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Abstract

The “traditional” way of designing constellations of communications satellites is to
optimize the design for a specific global capacity. This approach is based on a forecast
of the expected number of users and their activity level, both of which are highly
uncertain. It can lead to economic failure if the actual demand is smaller than the one
predicted. This thesis presents an alternative approach to the design process to reduce
the economic risks. It proposes to deploy constellations in a staged manner, starting
with a smaller, more affordable capacity that can be increased if necessary. When
the capacity is increased, additional satellites have to be launched and the existing
constellation needs to be reconfigured on orbit. Technically, it implies that particular
design elements are initially embedded in the design to allow the reconfiguration.
Such elements are called “real options” and give decision makers the right but not
the obligation to increase the capacity of the system after its initial deployment.

This approach reframes the design objectives. Instead of determining an optimal
design for a specific capacity, paths of architectures are sought in the trade space.
A general framework is presented to identify the paths that offer the most flexibility
given different demand scenarios. It is then applied to LEO constellations of commu-
nications satellites. Improvements in the life cycle costs on the order of 30% can be
obtained for different discount rates and volatilities. This value of flexibility has to
be compared to the actual price of the real options. A general method is proposed to
study this problem and two technical solutions are proposed.
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Chapter 1

Introduction

1.1 Motivation

In November 1998, the first “big” Low Earth Orbit constellation of communications

satellites, Iridium, initiated service. This constellation, with its 66 satellites placed

in polar orbits, connected via inter satellite links, was considered a technical success.

In 1991, the forecasts for the cellular telephone market were optimistic and up to

110 million subscribers1 were expected in the US by the year 2000 (see US forecast

in Figure 1-1). Iridium’s original target market was the global business traveler,

out of range of terrestrial cellular networks. Additionally, before the introduction of

GSM in Europe, there were no common standards. The Iridium company believed it

could attract about 3 million potential customers. However, by the time Iridium was

deployed, the significant development of terrestrial cellular networks had transformed

the marketplace. Thirteen months after it was launched, the Iridium constellation had

attracted only 50,000 customers and had to file for Chapter 11 protection (Iridium’s

history is summarized in Table 1.1). A year later, the Globalstar constellation was

deployed and had to declare bankruptcy for the same reasons although it did have

different technical characteristics.

Those two cases reveal the high economic risks encountered by developers of com-

1The forecast in 1991 were actually wrong because they underestimated the future market. The
number of subscribers in the US forecast for 2000 represented only 35% of the actual market at that
time.
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1987: Start of concept design.
December 1990: FCC filing for construction permit and frequency allocation.
1991: Founding of the Iridium LLC company.
January 1995: FCC license received (for construction, launch, and

operation of Iridium). The usage was limited to the
band 1621.35 MHz to 1626.5 MHz.

May 1997: First satellite launch from Vandenberg, California
(5 satellites on a Delta 2 rocket).

May 1998: Full satellite constellation in orbit.
November 1998: Start of operation (telephony, paging, and messaging).
End of 1998: Problems with 12 satellites2 in the constellation.
August 1999: Iridium files for Chapter 11 bankruptcy protection,

having debt in excess of US$ 4 billion.
December 1999: Iridium has 50 000 subscribers.

Table 1.1: History of the Iridium system (from [LWJ00]).

mercial space systems. Indeed, many years (11 years in the case of Iridium) and many

changes in the marketplace may separate conceptual design from deployment of such

systems. The traditional way of designing large capacity systems, which optimizes the

design for a specific global capacity, fails to deal with demand uncertainty. Indeed,

if the selected capacity is too large compared to the actual demand, the important

deployment costs (non-recurring costs) cannot be offset by revenues, thus leading to

fast bankruptcy due to negative cash flows. On the other hand, if capacity is much

lower than the actual demand, a market opportunity may be missed. Consequently,

the traditional approach presents too much risk and another way of designing must

be sought.

This thesis proposes an alternative approach to dealing with uncertainty in future

demand. A “staged deployment” strategy is considered for which the capacity of the

system is increased progressively. Technically, this can be achieved by introducing

“real options” into the design. The “real options” are design elements that give the

ability but not the obligation to decision makers to adjust the capacity of a system

after its initial deployment. This approach is different from adding capacity as an

after thought, i.e. without a priori planning. With such flexibility, it is possible to

2Iridium officially reported seven failures. The failures were related to stabilization problems or
damaging of the satellites during the launch operations.
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Figure 1-1: Projection made in 1991 for US Terrestrial Cellular Subscribers between
1991 and 2000 (from [CGH+92]).

reduce the economic risks by initially deploying a smaller, more affordable capacity

that can be increased when the market conditions are good. This approach marks

a distinct change in the design process, as it involves incorporating non-technical,

market considerations in the specifications of the system. Indeed, given a demand

probability distribution, an initial architecture for the system as well as a deployment

strategy have to be found by the designers. Moreover, “real options” to achieve the

changes in capacity have to be found.

