APPROXIMATE DYNAMIC PROGRAMMING
A SERIES OF LECTURES GIVEN AT

TSINGHUA UNIVERSITY
JUNE 2014

DIMITRI P. BERTSEKAS

Based on the books:

(1) “Neuro-Dynamic Programming,” by DPB
and J. N. Tsitsiklis, Athena Scientific,
1996

(2) “Dynamic Programming and Optimal
Control, Vol. II: Approximate Dynamic
Programming,” by DPB, Athena Sci-

entific, 2012

(3) “Abstract Dynamic Programming,” by
DPB, Athena Scientific, 2013

http://www.athenasc.com
For a fuller set of slides, see

http://web.mit.edu/dimitrib/www /publ.html



APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

e Our subject:

— Large-scale DP based on approximations and
in part on simulation.

— This has been a research area of great inter-
est for the last 25 years known under various
names (e.g., reinforcement learning, neuro-
dynamic programming)

— FEmerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

— Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

— A vast range of applications in control the-
ory, operations research, artificial intelligence,
and beyond ...

— The subject is broad with rich variety of
theory /math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling



APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

e Our aim:

— A state-of-the-art account of some of the ma-
jor topics at a graduate level

— Show how to use approximation and simula-
tion to address the dual curses of DP: di-
mensionality and modeling

e Our 6-lecture plan:

— Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large-
scale computational methods

— One lecture on general issues of approxima-
tion and simulation for large-scale problems

— One lecture on approximate policy iteration
based on temporal differences (TD)/projected
equations/Galerkin approximation

— One lecture on aggregation methods

— One lecture on )-learning, and other meth-
ods, such as approximation in policy space



APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 1

LECTURE OUTLINE

e Introduction to DP and approximate DP

e Finite horizon problems

e The DP algorithm for finite horizon problems
e Infinite horizon problems

e Basic theory of discounted infinite horizon prob-
lems



DP AS AN OPTIMIZATION METHODOLOGY

e Generic optimization problem:

min g(u)

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set
e (Categories of problems:

— Discrete (U is finite) or continuous

— Linear (g is linear and U is polyhedral) or
nonlinear

— Stochastic or deterministic: In stochastic prob-
lems the cost involves a stochastic parameter
w, which is averaged, i.e., it has the form

g(u) = Ew{G(u, w)}

where w is a random parameter.

e DP deals with multistage stochastic problems
— Information about w is revealed in stages

— Decisions are also made in stages and make
use of the available information

— Its methodology is “different”



BASIC STRUCTURE OF STOCHASTIC DP

e Discrete-time system

azk+1:fk(xk,uk,wk), k:O,l,...,N—l

— k: Discrete time

— x1: State; summarizes past information that
is relevant for future optimization

— ug: Control; decision to be selected at time
k from a given set

— wg: Random parameter (also called “distur-
bance” or “noise” depending on the context)

— N: Horizon or number of times control is
applied

e (ost function that is additive over time

E {gN(xN) + Z— gk(wk,uk,wk)}

k=0

e Alternative system description: P(xg+1 | Tk, k)

Tip+1 = wg with P(wk ‘ a:k,uk) = P(ka ’ xk,uk)



INVENTORY CONTROL EXAMPLE

W lnamrﬁ at Parod k

Slocx at Penod & Sraek al Perod k+ °

Ny el \nweniory System -
Nic o1& Xi 4 Uy~ Wi
1 Stock ordered &t
Perod k

Cost of Period k

- Ly
Xy} + Gl

e Discrete-time system

Tr+1 = [fr(Tg, Uk, W) = Tk + up — Wk

e (ost function that is additive over time

E {gN(xN) + Z_ gk (Tk, Uk, wk)}

k=0

—E{i(cuk+r(:ﬁk+uk—wk))}

k=0



ADDITIONAL ASSUMPTIONS

e Probability distribution of wi does not depend
on past values wg_1,...,wo, but may depend on
rr and ug

— Otherwise past values of w, x, or u would be
useful for tuture optimization

e The constraint set from which wu; is chosen at
time k£ depends at most on xj, not on prior x or
U

e Optimization over policies (also called feedback
control laws): These are rules/functions

uk:,uk(a:k), kZO,...,N—l

that map state/inventory to control /order (closed-
loop optimization, use of feedback)

e MAJOR DISTINCTION: We minimize over se-
quences of functions (mapping inventory to order)

{/JJO? M1y :LLN—l}
NOT over sequences of controls/orders

{uo,u1,...,un—1}



GENERIC FINITE-HORIZON PROBLEM

e System xpi1 = fr(vp,ur,wr), k=0,...,N—1
e Control contraints ug € Ug(xk)
e Probability distribution Pg(- | xx, ur) of wg

e DPolicies m = {uo,...,un—1}, where pui maps
states xj into controls ury = ug(xg) and is such
that ur(xr) € Uk (xk) for all xy

e [ixpected cost of m starting at xzg is
N-1
Jr(20) = E {QN(xN) + > gk(xkaﬂk(xk)awk)}

k=0

e Optimal cost function

J* (xo) — min JW(ZE())

e Optimal policy 7* satisfies
Jr= (20) = J*(20)

When produced by DP, 7* is independent of xy.



PRINCIPLE OF OPTIMALITY

o Let m* = {ug,ui,...,w_1} be optimal policy

e Consider the “tail subproblem” whereby we are
at £ at time k and wish to minimize the “cost-
to-go” from time k to time N

E {gN(:UN) + Z_ ge(we,/ﬁe(ibe),we)}
=k

and the “tail policy” {u}, ty 1,  M_1}

X, Tail Subproblem

k N Time

e Principle of optimality: The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

e DP solves ALL the tail subroblems

e At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length



DP ALGORITHM

e Computes for all k£ and states x:

Ji(xk): opt. cost of tail problem starting at g

e Initial condition:

In(zn) = gn(2N)
Go backwards, k=N —1,...,0, using

J — ]
k() ng{ljtr(lxk)ﬁ{gk(aﬁk, Uk, W)

+ Jv1 (fr (@, wk, wi)) }

e 'To solve tail subproblem at time k£ minimize

kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

e Then Jy(xp), generated at the last step, is equal
to the optimal cost J*(xzg). Also, the policy

mr = s )

where p () minimizes in the right side above for
each r; and k, is optimal

e Proof by induction



PRACTICAL DIFFICULTIES OF DP

e The curse of dimensionality

— Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

— Quick explosion of the number of states in
combinatorial problems
e The curse of modeling
— Sometimes a simulator of the system is easier
to construct than a model
e There may be real-time solution constraints

— A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

— The problem data may change as the system
is controlled — need for on-line replanning

e All of the above are motivations for approxi-
mation and simulation



A MAJOR IDEA: COST APPROXIMATION

e Use a policy computed from the DP equation
where the optimal cost-to-go function Jy41 is re-
placed by an approximation Jgy1.

e Apply i, (xr), which attains the minimum in

min E{gk(azk, Uk, wk)‘|—jk—|—1 (fk(xka Uk, wk))}
up €U ()

e Some approaches:

(a) Problem Approximation: Use J;, derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
as J, a function of a suitable parametric
form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

— This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

(¢) Rollout Approach: Use as Jj the cost of
some suboptimal policy, which is calculated
either analytically or by simulation



ROLLOUT ALGORITHMS

e At each k and state xy, use the control ()
that minimizes in

min E{gk(xk,uk,wk)+jk+1 (fk(a:k,uk,wk))},
ur €U (xg)
where jk+1 is the cost-to-go of some heuristic pol-
icy (called the base policy).

e (Cost improvement property: The rollout algo-
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

e Main difficulty: Calculating Jy,i(z) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

— May involve Monte Carlo simulation if the
problem 1is stochastic.

— Things improve in the deterministic case (an
important application is discrete optimiza-
tion).

— Connection w/ Model Predictive Control (MPC).



INFINITE HORIZON PROBLEMS

e Same as the basic problem, but:
— The number of stages is infinite.

— The system is stationary.

e 'Total cost problems: Minimize

Jrx(z0) = lim i) {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

— Discounted problems (a < 1, bounded g)

— Stochastic shortest path problems (o = 1,
finite-state system with a termination state)
- we will discuss sparringly

— Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

e Average cost problems - we will not cover

e Infinite horizon characteristics:

— Challenging analysis, elegance of solutions
and algorithms

— Stationary policies m = {u, u,...} and sta-
tionary forms of DP play a special role



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

Jx(zo) = lim  F {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

with a < 1, and ¢ is bounded [for some M, we
have |g(x,u,w)| < M for all (x,u,w)]

e Optimal cost function: J*(x) = ming; J(x)

e Boundedness of g guarantees that all costs are
well-defined and bounded: |Jx(z)| < 2

l—«

e All spaces are arbitrary - only boundedness of
g is important (there are math fine points, e.g.
measurability, but they don’t matter in practice)

e Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob-

lem or MDP

e All algorithms ultimately work with a finite
spaces MDP approximating the original problem



SHORTHAND NOTATION FOR DP MAPPINGS

e For any function J of z, denote

(TJ)(xr) = min E{g(az,u,w)+aJ(f(x,u,w))},‘v’az

uwelU(x) w

e T'J is the optimal cost function for the one-
stage problem with stage cost g and terminal cost
function aJ.

e I’ operates on bounded functions of x to pro-
duce other bounded functions of x

e For any stationary policy p, denote

(1) (@) = B {g(w,n(@),w) +ad (f (@, u(@),w) } Vo

e The critical structure of the problem is cap-
tured in 7" and T,

e The entire theory of discounted problems can
be developed in shorthand using 7" and T},

e True for many other DP problems.

e 7' and T}, provide a powerful unitying framework
for DP. This is the essence of the book “Abstract
Dynamic Programming”



FINITE-HORIZON COST EXPRESSIONS

e Consider an N-stage policy 73" = {uo, 1, -, un—1}
with a terminal cost J:

Jox(20) = E {&NJ(CL%) + z_: aﬁg(we,ue(we),we)}

=0
— K {g(mo,uo(%)awo) +adpy (331)}
— (Tuo Jwiv)(CUO)

where 7T]]_V — {ILL17/’L27 ne ,,UN—l}

e By induction we have

Jon () = (Tuon SRR TPV J)(z), Vo

0
e For a stationary policy u the N-stage cost func-
tion (with terminal cost J) is

Ty =TT

where T; is the N-fold composition of T,

e Similarly the optimal N-stage cost function
(with terminal cost J) is TN J

o TNJ=T(T'N-1]J) is just the DP algorithm



“SHORTHAND” THEORY - A SUMMARY

e Infinite horizon cost function expressions [with

Jo(z) = 0]

Ta@) = Jm (Tup Ty -+ Ty J0)(@), Jule) = Tim (TN Jo)(w)
e Bellman’s equation: J* =T1TJ*, J, =1,J,

e Optimality condition:

p: optimal <==> T, ,J*=TJ*

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), Vo

k— 00

e Policy iteration: Given uk,

— Policy evaluation: Find J,» by solving

J =T

" MkJMk:

— Policy improvement: Find pf+1 such that

T/Lk+1 J/Lk’ — TJMk



TWO KEY PROPERTIES

e Monotonicity property: For any J and J’ such
that J(x) < J/(x) for all x, and any u

(TJ)(x) < (TJ")(x), V x,
(Tpd)(z) < (Tpd')(z), V.

e Constant Shift property: For any J, any scalar
r, and any u

(T(J +re))(z) = (TJT)(z) + ar, V x,

(Tu(J +re))(x) = (TuJ)(x) +ar,  Va,
where e is the unit function [e(x) = 1].

e Monotonicity is present in all DP models (undis-
counted, etc)

e (Constant shift is special to discounted models

e Discounted problems have another property
of major importance: 7' and 7}, are contraction
mappings (we will show this later)



CONVERGENCE OF VALUE ITERATION

e For all bounded J,
J*(x) = lim (T*J)(z), for all x
k— o0

Proof: For simplicity we give the proof for J = 0.
For any initial state xo, and policy m = {uo, p1, - ..},

Jr(x0) = E QY alg(we, pe(xe), we) ¢
\ /=0 y

fk_l N

= F' < Za€g<xg,ﬂg(xe),wg) >

\ £=0 y

+FE {Z oﬂg(xg, Mﬁ(xe)a wﬁ) }
=k
The tail portion satisfies
E {Z Oéeg(afg,,ug(l‘g), wﬁ) } < fé_ o’
=k

where M > |g(x,u,w)|. Take min over 7w of both
sides, then lim as k — oco. Q.E.D.



