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APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

• Our subject:

− Large-scale DP based on approximations and
in part on simulation.

− This has been a research area of great inter-
est for the last 25 years known under various
names (e.g., reinforcement learning, neuro-
dynamic programming)

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

− Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

− A vast range of applications in control the-
ory, operations research, artificial intelligence,
and beyond ...

− The subject is broad with rich variety of
theory/math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling



APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

• Our aim:

− A state-of-the-art account of some of the ma-
jor topics at a graduate level

− Show how to use approximation and simula-
tion to address the dual curses of DP: di-
mensionality and modeling

• Our 6-lecture plan:

− Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large-
scale computational methods

− One lecture on general issues of approxima-
tion and simulation for large-scale problems

− One lecture on approximate policy iteration
based on temporal differences (TD)/projected
equations/Galerkin approximation

− One lecture on aggregation methods

− One lecture on Q-learning, and other meth-
ods, such as approximation in policy space



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Introduction to DP and approximate DP

• Finite horizon problems

• The DP algorithm for finite horizon problems

• Infinite horizon problems

• Basic theory of discounted infinite horizon prob-
lems



DP AS AN OPTIMIZATION METHODOLOGY

• Generic optimization problem:

min
u∈U

g(u)

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

• Categories of problems:

− Discrete (U is finite) or continuous

− Linear (g is linear and U is polyhedral) or
nonlinear

− Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) = Ew

{

G(u,w)
}

where w is a random parameter.

• DP deals with multistage stochastic problems

− Information about w is revealed in stages

− Decisions are also made in stages and make
use of the available information

− Its methodology is “different”



BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called “distur-
bance” or “noise” depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, uk, wk)

}

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)



INVENTORY CONTROL EXAMPLE

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

E

{

gN (xN ) +

N−1
∑

k=0

gk(xk, uk, wk)

}

= E

{

N−1
∑

k=0

(

cuk + r(xk + uk − wk)
)

}



ADDITIONAL ASSUMPTIONS

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

− Otherwise past values of w, x, or u would be
useful for future optimization

• The constraint set from which uk is chosen at
time k depends at most on xk, not on prior x or
u

• Optimization over policies (also called feedback
control laws): These are rules/functions

uk = µk(xk), k = 0, . . . , N − 1

that map state/inventory to control/order (closed-
loop optimization, use of feedback)

• MAJOR DISTINCTION: We minimize over se-
quences of functions (mapping inventory to order)

{µ0, µ1, . . . , µN−1}

NOT over sequences of controls/orders

{u0, u1, . . . , uN−1}



GENERIC FINITE-HORIZON PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control contraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

Jπ(x0) = E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, µk(xk), wk)

}

• Optimal cost function

J∗(x0) = min
π

Jπ(x0)

• Optimal policy π∗ satisfies

Jπ∗(x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.



PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} be optimal policy

• Consider the “tail subproblem” whereby we are
at xk at time k and wish to minimize the “cost-
to-go” from time k to time N

E

{

gN (xN ) +

N−1
∑

ℓ=k

gℓ
(

xℓ, µℓ(xℓ), wℓ

)

}

and the “tail policy” {µ∗
k, µ

∗
k+1, . . . , µ

∗
N−1}

Tail Subproblem

Timek0

x
k

N

• Principle of optimality: The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

• DP solves ALL the tail subroblems

• At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length



DP ALGORITHM

• Computes for all k and states xk:

Jk(xk): opt. cost of tail problem starting at xk

• Initial condition:

JN (xN ) = gN (xN )

Go backwards, k = N − 1, . . . , 0, using

Jk(xk) = min
uk∈Uk(xk)

E
wk

{

gk(xk, uk, wk)

+ Jk+1

(

fk(xk, uk, wk)
)}

,

• To solve tail subproblem at time k minimize

kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

π∗ = {µ∗
0, . . . , µ

∗
N−1}

where µ∗
k(xk) minimizes in the right side above for

each xk and k, is optimal

• Proof by induction



PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

• The curse of modeling

− Sometimes a simulator of the system is easier
to construct than a model

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning

• All of the above are motivations for approxi-
mation and simulation



A MAJOR IDEA: COST APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re-
placed by an approximation J̃k+1.

• Apply µk(xk), which attains the minimum in

min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)+J̃k+1

(

fk(xk, uk, wk)
)

}

• Some approaches:

(a) Problem Approximation: Use J̃k derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
as J̃k a function of a suitable parametric
form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

− This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

(c) Rollout Approach: Use as J̃k the cost of
some suboptimal policy, which is calculated
either analytically or by simulation



ROLLOUT ALGORITHMS

• At each k and state xk, use the control µk(xk)
that minimizes in

min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)+J̃k+1

(

fk(xk, uk, wk)
)}

,

where J̃k+1 is the cost-to-go of some heuristic pol-
icy (called the base policy).

• Cost improvement property: The rollout algo-
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

• Main difficulty: Calculating J̃k+1(x) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case (an
important application is discrete optimiza-
tion).

− Connection w/ Model Predictive Control (MPC).



INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

• Total cost problems: Minimize

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

− Discounted problems (α < 1, bounded g)

− Stochastic shortest path problems (α = 1,
finite-state system with a termination state)
- we will discuss sparringly

− Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

• Average cost problems - we will not cover

• Infinite horizon characteristics:

− Challenging analysis, elegance of solutions
and algorithms

− Stationary policies π = {µ, µ, . . .} and sta-
tionary forms of DP play a special role



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and g is bounded [for some M , we
have |g(x, u, w)| ≤ M for all (x, u, w)]

• Optimal cost function: J∗(x) = minπ Jπ(x)

• Boundedness of g guarantees that all costs are
well-defined and bounded:

∣

∣Jπ(x)
∣

∣ ≤ M
1−α

• All spaces are arbitrary - only boundedness of
g is important (there are math fine points, e.g.
measurability, but they don’t matter in practice)

• Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob-
lem or MDP

• All algorithms ultimately work with a finite
spaces MDP approximating the original problem



SHORTHAND NOTATION FOR DP MAPPINGS

• For any function J of x, denote

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

• TJ is the optimal cost function for the one-
stage problem with stage cost g and terminal cost
function αJ .

• T operates on bounded functions of x to pro-
duce other bounded functions of x

• For any stationary policy µ, denote

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x

• The critical structure of the problem is cap-
tured in T and Tµ

• The entire theory of discounted problems can
be developed in shorthand using T and Tµ

• True for many other DP problems.

• T and Tµ provide a powerful unifying framework
for DP. This is the essence of the book “Abstract
Dynamic Programming”



FINITE-HORIZON COST EXPRESSIONS

• Consider anN -stage policy πN
0 = {µ0, µ1, . . . , µN−1}

with a terminal cost J :

JπN
0
(x0) = E

{

αNJ(xk) +
N−1
∑

ℓ=0

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

= E
{

g
(

x0, µ0(x0), w0

)

+ αJπN
1
(x1)

}

= (Tµ0
JπN

1
)(x0)

where πN
1 = {µ1, µ2, . . . , µN−1}

• By induction we have

JπN
0
(x) = (Tµ0

Tµ1
· · ·TµN−1

J)(x), ∀ x

• For a stationary policy µ the N -stage cost func-
tion (with terminal cost J) is

JπN
0

= TN
µ J

where TN
µ is the N -fold composition of Tµ

• Similarly the optimal N -stage cost function
(with terminal cost J) is TNJ

• TNJ = T (TN−1J) is just the DP algorithm



“SHORTHAND” THEORY – A SUMMARY

• Infinite horizon cost function expressions [with
J0(x) ≡ 0]

Jπ(x) = lim
N→∞

(Tµ0
Tµ1

· · ·TµN
J0)(x), Jµ(x) = lim

N→∞
(TN

µ J0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk



TWO KEY PROPERTIES

• Monotonicity property: For any J and J ′ such
that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

• Constant Shift property: For any J , any scalar
r, and any µ

(

T (J + re)
)

(x) = (TJ)(x) + αr, ∀ x,

(

Tµ(J + re)
)

(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Monotonicity is present in all DP models (undis-
counted, etc)

• Constant shift is special to discounted models

• Discounted problems have another property
of major importance: T and Tµ are contraction
mappings (we will show this later)



CONVERGENCE OF VALUE ITERATION

• For all bounded J ,

J∗(x) = lim
k→∞

(T kJ)(x), for all x

Proof: For simplicity we give the proof for J ≡ 0.
For any initial state x0, and policy π = {µ0, µ1, . . .},

Jπ(x0) = E

{

∞
∑

ℓ=0

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

= E

{

k−1
∑

ℓ=0

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

+E

{

∞
∑

ℓ=k

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}

The tail portion satisfies

∣

∣

∣

∣

∣

E

{

∞
∑

ℓ=k

αℓg
(

xℓ, µℓ(xℓ), wℓ

)

}∣

∣

∣

∣

∣

≤ αkM

1− α
,

where M ≥ |g(x, u, w)|. Take min over π of both
sides, then lim as k → ∞. Q.E.D.



