state
x ∈ X , a policy π is said to be proper at x if

Jπ(x) < ∞,
∞∑

k=0

rk(π, x) < ∞, (4.81)

where rk(π, x) is the probability that xk /= t when using π and starting
from x0 = x. We denote by Π̂x the set of all policies that are proper at x,
and we denote by Ĵ the corresponding restricted optimal cost function,

Ĵ(x) = inf
π∈Π̂x

Jπ(x), x ∈ X,

(with the convention that the infimum over the empty set is ∞). Finally
we denote by X̂ the effective domain of Ĵ , i.e.,

X̂ =
{
x ∈ X | Ĵ(x) < ∞

}
. (4.82)

Note that X̂ is the set of x such that Π̂x is nonempty and that t ∈ X̂.
For any δ > 0, let us consider the δ-perturbed optimal control problem.

This is the same problem as the original, except that the cost per stage is
changed to

g(x, u, w) + δ, ∀ x /= t,

while g(x, u, w) is left unchanged at 0 when x = t. Thus t is still cost-free
as well as absorbing in the δ-perturbed problem. The δ-perturbed cost
function of a policy π starting from x is denoted by Jπ,δ(x) and involves
an additional expected cost δrk(π, x) for each stage k, so that

Jπ,δ(x) = Jπ(x) + δ
∞∑

k=0

rk(π, x).

Clearly, the sum
∑∞

k=0 rk(π, x) is the expected number of steps to reach
the destination starting from x and using π, if the sum is finite. We denote
by Ĵδ the optimal cost function of the δ-perturbed problem, i.e., Ĵδ(x) =
infπ∈Π Jπ,δ(x). The following proposition provides some characterizations
of proper policies in relation to the δ-perturbed problem.

Proposition 4.6.1:

(a) A policy π is proper at a state x ∈ X if and only if Jπ,δ(x) < ∞
for all δ > 0.

(b) We have Ĵδ(x) < ∞ for all δ > 0 if and only if x ∈ X̂.

(c) For every ε > 0 and δ > 0, a policy πε that is ε-optimal for the
δ-perturbed problem is proper at all x ∈ X̂ , and such a policy
exists.
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Proof: (a) Follows from Eq. (4.50) and the definition (4.81) of a proper
policy.

(b) If x ∈ X̂ there exists a policy π that is proper at x, and by part (a),
Ĵδ(x) ≤ Jπ,δ(x) < ∞ for all δ > 0. Conversely, if Ĵδ(x) < ∞, there exists π

such that Jπ,δ(x) < ∞, implying [by part (a)] that π ∈ Π̂x, so that x ∈ X̂.

(c) An ε-optimal πε exists by Prop. 4.4.4(e). We have Jπε,δ(x) ≤ Ĵδ(x) + ε

for all x ∈ X . Hence Jπε,δ(x) < ∞ for all x ∈ X̂, implying by part (a) that

πε is proper at all x ∈ X̂. Q.E.D.

The next proposition shows that the cost function Ĵδ of the δ-perturbed
problem can be used to approximate Ĵ .

Proposition 4.6.2: We have limδ↓0 Ĵδ(x) = Ĵ(x) for all x ∈ X .
Moreover, for any ε > 0 and δ > 0, a policy πε that is ε-optimal
for the δ-perturbed problem is ε-optimal within the class of proper
policies, i.e., satisfies

Jπε(x) ≤ Ĵ(x) + ε, ∀ x ∈ X.

Proof: Let us fix δ > 0, and for a given ε > 0, let πε be a policy that is
proper at all x ∈ X̂ and is ε-optimal for the δ-perturbed problem [cf. Prop.
4.6.1(c)]. By using Eq. (4.50), we have for all ε > 0, x ∈ X̂ , and π ∈ Π̂x,

Ĵ(x) − ε ≤ Jπε(x)− ε ≤ Jπε,δ(x)− ε ≤ Ĵδ(x) ≤ Jπ,δ(x) = Jπ(x) + wπ,δ(x),

where

wπ,δ(x) = δ
∞∑

k=0

rk(π, x) < ∞, ∀ x ∈ X̂, π ∈ Π̂x.

By taking the limit as ε ↓ 0, we obtain for all δ > 0 and π ∈ Π̂x,

Ĵ(x) ≤ Ĵδ(x) ≤ Jπ(x) + wπ,δ(x), ∀ x ∈ X̂, π ∈ Π̂x.

We have limδ↓0 wπ,δ(x) = 0 for all x ∈ X̂ and π ∈ Π̂x, so by taking the

limit as δ ↓ 0 and then the infimum over all π ∈ Π̂x,

Ĵ(x) ≤ lim
δ↓0

Ĵδ(x) ≤ inf
π∈Π̂x

Jπ(x) = Ĵ(x), ∀ x ∈ X̂,

from which Ĵ(x) = limδ↓0 Ĵδ(x) for all x ∈ X̂. Moreover, by Prop. 4.6.1(b),

Ĵδ(x) = Ĵ(x) = ∞ for all x /∈ X̂, so that Ĵ(x) = limδ↓0 Ĵδ(x) for all x ∈ X .
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We also have

Jπε(x) ≤ Jπε,δ(x) ≤ Ĵδ(x)+ε ≤ Jπ(x)+δ
∞∑

k=0

r(π, x)+ε, ∀ x ∈ X̂, π ∈ Π̂x.

By taking the limit as δ ↓ 0, we obtain

Jπε(x) ≤ Jπ(x) + ε, ∀ x ∈ X̂, π ∈ Π̂x.

By taking the infimum over π ∈ Π̂x, it follows that Jπε(x) ≤ Ĵ(x) + ε for
all x ∈ X̂, which combined with the fact Jπε(x) = Ĵ(x) = ∞ for all x /∈ X̂,
yields the result. Q.E.D.

Main Results

By Prop. 4.4.4(a), Ĵδ solves Bellman’s equation for the δ-perturbed prob-
lem, while by Prop. 4.6.2, limδ↓0 Ĵδ(x) = Ĵ(x). This suggests that Ĵ solves
the unperturbed Bellman equation, which is the “limit” as δ ↓ 0 of the
δ-perturbed version. Indeed we will show a stronger result, namely that Ĵ
is the unique solution of Bellman’s equation within the set of functions

Ŵ = {J ∈ S | Ĵ ≤ J}, (4.83)

where

S =
{
J ∈ J | Eπ

x0

{
J(xk)

}
→ 0, ∀ (π, x0) with π ∈ Π̂x0

}
. (4.84)

Here Eπ
x0

{
J(xk)

}
denotes the expected value of the function J along the

sequence {xk} generated starting from x0 and using π. Similar to earlier
proofs in Sections 4.4 and 4.5, we have that the collection

C =
{
(π, x) | π ∈ Π̂x

}
(4.85)

is S-regular.
We first show a preliminary result. Given a policy π = {µ0, µ1, . . .},

we denote by πk the policy

πk = {µk, µk+1, . . .}. (4.86)

Proposition 4.6.3:

(a) For all pairs (π, x0) ∈ C and k = 0, 1, . . ., we have

0 ≤ Eπ
x0

{
Ĵ(xk)

}
≤ Eπ

x0

{
Jπk

(xk)
}
< ∞,

where πk is the policy given by Eq. (4.86).

(b) The set Ŵ of Eq. (4.83) contains Ĵ , as well as all functions J ∈ S
satisfying Ĵ ≤ J ≤ cĴ for some c ≥ 1.
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Proof: (a) For any pair (π, x0) ∈ C and δ > 0, we have

Jπ,δ(x0) = Eπ
x0

{
Jπk,δ(xk) +

k−1∑

m=0

g
(
xm, µm(xm), wm

)
}

+ δ
k−1∑

m=0

rm(π, x0).

Since Jπ,δ(x0) < ∞ [cf. Prop. 4.6.1(a)], it follows that Eπ
x0

{
Jπk,δ(xk)

}
<

∞. Hence for all xk that can be reached with positive probability using π
and starting from x0, we have Jπk,δ(xk) < ∞, implying [by Prop. 4.6.1(a)]

that (πk, xk) ∈ C. Hence Ĵ(xk) ≤ Jπk
(xk) and by applying Eπ

x0{·}, the
result follows.

(b) We have for all (π, x0) ∈ C,

Jπ(x0) = Eπ
x0

{
g
(
x0, µ0(x0), w0

)}
+ Eπ

x0

{
Jπ1(x1)

}
, (4.87)

and for m = 1, 2, . . . ,

Eπ
x0

{
Jπm(xm)

}
= Eπ

x0

{
g
(
xm, µm(xm), wm

)}
+ Eπ

x0

{
Jπm+1(xm+1)

}
,

(4.88)
where {xm} is the sequence generated starting from x0 and using π. By
using repeatedly the expression (4.88) for m = 1, . . . , k− 1, and combining
it with Eq. (4.87), we obtain for all k = 1, 2, . . . ,

Jπ(x0) = Eπ
x0

{
Jπk

(xk)
}
+

k−1∑

m=0

Eπ
x0

{
g
(
xm, µm(xm), wm

)}
, ∀ (π, x0) ∈ C.

The rightmost term above tends to Jπ(x0) as k → ∞, so by using the fact
Jπ(x0) < ∞, we obtain

Eπ
x0

{
Jπk

(xk)
}
→ 0, ∀ (π, x0) ∈ C.

By part (a), it follows that

Eπ
x0

{
Ĵ(xk)

}
→ 0, ∀ (π, x0) ∈ C,

so that Ĵ ∈ Ŵ . This also implies that

Eπ
x0

{
J(xk)

}
→ 0, ∀ (π, x0) ∈ C,

if Ĵ ≤ J ≤ cĴ for some c ≥ 1. Q.E.D.

We can now prove our main result.
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Proposition 4.6.4: Assume that either W is finite or there exists a
δ > 0 such that

E
{
g(x, u, w) + Ĵδ

(
f(x, u, w)

)}
< ∞, ∀ x ∈ X∗, u ∈ U(x).

(a) Ĵ is the unique solution of the Bellman Eq. (4.65) within the set

Ŵ of Eq. (4.83).

(b) (VI Convergence) If {Jk} is the sequence generated by the VI

algorithm (4.47) starting with some J0 ∈ Ŵ , then Jk → Ĵ .

(c) (Optimality Condition) If µ is a stationary policy that is proper
at all x ∈ X̂ and

µ(x) ∈ argmin
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x ∈ X,

(4.89)
then µ is optimal over the set of proper policies, i.e., Jµ = Ĵ .
Conversely, if µ is proper at all x ∈ X̂ and Jµ = Ĵ , then µ
satisfies the preceding condition (4.89).

Proof: (a), (b) By Prop. 4.6.3(b), Ĵ ∈ Ŵ. We will first show that Ĵ is
a solution of Bellman’s equation. Since Ĵδ solves the Bellman equation for
the δ-perturbed problem, and Ĵδ ≥ Ĵ (cf. Prop. 4.6.2), we have for all δ > 0
and x /= t,

Ĵδ(x) = inf
u∈U(x)

E
{
g(x, u, w) + δ + Ĵδ

(
f(x, u, w)

)}

≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵδ

(
f(x, u, w)

)}

≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
.

By taking the limit as δ ↓ 0 and using Prop. 4.6.2, we obtain

Ĵ(x) ≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x ∈ X. (4.90)

For the reverse inequality, let {δm} be a sequence with δm ↓ 0. We
have for all m, x /= t, and u ∈ U(x),

E
{
g(x, u, w) + δm + Ĵδm

(
f(x, u, w)

)}
≥ inf

v∈U(x)
E
{
g(x, v, w) + δm

+ Ĵδm
(
f(x, v, w)

)}

= Ĵδm(x).
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We now take limit as m → ∞ in the preceding relation, and we interchange
limit and expectation (our assumptions allow the use of the monotone
convergence theorem for this purpose; Exercise 4.11 illustrates the need for
these assumptions). Using also the fact limδm↓0 Ĵδm = Ĵ (cf. Prop. 4.6.2),
we have

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X, u ∈ U(x),

so that

inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X. (4.91)

By combining Eqs. (4.90) and (4.91), we see that Ĵ is a solution of Bellman’s
equation.

Part (b) follows by using the S-regularity of the collection (4.85) and

Prop. 4.4.2(b). Finally, since Ĵ ∈ Ŵ and Ĵ is a solution of Bellman’s
equation, part (b) implies the uniqueness assertion of part (a).

(c) If µ is proper at all x ∈ X̂ and Eq. (4.89) holds, then

Ĵ(x) = E
{
g
(
x, µ(x), w

)
+ Ĵ

(
f(x, µ(x), w)

)}
, x ∈ X.

By Prop. 4.4.4(b), this implies that Jµ ≤ Ĵ , so µ is optimal over the set
of proper policies. Conversely, assume that µ is proper at all x ∈ X̂ and
Jµ = Ĵ . Then by Prop. 4.4.4(b), we have

Ĵ(x) = E
{
g
(
x, µ(x), w

)
+ Ĵ

(
f(x, µ(x), w)

)}
, x ∈ X,

while [by part (a)] Ĵ is a solution of Bellman’s equation,

Ĵ(x) = inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, x ∈ X.

Combining the last two relations, we obtain Eq. (4.89). Q.E.D.

We illustrate Prop. 4.6.4 in Fig. 4.6.1. Let us consider now the favor-
able case where the set of proper policies is sufficient in the sense that it can
achieve the same optimal cost as the set of all policies, i.e., Ĵ = J*. This
is true for example if all policies are proper at all x such that J*(x) < ∞.
Moreover it is true in some of the finite-state formulations of SSP that we
discussed in Chapter 3; see also the subsequent Prop. 4.6.5. When Ĵ = J*,
it follows from Prop. 4.6.4 that J* is the unique solution of Bellman’s equa-
tion within Ŵ , and that the VI algorithm converges to J* starting from
any J0 ∈ Ŵ. Under an additional compactness condition, such as finiteness
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(0) = 0 J JJ J∗ ∗ Ĵ J

Region of solutions of Bellman’s Eq.
Region of solutions of Bellman’s Eq.

VI converges from Ŵ

Figure 4.6.1 Illustration of the solutions of Bellman’s equation. All solutions
either lie between J∗ and Ĵ , or they lie outside the set Ŵ . The VI algorithm
converges to Ĵ starting from any J0 ∈ Ŵ.

of U(x) for all x ∈ X [cf. Prop. 4.4.4(e)], VI converges to J* starting from
any J0 in the set S of Eq. (4.84).

Proposition 4.6.4 does not say anything about the existence of a
proper policy that is optimal within the class of proper policies. For a
simple example where J* = Ĵ but the only optimal policy is improper,
consider a deterministic shortest path problem with a single state 1 plus
the destination t. At state 1 we may choose u ∈ [0, 1] with cost u, and
move to t if u /= 0 and stay at 1 if u = 0. Note that here we have
J*(1) = Ĵ(1) = 0, and the minimum over u ∈ [0, 1] is attained in Bellman’s
equation, which has the form

J*(1) = min

{
inf

u∈(0,1]
u, J*(1)

}
.

However, the only optimal policy (staying at 1) is improper.

4.6.1 The Multiplicity of Solutions of Bellman’s Equation

Let us now discuss the issue of multiplicity of solutions of Bellman’s equa-
tion within the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

We know from Props. 4.4.4(a) and 4.6.4(a) that J* and Ĵ are solutions,

and that all other solutions J must satisfy either J* ≤ J ≤ Ĵ or J /∈ Ŵ .
In the special case of a deterministic problem (one where the distur-

bance wk takes a single value), it was shown in Section 4.5 that Ĵ is the
largest solution of Bellman’s equation within J , so all solutions J ′ ∈ J
satisfy J* ≤ J ′ ≤ Ĵ . It was also shown through examples that there can
be any number of solutions that lie between J* and Ĵ : a finite number, an
infinite number, or none at all.

In stochastic problems, however, the situation is strikingly different
in the following sense: there can be an infinite number of solutions that
do not lie below Ĵ , i.e., solutions J ′ ∈ J that do not satisfy J ′ ≤ Ĵ . Of
course, by Prop. 4.6.4(a), these solutions must lie outside Ŵ . The following
example, which involves a finite set W , is an illustration.
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Example 4.6.1

Let X = ', t = 0, and assume that there is only one control at each state,
and hence a single policy π. The disturbance wk takes two values: 1 and 0
with probabilities α ∈ (0, 1) and 1− α, respectively. The system equation is

xk+1 =
wkxk

α
,

and there is no cost at each state and stage:

g(x, u,w) ≡ 0.

Thus from state xk we move to state xk/α with probability α and to the
termination state t = 0 with probability 1− α.

Here, the unique policy is stationary and proper at all x ∈ X, and we
have

J∗(x) = Ĵ(x) = 0, ∀ x ∈ X.

Bellman’s equation has the form

J(x) = (1− α)J(0) + αJ
(
x
a

)
,

which within J reduces to

J(x) = αJ
(
x
α

)
, ∀ J ∈ J , x ∈ X. (4.92)

It can be seen that Bellman’s equation has an infinite number of solu-
tions within J in addition to J∗ and Ĵ : any positively homogeneous function,
such as, for example,

J(x) = γ|x|, γ > 0,

is a solution. Consistently with Prop. 4.6.4(a), none of these solutions belongs

to Ŵ, since xk is either equal to x0/α
k (with probability αk) or equal to 0

(with probability 1− αk). For example, in the case of J(x) = γ|x|, we have

Eπ
x0

{
J(xk)

}
= αkγ

∣∣∣ x0

αk

∣∣∣ = γ|x0|, ∀ k ≥ 0,

so J(xk) does not converge to 0, unless x0 = 0. Moreover, none of these
additional solutions seems to be significant in some discernible way.

The preceding example illustrates an important structural difference
between deterministic and stochastic shortest path problems with infinite
state space. For a terminating policy µ in the context of the deterministic
problem of Section 4.5, the corresponding Bellman equation J = TµJ has
a unique solution within J [to see this, consider the restricted problem
for which µ is the only policy, and apply Prop. 4.5.6(a)]. By contrast,
for a proper policy in the stochastic context of the present section, the
corresponding Bellman equation may have an infinite number of solutions
within J , as Example 4.6.1 shows. This discrepancy does not occur when
the state space is finite, as we have seen in Section 3.5.1. We will next
elaborate on the preceding observations and refine our analysis regarding
multiplicity of solutions of Bellman’s equation for problems where the cost
per stage is bounded.
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4.6.2 The Case of Bounded Cost per Stage

Let us consider the special case where the cost per stage g is bounded over
X × U ×W , i.e.,

sup
(x,u,w)∈X×U×W

g(x, u, w) < ∞. (4.93)

We will show that Ĵ is the largest solution of Bellman’s equation within
the class of functions that are bounded over the effective domain X̂ of Ĵ
[cf. Eq. (4.82)].

We say that a policy π is uniformly proper if there is a uniform bound
on the expected number of steps to reach the destination from states x ∈ X̂
using π:

sup
x∈X̂

∞∑

k=0

rk(π, x) < ∞.

Since we have

Jπ(x0) ≤

(
sup

(x,u,w)∈X×U×W

g(x, u, w)

)
·

∞∑

k=0

rk(π, x0) < ∞, ∀ π ∈ Π̂x0 ,

it follows that the cost function Jπ of a uniformly proper π belongs to the
set B, defined by

B =

{
J ∈ J

∣∣∣ sup
x∈X̂

J(x) < ∞

}
. (4.94)

When X̂ = X , the notion of a uniformly proper policy coincides with
the notion of a transient policy used in [Pli78] and [JaC06], which itself
descends from earlier works. However, our definition is somewhat more
general, since it also applies to the case where X̂ is a strict subset of X .

Let us denote by Ŵb the set of functions

Ŵb = {J ∈ B | Ĵ ≤ J}.

The following proposition, illustrated in Fig. 4.6.2, provides conditions for
Ĵ to be the largest fixed point of T within B. Its assumptions include
the existence of a uniformly proper policy, which implies that Ĵ belongs
to B. The proposition also uses the earlier Prop. 4.4.6 in order to provide
conditions for J* = Ĵ , in which case J* is the unique fixed point of T
within B.
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Paths of VI Unique solution of Bellman’s equation

Fixed Points of T

2 Ĵ J

b > 0

T J*

Set of Bounded Functions B

̂

Ŵb

Figure 4.6.2. Schematic illustration of Prop. 4.6.5 for a nonnegative cost SSP
problem. The functions J∗ and Ĵ are the smallest and largest solutions, re-
spectively, of Bellman’s equation within the set B. Moreover, the VI algorithm
converges to Ĵ starting from J0 ∈ Ŵb = {J ∈ B | Ĵ ≤ J}.

Proposition 4.6.5: Let the assumptions of Prop. 4.6.4 hold, and
assume further that the cost per stage g is bounded over X × U ×W
[cf. Eq. (4.93)], and that there exists a uniformly proper policy. Then:

(a) Ĵ is the largest solution of the Bellman Eq. (4.65) within the
set B of Eq. (4.94), i.e., Ĵ is a solution that belongs to B and if
J ′ ∈ B is another solution, then J ′ ≤ Ĵ . Moreover, if Ĵ = J*,
then J* is the unique solution of Bellman’s equation within B.

(b) If {Jk} is the sequence generated by the VI algorithm (4.47)
starting with some J0 ∈ B with J0 ≥ Ĵ , then Jk → Ĵ .

(c) Assume in addition that X is finite, that J*(x) > 0 for all x /= t,
and that X∗ = X̂. Then Ĵ = J*.

Proof: (a) Since the cost function of a uniformly proper policy belongs to
B, we have Ĵ ∈ B. On the other hand, for all J ∈ B, we have

Eπ
x0

{
J(xk)

}
≤

(
sup
x∈X̂

J(x)

)
· rk(π, x0) → 0, ∀ π ∈ Π̂x0 .

It follows that the set Ŵb is contained in Ŵ , while the function Ĵ belongs
to Ŵb. Since Ŵb is unbounded above within the set B, for every solution
J ′ ∈ B of Bellman’s equation we have J ′ ≤ J for some J ∈ Ŵb, and hence
also J ′ ≤ J̃ for some J̃ in the set S of Eq. (4.84). It follows from Prop.
4.4.2(a) and the S-regularity of the collection (4.85) that J ′ ≤ Ĵ .
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If in addition Ĵ = J*, from Prop. 4.4.4(a), Ĵ is also the smallest
solution of Bellman’s equation within J . Hence J* is the unique solution
of Bellman’s equation within B.

(b) Follows from Prop. 4.6.4(b), since Ŵb ⊂ Ŵ , as shown in the proof of
part (a).

(c) We have by assumption

0 < J*(x) ≤ Ĵ(x), ∀ x /= t,

while Ĵ(x) < ∞ for all x ∈ X∗ since X∗ = X̂ . In view of the finiteness of
X , we can find a sufficiently large c such that Ĵ ≤ cJ*, so by Prop. 4.4.6,
it follows that Ĵ = J*. Q.E.D.

The uniqueness of solution of Bellman’s equation within B when Ĵ =
J* [cf. part (a) of the preceding proposition] is consistent with Example
4.6.1. In that example, J* and Ĵ are equal and bounded, and all the
additional solutions of Bellman’s equation are unbounded, as can be verified
by using Eq. (4.92).

Note that without the assumption of existence of a uniformly proper
π, Ĵ and J* need not belong to B. As an example, let X be the set of
nonnegative integers, let t = 0, and let there be a single policy that moves
the system deterministically from a state x ≥ 1 to the state x − 1 at cost
g(x, x− 1) = 1. Then

Ĵ(x) = J*(x) = x, ∀ x ∈ X,

so Ĵ and J* do not belong to B, even though g is bounded. Here the unique
policy is proper at all x, but is not uniformly proper.

In a given practical application, we may be interested in computing
either J* or Ĵ . If the cost per stage is bounded, we may compute Ĵ with
the VI algorithm, assuming that an initial function in the set Ŵb can be
found. The computation of J* is also possible by using the VI algorithm
and starting from the zero initial condition, assuming that the conditions
of Prop. 4.4.4(d) are satisfied.

An alternative possibility for the case of a finite spaces SSP is to
approximate the problem with a sequence of αk-discounted problems where
the discount factors αk tend to 1. This approach, developed in some detail
in Exercise 5.28 of the book [Ber17a], has the advantage that the discounted
problems can be solved more reliably and with a broader variety of methods
than the original undiscounted SSP.

