A Series of Lectures on

Approximate Dynamic Programming
Lecture 3

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

University of Cyprus
September 2017

Bertsekas (M.L.T.) Approximate Dynamic Programming 1/22

Third Lecture

APPROXIMATE DYNAMIC PROGRAMMING I

Approximate Dynamic Programming

° Review - Approximation in Value Space
e Neural Networks and Approximation in Value Space

e Model-free DP in Terms of Q-Factors

0 Rollout

Bertsekas (M.L.T.) Approximate Dynamic Programming 3/22

Recall the Exact DP Algorithm

Computes for all k and states xx: Jk(x«), the opt. cost of tail problem that starts at x J

Go backwards, k =N —1,...,0, using
In(Xn) = gn(xn)
Jk(Xk) = min) E{gk(Xk7 Uk, Wk) + Jk+1 (fk(Xk, Uk, Wk))}
Xk

ug €Uk (

Bertsekas (M.L.T.) Approximate Dynamic Programming 5/22

One-Step and Multistep Lookahead

One-Step Lookahead
@ Replace Jx.1 by an approximation J. 1

@ Apply Uy that attains the minimum in

min : E{gk(xk, Uk, Wi) + Jk+1 (fk(Xk7 U, Wk))}
Xk

u €U (

¢-Step Lookahead

@ At state xx solve the ¢-step DP problem starting at xx and using terminal cost Jx.

@ If Uk, figyq, - - - Pgro—q iS an optimal policy for the ¢-step problem, apply the first
control Tk

Bertsekas (M.L.T.) Approximate Dynamic Programming 6/22

Parametric Approximation in Value Space

Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
-t > >
k+0—1
min E gk (-’L)k:: Uk, /wk:) + Z 9k («'L"m-, ,Uf’m,(m'm)s U}m) + Jk+€ (mk—Q—Z)
Ul sHig+15-Hg+0—1 m—k+1

Parametric approximation

Feature-based architectures: The linear case

Linear Cost
State k | Feature Extraction | Feature Vector ¢y (zy) Linear Approximator 7, ¢ (zx)
.

Mapping Mapping

A 4

Bertsekas (M.L.T.) Approximate Dynamic Programming 7122

Architecture Training by Sequential DP Approximation

@ Start with Jy = gn and sequentially train going backwards, until k = 0

@ Given a cost-to-go approximation Jx.1, we use one-step lookahead to construct a
large number of state-cost pairs (x¢, 85), s=1,..., q, where

S — min Edg(x, u, wie) + Jirr (Fe(XE, u, wi), 1 s=1,...
ﬂk UEUk(XE) {g(ks Uy k)+ k+1(k(ky Yy k)7 k+1)}7) 7q

@ We “train" an architecture Jx on the training set (x§, 35), s =1,...,q

Training by least squares/regression
@ We minimize over r

q
37 (JelxE, r) = B%)% + yllre — FIIP

s=1

where ¥ is an initial guess for r, and v > 0 is a regularization parameter

Bertsekas (M.LT.) Approximate Dynamic Programming 8/22

Neural Networks for Constructing Cost-to-Go Approximations Jj

Neural nets can be used in the sequential DP approximation scheme:

Train the stage k neural net (i.e., compute Ji) using a training set generated with the
stage k + 1 neural net (which defines Jx1)

Two ways to view neural networks
@ As nonlinear approximation architectures
@ As linear architectures with automatically constructed features

Focus at the typical stage k and drop the index k for convenience
@ Neural nets are approximation architectures of the form
. m
Jox,v,r) =" nei(x,v) = r'(x,v)
i=1
involving two parameter vectors r and v with different roles
@ View ¢(x, v) as a feature vector; view r as a vector of linear weighting parameters
for ¢(x, v)
@ By training v jointly with r, we obtain automatically generated features!

Bertsekas (M.L.T.) Approximate Dynamic Programming
pp! i gl

Neural Network with a Single Nonlinear Layer
)

Cost

r Approximation
State x y(x) Ay(z) +b ' ¢(x,v)
— -
—
!
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter

v =(A,b) r

@ State encoding (could be the identity, could include special features of the state)

@ Linear layer Ay(x) + b [parameters to be determined: v = (A, b)]

@ Nonlinear layer produces m outputs ¢;(x, v) = a((Ay(x) + b),), i=1,....m

@ o is a scalar nonlinear differentiable function; several types have been used
(hyperbolic tangent, logistic, rectified linear unit)

@ Training problem is to use the training set (x°,8°), s =1,...,q, for

A,b, r

2
min <Z rio)+b),) -8 > + (Regularization Term)

@ Solved often with incremental gradient methods (known as backpropagation)
@ Universal approximation theorem: With sufficiently large number of parameters,

“arbitrarily" complex functions can be closely approximated
Bertsekas (M.LT.) Approximate Dynamic Programming 11/22

Deep Neural Networks

- oz, v)
|—t
- &
Smtf’ Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer ‘Weighting

@ More complex NNs are formed by concatenation of multiple layers
@ The outputs of each nonlinear layer become the inputs of the next linear layer
@ Considerable success has been achieved in major contexts

Possible reasons for the success

@ The multilayer network provides a hierarchy of features (each set of features being
a function of the preceding set of features) that can be exploited to specialize the
role of some of the layers

@ We may use matrices A with a special structure that encodes special linear
operations such as convolution

@ When such structures are used, the training problem may become easier,
because the number of parameters in the linear layers is drastically decreased

