A Series of Lectures on

Approximate Dynamic Programming
Lecture 4

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

University of Cyprus
September 2017

Bertsekas (M.L.T.) Approximate Dynamic Programming 1/18

Fourth Lecture

APPROXIMATE DYNAMIC PROGRAMMING IlI

Approximate Dynamic Programming

0 Approximation in Policy Space

e Tail Problem Approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 3/18

Approximation in Policy Space

Using a Parametric Approximation Architecture for Policies

@ Parametrize policies with a parameter vector r = (ro, ..., 'v—1):
w(r) = {fio(Xo, o), - - -, fin—1(Xn—1, Tn—1) }

@ Compute/train off-line the parameters using some optimization

@ Great advantage: After off-line training, the on-line calculation of the controls is
very fast

An important use: Implement policies obtained by approximation in value
space

@ Train off-line a cost function approximation and compute many state-control pairs
S S _ 1
Xz, up),s=1,...,q
@ Train a policy approximation architecture on these pairs. For example by solving
for each k the least squares problem
q
. = 2 . q
min >~ ||uk — fik(x¢,)|~ + (Regularization term)
Tk
s=1
@ This idea applies more generally. Generate many “good" state-control pairs
(x2, ug), using a software or human “expert" and train in policy space
Bertsekas (M.LT.) Approximate Dynamic Programming 5/18

Cost Optimization Approach for Training a Policy Architecture

@ Minimize the cost J.(,(Xo) over r

@ Aim directly for an optimal policy within the parametric class

@ Gradient-based optimization may be a possibility

@ Random search in the space of r is another possibility (e.g., cross entropy method))

An important special case: Policy parametrization through cost function
parametrization

@ For a given value space parametrization r = (r, ..., rn—1), we define

fix(Xi, rc) = arg min E{gk(xk, Uk, W) + Jii1 (e (XK, Uk, Wi), rk)}
Uk € Uk (x4)

@ Has achieved success in a number of test problems (e.g., tetris)

Bertsekas (M.LT.) Approximate Dynamic Programming 6/18

An Example: Tetris (Often Used as Testbed in Competitions)

State
/ %4
VA N
Possible Vs : S

actions 7~ K
4 Chosen 5
action N

Possible [Next
next states E&% state %

@ Number of states > 22%° (for 10 x 20 board)
@ J*(x): optimal score starting from board position x

@ Common choice: 22 features, readily recognized by tetris players as capturing
important aspects of the board position (heights of columns, etc)

@ Long history of successes and failures

Bertsekas (M.L.T.) Approximate Dynamic Programming

7/18

Approximation in Value Space by Tail Problem Approximation

Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
< P -
k4-£—1
min E 9k (:I:ka Uk, U)k) + Z gk (m’nh /lf’m(m'm)7 U)m) + Jk+l (xk—&-é)
Uk skl 15 Bk 40—1)

Tail problem approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 9/18

Tail Problem Approximation Ideas

Obtain Jk+, as the cost-to-go of a simplified problem
which is solved exactly or approximately

Enforced decomposition of interconnected subsystems
Applies to problems involving a collection / of interconnected subsystems, with each
subsystem i € [applying control uj at time k
@ One-at-a time optimization: Obtain Jkre by optimizing one subsystem at a time,
with controls of other subsystems fixed at nominal values
@ Constraint relaxation: Artificially decouple subsystems by modifying the constraint
set

@ Lagrangean relaxation: Atrtificially decouple subsystems by using Lagrange
multipliers (we will not cover)

Probabilistic approximation
Simplify the probabilistic structure (e.g., replace random variables with deterministic)

V.