Another technique, developed in the paper [BeY16], is to transform
a finite-state SSP problem such that J*(x) = 0 for some x /= t into an
equivalent SSP problem that satisfies the conditions of Prop. 4.6.5(c), and
thus allow the computation of J* by a VI or PI algorithm. The idea is
to lump t together with the states x for which J*(x) = 0 into a single



320 Noncontractive Models Chap. 4

state, which is the termination state for the equivalent SSP problem. This
technique is strictly limited to finite-state problems, since in general the
conditions J*(x) > 0 for all x /= t and X∗ = X̂ do not imply that Ĵ = J*,
even under the bounded cost and uniform properness assumptions of this
section (see the deterministic stopping Example 4.5.2).

4.7 NOTES, SOURCES, AND EXERCISES

Sections 4.1: The use of monotonicity as the foundational property of
abstract DP models was initiated in the author’s papers [Ber75], [Ber77].

Section 4.2: The finite horizon analysis of Section 4.2 was given in Chap-
ter 3 of the monograph by Bertsekas and Shreve [BeS78].

Section 4.3: The monotone increasing and decreasing abstract DP models
of Section 4.3 were introduced in the author’s papers [Ber75], [Ber77]. Their
analysis was also given in Chapter 5 of the monograph [BeS78].

Important examples of noncontractive infinite horizon models are the
classical negative cost DP problems, analyzed by Blackwell [Bla65], and by
Dubins and Savage [DuS65], and the positive cost DP problems analyzed in
Strauch [Str66] (and also in Strauch’s Ph.D. thesis, written under the su-
pervision of Blackwell). The monograph by Bertsekas and Shreve [BeS78]
provides a detailed treatment of these two models, which also resolves the
associated measurability questions using the notion of universally measur-
able policies. The paper by Yu and Bertsekas [YuB15] provides a more
recent analysis that addresses some issues regarding the convergence of the
VI and PI algorithms that were left unresolved in the monograph [BeS78].
A simpler textbook treatment, which bypasses the measurability questions,
is given in the author’s [Ber12a], Chapter 4.

The compactness condition that guarantees convergence of VI to J*

starting with the initial condition J0 = J̄ under Assumption I (cf. Prop.
4.3.14) was obtained by the author in [Ber72] for reachability problems (see
Exercise 4.5), and in [Ber75], [Ber77] for positive cost DP models; see also
Schal [Sch75] and Whittle [Whi80]. A more refined analysis of the question
of convergence of VI to J* is possible. This analysis provides a necessary
and sufficient condition for convergence, and improves over the compactness
condition of Prop. 4.3.14. In particular, the following characterization is
shown in [Ber77], Prop. 11 (see also [BeS78], Prop. 5.9):

For a set C ⊂ X×U×!, let Π(C) be the projection of C onto X×!:

Π(C) =
{
(x,λ) | (x, u,λ) ∈ C for some u ∈ U(x)

}
,

and denote also

Π(C) =
{
(x,λ) | λm → λ for some sequence {λm} with

{
(x,λm)} ⊂ C

}
.
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Consider the sets Ck ⊂ X × U ×! given by

Ck =
{
(x, u,λ) | H(x, u, T kJ̄) ≤ λ, x ∈ X, u ∈ U(x)

}
, k = 0, 1, . . . .

Then under Assumption I we have T kJ̄ → J* if and only if

Π
(
∩∞
k=0 Ck

)
= ∩∞

k=0Π(Ck).

Moreover we have T kJ̄ → J* and in addition there exists an optimal sta-
tionary policy if and only if

Π
(
∩∞
k=0 Ck

)
= ∩∞

k=0Π(Ck). (4.95)

For a connection with Prop. 4.3.14, it can be shown that compactness of

Uk(x,λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

implies Eq. (4.95) (see [Ber77], Prop. 12, or [BeS78], Prop. 5.10).
The analysis of convergence of VI to J* under Assumption I and

starting with an initial condition J0 ≥ J* is far more complicated than for
the initial condition J0 = J̄ . A principal reason for this is the multiplicity
of solutions of Bellman’s equation within the set

{
J ∈ E+(X) | J ≥ J̄

}
.

We know that J* is the smallest solution (cf. Prop. 4.4.9), and an interest-
ing issue is the characterization of the largest solution and other solutions
within some restricted class of functions of interest. We substantially re-
solved this question in Sections 4.5 and 4.6 for infinite-spaces deterministic
and stochastic shortest path problems, respectively (as well in Sections
3.5.1 and 3.52 for finite-state stochastic shortest path and affine monotonic
problems). Generally, optimal control problems with nonnegative cost per
stage can typically be reduced to problems with a cost-free and absorb-
ing termination state (see [BeY16] for an analysis of the finite-state case).
However, the fuller characterization of the set of solutions of Bellman’s
equation for general abstract DP models under Assumption I requires fur-
ther investigation.

Optimistic PI and λ-PI under Assumption D have not been considered
prior to the 2013 edition of this book, and the corresponding analysis of
Section 4.3.3 is new. See [BeI96], [ThS10a], [ThS10b], [Ber11b], [Sch11],
[Ber16b] for analyses of λ-PI for discounted and SSP problems.

Section 4.4: The definition and analysis of regularity for nonstationary
policies was introduced in the author’s paper [Ber15]. We have primarily
used regularity in this book to analyze the structure of the solution set of
Bellman’s equation, and to identify the region of attraction of value and
policy iteration algorithms. This analysis is multifaceted, so it is worth
summarizing here:

(a) We have characterized the fixed point properties of the optimal cost
function J* and the restricted optimal cost function J*

C over S-regular
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collections C, for various sets S. While J* and J*
C need not be fixed

points of T , they are fixed points in a large variety of interesting
contexts (Sections 3.3-3.5 and 4.4-4.6).

(b) We have shown that when J* = J*
C , then J* is the unique solution of

Bellman’s equation in several interesting noncontractive contexts. In
particular, Section 3.3 deals with an important case that covers among
others, the most common type of stochastic shortest path problems.
However, even when J* /= J*

C , the functions J* and J*
C often bound

the set of solutions from below and/or from above (see Sections 3.5.1,
3.5.2, 4.5, 4.6).

(c) Simultaneously with the analysis of the fixed point properties of J*

and J*
C , we have used regularity to identify the region of convergence

of value iteration. Often convergence to J*
C can be shown from start-

ing functions J ≥ J*
C , assuming that J*

C is a fixed point of T . In
the favorable case where J* = J*

C , convergence to J* can often be
shown from every starting function of interest. In addition regularity
has been used to guarantee the validity of policy iteration algorithms
that generate exclusively regular policies, and are guaranteed to con-
verge to J* or J*

C .

(d) We have been able to characterize some of the solutions of Bellman’s
equation, but not the entire set. Generally, there may exist an infinite
number of solutions, and some of them may not be associated with
an S-regular collection for any set S, unless we change the starting
function J̄ that is part of the definition of the cost function Jπ of the
policies. There is a fundamental difficulty here: the solutions of the
Bellman equation J = TJ do not depend on J̄ , but S-regularity of
a collection of policy-state pairs depends strongly on J̄ . A sharper
characterization of the solution set of Bellman’s equation remains an
open interesting question, in both specific problem contexts as well
as in generality.

The use of regularity in the analysis of undiscounted and discounted
stochastic optimal control in Sections 4.4.2 and 4.4.3 is new, and was pre-
sented in the author’s paper [Ber15]. The analysis of convergent models in
Section 4.4.4, under the condition

J*(x) ≥ J̄(x) > −∞, ∀ x ∈ X,

is also new. A survey of stochastic optimal control problems under con-
vergence conditions that are more general than the ones considered here is
given by Feinberg [Fei02]. An analysis of convergent models for stochastic
optimal control, which illustrates the broad range of pathological behaviors
that can occur without the condition J* ≥ J̄ , is given in the paper by Yu
[Yu15].
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Section 4.5: This section follows the author’s paper [Ber17a]. The issue
of the connection of optimality with stability (and also with controllability
and observability) was raised in the classic paper by Kalman [Kal60] in the
context of linear-quadratic problems.

The set of solutions of the Riccati equation has been extensively inves-
tigated starting with the papers by Willems [Wil71] and Kucera [Kuc72],
[Kuc73], which were followed up by several other works; see the book
by Lancaster and Rodman [LaR95] for a comprehensive treatment. In
these works, the “largest” solution of the Riccati equation is referred to
as the “stabilizing” solution, and the stability of the corresponding policy
is shown, although the author could not find an explicit statement in the
literature regarding the optimality of this policy within the class of all lin-
ear stable policies. Also the lines of analysis of these works are tied to the
structure of the linear-quadratic problem and are unrelated to our analysis
of Section 4.5, which is based on semicontractive ideas.

Section 4.6: Proper policies for infinite-state SSP problems have been
considered earlier in the works of Pliska [Pli78], and James and Collins
[JaC06], where they are called “transient.” There are a few differences
between the frameworks of [Pli78], [JaC06] and Section 4.6, which impact
on the results obtained. In particular, the papers [Pli78] and [JaC06] use
a related (but not identical) definition of properness to the one of Section
4.6, while the notion of a transient policy used in [JaC06] coincides with
the notion of a uniformly proper policy of Section 4.6.2 when X̂ = X .
Furthermore, [Pli78] and [JaC06] do not consider the notion of policy that is
“proper at a state.” The paper [Pli78] assumes that all policies are transient,
that g is bounded, and that J* is real-valued. The paper [JaC06] allows
for notransient policies that have infinite cost from some initial states, and
extends the analysis of Bertsekas and Tsitsiklis [BeT91] from finite state
space to infinite state space (addressing also measurability issues). Also,
[JaC06] allows the cost per stage g to take both positive and negative values,
and uses assumptions that guarantee that J* = Ĵ , that J* is real-valued,
and that improper policies cannot be optimal. Instead, in Section 4.6 we
allow that J* /= Ĵ and that J* can take the value ∞, while requiring that
g is nonnegative and that the disturbance space W is countable.

The analysis of Section 4.6 comes from the author’s paper [Ber17b],
and is most closely related to the SSP analysis under the weak conditions of
Section 3.5.1, where we assumed that the state space is finite, but allowed
g to take both positive and negative values. The extension of some of
our results of Section 4.6 to SSP problems where g takes both positive and
negative values may be possible; Exercises 4.8 and 4.9 suggest some research
directions. However, our analysis of infinite-spaces SSP problems in this
chapter relies strongly on the nonnegativity of g and cannot be extended
without major modifications. In this connection, it is worth mentioning
the example of Section 3.1.2, which shows that J* may not be a solution
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of Bellman’s equation when g can take negative values.

E X E R C I S E S

4.1 (Example of Nonexistence of an Optimal Policy Under D)

This is an example of a deterministic stopping problem where Assumption D
holds, and an optimal policy does not exist, even though only two controls are
available at each state (stop and continue). The state space is X = {1, 2, . . .}.
Continuation from state x leads to state x+ 1 with certainty and no cost, while
the stopping cost is −1 + (1/x), so that there is an incentive to delay stopping
at every state. Here for all x, J̄(x) = 0, and

H(x, u, J) =

{
J(x+ 1) if u = continue,

−1 + (1/x) if u = stop.

Show that J∗(x) = −1 for all x, but there is no policy (stationary or not) that
attains the optimal cost starting from x.

Solution: Since a cost is incurred only upon stopping, and the stopping cost is
greater than -1, we have Jµ(x) > −1 for all x and µ. On the other hand, starting
from any state x and stopping at x + n yields a cost −1 + 1

x+n
, so by taking n

sufficiently large, we can attain a cost arbitrarily close to -1. Thus J∗(x) = −1
for all x, but no policy can attain this optimal cost.

4.2 (Counterexample for Optimality Condition Under D)

For the problem of Exercise 4.1, show that the policy µ that never stops is not
optimal but satisfies TµJ∗ = TJ∗.

Solution: We have J∗(x) = −1 and Jµ(x) = 0 for all x ∈ X. Thus µ is
nonoptimal, yet attains the minimum in Bellman’s equation

J∗(x) = min
{
J∗(x+ 1), −1 +

1
x

}

for all x.

4.3 (Counterexample for Optimality Condition Under I)

Let
X = ', U(x) ≡ (0, 1], J̄(x) ≡ 0,

H(x, u, J) = |x|+ J(ux), ∀ x ∈ X, u ∈ U(x).
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Let µ(x) = 1 for all x ∈ X. Then Jµ(x) = ∞ if x )= 0 and Jµ(0) = 0. Verify that
TµJµ = TJµ. Verify also that J∗(x) = |x|, and hence µ is not optimal.

Solution: The verification of TµJµ = TJµ is straightforward. To show that
J∗(x) = |x|, we first note that |x| is a fixed point of T , so by Prop. 4.3.2,
J∗(x) ≤ |x|. Also (T J̄)(x) = |x| for all x, while under Assumption I, we have
J∗ ≥ T J̄ , so J∗(x) ≥ |x|. Hence J∗(x) = |x|.

4.4 (Solution by Mathematical Programming)

This exercise shows that under Assumptions I and D, it is possible to use a com-
putational method based on mathematical programming when X = {1, . . . , n}.

(a) Under Assumption I, show that J∗ is the unique solution of the following
optimization problem in z = (z1, . . . , zn):

minimize

n∑

i=1

zi

subject to zi ≥ J̄(i), zi ≥ inf
u∈U(i)

H(i, u, z), i = 1, . . . , n.

(b) Under Assumption D, show that J∗ is the unique solution of the following
optimization problem in z = (z1, . . . , zn):

maximize

n∑

i=1

zi

subject to zi ≤ J̄(i), zi ≤ H(i, u, z), i = 1, . . . , n, u ∈ U(i).

Note: Generally, these programs may not be linear or even convex.

Solution: (a) Any feasible solution z of the given optimization problem satisfies
z ≥ J̄ as well as zi ≥ infu∈U(i) H(i, u, z) for all i = 1, . . . , n, so that z ≥ Tz. It
follows from Prop. 4.4.9 that z ≥ J∗, which implies that J∗ is an optimal solution
of the given optimization problem. Also J∗ is the unique optimal solution since
if z is feasible and z )= J∗, the inequality z ≥ J∗ implies that

∑
i
zi >

∑
i
J∗(i),

so z cannot be optimal.

(b) Any feasible solution z of the given optimization problem satisfies z ≤ J̄ as
well as zi ≤ H(i, u, z) for all i = 1, . . . , n and u ∈ U(i), so that z ≤ Tz. It follows
from Prop. 4.3.6 that z ≤ J∗, which implies that J∗ is an optimal solution of
the given optimization problem. Similar to part (a), J∗ is the unique optimal
solution.

4.5 (Infinite Time Reachability [Ber71], [Ber72])

This exercise provides an instance of an interesting problem where the mapping
H is naturally extended real-valued. Consider a dynamic system

xk+1 = f(xk, uk, wk),
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where wk is viewed as an uncertain disturbance that may be any point in a
set W (xk, uk) (this is known in the literature as an “unknown but bounded”
disturbance, and is the basis for a worst case/minimax treatment of uncertainty
in the control of uncertain dynamic systems). We introduce an abstract DPmodel
where the objective is to find a policy that keeps the state xk of the system within
a given set X at all times, for all possible values of the sequence {wk}. This is a
common objective, which arises in a variety of control theory contexts, including
model predictive control (see [Ber17a], Section 6.4.3).

Let

J̄(x) =
{
0 if x ∈ X,
∞ otherwise,

and

H(x, u, J) =
{
0 if J(x) = 0, u ∈ U(x), and J

(
f(x, u,w)

)
= 0, ∀ w ∈ W (x,u),

∞ otherwise.

(a) Show that Assumption I holds, and that the optimal cost function has the
form

J∗(x) =
{
0 if x ∈ X∗,
∞ otherwise,

where X∗ is some subset of X.

(b) Consider the sequence of sets {Xk}, where

Xk =
{
x ∈ X | (T kJ̄)(x) = 0

}
.

Show that Xk+1 ⊂ Xk for all k, and that X∗ ⊂ ∩∞
k=0Xk. Show also that

convergence of VI (i.e., T kJ̄ → J∗) is equivalent to X∗ = ∩∞
k=0Xk.

(c) Show that X∗ = ∩∞
k=0Xk and there exists an optimal stationary policy if

the sets

Ûk(x) =
{
u ∈ U(x) | f(x, u, w) ∈ Xk, ∀ w ∈ W (x, u)

}

are compact for all k greater than some index k̄. Hint : Use Prop. 4.3.14.

Solution: Let Ê(X) be the subset of E(X) that consists of functions that take
only the two values 0 and ∞, and for all J ∈ Ê(X) denote

D(J) =
{
x ∈ X | J(x) = 0

}
.

Note that for all J ∈ Ê(X) we have TµJ ∈ Ê(X), TJ ∈ Ê(X), and that

D(TµJ) =
{
x ∈ X | x ∈ D(J), f

(
x,µ(x), w

)
∈ D(J), ∀ w ∈ W (x,µ(x))

}
,

D(TJ) = ∪µ∈MD(TµJ).

(a) For all J ∈ Ê(X), we have D(TµJ) ⊂ D(J) and TµJ ≥ J , so condition (1) of
Assumption I holds, and it is easily verified that the remaining two conditions of
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Assumption I also hold. We have J̄ ∈ Ê(X), so for any policy π = {µ0, µ1, . . .},
we have Tµ0 · · ·Tµk

J̄ ∈ Ê(X). It follows that Jπ , given by

Jπ = lim
k→∞

Tµ0 · · · Tµk
J̄ ,

also belongs to Ê(X), and the same is true for J∗ = infπ∈Π Jπ. Thus J
∗ has the

given form with D(J∗) = X∗.

(b) Since {T kJ̄} is monotonically nondecreasing we have D(T k+1J̄) ⊂ D(T kJ̄),
or equivalently Xk+1 ⊂ Xk for all k. Generally for a sequence {Jk} ⊂ Ê(X), if
Jk ↑ J , we have J ∈ Ê(X) and D(J) = ∩∞

k=0D(Jk). Thus convergence of VI (i.e.,
T kJ̄ ↑ J∗) is equivalent to D(J∗) = ∩∞

k=0D(Jk) or X∗ = ∩∞
k=0Xk.

(c) The compactness condition of Prop. 4.3.14 guarantees that T kJ̄ ↑ J∗, or
equivalently by part (b), X∗ = ∩∞

k=0Xk. This condition requires that the sets

Uk(x,λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

are compact for every x ∈ X, λ ∈ ', and for all k greater than some integer k.
It can be seen that Uk(x,λ) is equal to the set

Ûk(x) =
{
u ∈ U(x)

∣∣ f(x, u,w) ∈ Xk, ∀ w ∈ W (x,u)
}

given in the statement of the exercise.

4.6 (Exceptional Linear-Quadratic Problems)

Consider the deterministic linear-quadratic problem of Section 3.5.4 and Example
4.5.1. Assume that there is a single control variable uk, and two state variables,
x1
k and x2

k, which evolve according to

x1
k+1 = γx1

k + buk, x2
k+1 = x1

k + x2
k + uk,

where γ > 1. The cost of stage k is quadratic of the form

q
(
(x1

k)
2 + (x2

k)
2
)
+ (uk)

2.

Consider the four cases of pairs of values (b, q) where b ∈ {0, 1} and q ∈ {0, 1}.
For each case, use the theory of Section 4.5 to find the optimal cost function
J∗ and the optimal cost function over stable policies Ĵ+, and to describe the
convergence behavior of VI.

Solution: When b = 1 and q = 1, the classical controllability and observability
conditions are satisfied, and we have J∗ = Ĵ+, while there exists an optimal
policy that is linear and stable (so J∗ and Ĵ+ are real-valued and positive definite
quadratic). Moreover, the VI algorithm converges to J∗ starting from any J0 ≥ 0
(even extended real-valued J0) with J0(0) = 0.

When b = 0 and q = 0, we clearly have J∗(x) ≡ 0. Also Ĵ+(x1, x2) = ∞
for x1 )= 0, while Ĵ+(0, x2) is finite for all x2, but positive for x2 )= 0 (since for
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x1 = 0, the problem becomes essentially one-dimensional, and similar to the one
of Section 3.5.4). The VI algorithm converges to Ĵ+ starting from any positive
semidefinite quadratic initial condition J0 with J0(0, x

2) = 0 and J0 )= J∗.
When b = 0 and q = 1, we have J∗ = Ĵ+, but J∗ and Ĵ+ are not real-

valued. In particular, since x1
k stays constant under all policies when b = 0, we

have J∗(x1, x2) = Ĵ+(x1, x2) = ∞ for x1 )= 0. Moreover, for an initial state
with x1

0 = 0, the problem becomes essentially a one-dimensional problem that
satisfies the classical controllability and observability conditions, and we have
J∗(0, x2) = Ĵ+(0, x2) for all x2. The VI algorithm takes the form

Jk+1(0, x
2) = min

u

{
(x2)2 + (u)2 + Jk(0, x

2 + u)
}
,

Jk+1(x
1, x2) = min

u

{
(x1)2 + (x2)2 + (u)2 + Jk(γx

1, x1 + x2 + u)
}
, if x1 )= 0.

It can be seen that the VI iterates Jk(0, x
2) evolve as in the case of a single state

variable problem, where x1 is fixed at 0. For x1 )= 0, the VI iterates Jk(x
1, x2)

diverge to ∞.
When b = 1 and q = 0, we have J∗(x) ≡ 0, while 0 < Ĵ+(x) < ∞ for

all x )= 0. Similar to Example 4.5.1, the VI algorithm converges to Ĵ+ starting
from any initial condition J0 ≥ Ĵ+. The functions J∗ and Ĵ+ are real-valued
and satisfy Bellman’s equation, which has the form

J(x1, x2) = min
u

{
(u)2 + J(γx1 + u, x1 + x2 + u)

}
.

However, Bellman’s equation has additional solutions, other than J∗ and Ĵ+.
One of these is

Ĵ(x1, x2) = P (x1)2,

where P = γ2 − 1 (cf. the example of Section 3.5.4).

4.7 (Discontinuities in Infinite-State Shortest Path Problems)

The purpose of this exercise is to show that different types of perturbations in
infinite-state shortest path problems, may yield different solutions of Bellman’s
equation. Consider the optimal stopping problem of Example 4.5.2, and introduce
a perturbed version by modifying the effect of the action that moves the state
from x )= 0 to γx. Instead, this action stops the system with probability δ > 0 at
cost β ≥ 0, and moves the state from x to γx with probability 1− δ at cost ‖x‖.
Note that with this modification, all policies become uniformly proper. Show
that:

(a) The optimal cost function of the (δ,β)-perturbed version of the problem,
denoted Ĵδ,β , is the unique solution of the corresponding Bellman equation
within the class of bounded functions B of Eq. (4.94).

(b) For β = 0, we have limδ↓0 Ĵδ,0 = J∗, where J∗ is the optimal cost function
of the deterministic problem of Example 4.5.2.

(c) For β = c, we have Ĵδ,c = Ĵ+ for all δ > 0, where Ĵ+ is the largest
solution of Bellman’s equation in the deterministic problem of Example
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4.5.2 [Ĵ+(x) = c for all x )= 0, which corresponds to the policy that stops
at all states].

Solution: (a) It can be seen that the Bellman equation for the (δ,β)-perturbed
version of the problem is

J(x) =

{
min

{
c, δβ + (1− δ)

(
‖x‖+ J(γx)

)}
if x )= 0,

0 if x = 0,

and has exactly the same solutions as the equation

J(x) =
{
min

{
c, δβ + (1− δ)

(
min

{
c/(1− δ), ‖x‖

}
+ J(γx)

)}
if x )= 0,

0 if x = 0.

The latter equation involves a bounded cost per stage, and hence according to
the theory of Section 4.6, has a unique solution within B, when all policies are
proper.

(b) Evident since the effect of δ on the cost of the optimal policy of the problem
of Example 4.5.2 diminishes as δ → 0.

(c) Since termination at cost c is inevitable (with probability 1) under every
policy, the optimal policy for the (δ,β)-perturbed version of the problem is to
stop as soon as possible.

4.8 (A Perturbation Approach for Semicontractive Models)

The purpose of this exercise is to adapt the perturbation approach of Section 3.4
so that it can be used in conjunction with the regularity notion for nonstationary
policies of Definition 4.4.1. Given a set of functions S ⊂ E(X) and a collection C
of policy-state pairs (π, x) that is S-regular, let J∗

C be the restricted optimal cost
function defined by

J∗
C (x) = inf

(π,x)∈C
Jπ(x), x ∈ X.

Consider also a nonnegative forcing function p : X 2→ [0,∞), and for each δ > 0
and stationary policy µ, the mappings Tµ,δ and Tδ given by

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δp(x), (TδJ)(x) = inf

µ∈M
(Tµ,δJ)(x), x ∈ X.