Bertsekas (M.L.T.) Approximate Dynamic Programming 12/22

@ The Q-factor of a state-control pair (xk, ux) at time k is defined by
Qi (Xk, Uk) = E{gk(xk1 Uk, Wi) + Jk1 (Xk+1)}

where Ji1 is the optimal cost-to-go function for stage k + 1

@ Note that
Jk(Xk) = min Qk(Xk,Uk)
u€ Uy (x¢)

so the DP algorithm is written in terms of Qi
min O;M(X;M,u)}

Q« (XK, Ux) = E{gk(Xm Uk, Wk) +
UE Ukt 1 (Xk41)
@ We approximate this algorithm using a Q-factor approximation architecture
Qk (X« Uk, rk)

@k(xk, Uk, k) = E{Qk(Xm Uy, W) + min ék+1 (Xk+1, U, I’k+1)}
UE Upey1 (X41)

14/22

Bertsekas (M.LT.) Approximate Dynamic Programming

Approximation in Q-Factor Space: Using a Simulator Instead of a Model

@ Consider sequential DP approximation of Q-factor parametric approximations

Qk(Xkauka):E{Qk(XmUka)Jr min @k+1(Xk+17U,fk+1)}
UE U1 (Xie11)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qx(x«, Uk,) by training with many pairs ((xg, uf), 55), where g5 is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}]

@ Note: No need for a model to obtain ;. Sufficient to have a simulator that
generates state-control-cost-next state random samples

((ka Ux), (Gk (X, Uk, Wi), Xk41))

@ Having computed rk, the one-step lookahead control is obtained on-line as
T (xx) =arg min Q(x ,u, n
e (Xic) g wethn) k (Xk)

without the need of a model or expected value calculations

@ Thus the on-line calculation of the control is simplified

Bertsekas (M.L.T.) Approximate Dynamic Programming 15/22
pp! i g

Rollout: Simulation-Based Approximation in Value Space

L Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
< > >
k+4—1
min E gk(xka Uk, wk) + Z gk (I'm Hm (me,), wm) + Jk+€(xk+€)
Uy gt 1o M £—1 i/
Monte Carlo tree search Rollout: Simulation with fixed policy

Parametric approximation at the end

Bertsekas (M.L.T.) Approximate Dynamic Programming 17/22

Rollout: A General Method to Compute Cost-to-Go Approximations

Computes the lookahead functions Ji as the cost-to-go functions of some suboptimal
policy @ = {uo, ..., un—1}, referred to as the base policy or base heuristic
Rollout implementation
@ We may use rollout in one-step or multistep lookahead
@ We may calculate the base policy costs Ji1 (fi(X«, Uk, wi)) needed in
min : E{Qk(Xk, Uk, Wi) + Tt (Fe(Xe, Uk, i) }

Uk € Uy (X

(or its multistep version) analytically or by simulation

@ A variant: The base policy costs ikt may be approximated over a limited rolling
horizon, with a terminal cost approximation added at the end

@ Simulation may be used for calculation of needed values of Ji1 on-line

@ The amount of simulation needed may be overwhelming (parallel computation
helps). Simulation greatly simplifies if the problem is deterministic

Major fact about rollout

The rollout policy performs at least as well as the base policy. The improvement is
often DRAMATIC. Relation to policy iteration method of infinite horizon DP

Bertsekas (M.LT.) Approximate Dynamic Programming 18/22

Example of Rollout: Backgammon

Possible Moves

Av. Score by Av. Score by Av. Score by Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

The original player (Tesauro, 1996):
@ Involved one-step lookahead

@ Base heuristic was a (relatively crude) backgammon player developed by different
approximate DP methods

@ The program played competitively against the best humans

@ Was very time consuming (lots of parallelization of MC simulation)

Bertsekas (M.L.T.) Approximate Dynamic Programming 19/22

Stochastic Rollout with Adaptive Simulation

Simulation of the @Q-Factor
of the Base Policy

Current state

Adaptive simulation aims to reduce the simulation effort
@ Based on simulation results, we may discard some of the controls vy that are
“clearly" inferior
@ For this we may use statistical tests (“confidence intervals")
@ The idea can be extended to multistep lookahead

@ In some variants the rollout may include a limited horizon and cost function
approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 20/22

Stochastic Rollout with Monte Carlo Tree Search

Selective Depth
MCTS

1
uy,

“jrrent/state

; i
States States .
[68 Tht2 ROLLOUT
LOOKAHEAD MINIMIZATION

MCTS aims to combine rollout simulation and lookahead minimization

@ Motivation: Some controls ux that appear to be promising, may be worth exploring
better through multistep lookahead
@ MCTS combines selective depth lookahead and adaptive simulation

21/22

Bertsekas (M.L.T.) Approximate Dynamic Programming

Example of Rollout + Terminal Cost Approximation: AlphaGo

':'i' Google DeepMind
Challenge Match

Recent success: A Go program that plays at the level of the best humans

@ Combines many of the ideas that we have discussed with awesome computing
power and many heuristics

@ Multistep lookahead with Monte Carlo tree search

@ Rollout with rolling horizon and cost function approximation (computed off-line with

deep neural network)
@ The base policy of the rollout is also computed off-line

@ Massive on-line computation: 1920 CPUs and 280 GPUs, $3000 electric bill per

game!

Bertsekas (M.LT.) Approximate Dynamic Programming

22/22

	Review - Approximation in Value Space
	Neural Networks and Approximation in Value Space
	Model-free DP in Terms of Q-Factors
	Rollout

