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Approximation in Policy Space

Using a Parametric Approximation Architecture for Policies
Parametrize policies with a parameter vector r = (r0, . . . , rN�1):

⇡(r) =
�

µ̃0(x0, r0), . . . , µ̃N�1(xN�1, rN�1)
 

Compute/train off-line the parameters using some optimization
Great advantage: After off-line training, the on-line calculation of the controls is
very fast

An important use: Implement policies obtained by approximation in value
space

Train off-line a cost function approximation and compute many state-control pairs
(xs
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), s = 1, . . . , q
Train a policy approximation architecture on these pairs. For example by solving
for each k the least squares problem
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This idea applies more generally. Generate many “good" state-control pairs
(xs

k

, us

k

), using a software or human “expert" and train in policy space
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Cost Optimization Approach for Training a Policy Architecture

Minimize the cost J⇡(r)(x0) over r

Aim directly for an optimal policy within the parametric class
Gradient-based optimization may be a possibility
Random search in the space of r is another possibility (e.g., cross entropy method)

An important special case: Policy parametrization through cost function
parametrization

For a given value space parametrization r = (r0, . . . , rN�1), we define
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Has achieved success in a number of test problems (e.g., tetris)
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An Example: Tetris (Often Used as Testbed in Competitions)

TERMINATION
......

Number of states > 2200 (for 10 ⇥ 20 board)
J

⇤(x): optimal score starting from board position x

Common choice: 22 features, readily recognized by tetris players as capturing
important aspects of the board position (heights of columns, etc)
Long history of successes and failures
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Approximation in Value Space by Tail Problem Approximation
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N i

s i1 im�1 im . . . (0, 0) (N, �N) (N, 0) ī (N, N) �N 0 g(i) Ī N � 2 N
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Tail Problem Approximation Ideas

Obtain J̃

k+` as the cost-to-go of a simplified problem
which is solved exactly or approximately

Enforced decomposition of interconnected subsystems
Applies to problems involving a collection I of interconnected subsystems, with each
subsystem i 2 I applying control u

i

k

at time k

One-at-a time optimization: Obtain J̃

k+` by optimizing one subsystem at a time,
with controls of other subsystems fixed at nominal values
Constraint relaxation: Artificially decouple subsystems by modifying the constraint
set
Lagrangean relaxation: Artificially decouple subsystems by using Lagrange
multipliers (we will not cover)

Probabilistic approximation
Simplify the probabilistic structure (e.g., replace random variables with deterministic)

Aggregation
Reduce the size of the problem; e.g., by “combining" states into aggregate states
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Enforced Decomposition: One Subsystem at a Time
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To compute cost-to-go approximation J̃
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(x
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N�1), with all future controls of other

subsystems i 6= 1 held at nominal values (ũi
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, . . . , ũ
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I Fix the nominal values of subsystem 1 to the optimal sequence thus obtained
I Repeat for all subsystems i = 2, . . . , n (with intermediate adjustment of the nominal

control values)
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Example: Optimize the Routes of n Vehicles Through a Road Network

Aim: Execute a number of tasks with given values
The value of a task is collected only once; a finite horizon is assumed
This is a very complex combinatorial problem
The single vehicle problem is typically much simpler (e.g., can be solved exactly or
with a high-quality heuristic)
Solve (suboptimally) the tail subproblem one-vehicle-at-a-time. The nominal
decisions of the other vehicles can be determined using some heuristic
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Enforced Decomposition: Constraint Decoupling by Relaxation
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U represents the (shared) production capacity of the work center
In a more complex version (involving equipment failures), U depends on a random
parameter ↵

k

that changes according to a Markov chain
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Probabilistic Approximation

Modify the probability distributions P(w
k

| x

k

,w
k

) to simplify the calculation of J̃

k+`

and/or the lookahead minimization

Certainty equivalent control (inspired by linear-quadratic control problems)
Replace uncertain quantities with deterministic nominal values
The lookahead and tail problems are deterministic so they can be solved by DP or
by special deterministic methods
Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning)
A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values
A generalization: Approximate E{·} by limited simulation
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Tail Problem Approximation by Aggregation

376 Approximate Dynamic Programming Chap. 6

soft aggregation, we allow the aggregate states/subsets to overlap, with the
disaggregation probabilities dxi quantifying the “degree of membership” of
i in the aggregate state/subset x. Other important aggregation possibilities
include various discretization schemes (see Examples 6.3.12-6.3.13 of Vol.
I).