We refer to the problem associated with the mappings Tµ,δ as the δ-perturbed
problem. The cost function of a policy π = {µ0, µ1, . . .} ∈ Π for this problem is

Jπ,δ = lim sup
k→∞

Tµ0,δ · · ·Tµk,δJ̄ ,

and the optimal cost function is Ĵδ = infπ∈Π Jπ,δ. Assume that for every δ > 0:

(1) Ĵδ satisfies the Bellman equation of the δ-perturbed problem, Ĵδ = TδĴδ.
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(2) For every x ∈ X, we have inf(π,x)∈C Jπ,δ(x) = Ĵδ(x).

(3) For all x ∈ X and (π, x) ∈ C, we have

Jπ,δ(x) ≤ Jπ(x) + wπ,δ(x),

where wπ,δ is a function such that limδ↓0 wπ,δ = 0.

(4) For every sequence {Jm} ⊂ S with Jm ↓ J , we have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x).

Then J∗
C is a fixed point of T and the conclusions of Prop. 4.4.2 hold. Moreover,

we have
J∗
C = lim

δ↓0
Ĵδ.

Solution: The proof is very similar to the one of Prop. 3.4.1. Condition (2)
implies that for every x ∈ X and ε > 0, there exists a policy πx,ε such that
(πx,ε, x) ∈ C and Jπx,ε,δ(x) ≤ Ĵδ(x) + ε. Thus, using conditions (2) and (3), we
have for all x ∈ X, δ > 0, ε > 0, and π with (π, x) ∈ C,

J∗
C (x)− ε ≤ Jπx,ε(x)− ε ≤ Jπx,ε,δ(x)− ε ≤ Ĵδ(x) ≤ Jπ,δ(x) ≤ Jπ(x) + wπ,δ(x).

By taking the limit as ε ↓ 0, we obtain for all x ∈ X, δ > 0, and π with (π, x) ∈ C,

J∗
C (x) ≤ Ĵδ(x) ≤ Jπ,δ(x) ≤ Jπ(x) + wπ,δ(x).

By taking the limit as δ ↓ 0 and then the infimum over all π with (π, x) ∈ C, it
follows [using also condition (3)] that for all x ∈ X,

J∗
C (x) ≤ lim

δ↓0
Ĵδ(x) ≤ inf

{π|(π,x)∈C}
lim
δ↓0

Jπ,δ(x) ≤ inf
{π|(π,x)∈C}

Jπ(x) = J∗
C (x),

so that J∗
C = limδ↓0 Ĵδ.

To prove that J∗
C is a fixed point of T , we prove that both J∗

C ≥ TJ∗
C and

J∗
C ≤ TJ∗

C hold. Indeed, from condition (1) and the fact Ĵδ ≥ J∗
C shown earlier,

we have for all δ > 0,
Ĵδ = TδĴδ ≥ T Ĵδ ≥ TJ∗

C ,

and by taking the limit as δ ↓ 0 and using the fact J∗
C = limδ↓0 Ĵδ shown earlier,

we obtain J∗
C ≥ TJ∗

C . For the reverse inequality, let {δm} be a sequence with
δm ↓ 0. Using condition (1) we have for all m,

H(x, u, Ĵδm) + δmp(x) ≥ (Tδm Ĵδm)(x) = Ĵδm(x), ∀ x ∈ X, u ∈ U(x).

Taking the limit as m → ∞, and using condition (4) and the fact Ĵδm ↓ J∗
C shown

earlier, we have

H(x, u, J∗
C ) ≥ J∗

C (x), ∀ x ∈ X, u ∈ U(x),

so that by minimizing over u ∈ U(x), we obtain TJ∗
C ≥ J∗

C .
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4.9 (Deterministic Optimal Control with Positive and
Negative Costs per Stage)

In this exercise, we consider the infinite-spaces optimal control problem of Section
4.5 and its notation, but without the assumption g → 0 [cf. Eq. (4.46)]. Instead,
we assume that

↑↓ < g(x, u) ≤ ↓, ∀ x ∈ X, u ∈ U(x), k = 0, 1, . . . ,

and that J→(x) > ↑↓ for all x ∈ X. The latter assumption was also made in
Section 3.5.5, but in the present exercise, we will not assume the additional near-
optimal termination Assumption 3.5.9 of that section, and we will use instead
the perturbation framework of Exercise 4.8. Note that J→ is a fixed point of T
because the problem is deterministic (cf. Exercise 3.1).

We say that a policy π is terminating from state x0 ∈ X if the sequence
{xk} generated by π starting from x0 terminates finitely (i.e., satisfies xk̄ = t for
some index k̄). We denote by Πx the set of all policies that are terminating from
x, and we consider the collection

C =
{
(π, x) | π ∈ Πx

}
.

Let J→
C be the corresponding restricted optimal cost function,

J→
C (x) = inf

(π,x)∈C
Jπ(x) = inf

π∈Πx
Jπ(x), x ∈ X,

and let S be the set of functions

S =
{
J ∈ E(X) | J(t) = 0, J(x) > ↑↓, x ∈ X

}
.

Clearly C is S-regular, so we may consider the perturbation framework of Exercise
4.8 with p(x) = 1 for all x '= t and p(t) = 0. Apply the results of that exercise to
show that:

(a) We have

J→
C = lim

δ↓0
Ĵδ.

(b) J→
C is the only fixed point of T within the set

W =
{
J ∈ E(X) | J(t) = 0, J → J→

C

}
.

(c) We have T kJ → J→
C for all J ∈ W.

Solution: Part (a) follows from Exercise 4.8, and parts (b), (c) follow from
Exercise 4.8 and Prop. 4.4.2.
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4.10 (On Proper Policies for Stochastic Shortest Paths)

Consider the infinite-spaces SSP problem of Section 4.6 under the assumptions
of Prop. 4.6.4, and assume that g is bounded over X × U ×W .

(a) Show that if µ is a uniformly proper policy, then Jµ is the unique solution
of the equation J = TµJ within B and that T k

µJ → Jµ for all J ∈ B.

(b) Let J ′ be a fixed point of T such that J ′ ∈ B and J ′ )= Ĵ . Show that a
policy µ satisfying TµJ

′ = TJ ′ cannot be uniformly proper.

Solution: (a) Consider the problem where the only policy is µ, i.e., with control
constraint set Ũ(x) =

{
µ(x)

}
, x ∈ X, and apply Props. 4.6.5 and 4.4.4.

(b) Assume to come to a contradiction that µ is uniformly proper. We have
TµJ

′ = TJ ′ = J ′, so by part (a) we have J ′ = Jµ, while Jµ ≥ Ĵ since µ is
uniformly proper. Thus J ′ ≥ Ĵ while J ′ )= Ĵ by assumption. This contradicts
the largest fixed point property of Ĵ [cf. Prop. 4.6.5(a)].

4.11 (Example where Ĵ is not a Fixed Point of T in Infinite
Spaces SSP)

We noted in Section 4.6 that some additional assumption, like

E
{
g(x, u,w) + Ĵδ

(
f(x, u,w)

)}
< ∞, ∀ x ∈ X∗, u ∈ U(x), (4.96)

or the finiteness of W , is necessary to prove that Ĵ is a fixed point for SSP
problems (cf. Prop. 4.6.4). [The condition (4.96) is satisfied for example if there
exists a policy π (necessarily proper at all x ∈ X∗) such that Jπ,δ is bounded
over X∗.] To see what can happen without such an assumption, consider the
following example, which was constructed by Yi Zhang (private communication).

LetX = {t, 0, 1, 2, . . .}, where t is the termination state, and let g(x, u,w) ≡
0, so that J∗(x) ≡ 0. There is only one control at each state, and hence only one
policy. The transitions are as follows:

From each state x = 2, 3, . . . , we move deterministically to state x−1, from
state 1 we move deterministically to state t, and from state 0 we move to state
x = 1, 2, . . ., with probability px such that

∑∞
x=1

xpx = ∞.
Verify that the unique policy is proper at all x = 1, 2, . . ., and we have

Ĵ(x) = J∗(x) = 0. However, the policy is not proper at x = 0, since the expected
number of transitions from x = 0 to termination is

∑∞
x=1

xpx = ∞. As a result

the set Π̂0 is empty and we have Ĵ(0) = ∞. Thus Ĵ does not satisfy the Bellman
equation for x = 0, since

∞ = Ĵ(0) )= E
{
g(0, u, w) + Ĵ

(
f(0, u, w)

)}
=

∞∑

x=1

pxĴ(x) = 0.
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4.12 (Convergence of Nonexpansive Monotone Fixed Point
Iterations with a Unique Fixed Point)

Consider the mapping H of Section 2.1 under the monotonicity Assumption 2.1.1.
Assume that instead of the contraction Assumption 2.1.2, the following hold:

(1) For every J ∈ B(X), the function TJ belongs to B(X), the space of func-
tions on X that are bounded with respect to the weighted sup-norm corre-
sponding to a positive weighting function v.

(2) T is nonexpansive, i.e., ‖TJ − TJ ′‖ ≤ ‖J − J ′‖ for all J, J ′ ∈ B(X).

(3) T has a unique fixed point within B(X), denoted J∗.

(4) If X is infinite the following continuity property holds: For each J ∈ B(X)
and {Jm} ⊂ B(X) with either Jm ↓ J or Jm ↑ J ,

H (x, u, J) = lim
m→∞

H(x,u, Jm), ∀ x ∈ X, u ∈ U(x).

Show the following:

(a) For every J ∈ B(X), we have ‖T kJ−J∗‖ → 0 if X is finite, and T kJ → J∗

if X is infinite.

(b) Part (a) holds if B(X) is replaced by
{
J ∈ B(X) | J ≥ 0

}
, or by

{
J ∈

B(X) | J(t) = 0
}
, or by

{
J ∈ B(X) | J(t) = 0, J ≥ 0

}
, where t is a special

cost-free and absorbing destination state t.

(Unpublished joint work of the author with H. Yu.)

Solution: (a) Assume first that X is finite. For any c > 0, let V0 = J∗ + c v
and consider the sequence {Vk} defined by Vk+1 = TVk for k ≥ 0. Note that
{Vk} ⊂ B(X), since ‖V0‖ ≤ ‖J∗‖+c so that V0 ∈ B(X), and we have Vk+1 = TVk,
so that property (1) applies. From the nonexpansiveness property (2), we have

H(x, u, J∗ + c v) ≤ H(x, u, J∗) + c v(x), x ∈ X, u ∈ U(x),

and by taking the infimum over u ∈ U(x), we obtain J∗ ≤ T (J∗+ c v) ≤ J∗+ c v,
i.e., J∗ ≤ V1 ≤ V0. From this and the monotonicity of T it follows that J∗ ≤
Vk+1 ≤ Vk for all k, so that for each x ∈ X, Vk(x) ↓ V (x) where V (x) ≥ J∗(x).
Moreover, V lies in B(X) (since J∗ ≤ V ≤ Vk), and also satisfies ‖Vk − V ‖ → 0
(since X is finite). From property (2), we have ‖TVk − TV ‖ ≤ ‖Vk − V ‖, so
that ‖TVk − TV ‖ → 0, which together with the fact TVk = Vk+1 → V , implies
that V = TV . Thus V = J∗ by the uniqueness property (3), and it follows that
Vk ↓ J∗.

Similarly, define Wk = T k(J∗ − c v), and by an argument symmetric to the
above, Wk ↑ J∗. Now for any J ∈ B(X), let c = ‖J − J∗‖ in the definition of Vk

and Wk. Then J∗ − c v ≤ J ≤ J∗ + c v, so by the monotonicity of T , we have
Wk ≤ T kJ ≤ Vk as well as Wk ≤ J∗ ≤ Vk for all k. Therefore ‖T kJ − J∗‖ ≤
‖Wk − Vk‖ for all k ≥ 0. Since ‖Wk − Vk‖ ≤ ‖Wk − J∗‖ + ‖Vk − J∗‖ → 0, the
conclusion follows.

If X is infinite and property (4) holds, the preceding proof goes through,
except for the part that shows that ‖Vk − V ‖ → 0. Instead we use a different
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argument to prove that V = TV . Indeed, since Vk ≥ Vk+1 = TVk ≥ TV , it
follows that V ≥ TV . For the reverse inequality we write

TV = inf
u∈U(x)

lim
k→∞

H(x, u, Vk) ≥ lim
k→∞

inf
u∈U(x)

H(x, u, Vk) = lim
k→∞

TVk = V ,

where the first equality follows from the continuity property (4), and the inequal-
ity follows from the generic relation inf limH ≥ lim infH . Thus we have V = TV ,
which by the uniqueness property (3), implies that V = J∗ and Vk ↓ J∗. With a
similar argument we obtain Wk ↑ J∗, implying that T kJ → J∗.

(b) The proof of part (a) applies with simple modifications.

4.13 (Convergence of Nonexpansive Monotone Fixed Point
Iterations with Multiple Fixed Points)

Consider the mapping H of Section 2.1 under the monotonicity Assumption 2.1.1.
Assume that instead of the contraction Assumption 2.1.2, the following hold:

(1) For every J ∈ B(X), the function TJ belongs to B(X), the space of func-
tions on X that are bounded with respect to the weighted sup-norm corre-
sponding to a positive weighting function v.

(2) T is nonexpansive, i.e., ‖TJ − TJ ′‖ ≤ ‖J − J ′‖ for all J, J ′ ∈ B(X).

(3) T has a largest fixed point within B(X), denoted Ĵ , i.e., Ĵ ∈ B(X), Ĵ is a
fixed point of T , and for every other fixed point J ′ ∈ B(X) we have J ′ ≤ Ĵ .

(4) If X is infinite the following continuity property holds: For each J ∈ B(X)
and {Jm} ⊂ B(X) with either Jm ↓ J or Jm ↑ J ,

H (x, u, J) = lim
m→∞

H(x,u, Jm), ∀ x ∈ X, u ∈ U(x).

Show the following:

(a) For every J ∈ B(X) such that Ĵ ≤ J ≤ Ĵ + c v for some c > 0, we have
‖T kJ − Ĵ‖ → 0 if X is finite, and T kJ → Ĵ if X is infinite.

(b) Part (a) holds if B(X) is replaced by
{
J ∈ B(X) | J ≥ 0

}
, or by

{
J ∈

B(X) | J(t) = 0
}
, or by

{
J ∈ B(X) | J(t) = 0, J ≥ 0

}
, where t is a special

cost-free and absorbing destination state t.

(Note the similarity with the preceding exercise.)

Solution: (a) The proof follows the line of proof of the preceding exercise. As-
sume first that X is finite. For any c > 0, let V0 = Ĵ + c v and consider the
sequence {Vk} defined by Vk+1 = TVk for k ≥ 0. Note that {Vk} ⊂ B(X), since
‖V0‖ ≤ ‖Ĵ‖ + c so that V0 ∈ B(X), and we have Vk+1 = TVk, so that property
(1) applies. From the nonexpansiveness property (2), we have

H(x, u, Ĵ + c v) ≤ H(x, u, Ĵ) + c v(x), x ∈ X, u ∈ U(x),

and by taking the infimum over u ∈ U(x), we obtain Ĵ ≤ T (Ĵ+c v) ≤ Ĵ+c v, i.e.,
Ĵ ≤ V1 ≤ V0. From this and the monotonicity of T it follows that Ĵ ≤ Vk+1 ≤ Vk
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for all k, so that for each x ∈ X, Vk(x) ↓ V (x) where V (x) ≥ Ĵ(x). Moreover,
V lies in B(X) (since Ĵ ≤ V ≤ Vk), and also satisfies ‖Vk − V ‖ → 0 (since
X is finite). From property (2), we have ‖TVk − TV ‖ ≤ ‖Vk − V ‖, so that
‖TVk − TV ‖ → 0, which together with the fact TVk = Vk+1 → V , implies that
V = TV . Thus V = Ĵ by property (3), and it follows that Vk ↓ Ĵ .

If X is infinite and property (4) holds, the preceding proof goes through,
except for the part that shows that ‖Vk − V ‖ → 0. Instead we use a different
argument to prove that V = TV . Indeed, since Vk ≥ Vk+1 = TVk ≥ TV , it
follows that V ≥ TV . For the reverse inequality we write

TV = inf
u∈U(x)

lim
k→∞

H(x, u, Vk) ≥ lim
k→∞

inf
u∈U(x)

H(x, u, Vk) = lim
k→∞

TVk = V ,

where the first equality follows from the continuity property (4). Thus we have
V = TV , which by property (3), implies that V = Ĵ and Vk ↓ Ĵ .

(b) The proof of part (a) applies with simple modifications.

4.14 (Necessary and Sufficient Condition for an Interpolated
Nonexpansive Mapping to be a Contraction)

This exercise (due to unpublished joint work with H. Yu) considers a nonexpan-
sive mapping G : 'n 2→ 'n, and derives conditions under which the interpolated
mapping Gγ defined by

Gγ(x) = (1− γ)x+ γG(x), x ∈ 'n,

is a contraction for all γ ∈ (0, 1). Consider 'n equipped with a strictly convex
norm ‖ · ‖, and the set

C =

{(
x− y

‖x− y‖
,
G(x)−G(y)

‖x− y‖

) ∣∣∣∣∣ x, y ∈ 'n, x )= y

}
,

which can be viewed as a set of “slopes” of G along all directions. Show that the
mapping Gγ defined by

Gγ(x) = (1− γ)x+ γG(x), x ∈ 'n,

is a contraction for all γ ∈ (0, 1) if and only if there is no closure point (z, w) of C
such that z = w. Note: To illustrate with some one-dimensional examples what
can happen if this closure condition is violated, let G : ' 2→ ' be continuously
differentiable, monotonically nondecreasing, and satisfying 0 ≤ dG(x)

dx
≤ 1. Note

that G is nonexpansive. We consider two cases.

(1) G(0) = 0, dG(0)
dx

= 1, 0 ≤ dG(x)
dx

< 1 for x )= 0, limx→∞
dG(x)
dx

< 1 and

limx→−∞
dG(x)
dx

< 1. Here (z, w) = (1, 1) is a closure point of C and
satisfies z = w. Note that Gγ is not a contraction for any γ ∈ (0, 1),
although it has 0 as its unique fixed point.
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(2) limx→∞
dG(x)
dx

= 1. Here we have limx→∞

(
G(x) − G(y)

)
= x − y for

x = y+1, so (1, 1) is a closure point of C. It can also be seen that because

limx→∞
dGγ (x)

dx
= 1, Gγ is not a contraction for any γ ∈ (0, 1), and may

have one, more than one, or no fixed points.

Solution: Assume there is no closure point (z, w) of C such that z = w, and for
γ ∈ (0, 1), let

ρ = sup
(z,w)∈C

∥∥(1− γ)z + γw
∥∥.

The set C is bounded since for all (z, w) ∈ C, we have ‖z‖ = 1, and ‖w‖ ≤ 1 by
the nonexpansiveness of G. Hence, there exists a sequence

{
(zk, wk)

}
⊂ C that

converges to some (z, w), and is such that

∥∥(1− γ)zk + γwk

∥∥→ ρ.

Since (z, w) is a closure point of C, we have z )= w. Using the continuity of the
norm, we have

ρ =
∥∥(1− γ)z + γw

∥∥ < (1− γ)‖z‖+ γ‖w‖ ≤ 1,

where for the strict inequality we use the strict convexity of the norm, and for
the last inequality we use the fact ‖z‖ = 1 and ‖w‖ ≤ 1. Thus ρ < 1, and since

∥∥∥∥(1− γ)
x− y

‖x− y‖
+ γ

G(x)−G(y)

‖x− y‖

∥∥∥∥ =

∥∥Gγ(x)−Gγ(y)
∥∥

‖x− y‖

≤ sup
(z,w)∈C

∥∥(1− γ)z + γw
∥∥

= ρ, ∀ x )= y,

it follows that Gγ is a contraction of modulus ρ.
Conversely, if Gγ is a contraction, we have

sup
(z,w)∈C

∥∥(1− γ)z + γw
∥∥ = sup

x )=y

∥∥∥∥(1− γ)
x− y

‖x− y‖
+ γ

G(x)−G(y)
‖x− y‖

∥∥∥∥

≤ sup
x )=y

∥∥Gγ(x)−Gγ(y)
∥∥

‖x− y‖

< 1.

Thus for every closure point (z, w) of C,

∥∥(1− γ)z + γw
∥∥ < 1,

which implies that we cannot have z = w.
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In this chapter, we introduce a contractive abstract DP framework and
related policy iteration (PI) algorithms, specifically designed for sequential
zero-sum games and minimax problems with a general structure. Aside
from greater generality, the advantage of our algorithms over alternatives
is that they resolve some long-standing convergence difficulties of the “nat-
ural” PI algorithm, which have been known since the Pollatschek and Avi-
Itzhak method [PoA69] for finite-state Markov games. Mathematically, this
“natural” algorithm is a form of Newton’s method for solving Bellman’s
equation, but Newton’s method, contrary to the case of single-player DP
problems, is not globally convergent in the case of a minimax problem,
because of an additional difficulty: the Bellman operator may have com-
ponents that are neither convex nor concave.

Our algorithms address this difficulty by introducing alternating player
choices, and by using a policy-dependent mapping with a uniform sup-
norm contraction property, similar to earlier works by Bertsekas and Yu
[BeY10], [BeY12], [YuB13a], which has been described in part in Section
2.6.3. Moreover, our algorithms allow a convergent and highly parallelizable
implementation, which is based on state space partitioning, and distributed
asynchronous policy evaluation and policy improvement operations within
each set of the partition. They are also suitable for approximations based
on an aggregation approach.

5.1 INTRODUCTION

We will discuss abstract DP frameworks and PI methods for sequential
minimax problems. In addition to being more efficient and reliable than
alternatives, our methods are well suited for distributed asynchronous im-
plementation. In Sections 5.1 and 5.2, we will discuss an abstract DP
framework, which can be derived from the contractive framework of Chap-
ter 2. We will revisit abstract PI algorithms within this framework and
show how they relate to known algorithms for minimax control. We will
also discuss how these algorithms when applied to discounted and terminat-
ing zero-sum Markov games, lead to methods such as the ones by Hoffman
and Karp [HoK66], and by Pollatschek and Avi-Itzhak [PoA69]. We will
note some of the drawbacks of these methods, particularly the need to
solve a substantial optimization problem as part of the policy evaluation
phase. These drawbacks motivate new PI algorithms and a different ab-
stract framework, based on an alternating player choices format, which we
will introduce in Section 5.3.

In our initial problem formulation, the focus of Sections 5.1 and 5.2,
we consider abstract sequential infinite horizon zero-sum game and mini-
max problems, which involve two players that choose controls at each state
x of some state space X , from within some state-dependent constraint sets:
a minimizer , who selects a control u from within a subset U(x) of a control
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space U , and a maximizer , who selects a control v from within a subset
V (x) of a control space V . The spaces X , U , and V are arbitrary. Func-
tions µ : X !→ U and ν : X !→ V such that µ(x) ∈ U(x) and ν(x) ∈ V (x)
for all x ∈ X , are called policies for the minimizer and the maximizer,
respectively. The set of policies for the minimizer and the maximizer are
denoted by M and N , respectively.

As in earlier chapters, the main idea is to start with a general map-
ping that defines the Bellman equation of the problem. In particular, we
introduce a real-valued mapping that is suitable for minimax problems,
and has the form

H(x, u, v, J), x ∈ X, u ∈ U(x), v ∈ V (x), J ∈ B(X); (5.1)

cf. Example 2.6.4. In Eq. (5.1), B(X) is the space of real-valued functions
on X that are bounded with respect to a weighted sup-norm

‖J‖ = sup
x∈X

∣

∣J(x)
∣

∣

ξ(x)
, J ∈ B(X), (5.2)

where ξ is a function taking a positive value ξ(x) for each x ∈ X . Our
main assumption is the following:

Assumption 5.1.1: (Contraction for Minimax Problems) For
every µ ∈ M, ν ∈ N , consider the operator Tµ,ν that maps a function
J ∈ B(X) to the function Tµ,νJ defined by

(Tµ,νJ)(x) = H
(

x, µ(x), ν(x), J
)

, x ∈ X, (5.3)

and assume the following:

(a) Tµ,νJ belongs to B(X) for all J ∈ B(X).