BELLMAN’S EQUATION

• The optimal cost function J∗ is a solution of
Bellman’s equation, J∗ = TJ∗, i.e., for all x,

J∗(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

Proof: For all x and k,

J∗(x)− αkM

1− α
≤ (T kJ0)(x) ≤ J∗(x) +

αkM

1− α
,

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

(TJ∗)(x)− αk+1M

1− α
≤ (T k+1J0)(x)

≤ (TJ∗)(x) +
αk+1M

1− α

Taking the limit as k → ∞ and using the fact

lim
k→∞

(T k+1J0)(x) = J∗(x)

we obtain J∗ = TJ∗. Q.E.D.



THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)− J ′(x)
∣

∣,

max
x

∣

∣(TµJ)(x)−(TµJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)−J ′(x)
∣

∣.

Proof: Denote c = maxx∈S

∣

∣J(x)− J ′(x)
∣

∣. Then

J(x)− c ≤ J ′(x) ≤ J(x) + c, ∀ x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αc, ∀ x.

Q.E.D.

• Note: This implies that J∗ is the unique solu-
tion of J∗ = TJ∗, and Jµ is the unique solution
of Jµ = TµJµ



NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

TJ∗ = TµJ∗,

or, equivalently, for all x,

µ(x) ∈ arg min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa-
tion (J∗ = TJ∗), we have

J∗ = TµJ∗,

so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,
we have J∗ = Jµ, so

J∗ = TµJ∗.

Combining this with Bellman’s Eq. (J∗ = TJ∗),
we obtain TJ∗ = TµJ∗. Q.E.D.



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Review of discounted problem theory

• Review of shorthand notation

• Algorithms for discounted DP

• Value iteration

• Various forms of policy iteration

• Optimistic policy iteration

• Q-factors and Q-learning

• Other DP models - Continuous space and time

• A more abstract view of DP

• Asynchronous algorithms



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x



“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

, ∀ x

Jµ(x) = E
w

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

, ∀ x

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(x) ∈ arg min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

, ∀ x

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk,

− Find Jµk from Jµk = TµkJµk (policy evalua-
tion); then

− Find µk+1 such that Tµk+1Jµk = TJµk (pol-
icy improvement)



MAJOR PROPERTIES

• Monotonicity property: For any functions J and
J ′ on the state space X such that J(x) ≤ J ′(x)
for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)− J ′(x)
∣

∣,

max
x

∣

∣(TµJ)(x)− (TµJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)−J ′(x)
∣

∣

• Compact Contraction Notation:

‖TJ−TJ ′‖ ≤ α‖J−J ′‖, ‖TµJ−TµJ ′‖ ≤ α‖J−J ′‖,

where for any bounded function J , we denote by
‖J‖ the sup-norm

‖J‖ = max
x

∣

∣J(x)
∣

∣



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (x) = E
w

{

g
(

x, µ
k(x), w

)

+ αJµk

(

f(x, µk(x), w)
)}

, ∀ x

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(x) ∈ arg min

u∈U(x)
E
w

{

g(x, u, w) + αJµk

(

f(x, u, w)
)}

, ∀ x

or Tµk+1Jµk = TJµk

• For the case of n states, policy evaluation is
equivalent to solving an n × n linear system of
equations: Jµ = gµ + αPµJµ

• For large n, exact PI is out of the question (even
though it terminates finitely as we will show)



JUSTIFICATION OF POLICY ITERATION

• We can show that Jµk ≥ Jµk+1 for all k

• Proof: For given k, we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk

Using the monotonicity property of DP,

Jµk ≥ Tµk+1Jµk ≥ T 2
µk+1Jµk ≥ · · · ≥ lim

N→∞
TN
µk+1Jµk

• Since
lim

N→∞
TN
µk+1Jµk = Jµk+1

we have Jµk ≥ Jµk+1 .

• If Jµk = Jµk+1 , all above inequalities hold
as equations, so Jµk solves Bellman’s equation.
Hence Jµk = J∗

• Thus at iteration k either the algorithm gen-
erates a strictly improved policy or it finds an op-
timal policy

− For a finite spaces MDP, the algorithm ter-
minates with an optimal policy

− For infinite spaces MDP, convergence (in an
infinite number of iterations) can be shown



OPTIMISTIC POLICY ITERATION

• Optimistic PI: This is PI, where policy evalu-
ation is done approximately, with a finite number
of VI

• So we approximate the policy evaluation

Jµ ≈ Tm
µ J

for some number m ∈ [1,∞) and initial J

• Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

• If mk ≡ 1 it becomes VI

• If mk = ∞ it becomes PI

• Converges for both finite and infinite spaces
discounted problems (in an infinite number of it-
erations)

• Typically works faster than VI and PI (for
large problems)



APPROXIMATE PI

• Suppose that the policy evaluation is approxi-
mate,

‖Jk − Jµk‖ ≤ δ, k = 0, 1, . . .

and policy improvement is approximate,

‖Tµk+1Jk − TJk‖ ≤ ǫ, k = 0, 1, . . .

where δ and ǫ are some positive scalars.

• Error Bound I: The sequence {µk} generated
by approximate policy iteration satisfies

lim sup
k→∞

‖Jµk − J∗‖ ≤ ǫ+ 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Error Bound II: If in addition the sequence {µk}
“terminates” at µ (i.e., keeps generating µ)

‖Jµ − J∗‖ ≤ ǫ+ 2αδ

1− α



Q-FACTORS I

• Optimal Q-factor of (x, u):

Q∗(x, u) = E {g(x, u, w) + αJ∗(x)}

with x = f(x, u, w). It is the cost of starting at x,
applying u is the 1st stage, and an optimal policy
after the 1st stage

• We can write Bellman’s equation as

J∗(x) = min
u∈U(x)

Q∗(x, u), ∀ x,

• We can equivalently write the VI method as

Jk+1(x) = min
u∈U(x)

Qk+1(x, u), ∀ x,

where Qk+1 is generated by

Qk+1(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Qk(x, v)

}

with x = f(x, u, w)



Q-FACTORS II

• Q-factors are costs in an “augmented” problem
where states are (x, u)

• They satisfy a Bellman equation Q∗ = FQ∗

where

(FQ)(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Q(x, v)

}

where x = f(x, u, w)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

• They require equal amount of computation ...
they just need more storage

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ∗(x) = min
u∈U(x)

Q∗(x, u)

• Once Q∗(x, u) are known, the model [g and
E{·}] is not needed. Model-free operation

• Q-Learning (to be discussed later) is a sampling
method that calculates Q∗(x, u) using a simulator
of the system (no model needed)



OTHER DP MODELS

• We have looked so far at the (discrete or con-
tinuous spaces) discounted models for which the
analysis is simplest and results are most powerful

• Other DP models include:

− Undiscounted problems (α = 1): They may
include a special termination state (stochas-
tic shortest path problems)

− Continuous-time finite-state MDP: The time
between transitions is random and state-and-
control-dependent (typical in queueing sys-
tems, called Semi-Markov MDP). These can
be viewed as discounted problems with state-
and-control-dependent discount factors

• Continuous-time, continuous-space models: Clas-
sical automatic control, process control, robotics

− Substantial differences from discrete-time

− Mathematically more complex theory (par-
ticularly for stochastic problems)

− Deterministic versions can be analyzed using
classical optimal control theory

− Admit treatment by DP, based on time dis-
cretization



CONTINUOUS-TIME MODELS

• System equation: dx(t)/dt = f
(

x(t), u(t)
)

• Cost function:
∫∞

0
g
(

x(t), u(t)
)

• Optimal cost starting from x: J∗(x)

• δ-Discretization of time: xk+1 = xk+δ·f(xk, uk)

• Bellman equation for the δ-discretized problem:

J∗
δ (x) = min

u

{

δ · g(x, u) + J∗
δ

(

x+ δ · f(x, u)
)}

• Take δ → 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming limδ→0 J∗

δ (x) = J∗(x)]

0 = min
u

{

g(x, u) +∇J∗(x)′f(x, u)
}

, ∀ x

• Policy Iteration (informally):

− Policy evaluation: Given current µ, solve

0 = g
(

x, µ(x)
)

+∇Jµ(x)′f
(

x, µ(x)
)

, ∀ x

− Policy improvement: Find

µ(x) ∈ argmin
u

{

g(x, u)+∇Jµ(x)′f(x, u)
}

, ∀ x

• Note: Need to learn ∇Jµ(x) NOT Jµ(x)



A MORE GENERAL/ABSTRACT VIEW OF DP

• Let Y be a real vector space with a norm ‖ · ‖
• A function F : Y 7→ Y is said to be a contrac-
tion mapping if for some ρ ∈ (0, 1), we have

‖Fy − Fz‖ ≤ ρ‖y − z‖, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Important example: Let X be a set (e.g., state
space in DP), v : X 7→ ℜ be a positive-valued
function. Let B(X) be the set of all functions
J : X 7→ ℜ such that J(x)/v(x) is bounded over
x.

• We define a norm on B(X), called the weighted
sup-norm, by

‖J‖ = max
x∈X

|J(x)|
v(x)

.

• Important special case: The discounted prob-
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α].



CONTRACTION MAPPINGS: AN EXAMPLE

• Consider extension from finite to countable state
space, X = {1, 2, . . .}, and a weighted sup norm
with respect to which the one stage costs are bounded

• Suppose that Tµ has the form

(TµJ)(i) = bi + α
∑

j∈X

aij J(j), ∀ i = 1, 2, . . .

where bi and aij are some scalars. Then Tµ is a
contraction with modulus ρ if and only if

∑

j∈X |aij | v(j)
v(i)

≤ ρ, ∀ i = 1, 2, . . .