Aggregation

Reduce the size of the problem; e.g., by “combining" states into aggregate states
Bertsekas (M.LT.) Approximate Dynamic Programming 10/18

Enforced Decomposition: One Subsystem at a Time

Coupled Subsystems

@ Let ux = (u}, ..., uf), with uj corresponding to the ith subsystem
@ To compute cost-to-go approximation Jx(xx):
Start with subsystem 1, optimize over (u,‘(, e u}\,i1), with all future controls of other
subsystems i # 1 held at nominal values (&, ..., U,)
Fix the nominal values of subsystem 1 to the optimal sequence thus obtained
Repeat for all subsystems i = 2,. .., n (with intermediate adjustment of the nominal
control values)
v

Bertsekas (M.L.T.) Approximate Dynamic Programming 11/18

Example: Optimize the Routes of n Vehicles Through a Road Network

@ Aim: Execute a number of tasks with given values

@ The value of a task is collected only once; a finite horizon is assumed

@ This is a very complex combinatorial problem

@ The single vehicle problem is typically much simpler (e.g., can be solved exactly or
with a high-quality heuristic)

@ Solve (suboptimally) the tail subproblem one-vehicle-at-a-time. The nominal
decisions of the other vehicles can be determined using some heuristic

Bertsekas (M.L.T.) Approximate Dynamic Programming 12/18

Enforced Decomposition: Constraint Decoupling by Relaxation

Constraint Relaxation

U
UZ
U
1
U1 U
o Letxy = (X,....,x0), uk = (U}, ..., uf), wk = (W},..., wJ), with (i, uk, wj)

corresponding to the ith subsystem
@ Assume that the only coupling between subsystems is the control constraint

(U, ...,uf) e U, eg,u.elU, u+ - +uf <b
@ Approximate U with a decomposed constraint U' x ... x U"

@ The problem decomposes into n decoupled subproblems. Let Ji, be the optimal
cost to go functions for the ith decoupled subproblem (obtained by DP off-line)

@ Use one-step lookahead with cost-to-go approximation

Jhit (K1) = Tkt (Xk1) + -+ 4+ T (X841)

Bertsekas (M.L.T.) Approximate Dynamic Programming 13/18

Example: Production Planning

Constraint Relaxation

2
Ul

U2

1
Uy,

Ul

A work center producing n product types

@ x.,ul,wi: the amounts stored, produced, and demanded of product i at time k
@ State is the stock vector xx = (X}, ..., x), where x.; = xi + uj, — wj
@ U represents the (shared) production capacity of the work center

@ In a more complex version (involving equipment failures), U depends on a random
parameter ax that changes according to a Markov chain

Bertsekas (M.L.T.) Approximate Dynamic Programming 14/18

Probabilistic Approximation

Modify the probability distributions P(wy | xk, wi) to simplify the calculation of Jk,
and/or the lookahead minimization

Certainty equivalent control (inspired by linear-quadratic control problems)
@ Replace uncertain quantities with deterministic nominal values

@ The lookahead and tail problems are deterministic so they can be solved by DP or
by special deterministic methods

@ Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning)

@ A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values

@ A generalization: Approximate E{-} by limited simulation

Bertsekas (M.LT.) Approximate Dynamic Programming 15/18

Tail Problem Approximation by Aggregation

Original
System States

Disaggregation
Probabilities

Aggregation
Probabilities
Dy

@ Construct a “smaller" aggregate tail problem by introducing aggregate states

@ Use the exact costs-to-go of the aggregate tail problem as approximate
costs-to-go for the original

Aggregation examples:
@ State discretization-interpolation schemes
@ Grouping of states into subsets, which serve as aggregate states
@ Feature-based discretization; aggregate problem operates in the space of features)

Bertsekas (M.L.T.) Approximate Dynamic Programming 16/18

Concluding Remarks

What we covered
@ Approximate DP for finite horizon problems with perfect state information
@ Approximation in value space

@ Approximation in policy space; possibly in combination with approximation in value
space

v

What we did not cover

@ Approximate DP for infinite horizon problems
Lookahead and rollout ideas apply with essentially no change
Special training methods for approximation in value space
Temporal difference methods [e.g., TD(\) and others]; TD()\) is closely related with the
proximal algorithm, but implemented by simulation (see internet videolecture)
@ Imperfect state information problems can be converted to (much more complex)
perfect state information problems. Approximate DP is essential for any kind of
solution

@ A variety of important lookahead/approximation in value space schemes: Model
predictive control, open-loop feedback control, and others

@ Alternative cost criteria: minimax/games, multiplicative/exponential cost, etc

@ Approximation error bound analysis
Bertsekas (M.L.T.) Approximate Dynamic Programming 17/18

Thank youl!

Bertsekas (M 18/18

mic Programmi

	Approximation in Policy Space
	Tail Problem Approximation