(b) There exists an α ∈ (0, 1) such that for all µ ∈ M, ν ∈ N ,
the operator Tµ,ν is a contraction mapping of modulus α with
respect to the weighted sup-norm (5.2), i.e., for all J, J ′ ∈ B(X),
µ ∈ M, and ν ∈ N ,

‖Tµ,νJ −Tµ,νJ ′‖ = sup
x∈X

∣

∣(Tµ,νJ)(x) − (Tµ,νJ ′)(x)
∣

∣

ξ(x)
≤ α‖J −J ′‖.

Since Tµ,ν is a contraction within the complete space B(X), under
the preceding assumption, it has a unique fixed point Jµ,ν ∈ B(X). We
are interested in the operator T : B(X) !→ B(X), defined by

(TJ)(x) = inf
u∈U(x)

sup
v∈V (x)

H(x, u, v, J), x ∈ X, (5.4)
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or equivalently,

(TJ)(x) = inf
µ∈M

sup
ν∈N

(Tµ,νJ)(x), x ∈ X. (5.5)

An important fact is that T is a contraction mapping from B(X) to B(X).
Indeed from Assumption 1.1(b), we have for all x ∈ X , µ ∈ M, and ν ∈ N ,

(Tµ,νJ)(x) ≤ (Tµ,νJ ′)(x) + α‖J − J ′‖ ξ(x).

Taking the supremum over ν ∈ N of both sides above, and then the infimum
over µ ∈ M, and using Eq. (5.5), we obtain

(TJ)(x) ≤ (TJ ′)(x) + α‖J − J ′‖ ξ(x), for all x ∈ X.

Similarly, by reversing the roles of J and J ′, we obtain

(TJ ′)(x) ≤ (TJ ′)(x) + α‖J − J ′‖ ξ(x), for all x ∈ X.

Combining the preceding two relations, we have

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ α‖J − J ′‖ ξ(x), for all x ∈ X,

and by dividing with ξ(x), and taking supremum over x ∈ X , it follows
that

‖TJ − TJ ′‖ ≤ α‖J − J ′‖.

Thus T is a contraction mapping from B(X) to B(X), with respect to
the sup-norm (5.2), with modulus α, and has a unique fixed point within
B(X), which we denote by J*.

Bellman’s Equation and Minimax Optimal Policies

Given a mapping H of the form (5.1) that satisfies Assumption 1.1, we are
interested in computing the fixed point J* of T , i.e., a function J* such
that

J*(x) = inf
u∈U(x)

sup
v∈V (x)

H(x, u, v, J*), for all x ∈ X. (5.6)

Moreover, we are interested in finding a policy µ∗ ∈ M (if it exists) that
attains the infimum for all x ∈ X as in the following equation

µ∗(x) ∈ arg min
u∈U(x)

H(x, u, J*), for all x ∈ X,

where for all x ∈ X , u ∈ U(x), and J ∈ B(X), the mapping H is defined
by

H(x, u, J) = sup
v∈V (x)

H(x, u, v, J).
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We are also interested in finding a policy ν∗ ∈ N (if it exists) that attains
the supremum for all x ∈ X as in the following equation

ν∗(x) ∈ arg max
v∈V (x)

H
(

x, µ∗(x), v, J*
)

, for all x ∈ X.

In the context of a sequential minimax problem that is addressed by
DP, the fixed point equation J* = TJ* is viewed as a form of Bellman’s
equation. In this case, J*(x) is the minimax cost starting from state x.
Moreover µ∗ is an optimal policy for the minimizer in a minimax sense,
while ν∗ is a corresponding worst case response of the maximizer . Under
suitable assumptions on H (such as convexity in u and concavity in v)
the order of minimization and maximization can be interchanged in the
preceding relations, in which case it can be shown that (µ∗, ν∗) is a saddle
point (within the space M × N ) of the minimax value Jµ,ν(x), for every
x ∈ X .

Markov Games

The simplest special case of a sequential stochastic game problem, which
relates to our abstract framework, was introduced in the paper by Shapley
[Sha53] for undiscounted finite-state problems, with a termination state,
where the Bellman operator Tµ,ν is contractive with respect to the (un-
weighted) sup-norm for all µ ∈ M, and ν ∈ N . Shapley’s work brought
the contraction mapping approach to prominence in DP and sequential
game analysis, and was subsequently extended by several authors in both
undiscounted and discounted settings; see e.g., the book by Filar and Vrieze
[FiV97], the lecture notes by Kallenberg [Kal20], and the works referenced
there. Let us now describe a class of finite-state zero-sum game problems
that descend from Shapley’s work, and are often called “Markov games”
(the name was introduced by Zachrisson [Zac64]).

Example 5.1.1 (Discounted Finite-State Markov Games)

Consider two players that play repeated matrix games at each of an infinite
number of stages, using mixed strategies. The game played at a given stage is
defined by a state x that takes values in a finite set X, and changes from one
stage to the next according to a Markov chain whose transition probabilities
are influenced by the players’ choices. At each stage and state x ∈ X, the
minimizer selects a probability distribution u = (u1, . . . , un) over n possible
choices i = 1, . . . , n, and the maximizer selects a probability distribution v =
(v1, . . . , vm) over m possible choices j = 1, . . . ,m. If the minimizer chooses
i and the maximizer chooses j, the payoff of the stage is aij(x) and depends
on the state x. Thus the expected payoff of the stage is

∑

i,j
aij(x)uivj or

u′A(x)v, where A(x) is the n × m matrix with components aij(x) (u and v
are viewed as column vectors, and a prime denotes transposition).
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The state evolves according to transition probabilities qxy(i, j), where i
and j are the moves selected by the minimizer and the maximizer, respectively
(here y represents the next state and game to be played after moves i and j
are chosen at the game represented by x). When the state is x, under u and
v, the state transition probabilities are

pxy(u, v) =

n
∑

i=1

m
∑

j=1

uivjqxy(i, j) = u′Qxyv,

where Qxy is the n × m matrix that has components qxy(i, j). Payoffs are
discounted by α ∈ (0, 1), and the objectives of the minimizer and maximizer,
are to minimize and to maximize the total discounted expected payoff, re-
spectively.

As shown by Shapley [Sha53], the problem can be formulated as a fixed
point problem involving the mapping H given by

H(x, u, v, J) = u′A(x)v + α
∑

y∈X

pxy(u, v)J(y)

= u′

(

A(x) + α
∑

y∈X

QxyJ(y)

)

v.

(5.7)

It can be verified that H satisfies the contraction Assumption 1.1 [with
ξ(x) ≡ 1]. Thus the corresponding operator T is an unweighted sup-norm
contraction, and its unique fixed point J∗ satisfies the Bellman equation

J∗(x) = (TJ∗)(x) = min
u∈U

max
v∈V

H(x, u, v, J∗), for all x ∈ X, (5.8)

where U and V denote the sets of probability distributions u = (u1, . . . , un)
and v = (v1, . . . , vm), respectively.

Since the matrix defining the mapping H of Eq. (5.7),

A(x) + α
∑

y∈X

QxyJ(y),

is independent of u and v, we may view J∗(x) as the value of a static (nonse-
quential) matrix game that depends on x. In particular, from a fundamental
saddle point theorem for matrix games, we have

min
u∈U

max
v∈V

H(x, u, v, J∗) = max
v∈V

min
u∈U

H(x, u, v, J∗), for all x ∈ X. (5.9)

It was shown by Shapley [Sha53] that the strategies obtained by solving the
static saddle point problem (5.9) correspond to a saddle point of the sequential
game in the space of strategies. Thus once we find J∗ as the fixed point of the
mapping T [cf. Eq. (5.8)], we can obtain equilibrium policies for the minimizer
and maximizer by solving the matrix game (5.9).
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Example 5.1.2 (Undiscounted Finite-State Markov Games
with a Termination State)

Here the problem is the same as in the preceding example, except that there
is no discount factor (α = 1), and in addition to the states in X, there is a
termination state t that is cost-free and absorbing. In this case the mapping
H is given by

H(x, u, v, J) = u′

(

A(x) +
∑

y∈X

QxyJ(y)

)

v, (5.10)

cf. Eq. (5.7), where the matrix of transition probabilities Qxy may be sub-
stochastic, while T has the form

(TJ)(x) = min
u∈U

max
v∈V

H(x, u, v, J). (5.11)

Assuming that the termination state t is reachable with probability one under
all policy pairs, it can be shown that the mapping H satisfies the contraction
Assumption 1.1, so results and algorithms that are similar to the ones for the
preceding example apply. This reachability assumption, however, is restric-
tive and is not satisfied when the problem has a semicontractive character,
whereby Tµ,ν is a contraction under some policy pairs but not for others. In
this case the analysis is more complicated and requires the notion of proper
and improper policies from single-player stochastic shortest path problems;
see the papers [BeT91], [PaB99], [YuB13a], [Yu14].

In the next section, we will view our abstract minimax problem, in-
volving the Bellman equation (5.6), as an optimization by a single player
who minimizes against a worst-case response by an antagonistic oppo-
nent/maximizer, and we will describe the corresponding PI algorithm. This
algorithm has been known for the case of Markov games since the 1960s. We
will highlight the main weakness of this algorithm: the computational cost
of the policy evaluation operation, which involves the solution of the maxi-
mizer’s problem for a fixed policy of the minimizer. We will then discuss an
attractive proposal by Pollatschek and Avi-Itzhak [PoA69] that overcomes
this difficulty, albeit with an algorithm that requires restrictive assump-
tions for its validity. Then, in Section 5.3, we will introduce and analyze a
new algorithm, which maintains the attractive structure of the Pollatschek
and Avi-Itzhak algorithm without requiring restrictive assumptions. We
will also show the validity of our algorithm in the context of a distributed
asynchronous implementation, as well as in an on-line context, which in-
volves one-state-at-a-time policy improvement, with the states generated
by an underlying dynamic system or Markov chain.
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5.2 RELATIONS TO SINGLE-PLAYER ABSTRACT DP
FORMULATIONS

In this section, we will reformulate our minimax problem in a way that
will bring to bear the theory of Chapter 2. In particular, we will view the
problem of finding a fixed point of the minimax operator T of Eq. (5.4)
[cf. the Bellman equation (5.6)] as a single-player optimization problem by
redefining T in terms of the mapping H given by

H(x, u, J) = sup
v∈V (x)

H(x, u, v, J), x ∈ X, u ∈ U(x), J ∈ B(X).

(5.12)
In particular, we write T as

(TJ)(x) = inf
u∈U(x)

H(x, u, J), x ∈ X, (5.13)

or equivalently, by introducing for each µ ∈ M the operator Tµ given by

(T µJ)(x) = H
(

x, µ(x), J
)

= sup
v∈V (x)

H
(

x, µ(x), v, J
)

, x ∈ X, (5.14)

we write T as

(TJ)(x) = inf
µ∈M

(TµJ)(x), x ∈ X. (5.15)

Our contraction assumption implies that all the operators Tµ, µ ∈ M, as
well as the operator T are weighted sup-norm contractions from B(X) to
B(X), with modulus α.

Thus the single-player weighted sup-norm contractive DP framework
of Chapter 2 applies directly to the operator T as defined by Eq. (5.15). In
particular, to apply this framework to a minimax problem, we start from
the mapping H of Eq. (5.12), which defines Tµ via Eq. (5.14), and then T ,
using Eq. (5.15).

PI Algorithms

In view of the preceding transformation of our minimax problem to the
single-player abstract DP formalism, the PI algorithms developed for the
latter apply, and in fact these algorithms have been known for a long time
for the special case of finite-state Markov games, cf. Examples 5.1.1 and
5.1.2.

In particular, the standard form of PI generates iteratively a sequence
of policies {µt}. The typical iteration starts with µt and computes µt+1

with a minimization that involves the optimal cost function of a maxi-
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mizer’s abstract DP problem with the minimizer’s policy fixed at µt, as
follows:†

Iteration (t + 1) of Abstract PI Algorithm from the Mini-
mizer’s Point of View

Given µt, generate µt+1 with a two-step process:

(a) Policy evaluation, which computes Jµt as the unique fixed

point of the mapping Tµt given by Eq. (5.14), i.e.,

Jµt = TµtJµt , (5.16)

or equivalently

Jµt(x) = max
v∈V (x)

H
(

x, µt(x), v, Jµt

)

, x ∈ X. (5.17)

(b) Policy improvement, which computes µt+1 as a policy that
satisfies

Tµt+1Jµt = TJµt , (5.18)

or equivalently

µt+1(x) ∈ arg min
u∈U(x)

(

max
v∈V (x)

H(x, u, v, Jµt)

)

, x ∈ X.

(5.19)

There are also optimistic forms of PI , which starting with a function
J0 ∈ B(X), generate a sequence of function-policy pairs {J t, µt} with the
algorithm

TµtJ t = TJ t, J t+1 = T
mt
µt J t, k = 0, 1, . . . , (5.20)

where {mt} is a sequence of positive integers; see Section 2.5. Here the
policy evaluation operation (5.16) that finds the fixed point of the mapping
Tµt is approximated by mt value iterations using Tµt , and starting from
J t, as in the second equation of (5.20). The convergence of the abstract
forms of these PI algorithms has been established under the additional

† Policy improvement involves an optimization operation that defines the
new/improved policy. Throughout this chapter, and in the context of PI algo-

rithms, we implicitly assume that this optimization can be carried out, i.e., that

the optimum is attained, and write accordingly “min” and “max” in place of
“inf” and “sup,” respectively.
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monotonicity assumption

TµJ ≤ TµJ ′ for all J, J ′ ∈ B(X) with J ≤ J ′, (5.21)

which is typically satisfied in DP-type single-player and two-player problem
formulations.

The drawback of the preceding PI algorithms is that the policy eval-
uation operation of Eq. (5.16) and its optimistic counterpart of Eq. (5.20)
aim to find or approximate the fixed point of Tµt , which involves a poten-
tially time-consuming maximization over v ∈ V (x); cf. the definition (5.14)
and Eq. (5.17). This can be seen from the fact that Eq. (5.17) is Bellman’s
equation for a maximizer’s abstract DP problem, where the minimizer is
known to use the policy µt. There is a PI algorithm for finite-state Markov
games, due to Pollatschek and Avi-Itzhak [PoA69], which was specifically
designed to avoid the use of maximization over v ∈ V (x) in the policy
evaluation operation. We present this algorithm next, together with a pre-
decessor PI algorithm, due to Hoffman and Karp [HoK66], which is in fact
the algorithm (5.16)-(5.19) applied to the Markov game Example 5.1.1.

The Hoffman-Karp, and Pollatschek and Avi-Itzhak Algorithms
for Finite-State Markov Games

The PI algorithm (5.16)-(5.19) for the special case of finite-state Markov
games (cf. Example 5.1.1), has been proposed by Hoffman and Karp [HoK66].
It takes the form

Jµt(x) = max
v∈V

H
(

x, µt(x), v, Jµt

)

, x ∈ X, (5.22)

where H is the Markov game mapping (5.7) (this is the policy evaluation
step), followed by solving the static minimax problem

min
u∈U

max
v∈V

H(x, u, v, Jµt), x ∈ X, (5.23)

and letting µt+1 be a policy that attains the minimum above (this is the
policy improvement step). The policy improvement subproblem (5.23) is a
matrix saddle point problem, involving the matrix

A(x) +
∑

y∈X

QxyJµt(y),

[cf. Eq. (5.10)], which is easily solvable by linear programming for each x
(this is well-known in the theory of matrix games).

However, the policy evaluation step (5.22) involves the solution of
the maximizer’s Markov decision problem, for the fixed policy µt of the
minimizer. This can be a quite difficult problem that requires an expensive
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computation. The same is true for a modified version of the Hoffman-Karp
algorithm proposed by van der Wal [Van78], which involves an approximate
policy evaluation, based on a limited number of value iterations, as in the
optimistic PI algorithm (5.20). The computational difficulty of the policy
evaluation phase of the Hoffman-Karp algorithm is also shared by other PI
algorithms for sequential games that have been suggested in the literature
in subsequent works (e.g., Patek and Bertsekas [PaB99], and Yu [Yu14]).

Following the publication of the Hoffman-Karp algorithm, another PI
algorithm for finite-state Markov games was proposed by Pollatschek and
Avi-Itzhak [PoA69], and has attracted considerable attention because it
is more computationally expedient. It generates a sequence of minimizer-
maximizer policy pairs {µt, νt} and corresponding game value functions
Jµt,νt(x), starting from each state x. In particular, the standard form of
PI generates iteratively a sequence of policies {µt}. We give this algorithm
in an abstract form, which parallels the PI algorithm (5.16)-(5.19). The
typical iteration starts with a pair (µt, νt) and computes a pair (µt+1, νt+1)
as follows:

Iteration (t + 1) of the Pollatschek and Avi-Itzhak PI Algo-
rithm in Abstract Form

Given (µt, νt), generate (µt+1, νt+1) with a two-step process:

(a) Policy evaluation, which computes Jµt,νt by solving the fixed
point equation

Jµt,νt(x) = H
(

x, µt(x), νt(x), Jµt,νt
)

, x ∈ X. (5.24)

(b) Policy improvement, which computes (µt+1, νt+1) by solving
the saddle point problem

min
u∈U

max
v∈V

H(x, u, v, Jµt,νt), x ∈ X. (5.25)

The Pollatschek and Avi-Itzhak algorithm [PoA69] is the algorithm
(5.24)-(5.25), specialized to the Markov game case of the mapping H that
involves the matrix

A(x) +
∑

y∈X

QxyJµt,νt(y),

similar to the Hoffman-Karp algorithm, cf. Eq. (5.10). A key observation is
that the policy evaluation operation (5.24) is computationally comparable
to policy evaluation in a single-player Markov decision problem, i.e., solving
a linear system of equations. In particular, it does not involve solution
of the Markov decision problem of the maximizer like the Hoffman-Karp
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PI algorithm [cf. Eq. (5.22)], or its approximate solution by multiple value
iterations, as in the van der Wal optimistic version (5.20) for Markov games.

Computational studies have shown that the Pollatschek and Avi-
Itzhak algorithm converges much faster than its competitors, when it con-
verges (see Breton et al. [BFH86], and also Filar and Tolwinski [FiT91],
who proposed a modification of the algorithm). Moreover, the number
of iterations required for convergence is fairly small. This is consistent
with an interpretation given by Pollatschek and Avi-Itzhak in their paper
[PoA69], where they have shown that their algorithm coincides with a form
of Newton’s method for solving the fixed point/Bellman equation J = TJ
(see Fig. 5.2.1).† The close connection of PI with Newton’s method is well-
known in control theory and operations research, through several works,
including Kleinman [Kle68] for linear-quadratic optimal control problems,
and Puterman and Brumelle [PuB78], [PuB79] for more abstract settings.
Its significance in reinforcement learning contexts has been discussed at
length in the author’s recent books [Ber20] and [Ber22]; see also Section
1.3.

Unfortunately, however, the Pollatschek and Avi-Itzhak algorithm is
valid only under restrictive assumptions (given in their paper [PoA69]).
The difficulty is that Newton’s method applied to the Bellman equation
J = TJ need not be globally convergent when the operator T corresponds
to a minimax problem. This is illustrated in Fig. 5.2.1, which also illus-
trates why Newton’s method (equivalently, the PI algorithm) is globally

† Newton’s method for solving a general fixed point problem of the form
z = F (z), where z is an n-dimensional vector, operates as follows: At the current
iterate zk, we linearize F and find the solution zk+1 of the corresponding linear
fixed point problem, obtained using a first order Taylor expansion:

zk+1 = F (zk) +
∂F (zk)

∂z
(zk+1 − zk),

where ∂F (zk)/∂z is the n×n Jacobian matrix of F evaluated at the n-dimensional
vector zk. The most commonly given convergence rate property of Newton’s
method is quadratic convergence. It states that near the solution z∗, we have

‖zk+1 − z∗‖ = O
(

‖zk − z∗‖2
)

,

where ‖ ·‖ is the Euclidean norm, and holds assuming the Jacobian matrix exists
and is Lipschitz continuous (see [Ber16c], Section 1.4). Qualitatively similar

results hold under other assumptions. In particular a superlinear convergence

statement (suitably modified to account for lack of differentiability of F ) can be
proved for the case where F (z) has components that are either monotonically

increasing or monotonically decreasing, and either concave or convex. In the

case of the Pollatschek and Avi-Itzhak algorithm, the main difficulty is that the
concavity/convexity condition is violated; see Fig. 5.2.1.
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{
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}
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{
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}

Figure 5.2.1 Schematic illustration of the abstract minimax PI algorithm (5.24)-
(5.25) in the case of a minimax problem involving a single state, in addition to a
termination state t; cf. Example 5.1.2. We have J∗(t) = 0 and (TJ)(t) = 0 for
all J with J(t) = 0, so that the operator T can be graphically represented in just
one dimension (denoted by J) that corresponds to the nontermination state. This
makes it easy to visualize T and geometrically interpret why Newton’s method
does not converge. Because the operator T may be neither convex nor concave
for a minimax problem, the algorithm may cycle between pairs (µ, ν) and (µ̃, ν̃),
as shown in the figure. By contrast in a (single-player) finite-state Markovian
decision problem, T has piecewise linear and concave components, and the PI
algorithm converges in a finite number of iterations. The figure illustrates an
operator T of the form

TJ = min
{

max
{

"11(J), "12(J)
}

, max
{

"21(J), "22(J)
}

}

,

where "ij(J), are linear functions of J , corresponding to the choices i = 1, 2 of the
minimizer and j = 1, 2 of the maximizer. Thus TJ is the minimum of the convex
functions

max
{

"11(J), "12(J)
}

and max
{

"21(J), "22(J)
}

,

as shown in the figure. Newton’s method linearizes TJ at the current iterate [i.e.,
replaces TJ with one of the four linear functions "ij(J), i = 1, 2, j = 1, 2 (the
one attaining the min-max at the current iterate)] and solves the corresponding
linear fixed point problem to obtain the next iterate.
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convergent in the case of a single-player finite-state Markov decision prob-
lem, as is well known. In this case each component (TJ)(x) of the function
TJ is concave and piecewise linear, thereby guaranteeing the finite ter-
mination of the PI algorithm. This is not true in the case of finite-state
minimax problems and Markov games. The difficulty is that the functions
(TJ)(x) may be neither convex nor concave in J , even though they are
piecewise linear and have a monotonicity property (cf. Fig. 5.2.1). In fact
a two-state example where the Pollatschek and Avi-Itzhak algorithm does
not converge to J* was given by van der Wal [Van78]. This example in-
volves a single state in addition to a termination state, and the algorithm
oscillates similar to Fig. 5.2.1. Note that the Hoffman-Karp algorithm does
not admit an interpretation as Newton’s method, and is not subject to the
convergence difficulties of the Pollatschek and Avi-Itzhak algorithm.

5.3 A NEW PI ALGORITHM FOR ABSTRACT MINIMAX DP
PROBLEMS

In this section, we will introduce modifications to the Pollatschek and Avi-
Itzhak algorithm, and its abstract version (5.24)-(5.25), given in the pre-
ceding section, with the aim to enhance its convergence properties, while
maintaining its favorable structure. These modifications will apply to a
general minimax problem of finding a fixed point of a suitable contractive
operator, and offer the additional benefit that they allow asynchronous,
distributed, and on-line implementations. They are also suitable for ap-
proximations based on an aggregation approach, which will be discussed in
Section 5.5.

Our PI algorithm is motivated by a line of analysis and correspond-
ing algorithms introduced by Bertsekas and Yu [BeY10], [BeY12] for dis-
counted infinite horizon DP problems, and by Yu and Bertsekas [YuB13a]
for stochastic shortest path problems (with both proper and improper poli-
cies). These algorithms were also presented in general abstract form in the
author’s book [Ber12a], as well as in Section 2.6.3. The PI algorithm of this
section uses a similar abstract formulation, but replaces the single mapping
that is minimized in these works with two mappings, one of which is min-
imized while the other is maximized. Mathematically, the difficulty of the
Pollatschek and Avi-Itzhak algorithm is that the policies (µt+1, νt+1) ob-
tained from the policy improvement/static game (5.25) are not “improved”
in a clear sense, such as

Jµt+1,νt+1(x) ≤ Jµt,νt(x), for all x ∈ X,

as they are in the case of single-player DP, where a policy improvement
property is central in the standard convergence proof of single-player PI.
Our algorithm, however, does not rely on policy improvement, but rather
derives its validity from a uniform contraction property of an underlying
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operator , to be given in Section 5.4 (cf. Prop. 5.4.2). In fact, our algorithm
does not require the monotonicity assumption (5.21) for its convergence,
and thus it can be used in minimax problems that are beyond the scope of
DP.†

As an aid to understanding intuitively the abstract framework of this
section, we note that it is patterned after a multistage process, whereby at
each stage, the following sequence of events is envisioned (cf. Fig. 5.3.1):

(1) We start at some state x1 from a space X1.