• Consider T ,

(TJ)(i) = min
µ

(TµJ)(i), ∀ i = 1, 2, . . .

where for each µ ∈ M , Tµ is a contraction map-
ping with modulus ρ. Then T is a contraction
mapping with modulus ρ

• Allows extensions of main DP results from
bounded one-stage cost to interesting unbounded
one-stage cost cases.



CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If
F : B(X) 7→ B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗.

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

‖F kJ − J∗‖ ≤ ρk‖J − J∗‖, k = 1, 2, . . . .

• This is a special case of a general result for
contraction mappings F : Y 7→ Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies ‖ym − yn‖ → 0 as
m,n → ∞) converges.

• The space B(X) is complete (see the text for a
proof).



ABSTRACT FORMS OF DP

• We consider an abstract form of DP based on
monotonicity and contraction

• Abstract Mapping: Denote R(X): set of real-
valued functions J : X 7→ ℜ, and let H : X ×U ×
R(X) 7→ ℜ be a given mapping. We consider the
mapping

(TJ)(x) = min
u∈U(x)

H(x, u, J), ∀ x ∈ X.

• We assume that (TJ)(x) > −∞ for all x ∈ X,
so T maps R(X) into R(X).

• Abstract Policies: Let M be the set of “poli-
cies”, i.e., functions µ such that µ(x) ∈ U(x) for
all x ∈ X.

• For each µ ∈ M, we consider the mapping
Tµ : R(X) 7→ R(X) defined by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X.

• Find a function J∗ ∈ R(X) such that

J∗(x) = min
u∈U(x)

H(x, u, J∗), ∀ x ∈ X



EXAMPLES

• Discounted problems

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

• Discounted “discrete-state continuous-time”
Semi-Markov Problems (e.g., queueing)

H(x, u, J) = G(x, u) +
n
∑

y=1

mxy(u)J(y)

where mxy are “discounted” transition probabili-
ties, defined by the distribution of transition times

• Minimax Problems/Games

H(x, u, J) = max
w∈W (x,u)

[

g(x, u, w)+αJ
(

f(x, u, w)
)]

• Shortest Path Problems

H(x, u, J) =

{

axu + J(u) if u 6= d,
axd if u = d

where d is the destination. There are stochastic
and minimax versions of this problem



ASSUMPTIONS

• Monotonicity: If J, J ′ ∈ R(X) and J ≤ J ′,

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• We can show all the standard analytical and
computational results of discounted DP if mono-
tonicity and the following assumption holds:

• Contraction:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X)

− For some α ∈ (0, 1), and all µ and J, J ′ ∈
B(X), we have

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖

• With just monotonicity assumption (as in undis-
counted problems) we can still show various forms
of the basic results under appropriate conditions

• A weaker substitute for contraction assumption
is semicontractiveness: (roughly) for some µ, Tµ

is a contraction and for others it is not; also the
“noncontractive” µ are not optimal



RESULTS USING CONTRACTION

• Proposition 1: The mappings Tµ and T are
weighted sup-norm contraction mappings with mod-
ulus α over B(X), and have unique fixed points
in B(X), denoted Jµ and J∗, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H .

• Proposition 2: For any J ∈ B(X) and µ ∈ M,

lim
k→∞

T k
µJ = Jµ, lim

k→∞
T kJ = J∗

(cf. convergence of value iteration).

Proof: From the contraction property of Tµ and
T .

• Proposition 3: We have TµJ∗ = TJ∗ if and
only if Jµ = J∗ (cf. optimality condition).

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ =
TµJµ = Jµ = J∗ = TJ∗.



RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

J∗(x) = min
µ∈M

Jµ(x), ∀ x ∈ X

• Existence of a nearly optimal policy: For every
ǫ > 0, there exists µǫ ∈ M such that

J∗(x) ≤ Jµǫ(x) ≤ J∗(x) + ǫ, ∀ x ∈ X

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define

Jπ(x) = lim inf
k→∞

(Tµ0
Tµ1

· · ·TµkJ)(x), ∀ x ∈ X,

with J being any function (the choice of J does
not matter)

• We have

J∗(x) = min
π∈Π

Jπ(x), ∀ x ∈ X



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk

• Optimistic PI: This is PI, where policy evalu-
ation is carried out by a finite number of VI

− Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally
more efficient than either VI or PI



ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor ℓ updating J(x) for x ∈ Xℓ

• Let J be partitioned as

J = (J1, . . . , Jm),

where Jℓ is the restriction of J on the set Xℓ.

• Synchronous VI algorithm:

J t+1
ℓ (x) = T (J t

1, . . . , J
t
m)(x), x ∈ Xℓ, ℓ = 1, . . . ,m

• Asynchronous VI algorithm: For some subsets
of times Rℓ,

J t+1
ℓ (x) =

{

T (J
τℓ1(t)
1 , . . . , J

τℓm(t)
m )(x) if t ∈ Rℓ,

J t
ℓ(x) if t /∈ Rℓ

where t− τℓj(t) are communication “delays”



ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

• Asynchronous VI:

J t+1
ℓ =

{

T (J t
1, . . . , J

t
n)(ℓ) if ℓ = xt,

J t
ℓ if ℓ 6= xt,

where T (J t
1, . . . , J

t
n)(ℓ) denotes the ℓ-th compo-

nent of the vector

T (J t
1, . . . , J

t
n) = TJ t,

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method



ASYNCHRONOUS CONV. THEOREM I

• KEY FACT: VI and also PI (with some modifi-
cations) still work when implemented asynchronously

• Assume that for all ℓ, j = 1, . . . ,m, Rℓ is infinite
and limt→∞ τℓj(t) = ∞
• Proposition: Let T have a unique fixed point J∗,
and assume that there is a sequence of nonempty
subsets

{

S(k)
}

⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Every
sequence {Jk} with Jk ∈ S(k) for each k,
converges pointwise to J∗. Moreover,

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · · × Sm(k),

where Sℓ(k) is a set of real-valued functions
on Xℓ, ℓ = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen-
erated by the asynchronous algorithm converges
pointwise to J∗.



ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

(0) S2(0)
TJ

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

J1 Iterations

Iterations J2 Iteration

Key: “Independent” component-wise improve-
ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com-
ponent portion of S(k + 1)



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of discounted DP

• Introduction to approximate DP

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy evaluation

• Some general issues about approximation and
simulation



REVIEW



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x



MDP - TRANSITION PROBABILITY NOTATION

• We will mostly assume the system is an n-state
(controlled) Markov chain

• We will often switch to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pikik+1
(uk) [instead

of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

− Cost functions J =
(

J(1), . . . , J(n)
)

(vec-
tors in ℜn)

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(i) = lim
N→∞

E
ik

k=1,2,...

{

N−1
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µ
k(i)
)(

g
(

i, µ
k(i), j

)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(i) ∈ arg min

u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question. We
use instead optimistic PI (policy evaluation with
a few VIs)



APPROXIMATE DP



GENERAL ORIENTATION TO ADP

• ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.

• Other names for ADP are:

− “reinforcement learning” (RL).

− “neuro-dynamic programming” (NDP).

− “adaptive dynamic programming” (ADP).

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.

• There are many approaches:

− Problem approximation

− Simulation-based approaches (we will focus
on these)

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

− Approximation in policy space



WHY DO WE USE SIMULATION?

• One reason: Computational complexity advan-
tage in computing sums/expectations involving a
very large number of terms

− Any sum
n
∑

i=1

ai

can be written as an expected value:

n
∑

i=1

ai =

n
∑

i=1

ξi
ai
ξi

= Eξ

{

ai
ξi

}

,

where ξ is any prob. distribution over {1, . . . , n}
− It can be approximated by generating many

samples {i1, . . . , ik} from {1, . . . , n}, accord-
ing to distribution ξ, and Monte Carlo aver-
aging:

n
∑

i=1

ai = Eξ

{

ai
ξi

}

≈ 1

k

k
∑

t=1

ait
ξit

• Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.



APPROXIMATION IN VALUE AND

POLICY SPACE



APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights

• Use J̃ in place of J∗ or Jµ in various algorithms
and computations

• Role of r: By adjusting r we can change the
“shape” of J̃ so that it is “close” to J∗ or Jµ

• Two key issues:

− The choice of parametric class J̃(i; r) (the
approximation architecture)

− Method for tuning the weights (“training”
the architecture)

• Success depends strongly on how these issues
are handled ... also on insight about the problem

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

• We will focus on simulation, but this is not the
only possibility

• We may also use parametric approximation for
Q-factors or cost function differences



APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i; r) on r]

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

• Computer chess example:

− Think of board position as state and move
as control

− Uses a feature-based position evaluator that
assigns a score (or approximate Q-factor) to
each position/move

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Relatively few special features and weights, and
multistep lookahead



LINEAR APPROXIMATION ARCHITECTURES

• Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

• Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func-
tion)

• With well-chosen features, we can use a linear
architecture: J̃(i; r) = φ(i)′r, i = 1, . . . , n, or

J̃(r) = Φr =
s
∑

j=1

Φjrj

Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n,
Φj is the jth column of Φ

State i

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc



ILLUSTRATIONS: POLYNOMIAL TYPE

• Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be i =
(i1, . . . , iq) (i.e., have q “dimensions”) and define

φ0(i) = 1, φk(i) = ik, φkm(i) = ikim, k,m = 1, . . . , q

Linear approximation architecture:

J̃(i; r) = r0 +

q
∑

k=1

rkik +

q
∑

k=1

q
∑

m=k

rkmikim,

where r has components r0, rk, and rkm.