BELLMAN’S EQUATION

e The optimal cost function J* is a solution of
Bellman’s equation, J* = T'J*, i.e., for all x,

JH(x) = min B {9(z,u,w) + aJ*(f(z,u,w)) }

Proof: For all z and k,

ok M ok M
< (Tk < J*
1—a_( JO)(CL‘)_J(x)Jrl_&

J*(x) —

Y

where Jo(z) = 0 and M > |g(z,u,w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

ak+1 M

1l — «

(TJ*)(x) — < (T%+1Jo) ()

ak+1 M

1l — «

< (T'J*)(z) +

Taking the limit as K — oo and using the fact

lim (Th+1Jo)(x) = J*(x)

k— o0

we obtain J* =TJ*. Q.E.D.



THE CONTRACTION PROPERTY

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) —(TJ")(z)| < &mgx’J(a:) — J'(x)

Y

max|(T,J)(z)— (TpJ")(z)| < amax|J(z)—J (z)|.
Proof: Denote ¢ = maxges|J(x) — J'(x)|. Then
J(x)—c< J(x) < J(x)+c, vV x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(z)—ac < (TJ)(x) < (TJ)(x)+ac, V&
Hence
(TT)(z) — (TJ")(z)| < ac, vV x.

Q.E.D.

e [Note: This implies that J* is the unique solu-
tion of J* = T'J*, and J, is the unique solution



NEC. AND SUFFICIENT OPT. CONDITION

e A stationary policy p is optimal if and only if
p(x) attains the minimum in Bellman’s equation
for each z; i.e.,

TJ* =T, J*,

or, equivalently, for all z,

u(z) € arg uén(}]&) E Lg(z,u,w) + a*(f(z,u,w))}

Proof: It T'J* = T,,J*, then using Bellman’s equa-
tion (J* = TJ*), we have

J* =T, J*,

so by uniqueness of the fixed point of 7},, we obtain
J* = J,; 1.e., p 1s optimal.

e Conversely, if the stationary policy u is optimal,
we have J* = J,, so

J* =T, J*.

Combining this with Bellman’s Eq. (J* = T'J*),
we obtain T'J* =T, J*. Q.E.D.



APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 2

LECTURE OUTLINE

e Review of discounted problem theory

e Review of shorthand notation

e Algorithms for discounted DP

e Value iteration

e Various forms of policy iteration

e Optimistic policy iteration

o ()-factors and (Q-learning

e Other DP models - Continuous space and time
e A more abstract view of DP

e Asynchronous algorithms



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

Jx(zo) = lim  F {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E{g(a:,u,w)+aJ(f(x,u,w))},‘v’x

uweU(x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(T,)(@) = B {g (e, n(@),w) + ad (f (@, u(@),w) } Vo



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

Ju(x) = g {g(x, p(z),w) + adu(f(z,p(z),w))}, Ve
e Optimality condition:
p: optimal <==> T, ,J*=TJ*
l.e.,
u(z) € arguén(]i&)g {g9(z,u,w) + aJ*(f(z,u,w))}, Va
e Value iteration: For any (bounded) J

J*(x) = lim (T*J)(z), Vx

k— o0
e Policy iteration: Given u*,

— Find J & from J,x = T,xJ,» (policy evalua-
tion); then

— Find p*+! such that T} x+1J,» = TJ,x (pol-
icy improvement)



MAJOR PROPERTIES

e NMonotonicity property: For any functions J and
J’ on the state space X such that J(x) < J/(x)
for all x € X, and any p

(TJ)(x) < (TJ)(x), (Tu)(x) < (TpJ')(z), Vo eX

e (ontraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(x) — (TJ’)(x)‘ < OémBX’J(SC) — J’(az)’,
mgx‘(TuJ)(x)—(TMJ’)(x)‘ < ozman’J(:U)—J’(x)‘
e Compact Contraction Notation:

|TJ-=TJ < a|J=T, [TWJ-TuJ'| < a|J=J],

where for any bounded function J, we denote by
|.J|| the sup-norm

7] = max|J(x)



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), Vx

k— 00

e Policy iteration: Given u*
— Policy evaluation: Find J ,» by solving

k() = E{g(x,,uk(a:),w) +ad (f(:c,,uk(a:),w))}, Vo

or Jluk — Tukjluk
— Policy improvement: Let puf+1 be such that

k+1 :
p () Eargug%]l&)g{g(a:,u,w)+04Juk(f(a:,u,w))}, Vi

or Tluk+1 Jlukz m— TJMk:

e For the case of n states, policy evaluation is
equivalent to solving an n X n linear system of
equations: J, = gy + alPyJ,

e For large n, exact Pl is out of the question (even
though it terminates finitely as we will show)



JUSTIFICATION OF POLICY ITERATION

e We can show that J,x > J, k1 for all k

e Proof: For given k, we have

Jluk = TMkJMk: > TJMk: = Tluk+1<]’uk:

Using the monotonicity property of DP,

Sy 2 Tyern e > T2 Jye > -0 > Hm T T

N—00
e Since
A}gnoo T]\,ZHJ k= Jykt
we have Jx > J k1.
e If J,» = J,k1, all above inequalities hold

as equations, so J,r solves Bellman’s equation.
Hence J,» = J*

e Thus at iteration k either the algorithm gen-
erates a strictly improved policy or it finds an op-
timal policy
— For a finite spaces MDP, the algorithm ter-
minates with an optimal policy

— For infinite spaces MDP, convergence (in an
infinite number of iterations) can be shown



OPTIMISTIC POLICY ITERATION

e Optimistic PI: This is PI, where policy evalu-
ation is done approximately, with a finite number
of VI

e So we approximate the policy evaluation
J, =TT

for some number m € [1,00) and initial J

e Shorthand definition: For some integers my

Tpdy =TJx,  Jepr =Tk, k=0,1,...

o If mp =1 it becomes VI
o If mir = oo it becomes PI

e (Converges for both finite and infinite spaces
discounted problems (in an infinite number of it-
erations)

e Typically works faster than VI and PI (for
large problems)



APPROXIMATE PI

e Suppose that the policy evaluation is approxi-
mate,

| Je — Ju|| <0, k=0,1,...
and policy improvement is approximate,
"Tuk+1<]k _TJkH < €, k:O,l,...

where 0 and € are some positive scalars.

e Frror Bound I: The sequence {u*} generated
by approximate policy iteration satisfies

€ + 20
limsup ||[J,« — J*|| <
msup |, — I <

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J,x oscillate within a neighborhood of J*.

e Error Bound II: If in addition the sequence {u*}
“terminates” at [ (i.e., keeps generating 1)

e + 20
1l — «

| — T <



Q-FACTORS T

e Optimal Q-factor of (x,u):
Q*(z,u) = E{g(z,u,w) + aJ*(T)}
with T = f(x,u,w). It is the cost of starting at =z,

applying u is the 1st stage, and an optimal policy
after the 1st stage

e We can write Bellman’s equation as

J* — . ¥ Y Y \v/ Y
() = min Q(x,u) x

e We can equivalently write the VI method as

Jit1(x) = uglUla_) Qrt1(x,u), Vo,

where (Qr11 is generated by

velU(x)

Qi) = E{ o uw) +a min Qu(z.o) |

with T = f(x, u, w)



Q-FACTORS 11

o ()-factors are costs in an “augmented” problem
where states are (x,u)

e They satisfy a Bellman equation Q* = F(Q*
where

(FQ)(z,u) = E { glz,u,w) + o min Q(F, v)}

velU(x)

where T = f(x,u,w)

e VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

e They require equal amount of computation ...
they just need more storage

e Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

pr(a) = ug}&)Q (2, u)

e Once Q*(x,u) are known, the model [g and
FE{-}] is not needed. Model-free operation

e (Q-Learning (to be discussed later) is a sampling
method that calculates Q*(x, ) using a simulator
of the system (no model needed)



OTHER DP MODELS

e We have looked so far at the (discrete or con-
tinuous spaces) discounted models for which the
analysis is simplest and results are most powerful

e Other DP models include:

— Undiscounted problems (a = 1): They may
include a special termination state (stochas-
tic shortest path problems)

— Continuous-time finite-state MDP: The time
between transitions is random and state-and-
control-dependent (typical in queueing sys-
tems, called Semi-Markov MDP). These can
be viewed as discounted problems with state-
and-control-dependent discount factors

e Continuous-time, continuous-space models: Clas-
sical automatic control, process control, robotics
— Substantial differences from discrete-time

— Mathematically more complex theory (par-
ticularly for stochastic problems)

— Deterministic versions can be analyzed using
classical optimal control theory

— Admit treatment by DP, based on time dis-
cretization



CONTINUOUS-TIME MODELS

e System equation: dx(t)/dt = f(x(t),u(t))

o Cost function: [~ g(xz(t),u(t))

e Optimal cost starting from z: J*(x)

e O-Discretization of time: xg11 = xp+9- f(xk, ug)

e Bellman equation for the o-discretized problem:
Ji(z) = mq}n {5 -g(z,u) + J§ (:U +6 - f(a:,u))}

e Take 0 — 0, to obtain the Hamilton-Jacobi-
Bellman equation [assuming lims_,¢ J§ () = J*(z)]

O:mgn{g(:c,u)—|—VJ*(90)’f(x,u)}, Vo

e Policy Iteration (informally):

— Policy evaluation: Given current pu, solve

0= g(x, w(@)) + V() f(x.u(2)), Ve

— Policy improvement: Find

fi(z) € argmin {g(z, u)+V () f(z,u)},  Vaz
e Note: Need to learn VJ,(x) NOT J,(z)



A MORE GENERAL/ABSTRACT VIEW OF DP

e Let Y be a real vector space with a norm || - ||

e A function F':Y — Y is said to be a contrac-
tion mapping if for some p € (0,1), we have

|Fy — Fz|| <plly—z|, forallyzeY

p is called the modulus of contraction of F'.

e Important example: Let X be a set (e.g., state
space in DP), v : X +— R be a positive-valued
function. Let B(X) be the set of all functions

J : X — R such that J(x)/v(x) is bounded over
T

e We define a norm on B(X), called the weighted
sup-norm, by

@)
171} = max =5

e Important special case: The discounted prob-
lem mappings 7" and T, [for v(z) =1, p = a].