(2) The minimizer, knowing x1, chooses a control u ∈ U(x1). Then a
new state x2 from a space X2 is generated as a function of (x1, u).
(It is possible that X1 = X2, but for greater generality, we do not
assume so. Also the transition from x1 to x2 may involve a random
disturbance; see the subsequent Example 3.3.)

(3) The maximizer, knowing x2, chooses a control v ∈ V (x2). Then a
new state x1 ∈ X1 is generated.

(4) The next stage is started at x1 and the process is repeated.

If we start with x1 ∈ X1, this sequence of events corresponds to finding the
optimal minimizer policy against a worst case choice of the maximizer, and
the corresponding min-max value is denoted by J*

1 (x1). Symmetrically, if
we start with x2 ∈ X2, this sequence of events corresponds to finding the
optimal maximizer policy against a worst case choice of the minimizer, and
the corresponding max-min value is denoted by J*

2 (x2).
This type of framework can be viewed within the context of the theory

of zero-sum games in extensive form, a methodology with a long history
[Kuh53]. Games in extensive form involve sequential/alternating choices
by the players with knowledge of prior choices. By contrast, for games in
simultaneous form, such as the Markov games of the preceding section, the
players make their choices without being sure of the other player’s choices.

Fixed Point Formulation

We consider the space of bounded functions of x1 ∈ X1, denoted by B(X1),
and the space of bounded functions of x2 ∈ X2, denoted by B(X2), with
respect to the norms ‖J1‖1 and ‖J2‖2 defined by

‖J1‖1 = sup
x1∈X1

∣

∣J1(x1)
∣

∣

ξ1(x1)
, ‖J2‖2 = sup

x2∈X2

∣

∣J2(x2)
∣

∣

ξ2(x2)
, (5.26)

† For example, our algorithm can be used for the asynchronous distributed
computation of fixed points of concave operators, arising in fields like economics

and polulation dynamics. The key fact here is that a concave function can be

described as the minimum of a collection of linear functions through the classical
conjugacy operation.
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x1 x2 2 x1 x2

u v u v

u v Stage for Minimizer Stage for Maximizer

Stage for Minimizer Stage for Maximizer

Min-max value J∗

1
(x1) Max-min value

) Max-min value J∗

2
(x2)

Figure 5.3.1 Schematic illustration of the sequence of events at each stage of
the minimax problem. We start at x1 ∈ X1. The minimizer chooses a control
u ∈ U(x1), a new state x2 ∈ X2 is generated, the maximizer chooses a v ∈ V (x2),
and a new state x1 ∈ X1 is generated, etc. If the stage begins at x2 rather than
x1, this corresponds to the max-min problem. The corresponding min-max and
max-min values are J∗

1 (x1) and J∗
2 (x2), respectively.

where ξ1 and ξ2 are positive weighting functions, respectively. We also
consider the space B(X1)×B(X2) with the norm

∥

∥(J1, J2)
∥

∥ = max
{

‖J1‖1, ‖J2‖2
}

. (5.27)

We will be interested in finding a pair of functions (J*
1 , J

*
2 ) that are

the fixed point of mappings

H1 : X1 × U ×B(X2) !→ B(X1), H2 : X2 × V ×B(X1) !→ B(X2),

in the following sense: for all x1 ∈ X1 and x2 ∈ X2,

J*
1 (x1) = inf

u∈U(x1)
H1(x1, u, J*

2 ), J*
2 (x2) = sup

v∈V (x2)
H2(x2, v, J*

1 ).

(5.28)
These two equations form an abstract version of Bellman’s equation for
the infinite horizon sequential min-max problem described by the sequence
of events (1)-(4) given earlier. We will assume later (see Section 5.4) that
H1 and H2 have a contraction property like Assumption 5.1.1, which will
guarantee that (J*

1 , J
*
2 ) is the unique fixed point within B(X1)×B(X2).

Note that the fixed point problem (5.28) involves both min-max and
max-min values, without assuming that they are equal. By contrast the
algorithms of Section 5.2 aim to compute only the min-max value. In
the case of a Markov game (cf. Examples 5.1.1 and 5.1.2), the min-max
value is equal to the max-min value, but in general min-max may not be
equal to max-min, and the algorithms of Section 5.2 will only find min-
max explicitly. We will next provide an example to interpret J*

1 and J*
2 as

the min-max and max-min value functions of a sequential infinite horizon
problem involving the sequence of events (1)-(4) given earlier.
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Example 5.3.1 (Discounted Minimax Control - Explicit
Separation of the Two Players)

In this formulation of a discounted minimax control problem, the states of
the minimizer and the maximizer, respectively, at time k are denoted by
x1,k ∈ X1 and x2,k ∈ X2, and they evolve according to

x2,k+1 = f1(x1,k, uk), x1,k+1 = f2(x2,k+1, vk), k = 0, 1, . . . . (5.29)

The mappings H1 and H2 are given by

H1(x1, u, J2) = g1(x1, u) + αJ2

(

f1(x1, u)
)

, (5.30)

H2(x2, v, J1) = g2(x2, v) + αJ1

(

f2(x2, v)
)

, (5.31)

where g1 and g2 are stage cost functions for the minimizer and the maximizer,
respectively. The corresponding fixed point problem of Eq. (5.28) has the form

J∗

1 (x1) = inf
u∈U(x1)

[

g1(x1, u) + αJ∗

2

(

f1(x1, u)
)

]

, (5.32)

J∗

2 (x2) = sup
v∈V (x2)

[

g2(x2, v) + αJ∗

1

(

f2(x2, v)
)

]

. (5.33)

Example 5.3.2 (Markov Games)

We will show that the discounted Markov game of Example 5.1.1 can be
reformulated within our fixed point framework of Eq. (5.28) by letting X1 =
X, X2 = X×U , and by redefining the minimizer’s control to be a probability
distribution (u1, . . . , un), and the maximizer’s control to be one of the m
possible choices j = 1, . . . ,m.

To introduce into our problem formulation an appropriate contraction
structure that we will need in the next section, we use a scaling parameter β
such that

β > 1, αβ < 1. (5.34)

The idea behind the use of the scaling parameter β is to introduce discount-
ing into the stages of both the minimizer and the maximizer. We consider
functions J∗

1 (x) and J∗
2 (x, u) that solve the equations

J∗

1 (x) =
1
β
min
u∈U

J∗

2 (x, u), (5.35)

J∗

2 (x, u) = max

{

u′

(

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y)

)

(1), . . . ,

u′

(

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y)

)

(m)

}

,

(5.36)
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where
(

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y)

)

(j), j = 1, . . . ,m, (5.37)

denotes the jth column of the matrix

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y). (5.38)

It can be seen from these equations that

J∗

2 (x, u) = max
v∈V

u′

(

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y)

)

v, (5.39)

since the maximization over v ∈ V above is equivalent to the maximization
over the m alternatives in Eq. (5.36), which correspond to the extreme points
of the unit simplex V . Thus from Eqs. (5.35) and (5.39), it follows that the
function βJ∗

1 satisfies

(βJ∗

1 )(x) = min
u∈U

max
v∈V

u′

(

A(x) + α
∑

y∈X

Qxy(βJ
∗

1 )(y)

)

v,

so it coincides with the vector of equilibrium values J∗ of the Markov game
formulation of Example 5.1.1 [cf. Eq. (5.7)-(5.8)].

Note that J∗
2 (x, ·) is a piecewise linear function of u with at most m

pieces, defined by the columns (5.37). Thus the fixed point (J∗
1 , J

∗
2 ) can be

stored and be computed as a finite set of numbers: the real numbers J∗
1 (x),

x ∈ X, which can also be used to compute the n×m matrices

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y), x ∈ X,

whose columns define J∗
2 (x, u), cf. Eq. (5.36).

We finally observe that the two equations (5.35) and (5.39) can be
written in the form (5.28), with x1 = x, x2 = (x, u), and H1, H2 defined by

H1(x, u, J2) =
1
β
J2(x, u),

H2(x, u, v, J1) = u′

(

A(x) + αβ
∑

y∈X

QxyJ
∗

1 (y)

)

v.

An important area of application of our two-player framework is con-
trol under set-membership uncertainty within a game-against-nature for-
mulation, whereby nature is modeled as an antagonistic opponent choosing
v ∈ V (x2). Here only the min-max value is of practical interest, but our
subsequent PI methodology will find the max-min value as well. We provide
two examples of this type of formulation.
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Example 5.3.3 (Discounted Minimax Control Over an
Infinite Horizon)

Consider a dynamic system whose state evolves at each time k according to
a discrete time equation of the form

xk+1 = f(xk, uk, vk), k = 0, 1, . . . , (5.40)

where xk is the state, uk is the control to be selected from some given set
U(xk) (with perfect knowledge of xk), and vk is a disturbance that is selected
by an antagonistic nature from a set V (xk, uk) [with perfect knowledge of
(xk, uk)]. A cost g(xk, uk, vk) is incurred at time k, it is accumulated over an
infinite horizon, and it is discounted by α ∈ (0, 1). The Bellman equation for
this problem is

J∗(x) = inf
u∈U(x)

sup
v∈V (x,u)

[

g(x, u, v) + αJ∗
(

f(x, u, v)
)

]

, (5.41)

and the optimal cost function J∗ is the unique fixed point of this equation,
assuming that the cost per stage g is a bounded function.

To reformulate this problem into the fixed point format (5.28), we iden-
tify the minimizer’s state x1 with the state x of the system (5.40), and the
maximizer’s state x2 with the state-control pair (x, u). We also introduce a
scaling parameter β that satisfies β > 1 and αβ < 1; cf. Eq. (5.34). We define
H1 and H2 as follows:

H1(x, u, J2) maps (x, u, J2) to the real value
1
β
J2(x, u),

H2(x, u, v, J1) maps (x, u, v, J1)

to the real value g(x, u, v) + αβJ1

(

f(x, u, v)
)

.

Then the resulting fixed point problem (5.28) takes the form

(βJ∗

1 )(x) = inf
u∈U(x)

J∗

2 (x, u),

J∗

2 (x, u) = sup
v∈V (x,u)

[

g(x, u, v) + α(βJ∗

1 )
(

f(x, u, v)
)

]

,

which is equivalent to the Bellman equation (5.41) with J∗ = βJ∗
1 .

Example 5.3.4 (Discounted Minimax Control with Partially
Stochastic Disturbances)

Consider a dynamic system such as the one of Eq. (5.40) in the preceding
example, except that there is an additional stochastic disturbance w with
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known conditional probability distribution given (x, u, v). Thus the state
evolves at each time k according to

xk+1 = f(xk, uk, vk, wk), k = 0, 1, . . . , (5.42)

and the cost per stage is g(xk, uk, vk, wk). The Bellman equation now is

J∗(x) = inf
u∈U(x)

sup
v∈V (x,u)

Ew

{

g(x, u, v, w) + αJ∗
(

f(x, u, v, w)
)
∣

∣ x, u, v
}

, (5.43)

and J∗ is the unique fixed point of this equation, assuming that g is a bounded
function.

Similar to Example 5.3.3, we let the minimizer’s state be x, and the
maximizer’s state be (x, u), we introduce a scaling parameter β that satisfies
β > 1 and αβ < 1; cf. Eq. (5.34), and we define H1 and H2 as follows:

H1(x, u, J2) maps (x, u, J2) to the real value
1
β
J2(x, u),

H2(x, u,v, J1) maps (x, u, v, J1)

to the real value Ew

{

g(x, u, v, w) + αβJ1

(

f(x, u, v, w)
)
∣

∣ x, u, v
}

.

The resulting fixed point problem (5.28) takes the form

(βJ∗

1 )(x) = inf
u∈U(x)

J∗

2 (x, u),

J∗

2 (x, u) = sup
v∈V (x,u)

Ew

{

g(x, u, v, w) + α(βJ∗

1 )
(

f(x, u, v, w)
)
∣

∣ x, u, v
}

.

which is equivalent to the Bellman equation (5.43) with J∗ = βJ∗
1 .

Other examples of application of our abstract fixed point framework
(5.28) include two-player versions of multiplicative and exponential cost
problems. One-player cases of these problems have a long tradition in
DP; see e.g., Jacobson [Jac73], Denardo and Rothblum [DeR79], Whit-
tle [Whi81], Rothblum [Rot84], Patek [Pat01]. Abstract versions of these
problems come under the general framework of affine monotonic problems ,
for which we refer to Section 3.5.2 and the author’s paper [Ber19a] for fur-
ther discussion. Two-player versions of affine monotonic problems involve
a state space X = {1, . . . , n}, and the mapping

H(x, u, v, J) = g(x, u, v) +
n
∑

y=1

Axy(u, v)J(y), x = 1, . . . , n,

where g and Axy satisfy for all x, y = 1, . . . , n, u ∈ U(x), v ∈ V (x),

g(x, u, v) ≥ 0, Axy(u, v) ≥ 0.

Our PI algorithms can be suitably adapted to address these problems,
along the lines of the preceding examples. Of course, the corresponding
convergence analysis may pose special challenges, depending on whether
our assumptions of the next section are satisfied.
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“Naive” PI Algorithms

A PI algorithm for the fixed point problem (5.28), which is patterned after
the Pollatschek and Avi-Itzhak algorithm, generates a sequence of policy
pairs {µt, νt} ⊂ M×N and corresponding sequence of cost function pairs
{J1,µt,νt , J2,µt,νt} ⊂ B(X1)×B(X2). We use the term “naive” to indicate
that the algorithm does not address adequately the convergence issue of
the underlying Newton’s method.† Given {µt, νt} it generates {µt+1, νt+1}
with a two-step process as follows:

(a) Policy evaluation, which computes the functions {J1,µt,νt,Jt
2
, J2,µt,νt}

by solving the fixed point equations

J1,µt,νt(x1) = H1
(

x1, µt(x), J2,µt,νt
)

, x1 ∈ X1, (5.44)

J2,µt,νt(x2) = H2
(

x2, νt(x), J1,µt,νt
)

, x2 ∈ X2. (5.45)

(b) Policy improvement, which computes (µt+1, νt+1) with the mini-
mizations

µt+1(x1) ∈ arg min
u∈U(x1)

H1

(

x1, u, J2,µt,νt
)

, x1 ∈ X1, (5.46)

νt+1(x2) ∈ arg max
v∈V (x2)

H2
(

x2, v, J1,µt,νt
)

, x2 ∈ X2. (5.47)

This algorithm resembles the abstract version of the Pollatschek and
Avi-Itzhak algorithm (5.24)-(5.25) in that it involves simple policy evalu-
ations, which do not require the solution of a multistage DP problem for
either the minimizer or the maximizer. Unfortunately, however, the algo-
rithm (5.44)-(5.47) cannot be proved to be convergent, as it does not deal
effectively with the oscillatory behavior illustrated in Fig. 5.2.1.

An optimistic version of the PI algorithm (5.44)-(5.47) evaluates the
fixed point pair (J1,µt,νt , J2,µt,νt) approximately, by using some number,
say k̄ ≥ 1, of value iterations. It has the form

J1,k+1(x1) = H1
(

x1, µt(x1), J2,k
)

, x1 ∈ X1, k = 0, 1, . . . , k̄ − 1,
(5.48)

J2,k+1(x2) = H2

(

x2, νt(x2), J1,k
)

, x2 ∈ X2, k = 0, 1, . . . , k̄ − 1,
(5.49)

starting from an initial approximation (J1,0, J2,0), instead of solving the
fixed point equations (5.44)-(5.45). As k̄ (i.e., the number of value itera-
tions used for policy evaluation) increases, the pair (J1,k̄, J2,k̄) converges to

† We do not mean the term in a pejorative sense. In fact the Pollatschek and

Avi-Itzhak paper [PoA69] embodies original ideas, includes sophisticated and
insightful analysis, and has stimulated considerable followup work.
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(J1,µt,νt , J2,µt,νt), and the optimistic and nonoptimistic policy evaluations
coincide in the limit (under suitable contraction assumptions to be intro-
duced in the next section). Still the PI algorithm that uses this optimistic
policy evaluation, followed by a policy improvement operation similar to
Eqs. (5.46)-(5.47), i.e.,

µt+1(x1) ∈ arg min
u∈U(x1)

H1
(

x1, u, J2,k̄+1

)

, x1 ∈ X1, (5.50)

νt+1(x2) ∈ arg max
v∈V (x2)

H2
(

x2, v, J1,k̄+1

)

, x2 ∈ X2, (5.51)

cannot be proved convergent and is subject to oscillatory behavior. How-
ever, this optimistic algorithm can be made convergent through modifica-
tions that we describe next.

Our Distributed Optimistic Abstract PI Algorithm

Our PI algorithm for finding the solution (J*
1 , J

*
2 ) of the Bellman equation

(5.28) has structural similarity with the “naive” PI algorithm that uses
optimistic policy evaluations of the form (5.48)-(5.49) and policy improve-
ments of the form (5.50)-(5.51). It differs from the PI algorithms of the
preceding section, such as the Hoffman-Karp and van der Wal algorithms,
in two ways:

(a) It treats symmetrically the minimizer and the maximizer , in that it
aims to find both the min-max and the max-min cost functions, which
are J*

1 and J*
2 , respectively, and it ignores the possibility that we may

have J*
1 = J*

2 .

(b) It separates the policy evaluations and policy improvements of the
minimizer and the maximizer, in asynchronous fashion. In particular,
in the algorithm that we will present shortly, each iteration will consist
of only one of four operations: (1) an approximate policy evaluation
(consisting of a single value iteration) by the minimizer, (2) a policy
improvement by the minimizer, (3) an approximate policy evaluation
(consisting of a single value iteration) by the maximizer, (4) a policy
improvement by the maximizer.

The order and frequency by which these four operations are performed
does not affect the convergence of the algorithm, as long as all of these oper-
ations are performed infinitely often. Thus the algorithm is well suited for
distributed implementation. Moreover, by executing the policy evaluation
steps (1) and (3) much more frequently than the policy improvement op-
erations (2) and (4), we obtain an algorithm involving nearly exact policy
evaluation.

Our algorithm generates two sequences of function pairs,

{J t
1, J

t
2} ⊂ B(X1)×B(X2), {V t

1 , V
t
2 } ⊂ B(X1)×B(X2),
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and a sequence of policy pairs:

{µt, νt} ⊂ M ×N .

The algorithm involves pointwise minimization and maximization opera-
tions on pairs of functions, which we treat notationally as follows: For
any pair of functions (V, J) from within B(X1) or B(X2), we denote by
min[V, J ] and by max[V, J ] the functions defined on B(X1) or B(X2), re-
spectively, that take values

min[V, J ](x) = min
{

V (x), J(x)
}

, max[V, J ](x) = max
{

V (x), J(x)
}

,

for every x in X1 or X2, respectively.
At iteration t, our algorithm starts with

J t
1, V

t
1 , J

t
2, V

t
2 , µ

t, νt,

and generates
J t+1
1 , V t+1

1 , J t+1
2 , V t+1

2 , µt+1, νt+1,

by executing one of the following four operations.†

Iteration (t+ 1) of Distributed Optimistic Abstract PI Algo-
rithm

Given (J t
1, V

t
1 , J

t
2, V

t
2 , µ

t, νt), do one of the following four operations
(a)-(d):

(a) Single value iteration for policy evaluation of the mini-
mizer: For all x1 ∈ X1, set

J t+1
1 (x1) = H1

(

x1, µt(x1),max[V t
2 , J

t
2]
)

, (5.52)

and leave J t
2, V

t
1 , V

t
2 , µ

t, νt unchanged, i.e., the corresponding
(t + 1)-iterates are set to the t-iterates: J t+1

2 = J t
2, V

t+1
1 = V t

1 ,
V t+1
2 = V t

2 , µt+1 = µt, νt+1 = νt.

† The choice of operation is arbitrary at iteration t, as long as each type of

operation is executed for infinitely many t. It can be extended by introducing
“communication delays,” and state space partitioning, whereby the operations

are carried out in just a subset of the corresponding state space. This is a type of
asynchronous operation that was also used in the earlier works [BeY10], [BeY12],

[YuB13a]. It is supported by an asynchronous convergence analysis originated

in the author’s papers [Ber82], [Ber83]; see also Section 2.6.1 of the present
book, the book [BeT89], and the book [Ber12a], Section 2.6. This asynchronous

convergence analysis applies because the mapping underlying our algorithm is a

contraction with respect to a sup-norm (rather than some other norm such as an
L2 norm).
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(b) Policy improvement for the minimizer: For all x1 ∈ X1,
set

J t+1
1 (x1) = V t+1

1 (x1) = min
u∈U(x1)

H1

(

x1, u,max[V t
2 , J

t
2]
)

, (5.53)

set µt+1(x1) to a control u ∈ U(x1) that attains the above mini-
mum, and leave J t

2, V
t
2 , ν

t unchanged.

(c) Single value iteration for policy evaluation of the maxi-
mizer: For all x2 ∈ X2, set

J t+1
2 (x2) = H2

(

x2, νt(x2),min[V t
1 , J

t
1]
)

, (5.54)

and leave J t
1, V

t
1 , V

t
2 , µ

t, νt unchanged.

(d) Policy improvement for the maximizer: For all x2 ∈ X2,
set

J t+1
2 (x2) = V t+1

2 (x2) = max
v∈V (x2)

H2
(

x2, v,min[V t
1 , J

t
1]
)

, (5.55)

set νt+1(x2) to a control v ∈ V (x2) that attains the above max-
imum, and leave J t

1, V
t
1 , µ

t unchanged.

Example 5.3.5 (Our PI Algorithm for Minimax Control -
Explicit Separation of the Players)

Consider the minimax control problem with explicit separation of the two
players of Example 5.3.1, which involves the dynamic system x1,k ∈ X1 and
x2,k ∈ X2, and they evolve according to

x2,k+1 = f1(x1,k, uk), x1,k+1 = f2(x2,k+1, vk), k = 0, 1, . . . ,

[cf. Eq. (5.29)]. The Bellman equation for this problem can be broken down
into the two equations (5.32), (5.33):

J∗

1 (x1) = inf
u∈U(x1)

[

g1(x1, u) + αJ∗

2

(

f1(x1, u)
)

]

,

J∗

2 (x2) = sup
v∈V (x2)

[

g2(x2, v) + αJ∗

1

(

f2(x2, v)
)

]

.

In the context of this problem, the four operations (5.52)-(5.55) of our
PI algorithm take the following form:
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(a) Single value iteration for policy evaluation for the minimizer:
For all x1 ∈ X1, set

Jt+1
1 (x1) = g1

(

x1, µ
t(x1)

)

+αmax
[

V t
2

(

f1(x1, µ
t(x1))

)

, Jt
2

(

f1(x1, µ
t(x1))

)

]

,

(5.56)
and leave Jt

2, V
t
1 , V

t
2 , µ

t, νt unchanged.

(b) Policy improvement for the minimizer: For all x1 ∈ X1, set

Jt+1
1 (x1) = V t+1

1 (x1) = min
u∈U(x1)

[

g1(x1, u)

+ αmax
[

V t
2

(

f1(x1, u)
)

, Jt
2

(

f1(x1, u)
)]

]

,

(5.57)
set µt+1(x1) to a control u ∈ U(x1) that attains the above minimum,
and leave Jt

2, V
t
2 , ν

t unchanged.

(c) Single value iteration for policy evaluation of the maximizer:
For all x2 ∈ X2 and v ∈ V (x2), set

Jt+1
2 (x2) = g2

(

x2, ν
t(x2)

)

+αmin
[

V t
1

(

f2(x2, ν
t(x2))

)

, Jt
1

(

f2(x2, ν
t(x2))

)

]

,

(5.58)
and leave Jt

1, V
t
1 , V

t
2 , µ

t, νt unchanged.

(d) Policy improvement for the maximizer: For all x2 ∈ X2, set

Jt+1
2 (x2) = V t+1

2 (x2) = max
v∈V (x2)

[

g2(x2, v)

+ αmin
[

V t
1

(

f2(x2, v)
)

, Jt
1

(

f2(x2, v)
)]

]

,

(5.59)
set νt+1(x2) to a control u ∈ V (x2) that attains the above maximum,
and leave Jt

1, V
t
1 , µ

t unchanged.