• Interpolation: A subset I of special/representative
states is selected, and the parameter vector r has
one component ri per state i ∈ I. The approxi-
mating function is

J̃(i; r) = ri, i ∈ I,

J̃(i; r) = interpolation using the values at i ∈ I, i /∈ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.



A DOMAIN SPECIFIC EXAMPLE

• Tetris game (used as testbed in competitions)

TERMINATION

......

• J∗(i): optimal score starting from position i

• Number of states > 2200 (for 10× 20 board)

• Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)



APPROX. PI - OPTION TO APPROX. Jµ OR Qµ

• Use simulation to approximate the cost Jµ of
the current policy µ

• Generate “improved” policy µ by minimizing in
(approx.) Bellman equation

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Altenatively approximate the Q-factors of µ

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Evaluate Approximate Q-Factors

Approximate Policy Evaluation

Approximate Policy Evaluation µ(i) = arg minu∈U(i) Q̃µ(i, u, r)
Initial state ( ) Time

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

Q̃µ(i, u, r)



APPROXIMATING J∗ OR Q∗

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the Q-factors

Q∗(i, u) = g(i, u) + α
n
∑

j=1

pij(u)J∗(j);

and the optimal costs

J∗(i) = min
u∈U(i)

Q∗(i, u)

− Bellman Error approach: Find r to

min
r

Ei

{

(

J̃(i; r)− (T J̃)(i; r)
)2
}

where Ei{·} is taken with respect to some
distribution over the states

− Approximate Linear Programming (we will
not discuss here)

• Q-learning can also be used with approxima-
tions

• Q-learning and Bellman error approach can also
be used for policy evaluation



APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it later.

• Use parametrization µ(i; r) of policies with a
vector r = (r1, . . . , rs). Examples:

− Polynomial, e.g., µ(i; r) = r1 + r2 · i+ r3 · i2
− Linear feature-based

µ(i; r) = φ1(i) · r1 + φ2(i) · r2
• Optimize the cost over r. For example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Let (p1, . . . , pn) be some probability distri-
bution over the states, and minimize over r

n
∑

i=1

piJ̃(i; r)

− Use a random search, gradient, or other method

• A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture Ĵ , i.e.,

µ(i; r) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αĴ(j; r)
)



APPROXIMATE POLICY EVALUATION

METHODS



DIRECT POLICY EVALUATION

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi-
mation subspace

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Solution by least squares methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may also
be used



DIRECT EVALUATION BY SIMULATION

• Projection by Monte Carlo Simulation: Com-
pute the projection ΠJµ of Jµ on subspace S =
{Φr | r ∈ ℜs}, with respect to a weighted Eu-
clidean norm ‖ · ‖ξ
• Equivalently, find Φr∗, where

r∗ = arg min
r∈ℜs

‖Φr−Jµ‖2ξ = arg min
r∈ℜs

n
∑

i=1

ξi
(

φ(i)′r−Jµ(i)
)2

• Setting to 0 the gradient at r∗,

r∗ =

(

n
∑

i=1

ξiφ(i)φ(i)′

)−1 n
∑

i=1

ξiφ(i)Jµ(i)

• Generate samples
{

(i1, Jµ(i1)), . . . , (ik, Jµ(ik))
}

using distribution ξ

• Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

r̂k =

(

k
∑

t=1

φ(it)φ(it)′

)−1
k
∑

t=1

φ(it)Jµ(it)

• Equivalent least squares alternative calculation:

r̂k = arg min
r∈ℜs

k
∑

t=1

(

φ(it)′r − Jµ(it)
)2



INDIRECT POLICY EVALUATION

• An example: Galerkin approximation

• Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suitable
weighted Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Solution methods that use simulation (to man-
age the calculation of Π)

− TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

− LSTD(λ): Solves a simulation-based approx-
imation w/ a standard solver

− LSPE(λ): A simulation-based form of pro-
jected value iteration; essentially

Φrk+1 = ΠTµ(Φrk) + simulation noise



BELLMAN EQUATION ERROR METHODS

• Another example of indirect approximate policy
evaluation:

min
r

‖Φr − Tµ(Φr)‖2ξ (∗)
where ‖ · ‖ξ is Euclidean norm, weighted with re-
spect to some distribution ξ

• It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

• Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

− Generating many random samples of states
ik using the distribution ξ

− Generating many samples of transitions (ik, jk)
using the policy µ

− Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

− Solve the Monte-Carlo approximation of the
optimality condition

• Issues for indirect methods: How to generate
the samples? How to calculate r∗ efficiently?



ANOTHER INDIRECT METHOD: AGGREGATION

• A first idea: Group similar states together into
“aggregate states” x1, . . . , xs; assign a common
cost value ri to each group xi.

• Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1, . . . , rs). This
is called hard aggregation

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• More general/mathematical view: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ)

• Compare with projected equation Φr = ΠTµ(Φr).
Note: ΦD is a projection in some interesting cases



AGGREGATION AS PROBLEM APPROXIMATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Aggregation can be viewed as a systematic
approach for problem approximation. Main ele-
ments:

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach



APPROXIMATE POLICY ITERATION

ISSUES



THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max
i

|J̃(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

max
i

|(Tµk+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ǫ, k = 0, 1, . . .

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤ ǫ+ 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Oscillations are quite unpredictable.

− Some bad examples of oscillations have been
constructed.

− In practice oscillations between policies is
probably not the major concern.



THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ

• Cost-to-go estimates of underrepresented states
may be highly inaccurate

• This seriously impacts the improved policy µ

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

• Some remedies:

− Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

− Occasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy µ

− Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).



APPROXIMATING Q-FACTORS

• Given J̃(i; r), policy improvement requires a
model [knowledge of pij(u) for all controls u ∈
U(i)]

• Model-free alternative: Approximate Q-factors

Q̃(i, u; r) ≈
n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

and use for policy improvement the minimization

µ(i) ∈ arg min
u∈U(i)

Q̃(i, u; r)

• r is an adjustable parameter vector and Q̃(i, u; r)
is a parametric architecture, such as

Q̃(i, u; r) =
s
∑

m=1

rmφm(i, u)

• We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

• Use the Markov chain with states (i, u), so
pij(µ(i)) is the transition prob. to (j, µ(i)), 0 to
other (j, u′)

• Major concern: Acutely diminished exploration



SOME GENERAL ISSUES



STOCHASTIC ALGORITHMS: GENERALITIES

• Consider solution of a linear equation x = b +
Ax by using m simulation samples b + wk and
A+Wk, k = 1, . . . ,m, where wk,Wk are random,
e.g., “simulation noise”

• Think of x = b + Ax as approximate policy
evaluation (projected or aggregation equations)

• Stoch. approx. (SA) approach: For k = 1, . . . ,m

xk+1 = (1− γk)xk + γk
(

(b+ wk) + (A+Wk)xk

)

• Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

bm =
1

m

m
∑

k=1

(b+ wk), Am =
1

m

m
∑

k=1

(A+Wk)

Then solve x = bm +Amx by matrix inversion

xm = (1−Am)−1bm

or iteratively

• TD(λ) and Q-learning are SA methods

• LSTD(λ) and LSPE(λ) are MCE methods



COSTS OR COST DIFFERENCES?

• Consider the exact policy improvement process.
To compare two controls u and u′ at x, we need

E
{

g(x, u, w)− g(x, u′, w) + α
(

Jµ(x)− Jµ(x
′)
)}

where x = f(x, u, w) and x′ = f(x, u′, w)

• Approximate Jµ(x) or

Dµ(x, x′) = Jµ(x)− Jµ(x′)?

• Approximating Dµ(x, x
′) avoids “noise differ-

encing”. This can make a big difference

• Important point: Dµ satisfies a Bellman equa-
tion for a system with “state” (x, x′)

Dµ(x, x′) = E
{

Gµ(x, x′, w) + αDµ(x, x
′)
}

where x = f
(

x, µ(x), w
)

, x′ = f
(

x′, µ(x′), w
)

and

Gµ(x, x′, w) = g
(

x, µ(x), w
)

− g
(

x′, µ(x′), w
)

• Dµ can be “learned” by the standard methods
(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.