CONTRACTION MAPPINGS: AN EXAMPLE

e Consider extension from finite to countable state
space, X = {1,2,...}, and a weighted sup norm
with respect to which the one stage costs are bounded

e Suppose that T}, has the form
(T J)(@) =bi+a Y ai J(j), Vi=12,...
jEX

where b; and a;; are some scalars. Then 7}, is a
contraction with modulus p if and only if

D iex laij|v(j)
v(7)
e Consider T,

<p, Vi=12,...

(TJ)(0) = min(TuJ)(0),  Vi=1,2,...

where for each p € M, T}, is a contraction map-
ping with modulus p. Then T is a contraction
mapping with modulus p

e Allows extensions of main DP results from
bounded one-stage cost to interesting unbounded
one-stage cost cases.



CONTRACTION MAPPING FIXED-POINT TH.

e (Contraction Mapping Fixed-Point Theorem: If
F : B(X)— B(X) is a contraction with modulus
p € (0,1), then there exists a unique J* € B(X)
such that

J* = FJ*.

Furthermore, if J is any function in B(X), then
{FkJ} converges to J* and we have

e This is a special case of a general result for
contraction mappings F' : Y — Y over normed
vector spaces Y that are complete: every sequence
{yr} that is Cauchy (satisfies ||ym — yn| — 0 as
m,n — 00) converges.

e The space B(X) is complete (see the text for a
proof).



ABSTRACT FORMS OF DP

e We consider an abstract form of DP based on
monotonicity and contraction

e Abstract Mapping: Denote R(X): set of real-

valued functions J : X — R, and let H : X x U X
R(X) — R be a given mapping. We consider the

mapping

(TJ)(x) = min H(x,u,J), VaxelX.
ueU(x)

e We assume that (T'J)(z) > —oo for all x € X,
so T maps R(X) into R(X).

e Abstract Policies: Let M be the set of “poli-

cies”, i.e., functions p such that u(x) € U(zx) for
all v € X.

e For each © € M, we consider the mapping
T, : R(X) — R(X) defined by

(T, J)(x) = H(z, p(z), J), VzelX.
e Find a function J* € R(X) such that

J*(x) = min H(xz,u,J*), VeeX
uel (x)



EXAMPLES

e Discounted problems
H(CIZ‘,’LL, J) — E{g(x,u,w) -+ OéJ(f($,u, w))}

e Discounted “discrete-state continuous-time”
Semi-Markov Problems (e.g., queueing)

H(z,u,J)=G(x,u —|—me

where my, are “discounted” transﬂ:mn probabili-
ties, defined by the distribution of transition times

e Minimax Problems/Games

H(CIZ‘, w J) - wéral/a(d}x( ) [g(xa u, w)—I—on(f(.T, U, w))]

e Shortest Path Problems

ru + J(u) if u # d,
H(x,u,J):{ad (u) ifuid

where d 1s the destination. There are stochastic
and minimax versions of this problem



ASSUMPTIONS

e Monotonicity: If J, J’ € R(X) and J < J',
H(x,u,J) < H(z,u,J), Vere X, ueU(x)

e We can show all the standard analytical and
computational results of discounted DP if mono-
tonicity and the following assumption holds:

e (Contraction:

— For every J € B(X), the functions 7},J and
TJ belong to B(X

— For some a € (0,1), and all 4 and J, J’ €
B(X), we have

1T =T J'|| < aflJ =]

e With just monotonicity assumption (as in undis-
counted problems) we can still show various forms
of the basic results under appropriate conditions

e A weaker substitute for contraction assumption
is semicontractiveness: (roughly) for some p, 7},
is a contraction and for others it is not; also the
“noncontractive” p are not optimal



RESULTS USING CONTRACTION

e Proposition 1: The mappings 7, and 1" are
weighted sup-norm contraction mappings with mod-
ulus a over B(X), and have unique fixed points
in B(X), denoted J,, and J*, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H.

e Proposition 2: For any J € B(X) and u € M,

lim THJ = J,, lim TkJ = J*

k— o0 k— o0
(cf. convergence of value iteration).

Proof: From the contraction property of 7, and
T.

e Proposition 3: We have T}, J* = T'J* if and
only if J, = J* (cf. optimality condition).

Proof: T, J* = TJ*, then T, J* = J*, implying
J* = J,. Conversely, it J, = J*, then T, J* =



RESULTS USING MON. AND CONTRACTION

e Optimality of fixed point:

J*(w):lfgij\r}lJu(x), VeelX

e Existence of a nearly optimal policy: For every
€ > 0, there exists ue € M such that

J(x) < J,. (x) < J*(z) + €, VeelX

e Nonstationary policies: Consider the set II of
all sequences m = {uo, p1, ...} with up € M for
all k£, and define

Jr (@) = Uminf (Ty Ty, - - - Ty J) (@), VrelX,

k— 00

with J being any function (the choice of J does
not matter)

e We have

J*(a:):glglqulJﬂ(x), VeelX



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any (bounded) J

J*(x) = lim (TkJ)(x), Vx
k— o0
e Policy iteration: Given u*
— Policy evaluation: Find J,» by solving

Jp =T

M MkJMk

— Policy improvement: Find p*+1 such that
Tprrd e =TT

e Optimistic PI: This is PI, where policy evalu-
ation is carried out by a finite number of VI

— Shorthand definition: For some integers my

TMka =T J, Jr+1 :T:Zka, k=0,1,...

— If mp =1 it becomes VI
— If my = oo it becomes PI

— For intermediate values of my, it is generally
more efficient than either VI or PI



ASYNCHRONOUS ALGORITHMS

e Motivation for asynchronous algorithms
— Faster convergence
— Parallel and distributed computation

— Simulation-based implementations

e (General framework: Partition X into disjoint
nonempty subsets Xi,...,X,,, and use separate
processor ¢ updating J(x) for x € X,

e Let J be partitioned as

J=(J1,...,JIm),
where Jy is the restriction of J on the set X,.

e Synchronous VI algorithm:
J N x) =T, ..., Jh)(2), v€Xp, £=1,...,m

e Asynchronous VI algorithm: For some subsets
of times Ry,

T () = T g WY ) ift e Ry,
¢ J(x) if t & Ry

where t — 74;(t) are communication “delays”



ONE-STATE-AT-A-TIME ITERATIONS

e Important special case: Assume n “states”, a
separate processor for each state, and no delays

e Generate a sequence of states {x0,x1,...}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

e Asynchronous VI:

[T IO =t
¢ J; if ¢ # at,

where T'(J},...,J}%)(£) denotes the ¢-th compo-
nent of the vector

T(Jt,...,J5) =TJt,

e The special case where
{20 21 ...} ={1,...,n,1,...,n,1,...}

is the Gauss-Seidel method



ASYNCHRONOUS CONV. THEOREM 1

e KEY FACT: VI and also PI (with some modifi-
cations) still work when implemented asynchronously

e Assume that forall4,j =1,...,m, Ry is infinite
and lim¢ o0 7¢5() = 00

e Proposition: Let T" have a unique fixed point J*,
and assume that there is a sequence of nonempty

subsets {S(k)} C R(X) with S(k+ 1) C S(k) for
all £, and with the following properties:
(1) Synchronous Convergence Condition: Every
sequence {Jk} with J& € S(k) for each k,
converges pointwise to J*. Moreover,

TJe S(k+1), VJeSk),k=01,....

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = 51(k) x -+ x Sp(k),

where Sy(k) is a set of real-valued functions
on Xy, £=1,...,m.

Then for every J € S(0), the sequence {J*} gen-
erated by the asynchronous algorithm converges
pointwise to J*.



ASYNCHRONOUS CONV. THEOREM 11

e Interpretation of assumptions:

—_

J = (J1,J2)

52(0) Shtl) e Tieal :

S1(0)

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

e (Convergence mechanism:

J1 Iterations
AN

\\ J = (J1, o)
Sk+1) eJ* v |
S(k)
S(0)
Jo Iteration
Key: “Independent” component-wise improve-

ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com-
ponent portion of S(k + 1)



APPROXIMATE DYNAMIC PROGRAMMING
LECTURE 3

LECTURE OUTLINE

e Review of discounted DP

e Introduction to approximate DP

e Approximation architectures

e Simulation-based approximate policy iteration
e Approximate policy evaluation

e Some general issues about approximation and
simulation



REVIEW



DISCOUNTED PROBLEMS/BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(a:k,uk,wk), k:O,l,...

e Cost of a policy m = {uo, 1, ...}

Jx(zo) = lim  F {Z@kg(xkaﬂk(xk)awk)}

N —o0 W
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (z,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min E{g(a:,u,w)+aJ(f(x,u,w))},‘v’x

uweU(x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J

e For any stationary policy

(T,)(@) = B {g(w,n(@),w) +ad (f (@, u(@),w) } Vo



MDP - TRANSITION PROBABILITY NOTATION

e We will mostly assume the system is an n-state
(controlled) Markov chain
e We will often switch to Markov chain notation
— States ¢ =1,...,n (instead of x)
— Transition probabilities p;,;, ., (u) |instead
of xxr1 = f(ak, uk, wi)]
— Stage cost g(ig, U, ix11) [instead of g(xg, ug, wi)]
— Cost functions J = (J(1),...,J(n)) (vec-
tors in Rn)

e Cost of a policy m = {uo, 1, ...}

N-1
Jr(i) = lim E {1;) ok g (ig, s (in), iky1) | o = Z}
k=1,2,... =

e Shorthand notation for DP mappings



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

n

J* (1) ZUggI(li)me(U)(g(z u,j) +aJ* (), Vi

e Optimality condition:
p: optimal <==> 1T, J*=TJ*

le.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u, j)+at*(j)), Vi



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (T*J)(2), Vi=1,...,n

k— o0

e Policy iteration: Given u*
— Policy evaluation: Find J ,» by solving

= > i (1) (9( 1" (1), 5) vk (7)), i=1,...

or Jluk B TMk:JMk:

— Policy improvement: Let p*+1! be such that

k—l—l . . .
:LL 6 argurénl}r(lz) pr 7’ ’U,,])—FOZJMI« (]))7 \V/Z

or T,uk+1 J,u"“ = TJMI«

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question. We

use instead optimistic PI (policy evaluation with
a few VlIs)



APPROXIMATE DP



GENERAL ORIENTATION TO ADP

e ADP (late 80s - present) is a breakthrough
methodology that allows the application of DP to
problems with many or infinite number of states.
e Other names for ADP are:

— “reinforcement learning” (RL).

— “neuro-dynamic programming” (NDP).

— “adaptive dynamic programming” (ADP).

e We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

e Extensions to other DP models (continuous
space, continuous-time, not discounted) are possi-
ble (but more quirky). We will set aside for later.
e There are many approaches:

— Problem approximation

— Simulation-based approaches (we will focus

on these)

e Simulation-based methods are of three types:

— Rollout (we will not discuss further)

— Approximation in value space

— Approximation in policy space



WHY DO WE USE SIMULATION?

e One reason: Computational complexity advan-
tage in computing sums/expectations involving a
very large number of terms

— Any sum
n

>

1=1

can be written as an expected value:
N
i=1 i=1 > ¢

where £ is any prob. distribution over {1,...,n}

— It can be approximated by generating many
samples {i1,...,ix} from {1,...,n}, accord-
ing to distribution &, and Monte Carlo aver-
aging:

e Simulation is also convenient when an analytical
model of the system is unavailable, but a simula-
tion/computer model is possible.