Example 5.3.6 (Our PI Algorithm for Markov Games)

Let us consider the Markov game formulation of Example 5.3.2. Our PI
algorithm with x1, x2, H1, and H2 defined earlier, can be implemented by
storing Jt

1, V
t
1 as the real numbers Jt

1(x) and V t
1 (x), x ∈ X, and by storing

and representing the piecewise linear functions Jt
2, V

t
2 using the m columns of

the n×m matrices

A(x) + αβ
∑

y∈X

Qxy min
[

V t
1 (y), J

t
1(y)

]

, x ∈ X; (5.60)

cf. Eq. (5.36). None of the operations (5.52)-(5.55) require the solution of
a Markovian decision problem as in the Hoffman-Karp algorithm. This is
similar to the Pollatschek and Avi-Itzhak algorithm.
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More specifically, the policy evaluation (5.52) for the minimizer takes
the form

Jt+1
1 (x) =

1
β
max

[

V t+1
2

(

x, µt(x)
)

, Jt+1
2

(

x,µt(x)
)

]

, for all x ∈ X, (5.61)

while the policy improvement (5.53) for the minimizer takes the form

Jt+1
1 (x) = V t+1

1 (x) =
1
β
min
u∈U

max
[

V t+1
2 (x, u), Jt+1

2 (x, u)
]

, for all x ∈ X.

(5.62)
The policy evaluation (5.54) for the maximizer takes the form

Jt+1
2 (x, u) = u′

(

A(x) + αβ
∑

y∈X

Qxy min
[

V t
1 (y), J

t
1(y)

]

)

(

νt(x)
)

, (5.63)

for all x ∈ X and u ∈ U , while the policy improvement (5.55) for the maxi-
mizer takes the form

Jt+1
2 (x, u) = V t+1

2 (x, u)

= max

{

u′

(

A(x) + αβ
∑

y∈X

Qxy min
[

V t
1 (y), J

t
1(y)

]

)

(1), . . . ,

u′

(

A(x) + αβ
∑

y∈X

Qxy min
[

V t
1 (y), J

t
1(y)

]

)

(m)

}

,

(5.64)
for all x ∈ X and u ∈ U , where

(

A(x) + αβ
∑

y∈X

Qxy min
[

V t
1 (y), J

t
1(y)

]

)

(j)

is the jth column of the n×m matrix (5.60).
Again it can be seen that except for the extra memory storage to main-

tain V t
1 and V t

2 , the preceding PI algorithm (5.61)-(5.64) requires roughly
similar/comparable computations to the ones of the “naive” optimistic PI
algorithm (5.48)-(5.51), when applied to the Markov game model.

Discussion of our Algorithm

Let us now provide a discussion of some of the properties of our PI algo-
rithm (5.52)-(5.55). We first note that except for the extra memory storage
to maintain V t

1 and V t
2 , the algorithm requires roughly similar/comparable

computations to the ones of the “naive” optimistic PI algorithm (5.48)-
(5.51). Note also that by performing a large number of value iterations
of the form (5.52) or (5.54) we obtain an algorithm that involves nearly
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exact policy evaluation, similar to the “naive” nonoptimistic PI algorithm
(5.44)-(5.47).

Mathematically, under the contraction assumption to be introduced
in the next section, our algorithm (5.52)-(5.55) avoids the oscillatory behav-
ior illustrated in Fig. 5.2.1because it embodies a policy-dependent sup-norm
contraction, which has a uniform fixed point , the pair (J*

1 , J
*
2 ), regardless

of the policies. This is the essence of the key Prop. 5.4.2, which will be
shown in the next section.

Aside from this mathematical insight, one may gain intuition into the
mechanism of our algorithm (5.52)-(5.55), by comparing it with the opti-
mistic version of the “naive” optimistic PI algorithm (5.48)-(5.51). Our al-
gorithm (5.52)-(5.55) involves additionally the functions V t

1 and V t
2 , which

are changed only during the policy improvement operations, and tend to
provide a guarantee against oscillatory behavior. In particular, since

max[V t
2 , J

t
2] ≥ J t

2,

the iterations of the minimizer in our algorithm, (5.52) and (5.53), are more
“pessimistic” about the choices of the maximizer than the iterates of the
minimizer in the “naive” PI iterates (5.48) and (5.49). Similarly, since

min[V t
1 , J

t
1] ≤ J t

1,

the iterations of the maximizer in our algorithm, (5.54) and (5.55), are more
“pessimistic” than the iterates of the maximizer in the naive PI iterates
(5.48) and (5.49). As a result the use of V t

1 and V t
2 in our PI algorithm

makes it more conservative, and mitigates the oscillatory swings that are
illustrated in Fig. 5.2.1.

Let us also note that the use of the functions V1 and V2 in our al-
gorithm (5.52)-(5.55) may slow down the algorithmic progress relative to
the (nonconvergent) “naive” algorithm (5.44)-(5.47). To remedy this sit-
uation an interpolation device has been suggested in the paper [BeY10]
(Section V), which roughly speaking interpolates between the two algo-
rithms, while still guaranteeing the algorithm’s convergence; see also Sec-
tion 2.6.3. Basically, such a device makes the algorithm less “pessimistic,”
as it guards against nonconvergence, and it can similarly be used in our
algorithm (5.52)-(5.55).

In the next section, we will show convergence of our PI algorithm
(5.52)-(5.55) with a line of proof that can be summarized as follows. Using
a contraction argument, based on an assumption to be introduced shortly,
we show that the sequences {V t

1 } and {V t
2 } converge to some functions

V ∗
1 ∈ B(X1) and V ∗

2 ∈ B(X2), respectively. From the policy improvement
operations (5.53) and (5.55) it will then follow that the sequences {J t

1}
and {J t

2} converge to the same functions V ∗
1 and V ∗

2 , respectively, so that
min[V t

1 , J
t
1] and max[V t

2 , J
t
2] converge to V ∗

1 and V ∗
2 , respectively, as well.
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Using the continuity of H1 and H2 (a consequence of our contraction as-
sumption), it follows from Eqs. (5.53) and (5.55) that (V ∗

1 , V
∗
2 ) is the fixed

point of H1 and H2 [in the sense of Eq. (5.28)], and hence is also equal to
(J*

1 , J
*
2 ) [cf. Eq. (5.28)]. Thus we finally obtain convergence:

V t
1 → J*

1 , J t
1 → J*

1 , V t
2 → J*

2 , J t
2 → J*

2 .

5.4 CONVERGENCE ANALYSIS

For each µ ∈ M, we consider the operator T1,µ that maps a function
J2 ∈ B(X2) into the function of x1 given by

(T1,µJ2)(x1) = H1
(

x1, µ(x1), J2
)

, x1 ∈ X1. (5.65)

Also for each ν ∈ N , we consider the operator T2,ν that maps a function
J1 ∈ B(X1) into the function of x2 given by

(T2,νJ1)(x2) = H2
(

x2, ν(x2), J1
)

, x2 ∈ X2. (5.66)

We will also consider the operator Tµ,ν that maps a function (J1, J2) ∈
B(X1)×B(X2) into the function of (x1, x2) ∈ X1 ×X2, given by

(

Tµ,ν(J1, J2)
)

(x1, x2) =
(

(T1,µJ2)(x1), (T1,νJ1)(x2)
)

. (5.67)

[Recall here that the norms on B(X1), B(X2), and B(X1) × B(X2) are
given by Eqs. (5.26) and (5.27).]

We will show convergence of our algorithm assuming the following.

Assumption 5.4.1: (Contraction Assumption) Consider the op-
erator Tµ,ν given by Eq. (5.67).

(a) For all (µ, ν) ∈ M × N , and (J1, J2) ∈ B(X1) × B(X2), the
function Tµ,ν(J1, J2) belongs to B(X1)×B(X2).

(b) There exists an α ∈ (0, 1) such that for all (µ, ν) ∈ M×N , Tµ,ν

is a contraction mapping of modulus α within B(X1)×B(X2).

By writing the contraction property as

max
{

‖T1,µJ2 − T1,µJ ′
2‖1, ‖T2,νJ1 − T2,νJ ′

1‖2
}

≤ αmax
{

‖J1 − J ′
1‖1, ‖J2 − J ′

2‖2
}

,
(5.68)

for all J1, J ′
1 ∈ B(X1) and J2, J ′

2 ∈ B(X2) [cf. the norm definition (5.27)],
we have

‖T1,µJ2 − T1,µJ ′
2‖1 ≤ α‖J2 − J ′

2‖2, for all J2, J ′
2 ∈ B(X2), (5.69)
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and

‖T2,νJ1 − T2,νJ ′
1‖2 ≤ α‖J1 − J ′

1‖1, for all J1, J ′
1 ∈ B(X1); (5.70)

[set J1 = J ′
1 or J2 = J ′

2, respectively, in Eq. (5.68)]. From these relations,
we obtain†

‖T1J2 − T1J ′
2‖1 ≤ α‖J2 − J ′

2‖2, for all J2, J ′
2 ∈ B(X2), (5.71)

and

‖T2J1 − T2J ′
1‖2 ≤ α‖J1 − J ′

1‖1, for all J1, J ′
1 ∈ B(X1), (5.72)

where

(T1J2)(x1) = inf
µ∈M

(T1,µJ2)(x1) = inf
u∈U(x1)

H1(x1, u, J2), x1 ∈ X1,

(T2J1)(x2) = sup
ν∈N

(T2,νJ1)(x2) = sup
v∈V (x2)

H2(x2, v, J1), x2 ∈ X2.

The relations (5.71)-(5.72) also imply that the operator

T : B(X1)×B(X2) !→ B(X1)×B(X2),

defined by
T (J1, J2) = (T1J2, T2J1), (5.73)

is a contraction mapping from B(X1) × B(X2) to B(X1) × B(X2) with
modulus α. It follows that T has a unique fixed point (J*

1 , J
*
2 ) ∈ B(X1)×

B(X2). We will show that our algorithm yields in the limit this fixed point.

† For a proof, we write Eq. (5.69) as

(T1,µJ2)(x1) ≤ (T1,µJ
′

2)(x1) + α‖J2 − J ′

2‖2 ξ1(x1),

(T2,µJ2)(x1) ≤ (T2,µJ
′

2)(x1) + α‖J2 − J ′

2‖2 ξ1(x1),

for all x1 ∈ X1. By taking infimum of both sides over µ ∈ M, we obtain

∣

∣(T1J2)(x1)− T1J
′
2)(x1)

∣

∣

ξ1(x1)
≤ α‖J2 − J ′

2‖2,

and by taking supremum over x1 ∈ X1, the desired relation

‖T1J2 − T1J
′

2‖1 ≤ α‖J2 − J ′

2‖2

follows. The proof of the other relation, ‖T2J1−T2J
′
1‖2 ≤ α‖J1−J ′

1‖1, is similar.
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The following is our main convergence result [convergence here is
meant in the sense of the norm (5.27) on B(X1)×B(X2)]. Note that this
result applies to any order and frequency of policy evaluations and policy
improvements of the two players.

Proposition 5.4.1: (Convergence) Let Assumption 5.4.1 hold,
and assume that each of the four operations of the PI algorithm (5.52)-
(5.55) is performed infinitely often. Then the sequences

{

(J t
1, J

t
2)
}

and
{

(V t
1 , V

t
2 )
}

generated by the algorithm converge to (J*
1 , J

*
2 ).

The proof is long but follows closely the steps of the proof for the
single-player abstract DP case in Section 2.6.3.

An Extended Algorithm and its Convergence Proof

We first show the following lemma.

Lemma 5.4.1: For all (V1, V2), (J1, J2), (V ′
1 , V

′
2), (J

′
1, J

′
2) ∈ B(X1) ×

B(X2), we have

∥

∥min[V1, J1]−min[V ′
1 , J

′
1]
∥

∥

1
≤ max

{

‖V1−V ′
1‖1, ‖J1−J ′

1‖1
}

, (5.74)

∥

∥max[V2, J2]−min[V ′
2 , J

′
2]
∥

∥

2
≤ max

{

‖V2−V ′
2‖2, ‖J2−J ′

2‖2
}

. (5.75)

Proof: For every x1 ∈ X1, we write

V1(x1)

ξ1(x1)
≤

V ′
1(x1)

ξ1(x1)
+ max

{

‖V1 − V ′
1‖1, ‖J1 − J ′

1‖1
}

,

J1(x1)

ξ1(x1)
≤

J ′
1(x1)

ξ1(x1)
+ max

{

‖V1 − V ′
1‖1, ‖J1 − J ′

1‖1
}

,

from which we obtain

min
{

V1(x1), J1(x1)
}

ξ1(x1)
≤

min
{

V ′
1(x1), J ′

1(x1)
}

ξ1(x1)
+max

{

‖V1−V ′
1‖1, ‖J1−J ′

1‖1
}

,

so that

min
{

V1(x1), J1(x1)
}

−min
{

V ′
1(x1), J ′

1(x1)
}

ξ1(x1)
≤ max

{

‖V1−V ′
1‖1, ‖J1−J ′

1‖1
}

.
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By exchanging the roles of (V1, J1) and (V ′
1 , J

′
1), and combining the two

inequalities, we have
∣

∣

∣
min

{

V1(x1), J1(x1)
}

−min
{

V ′
1(x1), J ′

1(x1)
}

∣

∣

∣

ξ1(x1)
≤ max

{

‖V1−V ′
1‖1, ‖J1−J ′

1‖1
}

,

and by taking the supremum over x1 ∈ X1, we obtain Eq. (5.74). We
similarly prove Eq. (5.75). Q.E.D.

We consider the spaces of bounded functions Q1(x1, u) of (x1, u) ∈
X1 × U and Q1(x2, v) of (x2, v) ∈ X2 × V , with norms

‖Q1‖1 = sup
x1∈X1, u∈U

∣

∣Q1(x1, u)
∣

∣

ξ1(x1)
, ‖Q2‖2 = sup

x2∈X2, v∈V

∣

∣Q2(x2, v)
∣

∣

ξ2(x2)
,

(5.76)
respectively, where ξ1 and ξ2 are the weighting functions that define the
norm of B(X1) and B(X2) [cf. Eq. (5.26)]. We denote these spaces by
B(X1 × U) and B(X2 × V ), respectively. Functions in these spaces have
the meaning of Q-factors for the minimizer and the maximizer .

We next introduce a new operator, denoted byGµ,ν , which is parametri-
zed by the policy pair (µ, ν), and will be shown to have a common fixed
point for all (µ, ν) ∈ M×N , from which (J*

1 , J
*
2 ) can be readily obtained.

The operator Gµ,ν involves operations on Q-factor pairs (Q1, Q2) for the
minimizer and the maximizer, in addition to functions of state (V1, V2),
and is used define an “extended” PI algorithm that operates over a larger
function space than the one of Section 5.3. Once the convergence of this
“extended” PI algorithm is shown, the convergence of our algorithm of
Section 5.3 will readily follow.

To define the operator Gµ,ν , we note that it consists of four compo-
nents, maps B(X1) × B(X2) × B(X1 × U) × B(X2 × V ) into itself. It is
given by

Gµ,ν(V1, V2, Q1, Q2) =
(

M1,ν(V2, Q2),M2,µ(V1, Q1),

F1,ν(V2, Q2), F2,µ(V1, Q1)
)

,
(5.77)

with the functionsM1,ν(V2, Q2),M2,µ(V1, Q1), F1,ν(V2, Q2), F2,µ(V1, Q1), de-
fined as follows:

• M1,ν(V2, Q2): This is the function of x1 given by

(

M1,ν(V2, Q2)
)

(x1) =
(

T1 max[V2, Q̂2,ν ]
)

(x1)

= inf
u∈U(x1)

H1
(

x1, u,max[V2, Q̂2,ν ]
)

,
(5.78)

where Q̂2,ν is the function of x2 given by

Q̂2,ν(x2) = Q2
(

x2, ν(x2)
)

. (5.79)
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• M2,µ(V1, Q1): This is the function of x2 given by

(

M2,µ(V1, Q1)
)

(x2) =
(

T2 min[V1, Q̂1,µ]
)

(x2)

= sup
v∈V (x2)

H2
(

x2, v,min[V1, Q̂1,µ]
)

, (5.80)

where Q̂1,µ is the function of x1 given by

Q̂1,µ(x1) = Q1
(

x1, µ(x1)
)

. (5.81)

• F1,ν(V2, Q2): This is the function of (x1, u), given by

F1,ν(V2, Q2)(x1, u) = H1
(

x1, u,max[V2, Q̂2,ν ]
)

. (5.82)

• F2,µ(V1, Q1): This is the function of (x2, v), given by

F2,µ(V1, Q1)(x2, v) = H2
(

x2, v,min[V1, Q̂1,µ]
)

. (5.83)

Note that the four components of Gµ,ν correspond to the four oper-
ations of our algorithm (5.52)-(5.55). In particular,

• M1,ν(V2, Q2) corresponds to policy improvement of the minimizer.

• M2,µ(V1, Q1) corresponds to policy improvement of the maximizer.

• F1,ν(V2, Q2) corresponds to policy evaluation of the minimizer.

• F2,µ(V1, Q1) corresponds to policy evaluation of the maximizer.

The key step in our convergence proof is to show that Gµ,ν has a
contraction property with respect to the norm on B(X1)×B(X2)×B(X1×
U)×B(X2 × V ) given by

∥

∥(V1, V2, Q1, Q2)
∥

∥ = max
{

‖V1‖1, ‖V2‖2, ‖Q1‖1, ‖Q2‖2
}

, (5.84)

where ‖V1‖1, ‖V2‖2 are the weighted sup-norms of V1, V2, respectively,
defined by Eq. (5.26), and ‖Q1‖1, ‖Q2‖2 are the weighted sup-norms of Q1,
Q2, defined by Eq. (5.76). Moreover, the contraction property is uniform,
in the sense that the fixed point of Gµ,ν does not depend on (µ, ν). This
means that we can carry out iterations with Gµ,ν , while changing µ and
ν arbitrarily between iterations, and still aim at the same fixed point . We
have the following proposition.
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Proposition 5.4.2: (Uniform Contraction) Let Assumption 5.4.1
hold. Then for all (µ, ν) ∈ M×N , the operator Gµ,ν is a contraction
mapping with modulus α with respect to the norm of Eqs. (5.84),
(5.26), and (5.76). Moreover, the corresponding fixed point of Gµ,ν is
(J*

1 , J
*
2 , Q

*
1, Q

*
2) [independently of the choice of (µ, ν)], where (J*

1 , J
*
2 )

is the fixed point of the mapping T of Eq. (5.73), and Q*
1, Q

*
2 are the

functions defined by

Q*
1(x1, u) = H1(x1, u, J*

2 ), x1 ∈ X1, u ∈ U(x1), (5.85)

Q*
2(x2, v) = H2(x2, v, J*

1 ), x2 ∈ X2, v ∈ V (x2). (5.86)

Proof: We prove the contraction property of Gµ,ν by breaking it down to
four inequalities, which hold for all (V1, V2), (V ′

1 , V
′
2) ∈ B(X1)×B(X2) and

(Q1, Q2), (Q′
1, Q

′
2) ∈ B(X1, U)×B(X2, V ). In particular, we have

∥

∥M1,ν(V2, Q2)−M1,ν (V
′

2 , Q
′

2)
∥

∥

1
=
∥

∥

∥
T1

(

max[V2, Q̂2,ν ]
)

− T1

(

max[V ′

2 , Q̂
′

2,ν ]
)

∥

∥

∥

1

≤ α
∥

∥max[V2, Q̂2,ν ]2 −max[V ′

2 , Q̂
′

2,ν ]
∥

∥

2

≤ αmax
{

‖V2 − V ′

2‖2, ‖Q̂2,ν − Q̂′

2,ν‖2
}

≤ αmax
{

‖V2 − V ′

2‖2, ‖Q2 −Q′

2‖2
}

≤ αmax
{

‖V1 − V ′

1‖1, ‖Q1 −Q′

1‖1,

‖V2 − V ′

2‖2, ‖Q2 −Q′

2‖2
}

= α
∥

∥(V1, V2, Q1, Q2)− (V ′

1 , V
′

2 , Q
′

1, Q
′

2)
∥

∥,
(5.87)

where the first equality uses the definitions of M1,ν(V2, Q2), M1,ν(V ′
2 , Q

′
2)

[cf. Eqs. (5.78) and (5.80)], the first inequality follows from Eq. (5.69), the
second inequality follows using Lemma 5.4.1, the third inequality follows
from the definition of Q̂2,ν and Q̂′

2,ν , the last inequality is trivial, and the
last equality follows from the norm definition (5.84). Similarly, we prove
that
∥

∥M2,µ(V1, Q1)−M2,µ(V ′
1 , Q

′
1)
∥

∥

2
≤ α

∥

∥(V1, V2, Q1, Q2)− (V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥,
(5.88)

∥

∥F1,ν(V2, Q2)− F1,ν(V ′
2 , Q

′
2)
∥

∥

1
≤ α

∥

∥(V1, V2, Q1, Q2)− (V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥,
(5.89)

∥

∥F2,µ(V1, Q1)− F2,µ(V ′
1 , Q

′
1)
∥

∥

2
≤ α

∥

∥(V1, V2, Q1, Q2)− (V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥.
(5.90)

From the preceding relations (5.87)-(5.90), it follows that each of the
four components of the maximization that comprises the norm

∥

∥Gµ,ν(V1, V2, Q1, Q2)−Gµ,ν(V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥
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[cf. Eq. (5.77)] is less or equal to

α
∥

∥(V1, V2, Q1, Q2)− (V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥.

Thus we have
∥

∥Gµ,ν(V1, V2, Q1, Q2)−Gµ,ν(V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥

≤ α
∥

∥(V1, V2, Q1, Q2)− (V ′
1 , V

′
2 , Q

′
1, Q

′
2)
∥

∥,

which shows the desired contraction property of Gµ,ν .
In view of the contraction property just shown, the mapping Gµ,ν

has a unique fixed point for each (µ, ν) ∈ M × N , which we denote by
(V1, V2, Q1, Q2) [with some notational abuse, we do not show the possible
dependence of the fixed point on (µ, ν)]. In view of Eqs. (5.77)-(5.83),
this fixed point satisfies for all x1 ∈ X1, x2 ∈ X2, (x1, u) ∈ X1 × U ,
(x2, v) ∈ X2 × V ,

V1(x1) = inf
u′∈U(x1)

H1

(

x1, u′,max[V2, Q̂2,ν]
)

, (5.91)

V2(x2) = sup
v′∈V (x2)

H2
(

x2, v′,min[V1, Q̂1,µ]
)

, (5.92)

Q1(x1, u) = H1
(

x1, u,max[V2, Q̂2,ν ]
)

, Q2(x2, v) = H2
(

x2, v,min[V1, Q̂1,µ]
)

.
(5.93)

By comparing the preceding two relations, it follows that for all x1 ∈ X1,
x2 ∈ X2,

V1(x1) ≤ Q1(x1, u), for all x1, u ∈ U(x1),

V2(x2) ≥ Q2(x2, v), for all x2, v ∈ V (x2),

which implies that

min[V1, Q̂1,µ] = V1, max[V2, Q̂2,ν] = V2.

Using Eqs. (5.91)-(5.92), this in turn shows that

V1(x1) = inf
u∈U(x1)

H1(x1, u, V2), V2(x2) = sup
v∈V (x2)

H2(x2, v, V1).

Thus, independently of (µ, ν), (V1, V2) is the unique fixed point of the
contraction mapping T of Eq. (5.73), which is (J*

1 , J
*
2 ). Moreover from Eq.

(5.93), we have that (Q1, Q2) is precisely (Q∗
1, Q

∗
2) as given by Eqs. (5.85)

and (5.86). This shows that, independently of (µ, ν), the fixed point of
Gµ,ν is (J*

1 , J
*
2 , Q

∗
1, Q

∗
2), and proves the desired result. Q.E.D.

The preceding proposition implies the convergence of the “extended”
algorithm, which at each iteration t applies one of the four components of
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Gµt,νt evaluated at the current iterate (V t
1 , V

t
2 , Q

t
1, Q

t
2, µ

t, νt), and updates
this iterate accordingly. This algorithm is well-suited for the calculation
of both (J*

1 , J
*
2 ) and (Q*

1, Q
*
2). However, since we are just interested to

calculate (J*
1 , J

*
2 ), a simpler and more efficient algorithm is possible, which

is in fact our PI algorithm based on the four operations (5.52)-(5.55). To
this end, we observe that the algorithm that updates (V t

1 , V
t
2 , Q

t
1, Q

t
2, µ

t, νt)
can be operated so that it does not require the maintenance of the full
Q-factor functions (Qt

1, Q
t
2). The reason is that the values Qt

1(x1, u) and
Qt

2(x2, v) with u *= µt(x1) and v *= νt(x2), do not appear in the calculations,
and hence we need only the values Q̂t

1,µt(x1) and Q̂t
2,νt

(x2), which we store

in functions J t
1 and J t

2, i.e., we set

J t
1(x1) = Q̂t

1,µt(x1) = Qt
1

(

x1, µt(x)
)

,

J t
2(x2) = Q̂t

2,νt
(x2) = Qt

2

(

x2, νt(x2)
)

.