AN EXAMPLE (FROM THE NDP TEXT)

• System and cost per stage:

xk+1 = xk + δuk, g(x, u) = δ(x2 + u2)

δ > 0 is very small; think of discretization of
continuous-time problem involving dx(t)/dt = u(t)

• Consider policy µ(x) = −2x. Its cost function
is

Jµ(x) =
5x2

4
(1 + δ) +O(δ2)

and its Q-factor is

Qµ(x, u) =
5x2

4
+ δ

(

9x2

4
+ u2 +

5

2
xu

)

+O(δ2)

• The important part for policy improvement is

δ

(

u2 +
5

2
xu

)

When Jµ(x) [or Qµ(x, u)] is approximated by
J̃µ(x; r) [or by Q̃µ(x, u; r)], it will be dominated

by 5x2

4 and will be “lost”



6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeoff



REVIEW



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n, and finite control set U(i) at state i

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u )

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ℜn

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µ
k(i)
)(

g
(

i, µ
k(i), j

)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µ
k+1(i) ∈ arg min

u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)



APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i; r), where i is the current state and r = (r1, . . . , rs)
is a vector of “tunable” scalars weights

• Think n: HUGE, s: (Relatively) SMALL

• Many types of approximation architectures [i.e.,
parametric classes J̃(i; r)] to select from

• Any r ∈ ℜs defines a (suboptimal) one-step
lookahead policy

µ̃(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ̃(j; r)
)

, ∀ i

• We want to find a “good” r

• We will focus mostly on linear architectures

J̃(r) = Φr

where Φ is an n × s matrix whose columns are
viewed as basis functions



LINEAR APPROXIMATION ARCHITECTURES

• We have

J̃(i; r) = φ(i)′r, i = 1, . . . , n

where φ(i)′, i = 1, . . . , n is the ith row of Φ, or

J̃(r) = Φr =
s
∑

j=1

Φjrj

where Φj is the jth column of Φ

State i

Approximator
i Feature Extraction Mapping Feature Vector

Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ℜs}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, etc

• Instead of computing Jµ or J∗, which is huge-
dimensional, we compute the low-dimensional r =
(r1, . . . , rs) using low-dimensional calculations



APPROXIMATE VALUE ITERATION



APPROXIMATE (FITTED) VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
k = 1, 2, . . ., with J̃k(i; rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• Approximate (Fitted) Value Iteration: A se-
quential “fit” to produce J̃k+1 from J̃k, i.e., J̃k+1 ≈
T J̃k or (for a single policy µ) J̃k+1 ≈ TµJ̃k

Subspace S = {Φr | r ∈ ℜs} Set

Fitted Value Iteration
{

Fitted Value Iteration J0

0 TJ0
}

0 J̃1
}

˜
1 T J̃1

1 J̃2

˜
2 T J̃2

˜
2 J̃3

• After a large enough numberN of steps, J̃N (i; rN )
is used as approximation J̃(i; r) to J∗(i)

• Possibly use (approximate) projection Π with
respect to some projection norm,

J̃k+1 ≈ ΠT J̃k



WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√

√

√

n
∑

i=1

ξi
(

J(i)
)2
,

where ξ = (ξ1, . . . , ξn) is a positive distribution
(ξi > 0 for all i).

• Let Π denote the projection operation onto

S = {Φr | r ∈ ℜs}

with respect to this norm, i.e., for any J ∈ ℜn,

ΠJ = Φr∗

where
r∗ = arg min

r∈ℜs
‖Φr − J‖2ξ

• Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J(i) according to ξ and solving

min
r∈ℜs

k
∑

t=1

(

φ(it)′r − J(it)
)2



FITTED VI - NAIVE IMPLEMENTATION

• Select/sample a “small” subset Ik of represen-
tative states

• For each i ∈ Ik, given J̃k, compute

(T J̃k)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j; r)
)

• “Fit” the function J̃k+1(i; rk+1) to the “small”
set of values (T J̃k)(i), i ∈ Ik (for example use
some form of approximate projection)

• Simulation can be used for “model-free” imple-
mentation

• Error Bound: If the fit is uniformly accurate
within δ > 0, i.e.,

max
i

|J̃k+1(i)− T J̃k(i)| ≤ δ,

then

lim sup
k→∞

max
i=1,...,n

(

J̃k(i, rk)− J∗(i)
)

≤ 2αδ

(1− α)2

• But there is a potential problem!



AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2 → 2

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0.

• Consider (exact) fitted VI scheme that approx-
imates cost functions within S =

{

(r, 2r) | r ∈ ℜ
}

with a weighted least squares fit; here Φ =

(

1
2

)

• Given J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1),
where J̃k+1 = Πξ(T J̃k), with weights ξ = (ξ1, ξ2):

rk+1 = argmin
r

[

ξ1
(

r−(T J̃k)(1)
)2
+ξ2

(

2r−(T J̃k)(2)
)2
]

• With straightforward calculation

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β (e.g., ξ1 = ξ2 = 1), the sequence
{rk} diverges and so does {J̃k}.
• Difficulty is that T is a contraction, but ΠξT
(= least squares fit composed with T ) is not.



NORM MISMATCH PROBLEM

• For the method to converge, we need ΠξT to
be a contraction; the contraction property of T is
not enough

Subspace S = {Φr | r ∈ ℜs} Set

Fitted Value Iteration J0

0 TJ0
}

˜
1 T J̃1

˜
2 T J̃2

Fitted Value Iteration with Projection J
{ }

0 J̃1 = Πξ(TJ0)

1̃ J̃2 = Πξ(T J̃1)

} 2 J̃3 = Πξ(T J̃2)

• We need a vector of weights ξ such that T is
a contraction with respect to the weighted Eu-
clidean norm ‖ · ‖ξ
• Then we can show that ΠξT is a contraction
with respect to ‖ · ‖ξ
• We will come back to this issue



APPROXIMATE POLICY ITERATION



APPROXIMATE PI

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Evaluation of typical policy µ: Linear cost func-
tion approximation J̃µ(r) = Φr, where Φ is full
rank n × s matrix with columns the basis func-
tions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)

• Error Bound (same as approximate VI): If

max
i

|J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

the sequence {µk} satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤ 2αδ

(1− α)2



POLICY EVALUATION

• Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

− Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Tµ(Φr)

Φr = ΠTµ(Φr)

Indirect Method: Solving a projected form of Bellman’s equation

Projection onIndirect Method: Solving a projected form of Bellman’s equation

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Recall that projection can be implemented by
simulation and least squares



PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

with the projected equation solution J̃µ(r)



KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

ξj = lim
N→∞

1

N

N
∑

k=1

P (ik = j | i0 = i) > 0

Note that ξj is the long-term frequency of state j.

• Proposition: (Norm Matching Property) As-
sume that the projection Π is with respect to ‖·‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state proba-
bility vector. Then:

(a) ΠTµ is contraction of modulus α with re-
spect to ‖ · ‖ξ.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

‖Jµ − Φr∗‖ξ ≤ 1√
1− α2

‖Jµ −ΠJµ‖ξ



PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
ℜn, Φr ∈ S, the Pythagorean Theorem holds:

‖J − Φr‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − Φr‖2ξ

Subspace S = {Φr | r ∈ ℜs} Set

r Φr

}

J

J ΠJ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖ξ ≤ ‖J − J̄‖ξ, for all J, J̄ ∈ ℜn.

To see this, note that

∥

∥Π(J − J)
∥

∥

2

ξ
≤
∥

∥Π(J − J)
∥

∥

2

ξ
+
∥

∥(I −Π)(J − J)
∥

∥

2

ξ

= ‖J − J‖2ξ



PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ℜn

Proof: Let pij be the components of P . For all
z ∈ ℜn, we have

‖Pz‖2ξ =
n
∑

i=1

ξi





n
∑

j=1

pijzj





2

≤
n
∑

i=1

ξi

n
∑

j=1

pijz2j

=

n
∑

j=1

n
∑

i=1

ξipijz2j =

n
∑

j=1

ξjz2j = ‖z‖2ξ ,

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property

∑n
i=1 ξipij =

ξj of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ , we have

‖ΠTµJ−ΠTµJ̄‖ξ ≤ ‖TµJ−TµJ̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ

for all J, J̄ ∈ ℜn. Hence ΠTµ is a contraction of
modulus α.



PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

‖Jµ − Φr∗‖ξ ≤ 1√
1− α2

‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2ξ = ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠJµ − Φr∗
∥

∥

2

ξ

= ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠTJµ −ΠT (Φr∗)
∥

∥

2

ξ

≤ ‖Jµ −ΠJµ‖2ξ + α2‖Jµ − Φr∗‖2ξ ,

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.



SIMULATION-BASED SOLUTION OF

PROJECTED EQUATION



MATRIX FORM OF PROJECTED EQUATION

Subspace S = {Φr | r ∈ ℜs} Set

= 0

Tµ(Φr)= g + αPΦr

r Φr = ΠξTµ(Φr)

• The solution Φr∗ satisfies the orthogonality con-
dition: The error

Φr∗ − (g + αPΦr∗)

is “orthogonal” to the subspace spanned by the
columns of Φ.

• This is written as

Φ′Ξ
(

Φr∗ − (g + αPΦr∗)
)

= 0,

where Ξ is the diagonal matrix with the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• Equivalently, Cr∗ = d, where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg

but computing C and d is HARD (high-dimensional
inner products).



SOLUTION OF PROJECTED EQUATION

• Solve Cr∗ = d by matrix inversion: r∗ = C−1d

• Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ because ΠT is a contraction.