APPROXIMATION IN VALUE AND

POLICY SPACE



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;7r) where 7 is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights

e Use J in place of J* or J,, in various algorithms
and computations

e Role of r: By adjusting r we can change the
“shape” of J so that it is “close” to J* or J,

e Two key issues:

— The choice of parametric class J(i;r) (the
approximation architecture)

— Method for tuning the weights (“training”
the architecture)

e Success depends strongly on how these issues
are handled ... also on insight about the problem

e A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model)

e We will focus on simulation, but this is not the
only possibility

e We may also use parametric approximation for
(Q-factors or cost function differences



APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(i;7) on r]

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer

e Computer chess example:

— Think of board position as state and move
as control

— Uses a feature-based position evaluator that
assigns a score (or approximate (-factor) to
each position/move

_________________________________________

: |
1 1
: Features: ;
: Material balance, !
! Mobility, !
' | Feature .| Weighting I et
Extraction of Features

Position Evaluator

e Relatively few special features and weights, and
multistep lookahead



LINEAR APPROXIMATION ARCHITECTURES

e Often, the features encode much of the nonlin-
earity inherent in the cost function approximated

e Then the approximation may be quite accurate
without a complicated architecture (as an extreme
example, the ideal feature is the true cost func-

tion)

e With well-chosen features, we can use a linear
architecture: J(i;r) = ¢(i)'r,i=1,...,n, or

J(r) = &r = Zcbjrj
j=1

®: the matrix whose rows are ¢(i)’, @

®; is the jth column of @

State i | Feature Extraction
—p .
Mapping

Feature Vector ¢(i)

g

Linear
Mapping

=1,...,n,

Linear Cost
Approximator ¢(i)'r

>

e This is approximation on the subspace

S={dr|re Rs}

spanned by the columns of ® (basis functions)

e Many examples of feature types: Polynomial
approximation, radial basis functions, etc



ILLUSTRATIONS: POLYNOMIAL TYPE

e Polynomial Approximation, e.g., a quadratic
approximating function. Let the state be ¢ =
(41,...,%q) (i-e., have ¢ “dimensions”) and define

Linear approximation architecture:

Z r)=rog+ E Tkik + g g Tkmlklm,

k=1 m=k

where r has components rg, rr, and rg,.

e Interpolation: A subset I of special/representative

states is selected, and the parameter vector r has
one component r; per state ¢+ € I. The approxi-
mating function is

j(i;r):ri, 1e 1,

» 4

J(i;:7) = interpolation using the values at i € I, i ¢ I

For example, piecewise constant, piecewise linear,
more general polynomial interpolations.



A DOMAIN SPECIFIC EXAMPLE

e Tetris game (used as testbed in competitions)

Possible
actions 7

Chosen
action

/

Possible
hext states

s

b 4

#

/

/
g .

e J*(1): optimal score starting from position ¢
e Number of states > 2200 (for 10 x 20 board)

e Success with just 22 features, readily recognized
by tetris players as capturing important aspects of
the board position (heights of columns, etc)



APPROX. PI - OPTION TO APPROX. J, OR @,

e Use simulation to approximate the cost .J, of
the current policy u

e Generate “improved” policy &z by minimizing in
(approx.) Bellman equation

Initial Policy

l

Evaluate Approximate Cost Approximate Policy

r> jﬂ(iv T)

|

l Generate “Improved” Policy 1 Policy Improvement

Evaluation

e Altenatively approximate the ()-factors of u

Initial Policy

l

Evaluate Approximate Q-Factors

. Approximate Policy
Qu(t,u,7) Evaluation

l

«— Generate “Improved” Policy &
ﬁ(l) = arg minuEU(i) Qu (,La u, Ir)

Policy Improvement




APPROXIMATING J* OR Q*

e Approximation of the optimal cost function J*

— ()-Learning: Use a simulation algorithm to
approximate the (Q-factors

Q+(i,u) = g(i,u) + a Yy pij(u)J*(j);

j=1
and the optimal costs
J*(12) = min Q*(7,u
() = min Q(i,u)
— Bellman Error approach: Find r to

min EZ{ (j(z, r)— (TJ

r

where F;{-} is taken with respect to some
distribution over the states

— Approximate Linear Programming (we will
not discuss here)

e ()-learning can also be used with approxima-
tions

e (J)-learning and Bellman error approach can also
be used for policy evaluation



APPROXIMATION IN POLICY SPACE

e A brief discussion; we will return to it later.
e Use parametrization pu(i;r) of policies with a
vector r = (r1,...,7s). Examples:

— Polynomial, e.g., u(i;r) =ry +1r2 i+ r3 - 12

— Linear feature-based

p(isr) = ¢1(2) - r1 + ¢2(i) - 12

e Optimize the cost over r. For example:

— FEach value of r defines a stationary policy,
with cost starting at state ¢ denoted by J(; 7).

— Let (p1,...,pn) be some probability distri-
bution over the states, and minimize over r

> pid (i)
1=1

— Use a random search, gradient, or other method

e A special case: The parameterization of the
policies is indirect, through a cost approximation
architecture J, 1.e.,

u(i;r) € argurén[}?)zpw (i u, ) + aJ (j; 7))



APPROXIMATE POLICY EVALUATION

METHODS



DIRECT POLICY EVALUATION

e Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

e Amounts to projection of J, onto the approxi-
mation subspace

0
Subspace S = {®r | r € Rs}

Direct Method: Projection of
cost vector J,

e Solution by least squares methods
e Regular and optimistic policy iteration

e Nonlinear approximation architectures may also
be used



DIRECT EVALUATION BY SIMULATION

e Projection by Monte Carlo Simulation: Com-
pute the projection I1J,, of J, on subspace S =
{®r | r € Rs}, with respect to a weighted Fu-
clidean norm || - ||¢

e LEquivalently, find ®r*, where

r* = arg min
re¥s

. - . A\ 2
$r—Jull¢ = arg min > & (i)' r—J,(0))
1=1

e Setting to 0 the gradient at r*,

—— (Z &-gb(i)qb(i)’) Z&qﬁ(i)h(i)

e Generate samples { (i1, Ju(i1)), . -, (ix, Ju(ix)) }
using distribution &

e Approximate by Monte Carlo the two “expected
values” with low-dimensional calculations

k -1k
Pl = (Z ¢(it)¢(it)’> > o) Julic)

e Equivalent least squares alternative calculation:
k

T'e = arg gre%%ri (gb(’[:t)/r — J,u('[:t))z
t=1



INDIRECT POLICY EVALUATION

e An example: Galerkin approximation

e Solve the projected equation &r = IIT),,(Pr)
where II is projection w/ respect to a suitable
weighted Euclidean norm

— 11J,, Br = IIT),(®r)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Solution methods that use simulation (to man-
age the calculation of II)

— TD(\): Stochastic iterative algorithm for solv-
ing &r = IIT),(®r)

— LSTD(\): Solves a simulation-based approx-
imation w/ a standard solver

— LSPE()M): A simulation-based form of pro-
jected value iteration; essentially

briq1 =T, (Pry) + simulation noise



BELLMAN EQUATION ERROR METHODS

e Another example of indirect approximate policy
evaluation:

min ||®r — T),(Pr) Hg (%)

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &

e It is closely related to the projected equation/Galerkin
approach (with a special choice of projection norm)

e Several ways to implement projected equation
and Bellman error methods by simulation. They
involve:

Generating many random samples of states
1, using the distribution &

Generating many samples of transitions (i, jx)
using the policy u

Form a simulation-based approximation of
the optimality condition for projection prob-
lem or problem (*) (use sample averages in
place of inner products)

Solve the Monte-Carlo approximation of the
optimality condition

e Issues for indirect methods: How to generate
the samples? How to calculate r* efficiently?



ANOTHER INDIRECT METHOD: AGGREGATION

o A first idea: Group similar states together into
“aggregate states” xi,...,Ts; assign a common
cost value r; to each group x;.

e Solve an “aggregate” DP problem, involving the
aggregate states, to obtain r = (r1,...,rs). This
is called hard aggregation

0

—_

[\

w
—

OO OO, R, O

T X2

7T Tr3 8 T4 9
o

oo o R OO = OO
O, OO0 o oo
()

y

~

e More general/mathematical view: Solve
br = &DT,(Pr)

where the rows of D and ® are prob. distributions
(e.g., D and ® “aggregate” rows and columns of
the linear system J =T,,.J)

e Compare with projected equation ®r = IIT,,(Pr).
Note: ®D is a projection in some interesting cases



AGGREGATION AS PROBLEM APPROXIMATION

Original

System States
O, - ()

Dij (u)v g(iv ua])

Disaggregation Aggregation
Probabilities Probabilities

e Aggregation can be viewed as a systematic
approach for problem approximation. Main ele-
ments:

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

— Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

e Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach



APPROXIMATE POLICY ITERATION

ISSUES



THEORETICAL BASIS OF APPROXIMATE PI

e If policies are approximately evaluated using an
approximation architecture such that

max|j(i,rk)—JMk(i)|§(5, k=0,1,...

e If policy improvement is also approximate,

m_aX|(Tlukz+1j)(i,Tk)—(Tj)(i,’I“k” < €, k=20,1,...

e Error bound: The sequence {u*} generated by
approximate policy iteration satisfies

€ + 20
p <

lilrcri}s;p max (Jur(3) = J*(1)) < (1— )2

e 'T'ypical practical behavior: The method makes
steady progress up to a point and then the iterates

J,x oscillate within a neighborhood of J*.

e Oscillations are quite unpredictable.

— Some bad examples of oscillations have been
constructed.

— In practice oscillations between policies is
probably not the major concern.



THE ISSUE OF EXPLORATION

e To evaluate a policy u, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under u

e (Cost-to-go estimates of underrepresented states
may be highly inaccurate

e This seriously impacts the improved policy &

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system)

e Some remedies:

— Frequently restart the simulation and ensure
that the initial states employed form a rich
and representative subset

— QOccasionally generate transitions that use a
randomly selected control rather than the
one dictated by the policy

— Other methods: Use two Markov chains (one
is the chain of the policy and is used to gen-
erate the transition sequence, the other is
used to generate the state sequence).