Once we do that, the resulting algorithm is precisely our PI algorithm
(5.52)-(5.55).

In summary, our PI algorithm that updates (V t
1 , V

t
2 , J

t
1, J

t
2, µ

t, νt) is
a reduced space implementation of the asynchronous fixed point algorithm
that updates (V t

1 , V
t
2 , Q

t
1, Q

t
2, µ

t, νt) using the uniform contraction mapping
Gµt,νt , with the identifications

J t
1 = Q̂1,µt , J t

2 = Q̂2,νt .

This proves its convergence as stated in Prop. 5.4.1.

5.5 APPROXIMATION BY AGGREGATION

Our algorithm of Section 5.3 involves exact implementation without func-
tion approximations, and thus is not suitable for large state and control
spaces. An important research direction is approximate implementations
based on our PI algorithmic structure of Section 5.3, whereby we use ap-
proximation in value space with cost function approximations obtained
through reinforcement learning methods. An interesting algorithmic ap-
proach is aggregation with representative states, as described in the book
[Ber19b] (Section 6.1).

In particular, let us consider the minimax formulation of Example
5.3.1 and Eqs. (5.29), (5.32), (5.33), which involves separate state spaces
X1 and X2 for the minimizer and the maximizer, respectively. In the
aggregation with representative states formalism, we execute our PI algo-
rithm over reduced versions of the spaces X1 and X2. In particular, we
discretize X1 and X2 by using suitable finite collections of representative
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u v u v

1 x2 ∈ X2 2 x̃2 ∈ X̃2 2 x1 ∈ X1

) Aggregation Probabilities
) Aggregation Probabilities

x̃1 ∈ X̃1

Min-max value J̃1(x̃1) for representative states x̃1 ∈ X̃1

provement Bellman Equation Value Iterations Approximation with
) Aggregation Probabilities

) Aggregation Probabilities

provement Bellman Equation Value Iterations Approximation with

2 x̄1 ∈ X̃1

2 Stage for the minimizer in the aggregate problem

Figure 5.5.1 Schematic illustration of an aggregation framework that is pat-
terned after the sequence of events of the multistage process of Fig. 5.3.1. The
aggregate problem is specified by a finite subset of representative states X̃1 ⊂ X1,
a finite subset of representative states X̃2 ⊂ X2, and aggregation probabilities for
passing from states x2 ∈ X2 to representative states x̃2 ∈ X̃2, and for passing from
states x1 ∈ X1 to representative states x̃1 ∈ X̃1. A stage starts at a representa-
tive state x̃1 ∈ X̃1 and ends at some other representative state x̄1 ∈ X̃1, by going
successively through a state x2 ∈ X2 under the influence of the minimizer’s choice
u ∈ U(x̃1), then to a representative state x̃2 ∈ X̃2 using aggregation probabilities
φx2x̃2

(i.e., the transition x2 → x̃2 takes place with probability φx2x̃2
), then to a

state x1 ∈ X1 under the influence of the maximizer’s choice v ∈ V (x̃2), and finally
to x̄1 ∈ X̃1 using aggregation probabilities φx1x̄1

(the transition x1 → x̄1 takes
place with probability φx1x̄1

). The transitions x̃1 → x2 and x̃2 → x1 produce
costs g1(x̃1, u) and g2(x̃2, v), respectively [cf. Eqs. (5.30), (5.31)]. The aggrega-
tion probabilities φx2x̃2

and φx1x̄1
can be arbitrary. However, their choice affects

the min-max and max-min functions of the aggregate problem.
We can solve the aggregate problem by using simulation-based versions of

our PI algorithm (5.52)-(5.55) of Section 5.3 to obtain the min-max and max-
min functions J̃1(x̃1) and J̃2(x̃2) at all the representative states x̃1 ∈ X̃1 and
x̃2 ∈ X̃2, respectively [cf. [Ber19b] (Chapter 6)]. Then, min-max and max-min
function approximations are computed from

J̃1(x1) =
∑

x̃1∈X̃1

φx1x̃1
J̃1(x̃1), J̃2(x2) =

∑

x̃2∈X̃2

φx2x̃2
J̃2(x̃2).

Suboptimal decision choices by the minimizer and the maximizer are then ob-
tained from the one-step lookahead optimizations

min
u∈U(x1)

H1(x1, u, J̃2), max
v∈V (x2)

H2(x2, v, J̃1).

See the book [Ber19b] (Section 6.1) and the paper [Ber18a] for a detailed ac-
counting of the aggregation approach with representative states for single-player
infinite horizon DP.

states X̃1 ⊂ X1 and X̃2 ⊂ X2, and construct a lower-dimensional aggre-
gate problem. The typical stage involves transitions between representative
states, with intermediate artificial transitions x1 → x̃1 and x2 → x̃2, which
involve randomization with aggregation probabilities φx1x̃1 and φx2x̃2 , re-
spectively; see Fig. 5.5.1.

The structure of the aggregate problem is amenable to a DP formu-
lation, and as a result, it can be solved by using simulation-based versions
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of the PI methods of Section 5.3 [we refer to the book [Ber19b] (Chapter
6) for more details]. The cost function approximations thus obtained, call
them J̃1, J̃2, are used in the one-step lookahead minimization

min
u∈U(x1)

H1(x1, u, J̃2),

to obtain a suboptimal minimizer’s policy, and in the one-step lookahead
maximization

max
v∈V (x2)

H2(x2, v, J̃1),

to obtain a suboptimal maximizer’s policy.
The aggregation with representative states approach has the advan-

tage that it maintains the DP structure of the original minimax problem.
This allows the use of our PI methods of Section 5.3, with convergence
guaranteed by the results of Section 5.4. Another aggregation approach
that can be similarly used within our context, is hard aggregation, whereby
the state spaces X1 and X2 are partitioned into subsets that form aggre-
gate states; see [Ber18a], [Ber18b], [Ber19b]. Other reinforcement learning
methods, based for example on the use of neural networks, can also be
used for approximate implementation of our PI algorithms. However, their
convergence properties are problematic, in the absence of additional as-
sumptions. The papers by Bertsekas and Yu ([BeY12], Sections 6 and 7),
and by Yu and Bertsekas [YuB13a] (Section 4), also describe alternative
simulation-based approximation possibilities that may serve as a starting
point for minimax PI algorithms with function approximation.

5.6 NOTES AND SOURCES

In this chapter, we have discussed PI algorithms that are specifically tai-
lored to sequential zero-sum games and minimax problems with a contrac-
tive abstract DP structure. We used as starting point the methods by
Hoffman and Karp [HoK66], and by Pollatschek and Avi-Itzhak [PoA69]
for discounted and terminating zero-sum Markov games. Related methods
have been discussed for Markov games by van der Wal [Van78], Tolwin-
ski [Tol89], Filar and Tolwinski [FiT91], Filar and Vrieze [FiV96], and for
stochastic shortest games, by Patek and Bertsekas [PaB99], and Yu [Yu14];
see also Perolat et al. [PPG16], [PSP15], and the survey by Zhang, Yang,
and Basar [ZYB21] for related reinforcement learning methods. Our al-
gorithms of Section 5.3 resolve the long-standing convergence difficulties
of the Pollatschek and Avi-Itzhak PI algorithm [PoA69], and allow an
asynchronous implementation, whereby the policy evaluation and policy
improvement operations can be done in any order and with different fre-
quencies. Moreover, our algorithms find simultaneously the min-max and
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the max-min values, and they are suitable for Markov zero-sum game prob-
lems, as well as for minimax control problems involving set-membership
uncertainty.

While we have not addressed in detail the issue of asynchronous dis-
tributed implementation in a multiprocessor system, our algorithm admits
such an implementation, as has been discussed for its single-player counter-
parts in the papers by Bertsekas and Yu [BeY10], [BeY12], [YuB13a], and
also in a more abstract form in the author’s books [Ber12a] and [Ber20]. In
particular, there is a highly parallelizable and convergent distributed im-
plementation, which is based on state space partitioning, and asynchronous
policy evaluation and policy improvement operations within each set of the
partition. The key idea, which forms the core of asynchronous DP algo-
rithms [Ber82], [Ber83] (see also the books [BeT89], [Ber12a], [Ber20]) is
that the mapping Gµ,ν of Eq. (5.77) has two components for every state
(policy evaluation and policy improvement) for the minimizer and two cor-
responding components for every state for the maximizer. Because of the
uniform sup-norm contraction property of Gµ,ν , iterating with any one of
these components, and at any single state, does not impede the progress
made by iterations with the other components, while making eventual
progress towards the solution.

In view of its asynchronous convergence capability, our framework is
also suitable for on-line implementations where policy improvement and
evaluations are done at only one state at a time. In such implementations,
the algorithm performs a policy improvement at a single state, followed by
a number of policy evaluations at other states, with the current policy pair
(µt, νt) evaluated at only one state x at a time, and the cycle is repeated.
One may select states cyclically for policy improvement, but there are al-
ternative possibilities, including the case where states are selected on-line
as the system operates. An on-line PI algorithm of this type, which may
also be operated as a rollout algorithm (a control selected by a policy im-
provement at each encountered state), was given recently in the author’s
paper [Ber21a], and can be straightforwardly adapted to the minimax and
Markov game cases of this chapter.

Other algorithmic possibilities, also discussed in the works just noted,
involve the presence of “communication delays” between processors, which
roughly means that the iterates generated at some processors may involve
iterates of other processors that are out-of-date. This is possible because
the asynchronous convergence line of analysis framework of [Ber83] in com-
bination with the uniform weighted sup-norm contraction property of Prop.
5.4.2 can tolerate the presence of such delays. Implementations that involve
forms of stochastic sampling have also been given in the papers [BeY12],
[YuB13a].

An important issue for efficient implementation of our algorithm is the
relative frequency of policy improvement and policy evaluation operations.
If a very large number of contiguous policy evaluation operations, using the
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same policy pair (µt, νt), is done between policy improvement operations,
the policy evaluation is nearly exact. Then the algorithm’s behavior is
essentially the same as the one of the nonoptimistic algorithm where policy
evaluation is done according to

J1,µt,νt(x1) = H1

(

x1, µt(x1),max
[

V t
2 , J2,µt,νt

]

)

, x1 ∈ X1,

J2,µt,νt(x2) = H2

(

x2, νt(x2),min
[

V t
1 , J1,µt,νt

]

)

, x2 ∈ X2,

cf. Eqs. (5.44)-(5.45) (in the context of Markovian decision problems, this
type of policy evaluation involves the solution of an optimal stopping
problem; cf. the paper [BeY12]). Otherwise the policy evaluation is in-
exact/optimistic, and in the extreme case where only one policy evaluation
is done between policy improvements, the algorithm resembles a value iter-
ation method. Based on experience with optimistic PI, it appears that the
optimal number of policy evaluations between policy improvements should
be substantially larger than one, and should also be problem-dependent.

We mention the possibility of extensions to other related minimax
and Markov game problems. In particular, the treatment of undiscounted
problems that involve a termination state can be patterned after the dis-
tributed asynchronous PI algorithm for stochastic shortest path problems
by Yu and Bertsekas [YuB13a], and will be the subject of a separate re-
port. A related area of investigation is on-line algorithms applied to robust
shortest path planning problems, where the aim is to reach a termination
state at minimum cost and against the actions of an antagonistic oppo-
nent. The author’s paper [Ber19c] (see also Section 3.5.3) has provided
analysis and algorithms, some of the PI type, for these minimax versions
of shortest path problems, and has given many references of related works.
Still our PI algorithm of Section 5.3, appropriately extended, offers some
substantial advantages within the shortest path context, in both a serial
and a distributed computing environment.

Note that a sequential minimax problem with a finite horizon may
be viewed as a simple special case of an infinite horizon problem with a
termination state. The PI algorithms of the present chapter are directly
applicable and can be simply modified for such a problem. In conjunction
with function approximation methods, such as the aggregation method
described earlier, they may provide an attractive alternative to exact, but
hopelessly time-consuming solution approaches.

For an interesting class of finite horizon problems, consider a two-
stage “robust” version of stochastic programming, patterned after Ex-
ample 5.3.3 and Eq. (5.42). Here, at an initial state x0, the decision
maker/minimizer applies a decision u0 ∈ U(x0), an antagonistic nature
chooses v0 ∈ V (x0, u0), and a random disturbance w0 is generated ac-
cording to a probability distribution than depends on (x0, u0, v0). A cost
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g0(x0, u0, v0, w0) is then incurred and the next state

x1 = f(x0, u0, v0, w0)

is generated. Then the process is repeated at the second stage, with
(x1, u1, v1, w1) replacing (x0, u0, v0, w0), and finally a terminal cost G2(x2)
is incurred where

x2 = f(x1, u1, v1, w1).

Here the decision maker aims to minimize the expected total cost assuming
a worst-case selection of (v0, v1). The maximizing choices (v0, v1) may have
a variety of problem-dependent interpretations, including prices affecting
the costs g0, g1, G2, and forecasts affecting the probability distributions
of the disturbances (w0, w1). The distributed asynchronous PI algorithm
of Section 5.3 is easily modified for this problem, and similarly can be
interpreted as Newton’s method for solving a two-stage version of Bellman’s
equation. Exact solution of the problem may be a daunting computational
task, but a satisfactory suboptimal solution, along the lines of Section 5.5,
using approximation in value space with function approximation based on
aggregation may prove feasible.

Finally, let us note a theoretical use of our line of analysis that is
based on uniform contraction properties. It may form the basis for a rigor-
ous mathematical treatment of PI algorithms in stochastic two-player DP
models that involve universally measurable policies. We refer to the paper
by Yu and Bertsekas [YuB15], where the associated issues of validity and
convergence of PI methods for single-player problems have been addressed
using algorithmic ideas that are closely related to the ones of the present
chapter.



APPENDIX A:

Notation and Mathematical

Conventions

In this appendix we collect our notation, and some related mathematical
facts and conventions.

A.1 SET NOTATION AND CONVENTIONS

If X is a set and x is an element of X , we write x ∈ X . A set can be
specified in the form X = {x | x satisfies P}, as the set of all elements
satisfying property P . The union of two sets X1 and X2 is denoted by
X1 ∪X2, and their intersection by X1 ∩X2. The empty set is denoted by
Ø. The symbol ∀ means “for all.”

The set of real numbers (also referred to as scalars) is denoted by %.
The set of extended real numbers is denoted by %*:

%* = % ∪ {∞,−∞}.

We write −∞ < x < ∞ for all real numbers x, and −∞ ≤ x ≤ ∞ for all
extended real numbers x. We denote by [a, b] the set of (possibly extended)
real numbers x satisfying a ≤ x ≤ b. A rounded, instead of square, bracket
denotes strict inequality in the definition. Thus (a, b], [a, b), and (a, b)
denote the set of all x satisfying a < x ≤ b, a ≤ x < b, and a < x < b,
respectively.

Generally, we adopt standard conventions regarding addition and
multiplication in %*, except that we take

∞−∞ = −∞+∞ = ∞,
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and we take the product of 0 and ∞ or −∞ to be 0. In this way the sum
and product of two extended real numbers is well-defined. Division by 0 or
∞ does not appear in our analysis. In particular, we adopt the following
rules in calculations involving ∞ and −∞:

α+∞ = ∞+ α = ∞, ∀ α ∈ %*,

α−∞ = −∞+ α = −∞, ∀ α ∈ [−∞,∞),

α ·∞ = ∞, α · (−∞) = −∞, ∀ α ∈ (0,∞],

α ·∞ = −∞, α · (−∞) = ∞, ∀ α ∈ [−∞, 0),

0 ·∞ = ∞ · 0 = 0 = 0 · (−∞) = (−∞) · 0, −(−∞) = ∞.

Under these rules, the following laws of arithmetic are still valid within %*:

α1 + α2 = α2 + α1, (α1 + α2) + α3 = α1 + (α2 + α3),

α1α2 = α2α1, (α1α2)α3 = α1(α2α3).

We also have

α(α1 + α2) = αα1 + αα2

if either α ≥ 0 or else (α1 + α2) is not of the form ∞−∞.

Inf and Sup Notation

The supremum of a nonempty set X ⊂ %*, denoted by supX , is defined as
the smallest y ∈ %* such that y ≥ x for all x ∈ X . Similarly, the infimum
of X , denoted by inf X , is defined as the largest y ∈ %* such that y ≤ x
for all x ∈ X . For the empty set, we use the convention

supØ = −∞, inf Ø = ∞.

If supX is equal to an x ∈ %* that belongs to the set X , we say
that x is the maximum point of X and we write x = maxX. Similarly, if
inf X is equal to an x ∈ %* that belongs to the set X , we say that x is
the minimum point of X and we write x = minX. Thus, when we write
maxX (or minX) in place of supX (or inf X , respectively), we do so just
for emphasis: we indicate that it is either evident, or it is known through
earlier analysis, or it is about to be shown that the maximum (or minimum,
respectively) of the set X is attained at one of its points.
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A.2 FUNCTIONS

If f is a function, we use the notation f : X +→ Y to indicate the fact that
f is defined on a nonempty set X (its domain) and takes values in a set
Y (its range). Thus when using the notation f : X +→ Y , we implicitly
assume that X is nonempty. We will often use the unit function e : X +→ %,
defined by

e(x) = 1, ∀ x ∈ X.

Given a set X , we denote by R(X) the set of real-valued functions
J : X +→ %, and by E(X) the set of all extended real-valued functions
J : X +→ %*. For any collection {Jγ | γ ∈ Γ} ⊂ E(X), parameterized by
the elements of a set Γ, we denote by infγ∈Γ Jγ the function taking the
value infγ∈Γ Jγ(x) at each x ∈ X .

For two functions J1, J2 ∈ E(X), we use the shorthand notation J1 ≤
J2 to indicate the pointwise inequality

J1(x) ≤ J2(x), ∀ x ∈ X.

We use the shorthand notation infi∈I Ji to denote the function obtained
by pointwise infimum of a collection {Ji | i ∈ I} ⊂ E(X), i.e.,

(

inf
i∈I

Ji

)

(x) = inf
i∈I

Ji(x), ∀ x ∈ X.

We use similar notation for sup.
Given subsets S1, S2, S3 ⊂ E(X) and mappings T1 : S1 +→ S3 and

T2 : S2 +→ S1, the composition of T1 and T2 is the mapping T1T2 : S2 +→ S3

defined by

(T1T2J)(x) =
(

T1(T2J)
)

(x), ∀ J ∈ S2, x ∈ X.

In particular, given a subset S ⊂ E(X) and mappings T1 : S +→ S and
T2 : S +→ S, the composition of T1 and T2 is the mapping T1T2 : S +→ S
defined by

(T1T2J)(x) =
(

T1(T2J)
)

(x), ∀ J ∈ S, x ∈ X.

Similarly, given mappings Tk : S +→ S, k = 1, . . . , N , their composition is
the mapping (T1 · · ·TN) : S +→ S defined by

(T1T2 · · ·TNJ)(x) =
(

T1(T2(· · · (TNJ)))
)

(x), ∀ J ∈ S, x ∈ X.

In our notation involving compositions we minimize the use of parentheses,
as long as clarity is not compromised. In particular, we write T1T2J instead
of (T1T2J) or (T1T2)J or T1(T2J), but we write (T1T2J)(x) to indicate the
value of T1T2J at x ∈ X .

If X and Y are nonempty sets, a mapping T : S1 +→ S2, where
S1 ⊂ E(X) and S2 ⊂ E(Y ), is said to be monotone if for all J, J ′ ∈ S1,

J ≤ J ′ ⇒ TJ ≤ TJ ′.
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Sequences of Functions

For a sequence of functions {Jk} ⊂ E(X) that converges pointwise, we de-
note by limk→∞ Jk the pointwise limit of {Jk}. We denote by lim supk→∞ Jk
(or lim infk→∞ Jk) the pointwise limit superior (or inferior, respectively) of
{Jk}. If {Jk} ⊂ E(X) converges pointwise to J , we write Jk → J . Note
that we reserve this notation for pointwise convergence. To denote conver-
gence with respect to a norm ‖ · ‖, we write ‖Jk − J‖ → 0.

A sequence of functions {Jk} ⊂ E(X) is said to be monotonically
nonincreasing (or monotonically nondecreasing) if Jk+1 ≤ Jk for all k (or
Jk+1 ≥ Jk for all k, respectively). Such a sequence always has a (point-
wise) limit within E(X). We write Jk ↓ J (or Jk ↑ J) to indicate that
{Jk} is monotonically nonincreasing (or monotonically nondecreasing, re-
spectively) and that its limit is J .

Let {Jmn} ⊂ E(X) be a double indexed sequence, which is monoton-
ically nonincreasing separately for each index in the sense that

J(m+1)n ≤ Jmn, Jm(n+1) ≤ Jmn, ∀ m,n = 0, 1, . . . .

For such sequences, a useful fact is that

lim
m→∞

(

lim
n→∞

Jmn

)

= lim
m→∞

Jmm.

There is a similar fact for monotonically nondecreasing sequences.

Expected Values

Given a random variable w defined over a probability space Ω, the expected
value of w is defined by

E{w} = E{w+}+ E{w−},

where w+ and w− are the positive and negative parts of w,

w+(ω) = max
{

0, w(ω)
}

, w−(ω) = min
{

0, w(ω)
}

.

In this way, taking also into account the rule ∞ −∞ = ∞, the expected
value E{w} is well-defined if Ω is finite or countably infinite. In more gen-
eral cases, E{w} is similarly defined by the appropriate form of integration,
and more detail will be given at specific points as needed.



APPENDIX B:

Contraction Mappings

B.1 CONTRACTION MAPPING FIXED POINT THEOREMS

The purpose of this appendix is to provide some background on contraction
mappings and their properties. Let Y be a real vector space with a norm
‖ · ‖, i.e., a real-valued function satisfying for all y ∈ Y , ‖y‖ ≥ 0, ‖y‖ = 0
if and only if y = 0, and

‖ay‖ = |a|‖y‖, ∀ a ∈ %, ‖y + z‖ ≤ ‖y‖+ ‖z‖, ∀ y, z ∈ Y.

Let Y be a closed subset of Y . A function F : Y +→ Y is said to be a
contraction mapping if for some ρ ∈ (0, 1), we have

‖Fy − Fz‖ ≤ ρ‖y − z‖, ∀ y, z ∈ Y .

The scalar ρ is called the modulus of contraction of F .

Example B.1 (Linear Contraction Mappings in %n)

Consider the case of a linear mapping F : !n "→ !n of the form

Fy = b+ Ay,

where A is an n × n matrix and b is a vector in !n. Let σ(A) denote the
spectral radius of A (the largest modulus among the moduli of the eigenvalues
of A). Then it can be shown that A is a contraction mapping with respect to

some norm if and only if σ(A) < 1.
Specifically, given ε > 0, there exists a norm ‖ · ‖s such that

‖Ay‖s ≤
(

σ(A) + ε
)

‖y‖s, ∀ y ∈ !n. (B.1)

381
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Thus, if σ(A) < 1 we may select ε > 0 such that ρ = σ(A)+ ε < 1, and obtain
the contraction relation

‖Fy − Fz‖s =
∥

∥A(y − z)
∥

∥

s
≤ ρ‖y − z‖s, ∀ y, z ∈ !n. (B.2)

The norm ‖ · ‖s can be taken to be a weighted Euclidean norm, i.e., it may
have the form ‖y‖s = ‖My‖, where M is a square invertible matrix, and ‖ · ‖
is the standard Euclidean norm, i.e., ‖x‖ =

√
x′x. †

Conversely, if Eq. (B.2) holds for some norm ‖ · ‖s and all real vectors
y, z, it also holds for all complex vectors y, z with the squared norm ‖c‖2s of
a complex vector c defined as the sum of the squares of the norms of the real
and the imaginary components. Thus from Eq. (B.2), by taking y − z = u,
where u is an eigenvector corresponding to an eigenvalue λ with |λ| = σ(A),
we have σ(A)‖u‖s = ‖Au‖s ≤ ρ‖u‖s. Hence σ(A) ≤ ρ, and it follows that if
F is a contraction with respect to a given norm, we must have σ(A) < 1.