To assess those problems, this thesis proposes a general framework. Its goal is to

help designers to find potential real options in their designs and value the economic

opportunity of the flexibility they provide. We applied the framework to study LEO

constellations of communications satellites. To increase the capacity of constellations

after their initial deployment, satellites need to be added. The on-orbit satellites thus

need to be “reconfigured” to form a new constellation with the additional satellites3.

The “real options” in this case would be a system to achieve the orbital reconfiguration

of on-orbit satellites such as extra fuel or a space tug. Staged deployment reduces the

3This thesis focuses on inter-satellite reconfiguration rather than intra-satellite reconfiguration.
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economic risk when the uncertainty in demand is significant and reconfiguration seems

to have an important financial potential. Consequently, we also give an introduction

to the problem of orbital reconfiguration and give recommendations for future research

on the topic.

1.2 Literature Review

1.2.1 LEO Constellations of Communications Satellites

LEO constellations have been extensively studied since the 1980’s. One of the main

problems that has been solved was the design of constellations that could achieve

global coverage while minimizing the necessary number of satellites. Walker [Wal77]

proposed to organize the satellites using inclined circular orbital planes. Adams and

Rider [AR87] suggested the use of polar orbits to achieve global coverage. Adams

and Lang [AL98] compared those two types of constellations and provided a table of

the optimal constellations that achieved global coverage. Other types of constella-

tions have been proposed by Castiel, Brosius and Draim [CBD94] for zonal coverage

involving elliptical orbits. They present their approach to optimize the design of the

ELLIPSO mission. Elliptic orbits are more difficult to study than circular orbits and

Elly, Crossley and Williams [ECW99] proposed to use genetic algorithms to optimize

them.

Constellations of satellites are the only way to achieve global coverage. That is

why they have been used for communications. The principles of space systems for

communications and a presentation of the existing systems are presented by Lutz,

Werner and Jahn [LWJ00]. In particular, the characteristics and milestones of the

Iridium and Globalstar constellations are presented. Several graduate theses from

MIT investigated satellite constellations for mobile phone and data communication.

To compare the performances of constellations with different architectures, Gum-

bert [Gum96] and Violet [Vio95] developed a cost per billable minute metric. Six

mobile satellite phone systems were analyzed with this metric [GVH97]. The set
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of systems studied contained LEO, MEO, GEO and elliptical orbits systems. A

methodology named Generalized Information Network Analysis (GINA) to assess the

performance of distributed satellite systems was developed by Graeme Shaw [Sha99].

He applied the methodology to broadband satellite systems. Jilla [Jil02] refined the

GINA methodology to account for multidisciplinary design optimization (MDO) and

proposed a case study of a broadband communications mission. Kashitani [Kas02]

proposed an analysis methodology for satellite broadband network architectures based

on the works of Shaw and Jilla. The study compared LEO, MEO and elliptic systems

and showed that the best architecture depends on customer demand levels. An ar-

chitectural trade methodology has been developed by de Weck and Chang [dWC02]

for the particular case of LEO personal communication systems. A simulator of con-

stellations has been used to generate 1800 different architectures. A benchmarking of

the simulation was conducted with the Iridium and Globalstar constellations. This

simulator has been used in our study and is presented in Chapter 3.

1.2.2 Valuation of Flexibility for Space Systems

The vast majority of space systems are designed without any considerations for flexi-

bility. One of the main reasons is that operations in space are difficult and expensive.

Several theses at MIT focused on the economic opportunity that flexibility could

present for space systems. Saleh [Sal02] and Lamassoure [Lam01] studied on-orbit

servicing for satellites. On-orbit servicing provides the flexibility to increase the life-

time of the satellites or upgrade their capabilities. Lamassoure proposed to consider

the decision of using on-orbit servicing as a real option.

1.2.3 Staged Deployment for Space Systems

Staging the deployment of a space system to reduce the economic and technological

risks has been envisioned for both military and scientific missions. Miller, Sedwick

and Hartman [MSH01] studied the possibility of deploying distributed satellite sparse

apertures in a staged manner. The first stage serves as a technology demonstrator.
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Additional satellites are added to increase the capability of the system when desired.