APPROXIMATING Q-FACTORS

e Given J(i;r), policy improvement requires a
model |[knowledge of p;;(u) for all controls u €

U(i)]

e Model-free alternative: Approximate (J-factors
(4, u;T) pr g(i,u,j) + adu(j))

and use for policy improvement the minimization

h(i) € arg min Q(i,u;r)
uel (7)
e 1 is an adjustable parameter vector and @(z, u;T)
is a parametric architecture, such as
S

Q(i, u, T) — Z ngbm@? u)

m=1
e We can adapt any of the cost approximation
approaches, e.g., projected equations, aggregation

e Use the Markov chain with states (,u), so
pij(p(i)) is the transition prob. to (7, u(2)), 0 to
other (7, u’)

e Major concern: Acutely diminished exploration



SOME GENERAL ISSUES



STOCHASTIC ALGORITHMS: GENERALITIES

e (onsider solution of a linear equation x = b +
Ax by using m simulation samples b + w; and
A+Wi, k=1,...,m, where w, Wy are random,
e.g., “simulation noise”

e Think of z = b+ Ax as approximate policy
evaluation (projected or aggregation equations)

e Stoch. approx. (SA) approach: Fork=1,...,m

Try1 = (1 —vg)xr + %((b + wi) + (A + Wk)ﬂfk)

e Monte Carlo estimation (MCE) approach: Form
Monte Carlo estimates of b and A

:%Zb—l—wk :%ZAJer

Then solve x = b,,, + A,,x by matrix inversion
=(1—An) 1oy

or iteratively
e TD()) and Q-learning are SA methods
e LSTD()) and LSPE()\) are MCE methods



COSTS OR COST DIFFERENCES?

e (Consider the exact policy improvement process.
To compare two controls v and v’ at x, we need

E{g(x,u, w) — gz, u,w) + a(JM(E) — JM(E’))}

where T = f(x,u,w) and T’ = f(z, v/, w)

e Approximate J,(T) or
Du(@, @) = Ju(T) — Ju(@')?

e Approximating D, (%, T") avoids “noise differ-
encing”. This can make a big difference

e Important point: D, satisfies a Bellman equa-
tion for a system with “state” (x,z’)

Dy(z,2') = E{Gu(z,2’,w) + aD,(Z,T’) }
where T = f(x, p(z),w), = f(2/, p(z'), w) and
Gu(x, 2’ w) = g(a:,,u(a:),w) — g(x’,,u(:c’),w)

e D, can be “learned” by the standard methods

(TD, LSTD, LSPE, Bellman error, aggregation,
etc). This is known as differential training.



AN EXAMPLE (FROM THE NDP TEXT)

e System and cost per stage:

Tpi1 = Tk + Sug, g(z,u) = d6(x? + u?)
0 > 0 is very small; think of discretization of
continuous-time problem involving dx(t) /dt = u(t)
e Consider policy u(x) = —2x. Its cost function
1S

Ha?

Ju(x) = 1 —(14+9) +0(62)
and its Q-factor is

Ha? 92

Qux,u) = e +0 (T + u? + ;a:u> + 0(42)

e The important part for policy improvement is

) (u2 + gxu>

‘When Jy(z) [or Qu(x,u)] is approximated by
Ju(x;7r) lor by Qu(x,u;r)], it will be dominated
by 22 and will be “lost”



6.231 DYNAMIC PROGRAMMING
LECTURE 4

LECTURE OUTLINE

Review of approximation in value space
Approximate VI and PI

Projected Bellman equations

Matrix form of the projected equation
Simulation-based implementation
LSTD and LSPE methods

Optimistic versions

Multistep projected Bellman equations

Bias-variance tradeofl



REVIEW



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n, and finite control set U(7) at state ¢

e Transition probabilities: p;;(u)

pii(u)

Piill) ‘0‘0’ pjjlu

pjilu)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) ER —7;}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

n

J* (1) ZUggI(li)me(U)(g(z u,j) +aJ* (), Vi

e Optimality condition:
p: optimal <==> 1T, J*=TJ*

le.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u, j)+at*(j)), Vi



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (TkJ)(7), Vi=1,...,n

k— o0

e Policy iteration: Given u*
— Policy evaluation: Find J ,» by solving

= > i (1) (9( 1" (1), 5) vk (7)), i=1,...

or Jluk B TMszMk:

— Policy improvement: Let p*+1! be such that

k—l—l . . .
/*L 6 argurenl}r(lz) pr 7’ u)])+a‘]uk (]))7 \V/Z

or Tlukz+1 J,u"“ = TJMI{:

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question
(even though it terminates finitely)



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i;7), where 7 is the current state and r = (r1,...,7s)
is a vector of “tunable” scalars weights

e Think n: HUGE, s: (Relatively) SMALL

e Many types of approximation architectures i.e.,
parametric classes J(i;7)] to select from

e Any r € Rs defines a (suboptimal) one-step
lookahead policy

mn

fi(1) = arg min.)zpz'j(U) (9(3,u, §)+aJ(j;1)), Vi

e We want to find a “good” r

e We will focus mostly on linear architectures
J(r) = or

where ® is an n X s matrix whose columns are
viewed as basis functions



LINEAR APPROXIMATION ARCHITECTURES

e We have
J(i:r) = ¢(@)r, i=1,...,n
where ¢(i)’, i = 1,...,n is the ith row of @, or

J(r) = ®r = Zcbjrj
j=1

where ®; is the jth column of ®

. Linear Cost
State i | Feature Extraction | Feature Vector ¢(i) Linear Approximator ¢(i)'r

Mapping - Mapping >

e This is approximation on the subspace

S={dr|r e Rs}

spanned by the columns of ® (basis functions)

e Many examples of feature types: Polynomial
approximation, radial basis functions, etc

e Instead of computing J,, or J*, which is huge-
dimensional, we compute the low-dimensional r» =
(r1,...,7s) using low-dimensional calculations



APPROXIMATE VALUE ITERATION



APPROXIMATE (FITTED) VI

e Approximates sequentially Jy(i) = (T%Jo)(4),
k=1,2,..., with Ji(i;r)

e The starting function Jy is given (e.g., Jo = 0)

e Approximate (Fitted) Value Iteration: A se-
qugntial “fit” to produce Jx11 fr~om iy, Jgpp1 =
TJy, or (for a single policy p) Jx4+1 ~ T}, Jx

T Jo le
TJs
! I
I | |
I /
! ~ I
JO - J2 ‘jg

J1

Subspace S = {®r | r € Rs}

Fitted Value Iteration

o After alarge enough number N of steps, In(i;7n)
is used as approximation J(¢;r) to J*(¢)

e Possibly use (approximate) projection Il with
respect to some projection norm,

jk_|_1 ~ HTjk



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

Wl =y > G(I0),

where & = (&1,...,&,) is a positive distribution
(& > 0 for all 7).

e Let II denote the projection operation onto
S={dr|r e Rs}
with respect to this norm, i.e., for any J € R,
IIJ = ®r*

where

r* = arg min

Or — J||?
reRs 4 Hg

e Recall that weighted Euclidean projection can
be implemented by simulation and least squares,
i.e., sampling J (z')kaccording to & and solving
: . S\ 2
min (p(ie)'r — J(ir))

re¥ks
t=1



FITTED VI - NAIVE IMPLEMENTATION

e Select/sample a “small” subset [ of represen-
tative states

e For each ¢ € I, given jk, compute

e “Fit” the function jk;_|_1(7:;'rk;_|_1) to the “small”
set of values (T'Jg)(¢), @ € I (for example use
some form of approximate projection)

e Simulation can be used for “model-free” imple-
mentation

e FError Bound: If the fit is uniformly accurate
within 0 > 0, i.e.,

max [ Jg41(4) — TJy(i)] <9,

then

- 2000
lim ksi];)o Z:lfrllaXn(Jk(%7“k) - J*(Z)) < (1 _Oéa)z

e But there is a potential problem!



AN EXAMPLE OF FAILURE

e (Consider two-state discounted MDP with states
1 and 2, and a single policy.

— Deterministic transitions: 1 — 2 and 2 — 2
— Transition costs = 0, so J*(1) = J*(2) = 0.

e Consider (exact) fitted VI scheme that approx-
imates cost functions within S = {(r,2r) | r € R}

with a weighted least squares fit; here ® = (;)

e Given Jp = (7k, 21 ), we find J~k+1 = (Tk+1, 2Tk11),
where Ji1 = (1)), with weights £ = (&1, &2):

P41 = arg mrin [51 (r—(Tjk)(l))2+§2 (27“—(Tjk)(2))2}
e With straightforward calculation

ri+1 = afrg,  where 8 = 2(§1+282)/(§1+482) > 1

e Soifa> 1/ (e.g., &1 = &2 = 1), the sequence
{rr} diverges and so does {J}.

e Difficulty is that 7' is a contraction, but II:T
(= least squares fit composed with T') is not.



NORM MISMATCH PROBLEM

e Tor the method to converge, we need Il¢1" to
be a contraction; the contraction property of 71" is
not enough

J1 =1 (TJo)
Subspace S = {®r | r € Rs}

Fitted Value Iteration with Projection

e We need a vector of weights & such that T’ is
a contraction with respect to the weighted Eu-
clidean norm || - ||¢

e Then we can show that 111" is a contraction
with respect to || - ||¢

e We will come back to this issue



APPROXIMATE POLICY ITERATION



APPROXIMATE PI

Initial Policy

l

Evaluate Approximate Cost Approximate Policy
) Ju(i,r) Evaluation

|

«—| Generate “Improved” Policy T Policy Improvement

e [Evaluation of typical policy p: Linear cost func-
tion approximation ju(r) — ®r, where & is full
rank n X s matrix with columns the basis func-
tions, and ith row denoted ¢(i)’.

e Policy “improvement” to generate f:

[(7) = arg min sz] g(i,u, j) + ad(j)'r)

ueU (7)

e FError Bound (Same as approximate VI): If
maX’ij(i,Tk)—JMk(i)‘ SCS, k:O,l,...

the sequence {uF} satisfies

. . 2000
hlf:isolipm?X(JM k(1) — J* (1 )) 1= o)



POLICY EVALUATION

e Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

— Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

— Indirect policy evaluation - solving the pro-
jected equation ®r = IIT,(®r) where II is
projection w/ respect to a suitable weighted
Fuclidean norm

ILJ, Or = 117, (Pr)
0 0
Subspace S = {®r | r € Rs} Subspace S = {®r | r € Rs}
Direct Method: Projection of Indirect Method: Solving a projected
cost vector J, form of Bellman’s equation

e Recall that projection can be implemented by
simulation and least squares



PI WITH INDIRECT POLICY EVALUATION

Initial Policy

l

Evaluate Approximate Cost Approximate Policy

f Ju (i, r ) Evaluation

!

«— Generate “Improved” Policy 1 Policy Improvement

e Given the current policy wu:

— We solve the projected Bellman’s equation

¢r =117, (Pr)

— We approximate the solution J,, of Bellman’s
equation

J=T,J

with the projected equation solution .J, ()



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping II7), a
contraction, so II7}, has unique fixed point?

e Assumption: The Markov chain corresponding
to u has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

6= Jim, 2Pl io=0 >0

Note that &; is the long-term frequency of state j.

e Proposition: (Norm Matching Property) As-
sume that the projection II is with respect to ||-||¢,
where & = (&1,...,&,) is the steady-state proba-
bility vector. Then:

(a) IIT, is contraction of modulus a with re-
spect to || - ||¢.

(b) The unique fixed point ®r* of IIT), satisfies

1
|y = @ le <

= WH‘JM_HJMH’S



PRELIMINARIES: PROJECTION PROPERTIES

e Important property of the projection II on S
with weighted Euclidean norm || - ||¢. For all J &
Rr, &r € S, the Pythagorean Theorem holds:

|J = @r||z =] — ILT|[g + [[ILJ — @r|]¢

J

|
|
|
|
or L I

Subspace S = {®r | r € fs}

e The Pythagorean Theorem implies that the pro-
jection 1s nonexpansive, 1.€.,

ITLT — T1J ||¢ < ||J — J]|e, for all J,.J € Rn.
To see this, note that

|7 =7)|; < |0 =), + || -mT - 7).
= ||J = JII?