Given the disaggregation and aggregation probabilities, dxi and �jy ,
and the original transition probabilities pij(u), we define an aggregate sys-
tem where state transitions occur as follows:

(i) From aggregate state x, generate original system state i according to
dxi.

(ii) Generate a transition from i to j according to pij(u), with cost
g(i, u, j).

(iii) From state j, generate aggregate state y according to �jy .

Then, the transition probability from aggregate state x to aggregate state y
under control u, and the corresponding expected transition cost, are given
by

p̂xy(u) =
n�

i=1

dxi

n�

j=1

pij(u)�jy , ĝ(x, u) =
n�

i=1

dxi

n�

j=1

pij(u)g(i, u, j).

These transition probabilities and costs define the aggregate problem. Af-
ter solving for the Q-factors Q̂(x, u), x � S, u � U , of the aggregate
problem using one of our algorithms, the Q-factors of the original problem
are approximated by

Q̃(j, u) =
�

y�S

�jyQ̂(y, u), j = 1, . . . , n, u � U, (6.91)

We recognize this as an approximate representation Q̃ of the Q-factors of
the original problem in terms of basis functions. There is a basis function
for each aggregate state y � S (the vector {�jy | j = 1, . . . , n}), and the
corresponding coe�cients that weigh the basis functions are the Q-factors
of the aggregate problem Q̂(y, u), y � S, u � U .

Let us now apply Q-learning to the aggregate problem. We generate
an infinitely long sequence of pairs {(xk, uk)} � S � U according to some
probabilistic mechanism. For each (xk, uk), we generate an original system
state ik according to the disaggregation probabilities dxki, and then a suc-
cessor state jk according to probabilities pikj(uk). We finally generate an
aggregate system state yk using the aggregation probabilities �jky. Then
the Q-factor of (xk, uk) is updated using a stepsize �k > 0 while all other
Q-factors are left unchanged [cf. Eqs. (6.78)-(6.80)]:

Q̂k+1(x, u) = (1 � �k)Q̂k(x, u) + �k(FkQ̂k)(x, u), � (x, u), (6.92)
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AGGREGATE SYSTEM

� Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

�k yk+1 = Akyk + �k yk+1 Ck wk

Stochastic Problems

1

Construct a “smaller" aggregate tail problem by introducing aggregate states
Use the exact costs-to-go of the aggregate tail problem as approximate
costs-to-go for the original

Aggregation examples:
State discretization-interpolation schemes
Grouping of states into subsets, which serve as aggregate states
Feature-based discretization; aggregate problem operates in the space of features

Bertsekas (M.I.T.) Approximate Dynamic Programming 16 / 18



Concluding Remarks

What we covered
Approximate DP for finite horizon problems with perfect state information
Approximation in value space
Approximation in policy space; possibly in combination with approximation in value
space

What we did not cover
Approximate DP for infinite horizon problems

I Lookahead and rollout ideas apply with essentially no change
I Special training methods for approximation in value space
I Temporal difference methods [e.g., TD(�) and others]; TD(�) is closely related with the

proximal algorithm, but implemented by simulation (see internet videolecture)

Imperfect state information problems can be converted to (much more complex)
perfect state information problems. Approximate DP is essential for any kind of
solution
A variety of important lookahead/approximation in value space schemes: Model
predictive control, open-loop feedback control, and others
Alternative cost criteria: minimax/games, multiplicative/exponential cost, etc
Approximation error bound analysis
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Thank you!

Bertsekas (M.I.T.) Approximate Dynamic Programming 18 / 18


	Approximation in Policy Space
	Tail Problem Approximation