S: Subspace spanned by basis functions

Φrk

T(Φrk) = g + αPΦrk

0

Φrk+1

Value Iterate

Projection
on S

• PVI can be written as:

rk+1 = arg min
r∈ℜs

∥

∥Φr − (g + αPΦrk)
∥

∥

2

ξ

By setting to 0 the gradient with respect to r,

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)



SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Matrix inversion r∗ = C−1d is approximated
by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating each transition (it, it+1), we
compute the row φ(it)′ of Φ and the cost compo-
nent g(it, it+1).

• We form

dk =
1

k + 1

k
∑

t=0

φ(it)g(it, it+1) ≈
∑

i,j

ξipijφ(i)g(i, j) = Φ′Ξg = d

Ck =
1

k + 1

k
∑

t=0

φ(it)
(

φ(it)−αφ(it+1)
)′

≈ Φ′Ξ(I−αP )Φ = C

Also in the case of LSPE

Gk =
1

k + 1

k
∑

t=0

φ(it)φ(it)′ ≈ Φ′ΞΦ

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)



OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C matrix is
ill-conditioned

• LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)



MULTISTEP PROJECTED EQUATIONS



MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ ∈ [0, 1),

T (λ) = (1− λ)
∞
∑

ℓ=0

λℓT ℓ+1

Geometrically weighted sum of powers of T .

• Note that T ℓ is a contraction with modulus
αℓ, with respect to the weighted Euclidean norm
‖·‖ξ, where ξ is the steady-state probability vector
of the Markov chain.

• Hence T (λ) is a contraction with modulus

αλ = (1− λ)
∞
∑

ℓ=0

αℓ+1λℓ =
α(1− λ)

1− αλ

Note that αλ → 0 as λ → 1

• T ℓ and T (λ) have the same fixed point Jµ and

‖Jµ − Φr∗λ‖ξ ≤ 1
√

1− α2
λ

‖Jµ −ΠJµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).

• The fixed point Φr∗λ depends on λ.



BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

Φr
∗

λ
:

• Error bound ‖Jµ−Φr∗λ‖ξ ≤ 1√
1−α2

λ

‖Jµ−ΠJµ‖ξ

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
the quality of approximation) improves as λ ↑ 1.
In fact

lim
λ↑1

Φr∗λ = ΠJµ

• But the simulation noise in approximating

T (λ) = (1− λ)

∞
∑

ℓ=0

λℓT ℓ+1

increases

• Choice of λ is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with

P (λ) = (1− λ)

∞
∑

ℓ=0

αℓλℓP ℓ+1, g(λ) =

∞
∑

ℓ=0

αℓλℓP ℓg

• The LSTD(λ) method is
(

C
(λ)
k

)−1
d
(λ)
k ,

where C
(λ)
k and d

(λ)
k are simulation-based approx-

imations of C(λ) and d(λ).

• The LSPE(λ) method is

rk+1 = rk − γGk

(

C
(λ)
k rk − d

(λ)
k

)

whereGk is a simulation-based approx. to (Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].



MORE ON MULTISTEP METHODS

• The simulation process to obtain C
(λ)
k and d

(λ)
k

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . ., more complex formulas)

C
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)

k
∑

m=t

αm−tλm−t
(

φ(im)−αφ(im+1)
)′

d
(λ)
k =

1

k + 1

k
∑

t=0

φ(it)
k
∑

m=t

αm−tλm−tgim

• In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− As λ ↑ 1, C
(λ)
k and d

(λ)
k contain more “sim-

ulation noise”, so more samples are needed
for a close approximation of rλ (the solution
of the projected equation)

− The error bound ‖Jµ−Φrλ‖ξ becomes smaller

− As λ ↑ 1, ΠT (λ) becomes a contraction for
arbitrary projection norm



6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI based on projected
Bellman equations

• Issues of policy improvement

− Exploration enhancement in policy evalua-
tion

− Oscillations in approximate PI

• Aggregation – An alternative to the projected
equation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation

• Relation between aggregation and projected
equations



REVIEW



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u )

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



APPROXIMATE PI

Approximate Policy

Evaluation

Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

i, u, r) J̃µ(i, r)

Evaluate Approximate Cost Steady-State Distribution
Cost ( )

• Evaluation of typical policy µ: Linear cost func-
tion approximation

J̃µ(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)



EVALUATION BY PROJECTED EQUATIONS

• Approximate policy evaluation by solving

Φr = ΠTµ(Φr)

Π: weighted Euclidean projection; special nature
of the steady-state distribution weighting.

• Implementation by simulation (single long tra-
jectory using current policy - important to make
ΠTµ a contraction). LSTD, LSPE methods.

• Multistep option: Solve Φr = ΠT
(λ)
µ (Φr) with

T
(λ)
µ = (1− λ)

∞
∑

ℓ=0

λℓT ℓ+1
µ , 0 ≤ λ < 1

− As λ ↑ 1, ΠT
(λ)
µ becomes a contraction for

any projection norm (allows changes in Π)

− Bias-variance tradeoff

Subspace S = {Φr | r ∈ ℜs} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)



ISSUES OF POLICY IMPROVEMENT



EXPLORATION

• 1st major issue: exploration. To evaluate µ,
we need to generate cost samples using µ

• This biases the simulation by underrepresenting
states that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate,
and seriously impact the “improved policy” µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

• To deal with this we must change the sampling
mechanism and modify the simulation formulas.

• Solve
Φr = ΠTµ(Φr)

where Π is projection with respect to an exploration-
enhanced norm [uses a weight distribution ζ =
(ζ1, . . . , ζn)].

• ζ is more “balanced” than ξ the steady-state
distribution of the Markov chain of µ.

• This also addresses any lack of ergodicity of µ.



EXPLORATION MECHANISMS

• One possibility: Use multiple short simulation
trajectories instead of single long trajectory start-
ing from a rich mixture of states. This is known
as geometric sampling, or free-form sampling.

− By properly choosing the starting states, we
enhance exploration

− The simulation formulas for LSTD(λ) and
LSPE(λ) have to be modified to yield the so-

lution of Φr = ΠT
(λ)
µ (Φr) (see the DP text)

• Another possibility: Use a modified policy to
generate a single long trajectory. This is called an
off-policy approach.

− Modify the transition probabilities of µ to
enhance exploration

− Again the simulation formulas for LSTD(λ)
and LSPE(λ) have to be modified to yield

the solution of Φr = ΠT
(λ)
µ (Φr) (use of im-

portance sampling; see the DP text)

• With larger values of λ > 0 the contraction

property of ΠT
(λ)
µ is maintained.

• LSTD may be used without ΠT
(λ)
µ being a con-

traction ... LSPE and TD require a contraction.



POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition of the space
of weights r: Rµ is the set of parameter vectors r
for which µ is greedy with respect to J̃(·; r) = Φr

Rµ =
{

r | Tµ(Φr) = T (Φr)
}

∀ µ

If we use r in Rµ the next “improved” policy is µ

rµk

k rµk+1

+1 rµk+2

+2 rµk+3

Rµk

Rµk+1

Rµk+2

+2 Rµk+3

• If policy evaluation is exact, there is a finite
number of possible vectors rµ, (one per µ)

• The algorithm ends up repeating some cycle of
policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m ∈ Rµk

• Many different cycles are possible



MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif-
ferent picture holds (policy evaluation does not
produce exactly rµ)

rµ1

1 rµ2

2 rµ3

Rµ1

Rµ2

2 Rµ3

• Oscillations of weight vector r are less violent,
but the “limit” point is meaningless!

• Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J ≤ J ′ does not imply ΠJ ≤ ΠJ ′.

• If approximate PI uses an evaluation of the form

Φr = (WTµ)(Φr)

with W : monotone and WTµ: contraction, the
policies converge (to a possibly nonoptimal limit).

• These conditions hold when aggregation is used



AGGREGATION



PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
J∗ or Jµ with the cost-to-go functions of a simpler
problem.

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

• If R̂(y) is the optimal cost of aggregate state y,
we use the approximation

J∗(j) ≈
∑

y

φjyR̂(y), ∀ j

where φjy are the aggregation probabilities, en-
coding the “degree of membership of j in the ag-
gregate state y”

• This is a linear architecture: φjy are the features
of state j



HARD AGGREGATION EXAMPLE

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y (piecewise constant approx).

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• What should be the “aggregate” transition probs.
out of x?

• Select i ∈ x and use the transition probs. of i.
But which i should I use?

• The simplest possibility is to assume that all
states i in x are equally likely.

• A generalization is to randomize, i.e., use “dis-
aggregation probabilities” dxi: Roughly, the “de-
gree to which i is representative of x.”



AGGREGATION/DISAGGREGATION PROBS

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Matrix D Matrix D Matrix Φ

• Define the aggregate system transition proba-
bilities via two (somewhat arbitrary) choices.

• For each original system state j and aggregate
state y, the aggregation probability φjy

− Roughly, the “degree of membership of j in
the aggregate state y.”

− In hard aggregation, φjy = 1 if state j be-
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− Roughly, the “degree to which i is represen-
tative of x.”

• Aggregation scheme is defined by the two ma-
trices D and Φ. The rows of D and Φ must be
probability distributions.



AGGREGATE SYSTEM DESCRIPTION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• The transition probability from aggregate state
x to aggregate state y under control u

p̂xy(u) =

n
∑

i=1

dxi

n
∑

j=1

pij(u)φjy, or P̂ (u) = DP (u)Φ

where the rows of D and Φ are the disaggregation
and aggregation probs.