PROOF OF CONTRACTION PROPERTY

e [emma: If P is the transition matrix of u,
|Pzlle < llzlle, 2z €®n

Proof: Let p;; be the components of P. For all
z € R, we have

n n n n
P22 =& (D piz | <D &Y pi7?
i=1  \j=1 i=1  j=1
—ZZ€ZPZJZ _Z€JZ — H H,ga

7=1 1=1

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property Z:”:l EiDij =
¢; of the steady-state probabilities.

e Using the lemma, the nonexpansiveness of II,
and the definition 7},J = g + aPJ, we have

T, J 1T, J|le < |TuJ=TuJlle = al|P(J=J)[le < allJ—J||¢

for all J,J € R*. Hence IIT), is a contraction of
modulus «



PROOF OF ERROR BOUND

e Let ®r* be the fixed point of II7". We have

HJ,LL — (I)T*H&' < HJM - HJMHS-

1
V1 — a2
Proof: We have

[ = @2 = || Ty — T2 + || 11T, — @+

Ils =

2
3

Jp — I |I2 + [|[OTJ, — IIT(@r) |
Ty — T, 4 a2, — @72,

VAN

where

— The first equality uses the Pythagorean The-
orem

— The second equality holds because J,, is the
fixed point of 1" and ®r* is the fixed point
of IIT

— The inequality uses the contraction property
of IIT".

Q.E.D.



SIMULATION-BASED SOLUTION OF

PROJECTED EQUATION



MATRIX FORM OF PROJECTED EQUATION

Tu(cpr) =g+ aPor

0
Subspace S = {®r | r € Rs}

e The solution ®r* satisfies the orthogonality con-
dition: The error

Or* — (g + aPdr+)

is “orthogonal” to the subspace spanned by the
columns of P.

e 'This is written as

O'Z(Pr* — (g + aPPr+)) =0,

where = is the diagonal matrix with the steady-
state probabilities &1, ..., &, along the diagonal.

e Equivalently, C'r* = d, where

C=®=(I—aP)®,  d=dZy

but computing C' and d is HARD (high-dimensional
inner products).



SOLUTION OF PROJECTED EQUATION

e Solve Cr* = d by matrix inversion: r* = C—1d

e Projected Value Iteration (PVI) method:
Oria1 =T (Pry) =1(g + aPPry)

Converges to r* because II1' is a contraction.

Value lterate
T(Prk) =g + aPdri

[ ..
Projection
onS

I
®rg+1

dry
0
S: Subspace spanned by basis functions

e PVI can be written as:

rrr1 = arg min ||®r — (g + aP®ry) H2
re¥ys §

By setting to 0 the gradient with respect to r,
O'E(Pri41 — (9 + aPPrg)) =0,

which yields
Tk+1 — Tk — ((I)’Eq))_l(CTk — d)



SIMULATION-BASED IMPLEMENTATIONS

e Key idea: Calculate simulation-based approxi-
mations based on k samples

CR%C, dk%d

e Matrix inversion r* = (C—1d is approximated
by
. = Ctdy,

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

e PVI method rg41 =1y — (P'Z2P)~1(Crp —d) is
approximated by

rer1 =Tk — Gr(Crry — di)
where
Gk: > ((I)/E(I))_l

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

o Key fact: C%, di, and G can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

e We generate an infinitely long trajectory (ig, i1, .. .)
of the Markov chain, so states ¢ and transitions
(4, 7) appear with long-term frequencies &; and p;;.

o After generating each transition (i:,4¢41), We
compute the row ¢(i¢)’ of ® and the cost compo-

nent g(i¢, t¢+1).

e We form

k
1 : . NPT —
dr = Er1 E P(it)g(it, it41) ~ E &ipijP(i)g(i,7) = ®'Eg =d
t=0 i,j

k
1 / ! —
Ck = k——f—l t_E : ¢(Zt)(¢(zt)—&¢(?,t+1)) ~ ¢ :([—Oép)q) = C

Also in the case of LSPE

k
1
= — ' ) =~ Q=
Gg T ;:O o(i)p(ir) =~ P'=P

e Convergence based on law of large numbers.

o (%, di, and G can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)



OPTIMISTIC VERSIONS

e Instead of calculating nearly exact approxima-
tions C}. =~ C' and dp ~ d, we do a less accurate
approximation, based on few simulation samples

e Evaluate (coarsely) current policy u, then do a
policy improvement

e This often leads to faster computation (as op-
timistic methods often do)

e Very complex behavior (see the subsequent dis-
cussion on oscillations)

e The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling) - particularly if the C' matrix is
ill-conditioned

e LSPE tends to cope better because of its itera-
tive nature (this is true of other iterative methods
as well)

e A stepsize v € (0,1] in LSPE may be useful to
damp the effect of simulation noise

ret+1 = 1k — YGr(Crry — di)



MULTISTEP PROJECTED EQUATIONS



MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J = TN J, where for A € [0, 1),
T = (1—\) Z NTEA+1
(=0
Geometrically weighted sum of powers of T

e Note that T is a contraction with modulus
o, with respect to the weighted Euclidean norm
|||, where & is the steady-state probability vector
of the Markov chain.

e Hence T is a contraction with modulus

o

ay=(1-2X) Za“l)\f =
=0

a(l — M)
1 —ai

Note that oy, —0as A — 1

e 7% and T have the same fixed point J,, and

1
[T = @r3lle < > 1 — ILJ e

where ®r} is the fixed point of IITM).
e The fixed point ®r} depends on A.



BIAS-VARIANCE TRADEOFF

®r3: Solution of projected equation
Or = IITN) (Pr)

Simulation error

_—'_-"'“,--r’ o
A=1,—~—[.-== Bias
T —— ‘\Simulation error

Subspace S = {®r | r € Rs}

e Error bound ||J, —®7 |l <

\/1%70& HJM_HJMHS
e As A 7T 1, we have a | 0, so error bound (and
the quality of approximation) improves as \ 1 1.
In fact

lim ®r% = I1J
lim &3 = ILJ,

e DBut the simulation noise in approximating
T = (1—\) Z N1
(=0

lncreases

e Choice of A is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

e The projected Bellman equation is
Or = IITN) (dr)

e In matrix form: CMNyr = dN) | where
CH =@ E(I —aPM)®,  dN =d=gW),
with

P =(1-)\) Z al NP1 g(N) = Z at\EPtg
£=0 £=0
e The LSTD()) method is

Ay —1 (A
(),
where C,S‘) and d,g‘) are simulation-based approx-
imations of C(A) and d(\V).

e The LSPE()\) method is
Tk+1 = Tk — VG (C]iA)Tk — d;(j))

where G, is a simulation-based approx. to (®/=d) 1

e TD()): An important simpler/slower iteration
[similar to LSPE()\) with Gy = I - see the text].



MORE ON MULTISTEP METHODS

e The simulation process to obtain C,S‘) and d,(:‘)

is similar to the case A = 0 (single simulation tra-

jectory ig, i1, ..., more complex formulas)
k
. /
CY = b(it) Z M=t (i) — (i 11))
k +1 po
o k k
d\ m—t \m—t .
k ]C + 1 ;Qﬁ Zt n;& 9inm,

e In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

e Many different versions (see the text).

e Note the )\-tradeoffs:

— As A1 1, Cl(c/\) and d,(;\) contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of 7y (the solution
of the projected equation)

— The error bound ||.J,—®7,||¢ becomes smaller

— As A 1 1, IITN) becomes a contraction for
arbitrary projection norm



6.231 DYNAMIC PROGRAMMING
LECTURE 5
LECTURE OUTLINE

e Review of approximate PI based on projected
Bellman equations

e Issues of policy improvement

— Exploration enhancement in policy evalua-
tion
— Oscillations in approximate PI

e Aggregation — An alternative to the projected
equation/Galerkin approach

e Examples of aggregation
e Simulation-based aggregation

e Relation between aggregation and projected
equations



REVIEW



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (%)

e Transition probabilities: p;;(u)

pii(u)

Piill) ‘0‘0’ pjjlu

pjilu)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) |i—io}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



APPROXIMATE PI

Initial Policy

l

Evaluate Approximate Cost

' Y Ju(iyr)

|

«4— Generate “Improved” Policy 1

Approximate Policy

Evaluation

Policy Improvement

e [Evaluation of typical policy p: Linear cost func-

tion approximation

where @ is full rank n X s matrix with columns
the basis functions, and ¢th row denoted ¢(z)’.

e Policy “improvement” to generate f:

(i) = arg min szg(u) (9(i,u, 5) +ag(4)'r)



EVALUATION BY PROJECTED EQUATIONS

e Approximate policy evaluation by solving
¢r =117, (Pr)

II: weighted Euclidean projection; special nature
of the steady-state distribution weighting.

e Implementation by simulation (single long tra-

jectory using current policy - important to make
IIT}, a contraction). LSTD, LSPE methods.

e Multistep option: Solve ®&r = HTLSA)(CDT) with

TV =(1-N) M, 0<a<]
£=0

— As A1 1, 1IT, L(,,/\) becomes a contraction for
any projection norm (allows changes in II)

— Bias-variance tradeoff

Solution of projected equation
Or = IIT N (Pr)

Simulation error

\ Bias

----- \ Simulation error

Subspace S = {®r | r € Rs}




ISSUES OF POLICY IMPROVEMENT



EXPLORATION

e 1st major issue: exploration. To evaluate p,
we need to generate cost samples using

e This biases the simulation by underrepresenting
states that are unlikely to occur under pu.

e As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate,
and seriously impact the “improved policy” 7i.

e This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

e To deal with this we must change the sampling
mechanism and modify the simulation formulas.

e Solve B
¢r =117, (Pr)

where II is projection with respect to an exploration-
enhanced norm [uses a weight distribution ( =

(Cla . 7Cn)]

e ( is more “balanced” than & the steady-state
distribution of the Markov chain of u.

e This also addresses any lack of ergodicity of L.



EXPLORATION MECHANISMS

e One possibility: Use multiple short simulation
trajectories instead of single long trajectory start-
ing from a rich mixture of states. This is known
as geometric sampling, or free-form sampling.

— By properly choosing the starting states, we
enhance exploration

— The simulation formulas for LSTD(\) and
LSPE()) have to be modified to yield the so-

lution of ®r = ﬁTF(LA)(CI)r) (see the DP text)

e Another possibility: Use a modified policy to
generate a single long trajectory. This is called an
off-policy approach.

— Modify the transition probabilities of u to
enhance exploration

— Again the simulation formulas for LSTD(\)
and LSPE()) have to be modified to yield

the solution of ®&r = ﬁTF(LA)(CI)r) (use of im-
portance sampling; see the DP text)

e With larger values of A > 0 the contraction

property of IIT; F(LA) is maintained.

e LSTD may be used without ﬁT,Sf\) being a con-
traction ... LSPE and TD require a contraction.