A sequence {yk} ⊂ Y is said to be a Cauchy sequence if ‖ym−yn‖ → 0
as m,n → ∞, i.e., given any ε > 0, there exists N such that ‖ym − yn‖ ≤ ε
for all m,n ≥ N . The space Y is said to be complete under the norm ‖ ·‖ if
every Cauchy sequence {yk} ⊂ Y is convergent, in the sense that for some
y ∈ Y , we have ‖yk − y‖ → 0. Note that a Cauchy sequence is always
bounded. Also, a Cauchy sequence of real numbers is convergent, implying
that the real line is a complete space and so is every real finite-dimensional
vector space. On the other hand, an infinite dimensional space may not be
complete under some norms, while it may be complete under other norms.

When Y is complete and Y is a closed subset of Y , an important
property of a contraction mapping F : Y +→ Y is that it has a unique fixed
point within Y , i.e., the equation

y = Fy

has a unique solution y∗ ∈ Y , called the fixed point of F . Furthermore, the
sequence {yk} generated by the iteration

yk+1 = Fyk

† We may show Eq. (B.1) by using the Jordan canonical form of A, which is
denoted by J . In particular, if P is a nonsingular matrix such that P−1AP = J
and D is the diagonal matrix with 1, δ, . . . , δn−1 along the diagonal, where δ > 0,
it is straightforward to verify that D−1P−1APD = Ĵ , where Ĵ is the matrix
that is identical to J except that each nonzero off-diagonal term is replaced by δ.
Defining P̂ = PD, we have A = P̂ ĴP̂−1. Now if ‖ · ‖ is the standard Euclidean
norm, we note that for some β > 0, we have ‖Ĵz‖ ≤

(

σ(A) + βδ
)

‖z‖ for all
z ∈ !n and δ ∈ (0, 1]. For a given δ ∈ (0, 1], consider the weighted Euclidean
norm ‖ · ‖s defined by ‖y‖s = ‖P̂−1y‖. Then we have for all y ∈ !n,

‖Ay‖s = ‖P̂−1Ay‖ = ‖P̂−1P̂ ĴP̂−1y‖ = ‖ĴP̂−1y‖ ≤
(

σ(A) + βδ
)

‖P̂−1y‖,

so that ‖Ay‖s ≤
(

σ(A) + βδ
)

‖y‖s, for all y ∈ !n. For a given ε > 0, we choose

δ = ε/β, so the preceding relation yields Eq. (B.1).
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converges to y∗, starting from an arbitrary initial point y0.

Proposition B.1: (Contraction Mapping Fixed-Point Theo-
rem) Let Y be a complete vector space and let Y be a closed subset
of Y . Then if F : Y +→ Y is a contraction mapping with modulus
ρ ∈ (0, 1), there exists a unique y∗ ∈ Y such that

y∗ = Fy∗.

Furthermore, the sequence {F ky} converges to y∗ for any y ∈ Y , and
we have

‖F ky − y∗‖ ≤ ρk‖y − y∗‖, k = 1, 2, . . . .

Proof: Let y ∈ Y and consider the iteration yk+1 = Fyk starting with
y0 = y. By the contraction property of F ,

‖yk+1 − yk‖ ≤ ρ‖yk − yk−1‖, k = 1, 2, . . . ,

which implies that

‖yk+1 − yk‖ ≤ ρk‖y1 − y0‖, k = 1, 2, . . . .

It follows that for every k ≥ 0 and m ≥ 1, we have

‖yk+m − yk‖ ≤
m
∑

i=1

‖yk+i − yk+i−1‖

≤ ρk(1 + ρ+ · · ·+ ρm−1)‖y1 − y0‖

≤
ρk

1− ρ
‖y1 − y0‖.

Therefore, {yk} is a Cauchy sequence in Y and must converge to a limit
y∗ ∈ Y , since Y is complete and Y is closed. We have for all k ≥ 1,

‖Fy∗ − y∗‖ ≤ ‖Fy∗ − yk‖+ ‖yk − y∗‖ ≤ ρ‖y∗ − yk−1‖+ ‖yk − y∗‖

and since yk converges to y∗, we obtain Fy∗ = y∗. Thus, the limit y∗ of yk
is a fixed point of F . It is a unique fixed point because if ỹ were another
fixed point, we would have

‖y∗ − ỹ‖ = ‖Fy∗ − F ỹ‖ ≤ ρ‖y∗ − ỹ‖,

which implies that y∗ = ỹ.
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To show the convergence rate bound of the last part, note that

‖F ky − y∗‖ =
∥

∥F ky − Fy∗
∥

∥ ≤ ρ‖F k−1y − y∗‖.

Repeating this process for a total of k times, we obtain the desired result.
Q.E.D.

The convergence rate exhibited by F ky in the preceding proposition
is said to be geometric, and F ky is said to converge to its limit y∗ geomet-
rically. This is in reference to the fact that the error ‖F ky− y∗‖ converges
to 0 faster than some geometric progression (ρk‖y − y∗‖ in this case).

In some contexts of interest to us one may encounter mappings that
are not contractions, but become contractions when iterated a finite num-
ber of times. In this case, one may use a slightly different version of the
contraction mapping fixed point theorem, which we now present.

We say that a function F : Y +→ Y is an m-stage contraction mapping
if there exists a positive integer m and some ρ < 1 such that

∥

∥Fmy − Fmy′
∥

∥ ≤ ρ‖y − y′‖, ∀ y, y′ ∈ Y,

where Fm denotes the composition of F with itself m times. Thus, F is
an m-stage contraction if Fm is a contraction. Again, the scalar ρ is called
the modulus of contraction. We have the following generalization of Prop.
B.1.

Proposition B.2: (m-Stage Contraction Mapping Fixed-Point
Theorem) Let Y be a complete vector space and let Y be a closed
subset of Y . Then if F : Y +→ Y is an m-stage contraction mapping
with modulus ρ ∈ (0, 1), there exists a unique y∗ ∈ Y such that

y∗ = Fy∗.

Furthermore, {F ky} converges to y∗ for any y ∈ Y .

Proof: Since Fm maps Y into Y and is a contraction mapping, by Prop.
B.1, it has a unique fixed point in Y , denoted y∗. Applying F to both sides
of the relation y∗ = Fmy∗, we see that Fy∗ is also a fixed point of Fm, so
by the uniqueness of the fixed point, we have y∗ = Fy∗. Therefore y∗ is a
fixed point of F . If F had another fixed point, say ỹ, then we would have
ỹ = Fmỹ, which by the uniqueness of the fixed point of Fm implies that
ỹ = y∗. Thus, y∗ is the unique fixed point of F .

To show the convergence of {F ky}, note that by Prop. B.1, we have
for all y ∈ Y ,

lim
k→∞

‖Fmky − y∗‖ = 0.
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Using F "y in place of y, we obtain

lim
k→∞

‖Fmk+"y − y∗‖ = 0, & = 0, 1, . . . ,m− 1,

which proves the desired result. Q.E.D.

B.2 WEIGHTED SUP-NORM CONTRACTIONS

In this section, we will focus on contraction mappings within a specialized
context that is particularly important in DP. Let X be a set (typically the
state space in DP), and let v : X +→ % be a positive-valued function,

v(x) > 0, ∀ x ∈ X.

Let B(X) denote the set of all functions J : X +→ % such that J(x)/v(x)
is bounded as x ranges over X . We define a norm on B(X), called the
weighted sup-norm, by

‖J‖ = sup
x∈X

∣

∣J(x)
∣

∣

v(x)
. (B.3)

It is easily verified that ‖·‖ thus defined has the required properties for
being a norm. Furthermore, B(X) is complete under this norm. To see this,
consider a Cauchy sequence {Jk} ⊂ B(X), and note that ‖Jm−Jn‖ → 0 as
m,n → ∞ implies that for all x ∈ X , {Jk(x)} is a Cauchy sequence of real
numbers, so it converges to some J*(x). We will show that J* ∈ B(X) and
that ‖Jk − J*‖ → 0. To this end, it will be sufficient to show that given
any ε > 0, there exists an integer K such that

∣

∣Jk(x)− J*(x)
∣

∣

v(x)
≤ ε, ∀ x ∈ X, k ≥ K.

This will imply that

sup
x∈X

∣

∣J*(x)
∣

∣

v(x)
≤ ε+ ‖Jk‖, ∀ k ≥ K,

so that J* ∈ B(X), and will also imply that ‖Jk − J*‖ ≤ ε, so that ‖Jk −
J*‖ → 0. Assume the contrary, i.e., that there exists an ε > 0 and a
subsequence {xm1

, xm2
, . . .} ⊂ X such that mi < mi+1 and

ε <

∣

∣Jmi
(xmi

)− J*(xmi
)
∣

∣

v(xmi
)

, ∀ i ≥ 1.

The right-hand side above is less or equal to
∣

∣Jmi
(xmi

)− Jn(xmi
)
∣

∣

v(xmi
)

+

∣

∣Jn(xmi
)− J*(xmi

)
∣

∣

v(xmi
)

, ∀ n ≥ 1, i ≥ 1.
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The first term in the above sum is less than ε/2 for i and n larger than some
threshold; fixing i and letting n be sufficiently large, the second term can
also be made less than ε/2, so the sum is made less than ε - a contradiction.
In conclusion, the space B(X) is complete, so the fixed point results of
Props. B.1 and B.2 apply.

In our discussions, unless we specify otherwise, we will assume that
B(X) is equipped with the weighted sup-norm above, where the weight
function v will be clear from the context. There will be frequent occasions
where the norm will be unweighted, i.e., v(x) ≡ 1 and ‖J‖ = supx∈X

∣

∣J(x)
∣

∣,
in which case we will explicitly state so.

Finite-Dimensional Cases

Let us now focus on the finite-dimensional case X = {1, . . . , n}, in which
case R(X) and B(X) can be identified with %n. We first consider a linear
mapping (cf. Example B.1). We have the following proposition.

Proposition B.3: Consider a linear mapping F : %n +→ %n of the
form

Fy = b+Ay,

where A is an n × n matrix with components aij , and b is a vector
in %n. Denote by |A| the matrix whose components are the absolute
values of the components of A and let σ(A) and σ

(

|A|
)

denote the
spectral radii of A and |A|, respectively. Then:

(a) |A| has a real eigenvalue λ, which is equal to its spectral radius,
and an associated nonnegative eigenvector.

(b) F is a contraction with respect to some weighted sup-norm if
and only if σ

(

|A|
)

< 1. In particular, any substochastic matrix
P (pij ≥ 0 for all i, j, and

∑n
j=1 pij ≤ 1, for all i) is a contraction

with respect to some weighted sup-norm if and only if σ(P ) < 1.

(c) F is a contraction with respect to the weighted sup-norm

‖y‖ = max
i=1,...,n

|yi|

v(i)

if and only if

∑n
j=1 |aij | v(j)

v(i)
< 1, i = 1, . . . , n.
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Proof: (a) This is the Perron-Frobenius Theorem; see e.g., [BeT89], Chap-
ter 2, Prop. 6.6.

(b) This follows from the Perron-Frobenius Theorem; see [BeT89], Chapter
2, Cor. 6.2.

(c) This is proved in more general form in the following Prop. B.4. Q.E.D.

Consider next a nonlinear mapping F : %n +→ %n that has the prop-
erty

|Fy − Fz| ≤ P |y − z|, ∀ y, z ∈ %n,

for some matrix P with nonnegative components and σ(P ) < 1. Here, we
generically denote by |w| the vector whose components are the absolute
values of the components of w, and the inequality is componentwise. Then
we claim that F is a contraction with respect to some weighted sup-norm.
To see this note that by the preceding discussion, P is a contraction with
respect to some weighted sup-norm ‖y‖ = maxi=1,...,n |yi|/v(i), and we
have

(

|Fy − Fz|
)

(i)

v(i)
≤

(

P |y − z|
)

(i)

v(i)
≤ α ‖y − z‖, ∀ i = 1, . . . , n,

for some α ∈ (0, 1), where
(

|Fy − Fz|
)

(i) and
(

P |y − z|
)

(i) are the ith
components of the vectors |Fy − Fz| and P |y − z|, respectively. Thus, F
is a contraction with respect to ‖ · ‖. For additional discussion of linear
and nonlinear contraction mapping properties and characterizations such
as the one above, see the book [OrR70].

Linear Mappings on Countable Spaces

The case where X is countable (or, as a special case, finite) is frequently
encountered in DP. The following proposition provides some useful criteria
for verifying the contraction property of mappings that are either linear or
are obtained via a parametric minimization of other contraction mappings.

Proposition B.4: Let X = {1, 2, . . .}.

(a) Let F : B(X) +→ B(X) be a linear mapping of the form

(FJ)(i) = bi +
∑

j∈X

aijJ(j), i ∈ X,
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where bi and aij are some scalars. Then F is a contraction with
modulus ρ with respect to the weighted sup-norm (B.3) if and
only if

∑

j∈X |aij | v(j)

v(i)
≤ ρ, i ∈ X. (B.4)

(b) Let F : B(X) +→ B(X) be a mapping of the form

(FJ)(i) = inf
µ∈M

(FµJ)(i), i ∈ X,

where M is parameter set, and for each µ ∈ M , Fµ is a contrac-
tion mapping from B(X) to B(X) with modulus ρ. Then F is a
contraction mapping with modulus ρ.

Proof: (a) Assume that Eq. (B.4) holds. For any J, J ′ ∈ B(X), we have

‖FJ − FJ ′‖ = sup
i∈X

∣

∣

∣

∑

j∈X aij
(

J(j)− J ′(j)
)

∣

∣

∣

v(i)

≤ sup
i∈X

∑

j∈X

∣

∣aij
∣

∣ v(j)
(

∣

∣J(j)− J ′(j)
∣

∣/v(j)
)

v(i)

≤ sup
i∈X

∑

j∈X

∣

∣aij
∣

∣ v(j)

v(i)

∥

∥J − J ′
∥

∥

≤ ρ ‖J − J ′‖,

where the last inequality follows from the hypothesis.
Conversely, arguing by contradiction, let’s assume that Eq. (B.4) is

violated for some i ∈ X . Define J(j) = v(j) sgn(aij) and J ′(j) = 0 for all
j ∈ X . Then we have ‖J − J ′‖ = ‖J‖ = 1, and

∣

∣(FJ)(i)− (FJ ′)(i)
∣

∣

v(i)
=

∑

j∈X |aij | v(j)

v(i)
> ρ = ρ ‖J − J ′‖,

showing that F is not a contraction of modulus ρ.

(b) Since Fµ is a contraction of modulus ρ, we have for any J, J ′ ∈ B(X),

(FµJ)(i)

v(i)
≤

(FµJ ′)(i)

v(i)
+ ρ ‖J − J ′‖, i ∈ X,

so by taking the infimum over µ ∈ M ,

(FJ)(i)

v(i)
≤

(FJ ′)(i)

v(i)
+ ρ ‖J − J ′‖, i ∈ X.
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Reversing the roles of J and J ′, we obtain
∣

∣(FJ)(i)− (FJ ′)(i)
∣

∣

v(i)
≤ ρ ‖J − J ′‖, i ∈ X,

and by taking the supremum over i, the contraction property of F is proved.
Q.E.D.

The preceding proposition assumes that FJ ∈ B(X) for all J ∈ B(X).
The following proposition provides conditions, particularly relevant to the
DP context, which imply this assumption.

Proposition B.5: Let X = {1, 2, . . .}, let M be a parameter set, and
for each µ ∈ M , let Fµ be a linear mapping of the form

(FµJ)(i) = bi(µ) +
∑

j∈X

aij(µ)J(j), i ∈ X,

where we assume that the summation above is well-defined for all
J ∈ B(X).

(a) We have FµJ ∈ B(X) for all J ∈ B(X) provided b(µ) ∈ B(X)
and V (µ) ∈ B(X), where

b(µ) =
{

b1(µ), b2(µ), . . .
}

, V (µ) =
{

V1(µ), V2(µ), . . .
}

,

with
Vi(µ) =

∑

j∈X

∣

∣aij(µ)
∣

∣ v(j), i ∈ X.

(b) Consider the mapping F

(FJ)(i) = inf
µ∈M

(FµJ)(i), i ∈ X.

We have FJ ∈ B(X) for all J ∈ B(X), provided b ∈ B(X) and
V ∈ B(X), where

b =
{

b1, b2, . . .
}

, V = {V1, V2, . . .},

with bi = supµ∈M bi(µ) and Vi = supµ∈M Vi(µ).

Proof: (a) For all µ ∈ M , J ∈ B(X) and i ∈ X , we have

(FµJ)(i) ≤
∣

∣bi(µ)
∣

∣+
∑

j∈X

∣

∣aij(µ)
∣

∣

∣

∣J(j)/v(j)
∣

∣ v(j)
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≤
∣

∣bi(µ)
∣

∣+ ‖J‖
∑

j∈X

∣

∣aij(µ)
∣

∣ v(j)

=
∣

∣bi(µ)
∣

∣+ ‖J‖Vi(µ),

and similarly (FµJ)(i) ≥ −
∣

∣bi(µ)
∣

∣ − ‖J‖Vi(µ). Thus

∣

∣(FµJ)(i)
∣

∣ ≤
∣

∣bi(µ)
∣

∣ + ‖J‖Vi(µ), i ∈ X.

By dividing this inequality with v(i) and by taking the supremum over
i ∈ X , we obtain

‖FµJ‖ ≤ ‖bµ‖+ ‖J‖ ‖Vµ‖ < ∞.

(b) By doing the same as in (a), but after first taking the infimum of
(FµJ)(i) over µ, we obtain

‖FJ‖ ≤ ‖b‖+ ‖J‖ ‖V ‖ < ∞.

Q.E.D.
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Error amplification, 69
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First passage problem, 16
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Hard aggregation, 21
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N-stage optimal policy, 234
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Neuro-dynamic programming, 25
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ODE approach, 112
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Projected Bellman equation, 25
Projected equation, 25
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Q

Q-factor, 103
Q-learning, 112

R

Reachability, 325
Reduced space implementation, 107



Index 403

Regular, see S-regular
Reinforcement learning, 25, 29, 45,
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S

SSP problems, 15, 129, 178, 220, 221,
263, 307, 323
S-irregular policy, 122, 144, 165, 171
S-regular collection, 265
S-regular policy, 122, 144
Search problems, 171
Self-learning, 25
Semi-Markov problem, 13
Seminorm projection, 28
Semicontinuity conditions, 181
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219
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177, 307, 328
Simulation, 28, 39, 43, 92, 372
Spectral radius, 381
Stable policies, 135, 277, 282, 286,
289, 298, 323
Stationary policy, 54, 58
Stochastic shortest path problems, see
SSP problems
Stopping problems, 104, 108, 299
Strong PI property, 156
Strong SSP conditions, 181
Synchronous convergence condition, 95

T

TD(λ), 27
Temporal differences, 26, 27, 261
Terminating policy, 209, 226, 227, 288
Totally asynchronous algorithms, 94
Transient programming problem, 16

U

Uniform fixed point, 103, 338, 363,
369
Uniformly N-stage optimal policy, 22
Uniformly proper policy, 317, 323, 332
Unit function, 379

V

Value iteration, 9, 29, 36, 66, 67, 91,

112, 150, 182, 184, 192, 194, 203, 207,
210, 211, 221, 256, 259, 271, 274, 277,
282, 293, 295, 296, 313, 318, 320, 333,
334, 359
Value iteration, asynchronous, 91, 112,
211, 221, 259, 359
Value space approximation, 29, 35,
371

W

Weak PI property, 154
Weak SSP conditions, 183
Weighted Bellman equation, 51
Weighted Euclidean norm, 25, 382
Weighted multistep mapping, 51
Weighted sup norm, 55, 352, 385
Weighted sup-norm contraction, 104,
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Neuro-Dynamic Programming
Dimitri P. Bertsekas and John N. Tsitsiklis

Athena Scientific, 1996
512 pp., hardcover, ISBN 1-886529-10-8

This is the first textbook that fully explains the neuro-dynamic pro-
gramming/reinforcement learning methodology, a breakthrough in the prac-
tical application of neural networks and dynamic programming to complex
problems of planning, optimal decision making, and intelligent control.

From the review by George Cybenko for IEEE Computational Sci-
ence and Engineering, May 1998:

“Neuro-Dynamic Programming is a remarkable monograph that in-
tegrates a sweeping mathematical and computational landscape into a co-
herent body of rigorous knowledge. The topics are current, the writing is
clear and to the point, the examples are comprehensive and the historical
notes and comments are scholarly.”

“In this monograph, Bertsekas and Tsitsiklis have performed a Her-
culean task that will be studied and appreciated by generations to come.
I strongly recommend it to scientists and engineers eager to seriously un-
derstand the mathematics and computations behind modern behavioral
machine learning.”

Among its special features, the book:

• Describes and unifies a large number of NDP methods, including sev-
eral that are new

• Describes new approaches to formulation and solution of important
problems in stochastic optimal control, sequential decision making,
and discrete optimization

• Rigorously explains the mathematical principles behind NDP

• Illustrates through examples and case studies the practical applica-
tion of NDP to complex problems from optimal resource allocation,
optimal feedback control, data communications, game playing, and
combinatorial optimization

• Presents extensive background and new research material on dynamic
programming and neural network training

Neuro-Dynamic Programming is the winner of the 1997 INFORMS
CSTS prize for research excellence in the interface between Op-
erations Research and Computer Science



Reinforcement Learning and Optimal Control
Dimitri P. Bertsekas

Athena Scientific, 2019
388 pp., hardcover, ISBN 978-1-886529-39-7

This book explores the common boundary between optimal control
and artificial intelligence, as it relates to reinforcement learning and simu-
lation-based neural network methods. These are popular fields with many
applications, which can provide approximate solutions to challenging se-
quential decision problems and large-scale dynamic programming (DP).
The aim of the book is to organize coherently the broad mosaic of methods
in these fields, which have a solid analytical and logical foundation, and
have also proved successful in practice.

The book discusses both approximation in value space and approx-
imation in policy space. It adopts a gradual expository approach, which
proceeds along four directions:

• From exact DP to approximate DP: We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

• From finite horizon to infinite horizon problems: We first discuss
finite horizon exact and approximate DP methodologies, which are
intuitive and mathematically simple, and then progress to infinite
horizon problems.

• From model-based to model-free implementations: We first discuss
model-based implementations, and then we identify schemes that can
be appropriately modified to work with a simulator.

The mathematical style of this book is somewhat different from the
one of the author’s DP books, and the 1996 neuro-dynamic programming
(NDP) research monograph, written jointly with John Tsitsiklis. While
we provide a rigorous, albeit short, mathematical account of the theory
of finite and infinite horizon DP, and some fundamental approximation
methods, we rely more on intuitive explanations and less on proof-based
insights. Moreover, our mathematical requirements are quite modest: cal-
culus, a minimal use of matrix-vector algebra, and elementary probability
(mathematically complicated arguments involving laws of large numbers
and stochastic convergence are bypassed in favor of intuitive explanations).

The book is supported by on-line video lectures and slides, as well
as new research material, some of which has been covered in the present
monograph.



Rollout, Policy Iteration, and Distributed
Reinforcement Learning

Dimitri P. Bertsekas

Athena Scientific, 2020
480 pp., hardcover, ISBN 978-1-886529-07-6

This book develops in greater depth some of the methods from the
author’s Reinforcement Learning and Optimal Control textbook (Athena
Scientific, 2019). It presents new research, relating to rollout algorithms,
policy iteration, multiagent systems, partitioned architectures, and dis-
tributed asynchronous computation.

The application of the methodology to challenging discrete optimiza-
tion problems, such as routing, scheduling, assignment, and mixed integer
programming, including the use of neural network approximations within
these contexts, is also discussed.

Much of the new research is inspired by the remarkable AlphaZero
chess program, where policy iteration, value and policy networks, approxi-
mate lookahead minimization, and parallel computation all play an impor-
tant role.

Among its special features, the book:

• Presents new research relating to distributed asynchronous computa-
tion, partitioned architectures, and multiagent systems, with applica-
tion to challenging large scale optimization problems, such as combi-
natorial/discrete optimization, as well as partially observed Markov
decision problems.

• Describes variants of rollout and policy iteration for problems with
a multiagent structure, which allow the dramatic reduction of the
computational requirements for lookahead minimization.

• Establishes connections of rollout algorithms and model predictive
control, one of the most prominent control system design methodol-
ogy.

• Expands the coverage of some research areas discussed in the author’s
2019 textbook Reinforcement Learning and Optimal Control.

• Provides the mathematical analysis that supports the Newton step
interpretations and the conclusions of the present book.

The book is supported by on-line video lectures and slides, as well
as new research material, some of which has been covered in the present
monograph.
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