• The expected transition cost is

ĝ(x, u) =
n
∑

i=1

dxi

n
∑

j=1

pij(u)g(i, u, j), or ĝ = DP (u)g



AGGREGATE BELLMAN’S EQUATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• The optimal cost function of the aggregate prob-
lem, denoted R̂, is

R̂(x) = min
u∈U

[

ĝ(x, u) + α
∑

y

p̂xy(u)R̂(y)

]

, ∀ x

Bellman’s equation for the aggregate problem.

• The optimal cost function J∗ of the original
problem is approximated by J̃ given by

J̃(j) =
∑

y

φjyR̂(y), ∀ j



EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y.

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• Disaggregation probs.: There are many possi-
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).



EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group states
together?

• If we know good features, it makes sense to
group together states that have “similar features”

Special States Aggregate States Features
)

Special States Aggregate States FeaturesSpecial States Aggregate States Features

Feature Extraction Mapping Feature Vector
Feature Extraction Mapping Feature Vector

• A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture

• Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

• Aggregation-based architecture is more power-
ful (it is nonlinear in the features)

• ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture



EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

x j

x j1 j2

j2 j3

x j1

j3 y1 1 y2

2 y3

y3 Original State Space

Representative/Aggregate States

• Disaggregation probabilities are dxi = 1 if i is
equal to representative state x.

• Aggregation probabilities associate original sys-
tem states with convex combinations of represen-
tative states

j ∼
∑

y∈A

φjyy

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-
cluding belief space of POMDP



EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty subsets
of original system states. Common case: Each Sx

is a group of states with “similar features”

y3 Original State Space

Aggregate States/Subsets
0 1 2 49

Sx1

Small cost

Sx2

Small cost

Sx3

ij j

ij j

Aggregate States/Subsets
0 1 2 49 i

pij

φ

pij

φ

φjx1

φjx2

φjx3

• Restrictions:

− The aggregate states/subsets are disjoint.

− The disaggregation probabilities satisfy dxi >
0 if and only if i ∈ x.

− The aggregation probabilities satisfy φjy = 1
for all j ∈ y.

• Hard aggregation is a special case: ∪xSx =
{1, . . . , n}
• Aggregation with representative states is a spe-
cial case: Sx consists of just one state



APPROXIMATE PI BY AGGREGATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

ĝ(x, u) =

n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Consider approximate PI for the original prob-
lem, with policy evaluation done by aggregation.

• Evaluation of policy µ: J̃ = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states for µ). Can be done by simulation.

• Looks like projected equation ΦR = ΠTµ(ΦR)
(but with ΦD in place of Π).

• Advantage: It has no problem with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions.



ADDITIONAL ISSUES OF AGGREGATION



ALTERNATIVE POLICY ITERATION

• The preceding PI method uses policies that as-
sign a control to each aggregate state.

• An alternative is to use PI for the combined
system, involving the Bellman equations:

R∗(x) =
n
∑

i=1

dxiJ̃0(i), ∀ x,

J̃0(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ̃1(j)
)

, i = 1, . . . , n,

J̃1(j) =
∑

y∈A

φjyR∗(y), j = 1, . . . , n.

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Aggregation Probabilities

Disaggregation Probabilities

{

Aggregation Probabilities

Disaggregation Probabilities

Matrix D Matrix D Matrix Φ

• Simulation-based PI and VI are still possible.



RELATION OF AGGREGATION/PROJECTION

• Compare aggregation and projected equations

ΦR = ΦDT (ΦR), Φr = ΠT (Φr)

• If ΦD is a projection (with respect to some
weighted Euclidean norm), then the methodology
of projected equations applies to aggregation

• Hard aggregation case: ΦD can be verified to be
projection with respect to weights ξi proportional
to the disaggregation probabilities dxi

• Aggregation with representative features case:
ΦD can be verified to be a semi-norm projection
with respect to weights ξi proportional to dxi

• A (weighted) Euclidean semi-norm is defined by

‖J‖ξ =

√

∑n
i=1 ξi

(

J(i)
)2
, where ξ = (ξ1, . . . , ξn),

with ξi≥ 0.

• If Φ′ΞΦ is invertible, the entire theory and
algorithms of projected equations generalizes to
semi-norm projected equations [including multi-
step methods such as LSTD/LSPE/TD(λ)].

• Reference: Yu and Bertsekas, “Weighted Bell-
man Equations and their Applications in Approxi-
mate Dynamic Programming,” MIT Report, 2012.



DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by hard
aggregation.

• Partition the original system states into subsets
S1, . . . , Sm.

• Distributed VI Scheme: Each subset Sℓ

− Maintains detailed/exact local costs

J(i) for every original system state i ∈ Sℓ

using aggregate costs of other subsets

− Maintains an aggregate costR(ℓ) =
∑

i∈Sℓ
dℓiJ(i)

− Sends R(ℓ) to other aggregate states

• J(i) and R(ℓ) are updated by VI according to

Jk+1(i) = min
u∈U(i)

Hℓ(i, u, Jk, Rk), ∀ i ∈ Sℓ

with Rk being the vector of R(ℓ) at time k, and

Hℓ(i, u, J,R) =

n
∑

j=1

pij(u)g(i, u, j) + α
∑

j∈Sℓ

pij(u)J(j)

+ α
∑

j∈Sℓ′ , ℓ
′ 6=ℓ

pij(u)R(ℓ′)



DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it
converges to the unique solution of the system of
equations in (J,R)

J(i) = min
u∈U(i)

Hℓ(i, u, J,R), R(ℓ) =
∑

i∈Sℓ

dℓiJ(i),

∀ i ∈ Sℓ, ℓ = 1, . . . ,m.

• This follows from the fact that {dℓi | i =
1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R

(

x(j)
)

for j ∈ Sℓ.

• In an asynchronous version of the method, the
aggregate costs R(ℓ) may be outdated to account
for communication “delays” between aggregate states.

• Convergence can be shown using the general
theory of asynchronous distributed computation,
briefly described in the 2nd lecture (see the text).



6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Review of Q-factors and Bellman equations for
Q-factors

• VI and PI for Q-factors

• Q-learning - Combination of VI and sampling

• Q-learning and cost function approximation

• Adaptive dynamic programming

• Approximation in policy space

• Additional topics



REVIEW



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

i j

pij(u)

pii(u) p jj(u )

pji(u)

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined by

Q∗(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) +αJ∗(j)
)

, ∀ (i, u)

• Since J∗ = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u)
so the optimal Q-factors solve the equation

Q∗(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q∗(j, u′)

)

• Equivalently Q∗ = FQ∗, where

(FQ)(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q(j, u′)

)

• This is Bellman’s Eq. for a system whose states
are the pairs (i, u)

• Similar mapping Fµ and Bellman equation for
a policy µ: Qµ = FµQµ



BELLMAN EQ FOR Q-FACTORS OF A POLICY

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)
(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ Case (

• Q-factors of a policy µ: For all (i, u)

Qµ(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αQµ

(

j, µ(j)
))

Equivalently Qµ = FµQµ, where

(FµQ)(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αQ
(

j, µ(j)
))

• This is a linear equation. It can be used for
policy evaluation.

• Generally VI and PI can be carried out in terms
of Q-factors.

• When done exactly they produce results that
are mathematically equivalent to cost-based VI
and PI.



WHAT IS GOOD AND BAD ABOUT Q-FACTORS

• All the exact theory and algorithms for costs
applies to Q-factors

− Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

• All the approximate theory and algorithms for
costs applies to Q-factors

− Projected equations, sampling and exploration
issues, oscillations, aggregation

• A MODEL-FREE (on-line) controller imple-
mentation

− Once we calculate Q∗(i, u) for all (i, u),

µ∗(i) = arg min
u∈U(i)

Q∗(i, u), ∀ i

− Similarly, once we calculate a parametric ap-
proximation Q̃(i, u; r) for all (i, u),

µ̃(i) = arg min
u∈U(i)

Q̃(i, u; r), ∀ i

• The main bad thing: Greater dimension and
more storage! (It can be used for large-scale prob-
lems only through aggregation, or other approxi-
mation.)



Q-LEARNING



Q-LEARNING

• In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

− Q-learning, a sampled form of VI (a stochas-
tic iterative algorithm).

• Q-learning algorithm (in its classical form):

− Sampling: Select sequence of pairs (ik, uk)
[use any probabilistic mechanism for this,
but all (i, u) are chosen infinitely often].

− Iteration: For each k, select jk according to
pikj(uk). Update just Q(ik, uk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

Leave unchanged all other Q-factors.

− Stepsize conditions: γk ↓ 0

• We move Q(i, u) in the direction of a sample of

(FQ)(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q(j, u′)

)



NOTES AND QUESTIONS ABOUT Q-LEARNING

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

• Model free implementation. We just need a
simulator that given (i, u) produces next state j
and cost g(i, u, j)

• Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method. (Connection with asynchronous
algorithms.)

• Aims to find the (exactly) optimal Q-factors.

• Why does it converge to Q∗?

• Why can’t I use a similar algorithm for optimal
costs (a sampled version of VI)?

• Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ∗(j)
)



CONVERGENCE ASPECTS OF Q-LEARNING

• Q-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

• The proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

• Uses the fact that the Q-learning map F :

(FQ)(i, u) = Ej

{

g(i, u, j) + αmin
u′

Q(j, u′)
}

is a sup-norm contraction.

• Generic stochastic approximation algorithm:

− Consider generic fixed point problem involv-
ing an expectation:

x = Ew

{

f(x,w)
}

− Assume Ew

{

f(x,w)
}

is a contraction with
respect to some norm, so the iteration

xk+1 = Ew

{

f(xk, w)
}

converges to the unique fixed point

− Approximate Ew

{

f(x,w)
}

by sampling



STOCH. APPROX. CONVERGENCE IDEAS

• Generate a sequence of samples {w1, w2, . . .},
and approximate the convergent fixed point iter-
ation xk+1 = Ew

{

f(xk, w)
}

• At each iteration k use the approximation

xk+1 =
1

k

k
∑

t=1

f(xk, wt) ≈ Ew

{

f(xk, w)
}

• Amajor flaw: it requires, for each k, the compu-
tation of f(xk, wt) for all values wt, t = 1, . . . , k.

• This motivates the more convenient iteration

xk+1 =
1

k

k
∑

t=1

f(xt, wt), k = 1, 2, . . . ,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample wt.

• By denoting γk = 1/k, it can also be written as

xk+1 = (1− γk)xk + γkf(xk, wk), k = 1, 2, . . .

• Compare with Q-learning, where the fixed point
problem is Q = FQ

(FQ)(i, u) = Ej

{

g(i, u, j) + αmin
u′

Q(j, u′)
}



Q-LEARNING COMBINED WITH OPTIMISTIC PI

• Each Q-learning iteration requires minimization
over all controls u′ ∈ U(jk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

• To reduce this overhead we may consider re-
placing the minimization by a simpler operation
using just the “current policy” µk

• This suggests an asynchronous sampled version
of the optimistic PI algorithm which policy eval-
uates by

Qk+1 = Fmk

µk Qk,

and policy improves by µk+1(i) ∈ argminu∈U(i) Qk+1(i, u)

• This turns out not to work (counterexamples
by Williams and Baird, which date to 1993), but
a simple modification of the algorithm is valid

• See a series of papers starting with
D. Bertsekas and H. Yu, “Q-Learning and En-
hanced Policy Iteration in Discounted Dynamic
Programming,” Math. of OR, Vol. 37, 2012, pp.
66-94



Q-FACTOR APPROXIMATIONS

• We introduce basis function approximation:

Q̃(i, u; r) = φ(i, u)′r

• We can use approximate policy iteration and
LSTD/LSPE for policy evaluation

• Optimistic policy iteration methods are fre-
quently used on a heuristic basis

• An extreme example: Generate trajectory {(ik, uk) |
k = 0, 1, . . .} as follows.

• At iteration k, given rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the
transition probabilities pikj(uk).

(2) Generate control uk+1 from

uk+1 = arg min
u∈U(ik+1)

Q̃(ik+1, u, rk)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)



BELLMAN EQUATION ERROR APPROACH

• Another model-free approach for approximate
evaluation of policy µ: Approximate Qµ(i, u) with
Q̃µ(i, u; rµ) = φ(i, u)′rµ, obtained from

rµ ∈ argmin
r

∥

∥Φr − Fµ(Φr)
∥

∥

2

ξ

where ‖ · ‖ξ is Euclidean norm, weighted with re-
spect to some distribution ξ.

• Implementation for deterministic problems:

(1) Generate a large set of sample pairs (ik, uk),
and corresponding deterministic costs g(ik, uk)
and transitions

(

jk, µ(jk)
)

(a simulator may
be used for this).

(2) Solve the linear least squares problem:

min
r

∑

(ik,uk)

∣

∣

∣φ(ik, uk)′r −
(

g(ik, uk) + αφ
(

jk, µ(jk)
)′
r
)

∣

∣

∣

2

• For stochastic problems a similar (more com-
plex) least squares approach works. It is closely
related to LSTD (but less attractive; see the text).

• Because this approach is model-free, it is often
used as the basis for adaptive control of systems
with unknown dynamics.



ADAPTIVE CONTROL BASED ON ADP



LINEAR-QUADRATIC PROBLEM

• System: xk+1 = Axk+Buk, xk ∈ ℜn, uk ∈ ℜm

• Cost:
∑∞

k=0(x
′
kQxk + u′

kRuk), Q ≥ 0, R > 0

• Optimal policy is linear: µ∗(x) = Lx

• The Q-factor of each linear policy µ is quadratic:

Qµ(x, u) = (x′ u′ )Kµ

(

x
u

)

(∗)

• We will consider A and B unknown

• We represent Q-factors using as basis func-
tions all the quadratic functions involving state
and control components

xixj , uiuj , xiuj , ∀ i, j

These are the “rows” φ(x, u)′ of Φ

• The Q-factor Qµ of a linear policy µ can be ex-
actly represented within the approximation sub-
space:

Qµ(x, u) = φ(x, u)′rµ

where rµ consists of the components of Kµ in (*)



PI FOR LINEAR-QUADRATIC PROBLEM

• Policy evaluation: rµ is found by the Bellman
error approach

min
r

∑

(xk,uk)

∣

∣

∣
φ(xk, uk)

′
r −
(

x
′
kQxk + u

′
kRuk + φ

(

xk+1, µ(xk+1)
)′
r
)

∣

∣

∣

2

where (xk, uk, xk+1) are many samples generated
by the system or a simulator of the system.

• Policy improvement:

µ(x) ∈ argmin
u

(

φ(x, u)′rµ
)

• Knowledge of A and B is not required

• If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

• The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive dynamic programming

• This field deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time



APPROXIMATION IN POLICY SPACE



APPROXIMATION IN POLICY SPACE

• We parametrize policies by a vector r = (r1, . . . , rs)
(an approximation architecture for policies).

• Each policy µ̃(r) =
{

µ̃(i; r) | i = 1, . . . , n
}

defines a cost vector Jµ̃(r) (a function of r).

• We optimize some measure of Jµ̃(r) over r.

• For example, use a random search, gradient, or
other method to minimize over r

n
∑

i=1

ξiJµ̃(r)(i),

where ξ1, . . . , ξn are some state-dependent weights.

• An important special case: Introduce cost ap-
proximation architecture V (i; r) that defines indi-
rectly the parametrization of the policies

µ̃(i; r) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αV (j; r)
)

, ∀ i

• This introduces state features into approxima-
tion in policy space.

• A policy approximator is called an actor, while a
cost approximator is also called a critic. An actor
and a critic may coexist.



APPROXIMATION IN POLICY SPACE METHODS

• Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

− At a given point/r they generate a random
collection of neighboring r. They search within
the neighborhood for better points.

− Many variations (the cross entropy method
is one).

− They are very broadly applicable (to discrete
and continuous search spaces).

− They are idiosynchratic.

• Gradient-type methods (known as policy gra-
dient methods) also have been used extensively.

− They move along the gradient with respect
to r of

n
∑

i=1

ξiJµ̃(r)(i)

− There are explicit gradient formulas which
can be approximated by simulation.

− Policy gradient methods generally suffer by
slow convergence, local minima, and exces-
sive simulation noise.



COMBINATION WITH APPROXIMATE PI

• Another possibility is to try to implement PI
within the class of parametrized policies.

• Given a policy/actor µ(i; rk), we evaluate it
(perhaps approximately) with a critic that pro-
duces J̃µ, using some policy evaluation method.

• We then consider the policy improvement phase

µ(i) ∈ argmin
u

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µ(j)
)

, ∀ i

and do it approximately via parametric optimiza-
tion

min
r

n
∑

i=1

ξi

n
∑

j=1

pij
(

µ(i; r)
)

(

g
(

i, µ(i; r), j
)

+αJ̃µ(j)

)

where ξi are some weights.

• This can be attempted by a gradient-type method
in the space of the parameter vector r.

• Schemes like this have been extensively applied
to continuous-space deterministic problems.

• Many unresolved theoretical issues, particularly
for stochastic problems.



FINAL WORDS



TOPICS THAT WE HAVE NOT COVERED

• Extensions to discounted semi-Markov, stochas-
tic shortest path problems, average cost problems,
sequential games ...

• Extensions to continuous-space problems

• Extensions to continuous-time problems

• Adaptive DP - Continuous-time deterministic
optimal control. Approximation of cost function
derivatives or cost function differences

• Random search methods for approximate policy
evaluation or approximation in policy space

• Basis function adaptation (automatic genera-
tion of basis functions, optimal selection of basis
functions within a parametric class)

• Simulation-based methods for general linear
problems, i.e., solution of linear equations, linear
least squares, etc - Monte-Carlo linear algebra



CONCLUDING REMARKS

• There is no clear winner among ADP methods

• There is interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

• There are major flaws in all methods:

− Oscillations and exploration issues in approx-
imate PI with projected equations

− Restrictions on the approximation architec-
ture in approximate PI with aggregation

− Flakiness of optimization in policy space ap-
proximation

• Yet these methods have impressive successes
to show with enormously complex problems, for
which there is often no alternative methodology

• There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

• Theoretical understanding is important and
nontrivial

• Practice is an art and a challenge to our cre-
ativity!
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