POLICY ITERATION ISSUES: OSCILLATIONS

e 2nd major issue: oscillation of policies

e Analysis using the greedy partition of the space
of weights r: Ry, is the set of parameter vectors r
for which u is greedy with respect to J(-;r) = ®r

R, ={r|Tu(®r)=T(®r)} V i

If we use r in R, the next “improved” policy is u

R'uk—‘,—l

e If policy evaluation is exact, there is a finite
number of possible vectors r,, (one per p)

e The algorithm ends up repeating some cycle of
policies pk, uk+1, ... pk+m with

Tk € Ruk+1, Tyuk+1 € Ruk+2, oy Tpktm € R,u’f

e Many different cycles are possible



MORE ON OSCILLATIONS/CHATTERING

e In the case of optimistic policy iteration a dif-
ferent picture holds (policy evaluation does not
produce exactly r,,)

e Oscillations of weight vector r are less violent,
but the “limit” point is meaningless!

e Fundamentally, oscillations are due to the lack

of monotonicity of the projection operator, i.e.,
J < J’" does not imply I1J < II1J’.

e If approximate PI uses an evaluation of the form
br = (WT,)(Pr)

with W: monotone and W'T),: contraction, the
policies converge (to a possibly nonoptimal limit).

e These conditions hold when aggregation is used



AGGREGATION



PROBLEM APPROXIMATION - AGGREGATION

e Another major idea in ADP is to approximate
J* or J, with the cost-to-go functions of a simpler
problem.

e Aggregation is a systematic approach for prob-
lem approximation. Main elements:

— Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

— Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

— Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

o If fi(y) is the optimal cost of aggregate state 1,
we use the approximation

TGy =)y diRy), ¥
Yy

where ¢;, are the aggregation probabilities, en-
coding the “degree of membership of 7 in the ag-
gregate state y”

e This is alinear architecture: ¢;, are the features
of state 5



HARD AGGREGATION EXAMPLE

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs.: ¢j, = 1 if 7 belongs to
aggregate state y (piecewise constant approx).

1 00 0
1 2 3 1 0 0 O
° ° ° 01 0 0
1 T2 1 000
S N =110 0 0
| 01 0 0

.7 I3.8 374.9 O O 1 0
00 1 0

00 0 1/

e What should be the “aggregate” transition probs.
out of 7

e Select 7 € x and use the transition probs. of 1.
But which ¢ should I use?

e The simplest possibility is to assume that all
states ¢ in x are equally likely.

e A generalization is to randomize, i.e., use “dis-
aggregation probabilities” dg;: Roughly, the “de-
gree to which ¢ is representative of x.”



AGGREGATION/DISAGGREGATION PROBS

Original
System States

O - O,

pij(u)

Disaggregation Aggregation
Probabilities Probabilities
Matrix D Matrix ®

e Define the aggregate system transition proba-
bilities via two (somewhat arbitrary) choices.

e For each original system state 5 and aggregate
state y, the aggregation probability ¢;,

— Roughly, the “degree of membership of 5 in
the aggregate state y.”

— In hard aggregation, ¢;, = 1 if state j be-
longs to aggregate state/subset .

e For each aggregate state x and original system
state 7, the disaggregation probability d;

— Roughly, the “degree to which ¢ is represen-
tative of x.”

e Aggregation scheme is defined by the two ma-
trices D and . The rows of D and ® must be
probability distributions.



AGGREGATE SYSTEM DESCRIPTION

Original
System States

O

pij(u)7 g(/L?u)])

Disaggregation Aggregation
Probabilities Probabilities
dri * \/ ¢j ]

e The transition probability from aggregate state
x to aggregate state y under control u

Py (U Z i pr Wiy, or P(u) = DP(u)d

where the rows of D and ® are the disaggregation
and aggregation probs.

e The expected transition cost is

=Y dei ¥ pij(u)g(i,u,j), or§=DP(u)g
i=1 j=1



AGGREGATE BELLMAN’S EQUATION

Original

System States

pij(u)? g('L?uv])

Disaggregation Aggregation
Probabilities Probabilities
dai * Y %y

e The optimal cost tunction of the aggregate prob-
lem, denoted R, is

AN

R(x) = min |5z, w) + 0> pry(RE@)|,  Va

uelU

Bellman’s equation for the aggregate problem.

e The optimal cost function J* of the original
problem is approximated by J given by

J(G) =) bRy,  VJ



EXAMPLE I: HARD AGGREGATION

e Group the original system states into subsets,
and view each subset as an aggregate state

e Aggregation probs.: ¢;, = 1 if j belongs to
aggregate state y.

1 00 0
1 2 3 1 0 0 O
° ° ° 01 0 0
1 T2 1 000
S N =110 0 0
| 01 0 0
.7 963.8 374.9 O 0 1 O
00 1 0

00 0 1/

e Disaggregation probs.: There are many possi-
bilities, e.g., all states ¢ within aggregate state x
have equal prob. d.;.

e If optimal cost vector J* is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal”’ cost into aggregates.

e A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).



EXAMPLE II: FEATURE-BASED AGGREGATION

e Important question: How do we group states
together?

e If we know good features, it makes sense to
group together states that have “similar features”

@ Extraction . e
P ® ® ®
[ ] [ ] [ ]

States Features Aggregate States

e A general approach for passing from a feature-
based state representation to a hard aggregation-
based architecture

e Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

e Aggregation-based architecture is more power-
ful (it is nonlinear in the features)

e ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture



EXAMPLE III: REP. STATES/COARSE GRID

e Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

Original State Space
/

T

° h
\j<J3
I @ S
—
J3 \

Representative/Aggregate States

e Disaggregation probabilities are d,; = 1 if 7 is
equal to representative state x.

e Aggregation probabilities associate original sys-
tem states with convex combinations of represen-

tative states
g~ Z DjyY
ye A

e Well-suited for Euclidean space discretization

e [Extends nicely to continuous state space, in-
cluding belief space of POMDP



EXAMPLE 1V: REPRESENTATIVE FEATURES

e Here the aggregate states are nonempty subsets
of original system states. Common case: Each S,
is a group of states with “similar features”

Original State Space
|

|
Swl ¢j:{:1 ] Sm2
¢jw2
Pij
¢j:173 ‘

Q.9

(X

|

Aggregate States/Subsets

e Restrictions:
— The aggregate states/subsets are disjoint.

— The disaggregation probabilities satisty dz; >
0 if and only if 7 € .

— The aggregation probabilities satisfy ¢, =1
for all j € y.

e Hard aggregation is a special case: UgS; =
{1,...,n}

e Aggregation with representative states is a spe-
cial case: S, consists of just one state



APPROXIMATE PI BY AGGREGATION

Original
System States

(— O,

Disaggregation Aggregation
Probabilities Probabilities
dai ) Y %y

e Consider approximate PI for the original prob-
lem, with policy evaluation done by aggregation.

e LEwvaluation of policy u: J = ®R, where R =
DT, (®R) (R is the vector of costs of aggregate
states for p). Can be done by simulation.

e Looks like projected equation PR = IIT,,(PR)
(but with @D in place of II).

e Advantage: It has no problem with oscillations.

e Disadvantage: The rows of D and ® must be
probability distributions.



ADDITIONAL ISSUES OF AGGREGATION



ALTERNATIVE POLICY ITERATION

e The preceding PI method uses policies that as-
sign a control to each aggregate state.

e An alternative is to use PI for the combined
system, involving the Bellman equations:

R*(z) =) daido(i), Vu,
1=1

n
Jo(i) = min Y pij(u)(g(i,u, j)+adi(4)), i =1,
ueU (3)
=1
Jl(]): E ¢JyR*(y)7 ]:17 y T
yeA
Original
O System States
@- = ©
v pij (u) -
Disaggregation Aggregation
Probabilities Probabilities
dacz' ¢jy
Matrix D i * Matrix ®

e Simulation-based PI and VI are still possible.



RELATION OF AGGREGATION/PROJECTION

e Compare aggregation and projected equations

®R = ®DT(®PR),  ®r=IIT(Pr)

e If ®D is a projection (with respect to some
weighted Euclidean norm), then the methodology
of projected equations applies to aggregation

e Hard aggregation case: ®D can be verified to be
projection with respect to weights &; proportional
to the disaggregation probabilities d;

e Aggregation with representative features case:
® D can be verified to be a semi-norm projection
with respect to weights &; proportional to d;

e A (weighted) Euclidean semi-norm is defined by

|7l = /S, &((0))°, where € = (€1, . &),
with &> 0.

o If &’=® is invertible, the entire theory and
algorithms of projected equations generalizes to
semi-norm projected equations [including multi-

step methods such as LSTD/LSPE/TD(\)].

e Reference: Yu and Bertsekas, “Weighted Bell-
man Equations and their Applications in Approxi-
mate Dynamic Programming,” MIT Report, 2012.



DISTRIBUTED AGGREGATION I

e We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by hard
aggregation.

e Partition the original system states into subsets

S1,...,5m.
e Distributed VI Scheme: Each subset Sy

— Maintains detailed /exact local costs
J(i) for every original system state ¢ € Sy

using aggregate costs of other subsets

— Maintains an aggregate cost R(£) = ) _;cg, deiJ (1)

— Sends R({) to other aggregate states
e J(7) and R(¢) are updated by VI according to

Jk_|_1(i) = m(}r(l) Hg(i,u, Jk,Rk), Vie S
ucy (1

with Ry being the vector of R(¢) at time k, and

n

Hy(iyu, J,R) = Y pij(u)g(iu, ) +a Y pij(w)J()
j=1 JES,
ta ) pi(RE)

JESel 9 »6/#«8



DISTRIBUTED AGGREGATION II

e (Can show that this iteration involves a sup-
norm contraction mapping of modulus «, so it
converges to the unique solution of the system of
equations in (J, R)

J(i) = m(}?_)Hg(i,u,J,R), R({) = E de; J (1),
ue 1
1€Sy

Vie Sy, £=1,...,m.

e This follows from the fact that {dy | i =
1,...,n} is a probability distribution.

e View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R(z(j)) for j € Sq.

e In an asynchronous version of the method, the
aggregate costs R({) may be outdated to account
for communication “delays” between aggregate states.

e (Convergence can be shown using the general
theory of asynchronous distributed computation,
briefly described in the 2nd lecture (see the text).



6.231 DYNAMIC PROGRAMMING
LECTURE 6

LECTURE OUTLINE

e Review of Q-factors and Bellman equations for
Q-factors

e VI and PI for Q-factors

e ()-learning - Combination of VI and sampling
e (Q-learning and cost function approximation
e Adaptive dynamic programming

e Approximation in policy space

e Additional topics



REVIEW



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (%)

e Transition probabilities: p;;(u)

pii(u)

Piill) ‘0‘0’ pjjlu

pjilu)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) |i—io}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



BELLMAN EQUATIONS FOR Q-FACTORS

e The optimal ()-factors are defined by

Q*(4,u) = sz‘j(u) (9(i,u, ) +aJ*(j)), ¥ (i,u)

e Since J* = T'J*, we have J*(i) = min, ey ;) Q* (4, u)
so the optimal ()-factors solve the equation

u' €U (j)

Q (i) = Y- pisa) (sl )+ min Qo))
j=1
e LEquivalently * = F'QQ*, where

(FQ)(iu) = > pis(u) (g@',u,j)m i Q(j,w)

u' €U (j)

e Thisis Bellman’s Eq. for a system whose states
are the pairs (i, u)

e Similar mapping F), and Bellman equation for
a policy p: Qu = F.Q



BELLMAN EQ FOR @Q-FACTORS OF A POLICY

State-Control Pairs: Fixed Policy p

States

e (-factors of a policy u: For all (i, u)

Equivalently Qu = F,,(Q),,, where
(FLQ)(i,u) me g(i,u, §) + aQ(j, u()))

e This is a hnear equation. It can be used for
policy evaluation.

e Generally VI and PI can be carried out in terms
of Q-factors.

e When done exactly they produce results that

are mathematically equivalent to cost-based VI
and PI.



WHAT IS GOOD AND BAD ABOUT Q-FACTORS

e All the exact theory and algorithms for costs
applies to Q-factors

— Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

e All the approximate theory and algorithms for
costs applies to Q-factors

— Projected equations, sampling and exploration
issues, oscillations, aggregation

e A MODEL-FREE (on-line) controller imple-
mentation

— Once we calculate Q*(¢,u) for all (¢, u),

p*(i) = arg min Q*(¢,u), Vi
ueU (3)

— Similarly, once we calculate a parametric ap-
proximation Q(z,wu;r) for all (z,u),

(i) = arg min Q(i,u;7), Ve
uel (7)

e¢ The main bad thing: Greater dimension and
more storage! (It can be used for large-scale prob-
lems only through aggregation, or other approxi-
mation.)



Q-LEARNING



Q-LEARNING

e In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

— Q-learning, a sampled form of VI (a stochas-
tic iterative algorithm).
e ()-learning algorithm (in its classical form):

— Sampling: Select sequence of pairs (ix, ug)
luse any probabilistic mechanism for this,
but all (i,u) are chosen infinitely often].

— Iteration: For each k, select 5. according to
Pirj(uk). Update just Q (i, ux):

Qr+1(ik,ur) = (1 — ) Qr ik, ur)

+ vk | 9(ik, vk, jk) + @ min  Qr(Jk, u’)
u €U (jr)

Leave unchanged all other Q-factors.

— Stepsize conditions: v; | 0
e We move Q(7,u) in the direction of a sample of

u’ €U (7)
J=1



NOTES AND QUESTIONS ABOUT Q-LEARNING

Qr+1(tk,ur) = (1 — ) Qk ik, ug)

+ Y | 9k, uk, Jk) + @ min  Qr(jr,u’)
u €U (jk)

e Model free implementation. We just need a
simulator that given (i,u) produces next state j
and cost g(7,u, 7)

e Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method. (Connection with asynchronous
algorithms.)

e Aims to find the (exactly) optimal Q-factors.
e Why does it converge to QQ*7

e Why can’t I use a similar algorithm for optimal
costs (a sampled version of VI)?

e Important mathematical (fine) point: In the Q-
tactor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

J*(i) = ulfen(}%) sz'j(u) (9(i,u, J) + aJ*(4))



CONVERGENCE ASPECTS OF Q-LEARNING

e (-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

e The proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

e Uses the fact that the Q-learning map F:

(FQ)(i,u) = B;{g(i,u,7) + aminQ(j,u) }
1S a sup-norm contraction.

e Generic stochastic approximation algorithm:

— Consider generic fixed point problem involv-
ing an expectation:

T = Ew{f(a:,w)}

— Assume Ey{f(z,w)} is a contraction with
respect to some norm, so the iteration

Trt1 = Ew{f(zr, w)}

converges to the unique fixed point

— Approximate Ew{ f(x, w)} by sampling



STOCH. APPROX. CONVERGENCE IDEAS

e Generate a sequence of samples {wi, w2, ...},
and approximate the convergent fixed point iter-

ation xx41 = Ew{f(zk, w)}

e At each iteration k use the approximation

k
Tht1 = % Z [k, we) = Eu{f(zr,w)}
t=1

e A major flaw: it requires, for each k, the compu-
tation of f(xy,w;) for all values wy, t =1,... k.

e 'This motivates the more convenient iteration

k
1
xk+1:E;f(xt7wt)7 k:1,2,...,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample wy.

e By denoting v = 1/k, it can also be written as

Try1 = (I — v)ze + W f(ap,wr), k=1,2,...

e Compare with ()-learning, where the fixed point
problem is () = F'()

(FQ)(i,u) = Ej{g(i,u, j) + amin Q(j, v') }



Q-LEARNING COMBINED WITH OPTIMISTIC PI

e Each Q-learning iteration requires minimization
over all controls u’ € U(ji):

Qr+1(ik,ur) = (1 — 7)) Qr (Tk, uk)

+ Vi | 9k, g, Jk) + o min Qr(Jk, u')
uw €U (jk)
e To reduce this overhead we may consider re-
placing the minimization by a simpler operation
using just the “current policy” px

e This suggests an asynchronous sampled version
of the optimistic PI algorithm which policy eval-
uates by

Qk—l—l — F/Zik Qk?
and policy improves by p**!(i) € arg miny, ey (i) Qu+1 (3, u)

e This turns out not to work (counterexamples
by Williams and Baird, which date to 1993), but
a simple modification of the algorithm is valid

e See a series of papers starting with

D. Bertsekas and H. Yu, “Q-Learning and En-
hanced Policy Iteration in Discounted Dynamic
Programming,” Math. of OR, Vol. 37, 2012, pp.
66-94



Q-FACTOR APPROXIMATIONS

e We introduce basis function approximation:

~

Q(i,u;m) = (i, u)'r

e We can use approximate policy iteration and
LSTD/LSPE for policy evaluation

e Optimistic policy iteration methods are fre-
quently used on a heuristic basis

e An extreme example: Generate trajectory {(ix, ug) |
k=0,1,...} as follows.

e At iteration k, given 1y and state/control (ig, ug):

(1) Simulate next transition (ig,ix41) using the
transition probabilities p;, ; (uk).

(2) Generate control ugy1 from

~

Upt+1 = arg min = Q(ik41,u, k)
UEU(Zk+1)

(3) Update the parameter vector via

rr+1 = rx — (LSPE or TD-like correction)

e Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)



BELLMAN EQUATION ERROR APPROACH

e Another model-free approach for approximate
evaluation of policy u: Approximate @, (4, u) with
Qu(t,u;r,) = ¢(2,u)'r,, obtained from

ru € argmin || ®r — FM((I)T)HE

where || - ||¢ is Euclidean norm, weighted with re-
spect to some distribution &.

e Implementation for deterministic problems:

(1) Generate a large set of sample pairs (i, ux),
and corresponding deterministic costs g(ix, ux)
and transitions (jg, 1(jk)) (a simulator may
be used for this).

(2) Solve the linear least squares problem:

2

min 37 |0k, u)'r — (a(ik, uk) + @ (ji. n(x)) 7

e For stochastic problems a similar (more com-
plex) least squares approach works. It is closely
related to LSTD (but less attractive; see the text).

e Because this approach is model-free, it is often
used as the basis for adaptive control of systems
with unknown dynamics.



ADAPTIVE CONTROL BASED ON ADP



LINEAR-QUADRATIC PROBLEM

o System: xpy11 = Axrp+Bug, xp € R, up € k™
o Cost: Y~ (2} Qx + uj Rug), @ >0, R>0

e Optimal policy is linear: u*(x) = Lx

e The Q-factor of each linear policy u is quadratic:

u

Qurwy =o' K (L) ()

e We will consider A and B unknown

e We represent Q-factors using as basis func-
tions all the quadratic functions involving state
and control components

xiad, utud, xiud, Vi,7

These are the “rows” ¢(x,u)’ of

e The Q-factor (), of a linear policy p can be ex-
actly represented within the approximation sub-
space:

QM (xa u) — gb(xa U)’T,u

where 7, consists of the components of K, in (*)



PI FOR LINEAR-QUADRATIC PROBLEM

e DPolicy evaluation: r, is found by the Bellman
error approach

2

mrin Z ‘gb(a:k, ug)'r — (33;@@3% + ug Ruy, + ¢($k+1a H(mkﬂ))/r)

where (xg,ug, Tr+1) are many samples generated
by the system or a simulator of the system.

e Policy improvement:

fi(z) € argmin (¢(x, u)'ry)

u

e Knowledge of A and B is not required

e If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

e The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive dynamic programming

e This field deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time



APPROXIMATION IN POLICY SPACE



APPROXIMATION IN POLICY SPACE

e We parametrize policies by a vector r = (r1,...,7s)

(an approximation architecture for policies).

e Each policy a(r) = {a(i;r) | i = 1,...,n}
defines a cost vector Jj(,) (a function of r).

e We optimize some measure of J;(,) over r.

e For example, use a random search, gradient, or
other method to minimize over r

> &idam (i),
1=1

where &1, ..., &, are some state-dependent weights.

e An important special case: Introduce cost ap-
proximation architecture V (i;r) that defines indi-
rectly the parametrization of the policies

mn

A(i;r) = arg min Y pij(u)(g(i, u, j)+aV (j;r)),
uel (1) .

e This introduces state features into approxima-

tion in policy space.

e A policy approximator is called an actor, while a
cost approximator is also called a critic. An actor
and a critic may coexist.



APPROXIMATION IN POLICY SPACE METHODS

e¢ Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

— At a given point/r they generate a random
collection of neighboring . They search within
the neighborhood for better points.

— Many variations (the cross entropy method
is one).
— They are very broadly applicable (to discrete
and continuous search spaces).
— They are idiosynchratic.
e Gradient-type methods (known as policy gra-
dient methods) also have been used extensively.

— They move along the gradient with respect
to r of

> & (i)
1=1

— There are explicit gradient formulas which
can be approximated by simulation.

— Policy gradient methods generally suffer by
slow convergence, local minima, and exces-
sive simulation noise.



COMBINATION WITH APPROXIMATE PI

e Another possibility is to try to implement PI
within the class of parametrized policies.

e Given a policy/actor u(i;rr), we evaluate it
(perhaps approximately) with a critic that pro-
duces J,,, using some policy evaluation method.

e We then consider the policy improvement phase

~

i) € argmin }  pi(w) (90w, 5) + adu(7)), Vi

and do it approximately via parametric optimiza-
tion

mrin S: & S:pij (ﬁ(i; 7“)) (g(iv a(e;r), j)+@ju(j))

where &; are some weights.

e This can be attempted by a gradient-type method
in the space of the parameter vector r.

e Schemes like this have been extensively applied
to continuous-space deterministic problems.

e Many unresolved theoretical issues, particularly
for stochastic problems.



FINAL WORDS



TOPICS THAT WE HAVE NOT COVERED

e Lixtensions to discounted semi-Markov, stochas-
tic shortest path problems, average cost problems,
sequential games ...

e Extensions to continuous-space problems
e Extensions to continuous-time problems

e Adaptive DP - Continuous-time deterministic
optimal control. Approximation of cost function
derivatives or cost function differences

e Random search methods for approximate policy
evaluation or approximation in policy space

e Basis function adaptation (automatic genera-
tion of basis functions, optimal selection of basis
functions within a parametric class)

e Simulation-based methods for general linear
problems, i.e., solution of linear equations, linear
least squares, etc - Monte-Carlo linear algebra



CONCLUDING REMARKS

e There is no clear winner among ADP methods

e Thereis interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

e There are major flaws in all methods:

— Oscillations and exploration issues in approx-
imate PI with projected equations

— Restrictions on the approximation architec-
ture in approximate PI with aggregation

— Flakiness of optimization in policy space ap-
proximation

e Yet these methods have impressive successes
to show with enormously complex problems, for
which there is often no alternative methodology

e There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

e¢ Theoretical understanding is important and
nontrivial

e Practice is an art and a challenge to our cre-
ativity!



THANK YOU