The Pentagon also plans to deploy its next generations of radars in a staged manner

(see [Sin03]). A first constellation of space based radars will be launched in 2012,

but will not provide full coverage. This will allow the tracking of moving targets

in uncrowded areas. To enhance the capability of this constellation, a second set of

satellites could be launched in 2015.

The Orbcomm constellation is an example of a constellation of communications

satellites that was deployed in a staged manner. A short history of this system is

presented in [LWJ00]. The Orbcomm constellation started its service even though all

of its satellites were not deployed. Satellites were added through time, in accordance

with a schedule defined in advance. The advantage of this approach is that the system

started to generate revenue very early. However, decision makers did not take into

account the evolution of the market and did not adapt their deployment strategy.

Orbcomm finally had to file for Chapter 11 protection after a few years of service.

Kashitani [Kas02] compared the performances of systems in LEO and MEO orbit

and their behavior with respect to different levels of demand. His conclusion was

that the elliptic systems were more likely to adapt to market fluctuations because

they could adjust their capacity by deploying sub-constellations. Having the ability

to add “layers” to a constellation with sub-constellations could allow efficient staged

deployment strategies.

1.2.4 Orbital Reconfiguration

The term “reconfiguration” for constellations of satellites has been principally used to

designate the set of necessary maneuvers to recover service after the failure of a satel-

lite. Ahn and Spencer [AS02] studied the optimal reconfiguration for constellation of

satellites after the failure of one of the satellites. Reconfiguration as a form of flexibil-

ity has been presented by Saleh, Hastings and Newman [SHN01] with the Techsat21

example. This Air Force Research Laboratory program consists of a constellation

of satellites able to reconfigure the geometry of the different clusters. By modifying

this geometry, the system changes its capability from a radar mode to a geo-location
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mode. An application of reconfiguration for military purposes can use the work of

Henry and Sedwick [HS01]. They propose to put the satellites into resonant orbits.

The particularity of those orbits is that over an integer number of days, the satellites

fly over the same regions of Earth. The orbital planes can drift using small variations

of the altitudes of the satellites and exploiting perturbations caused by imperfections

in Earth’s geometry and mass distribution. In particular, the constellation could be

reconfigured by drifting all the orbital planes to focus the capacity on a particular

area. This flexibility could be very interesting with constellations of radars when a

conflict arises on a particular region of the globe.

1.2.5 Valuation of flexibility in Other Domains

The staged deployment strategy has been considered in different domains. Ramirez

[Ram02] studied the value of staged deployment for Bogota’s water-supply system.

Three valuation frameworks were compared: net present value (NPV), decision analy-

sis (DA) and real options analysis (ROA). Kalligeros [Kal03] used real options analysis

to study the opportunity of reorganizing the structure of a facility. The real options

considered give to managers the flexibility to change the use made of the facility. In

particular, in this model, decision makers can choose not to use a particular space.

This framework was applied to the design of the Exploration Headquarters for British

Petroleum in Aberdeen, Scotland. Takeuchi et Al. [TSN+00] proposed to build the

International Fusion Materials Irradiation Facility (IFMIF) in a staged manner. The

full performance of the facility is achieved gradually in three phases. They showed

that this approach reduces the overall costs from $M797.2 to $M487.8.

1.3 Organization of the Chapters

The thesis consists of six chapters. Chapter 2 focuses on the value of flexibility in a

design. The traditional approach and the Net Present Value valuation is presented

first. Then, the economic mechanisms that give value to flexibility when there is un-

certainty in future demand are presented. Two methods to value flexibility, Decision
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Analysis and Real Options analysis, are presented. Finally, we propose a framework

based on those methods to quantify the economic opportunity of staged deployment

for systems facing uncertainty in future demand.

Chapter 3 applies the framework to LEO constellations of communications satel-

lites. The method is applied using an existing computer program that simulates the

performance, cost and capacity of communications satellite constellations. The adap-

tations made to the simulator are presented first. Then, the different steps to apply

the framework are presented. The flexibility studied is the ability to reconfigure the

constellation after its initial deployment to increase the global capacity of the system.

The optimization process over the different deployment strategies is finally presented.

This chapter also provides recommendations to simplify the required computations.

Chapter 4 uses the framework to analyze the economic opportunity of staged de-

ployment for a case similar in its requirements to the Iridium constellation. The

sensitivity of the value of flexibility with respect to the discount rate and the uncer-

tainty in future demand is presented and discussed.

Chapter 5 proposes a framework to price the reconfiguration process. A general

modeling of the problem is proposed that can adapt to any possible technical solutions.

Two technical solutions to allow the transfer of the satellites are considered. The first

one proposes to add extra propellant to the satellites and the second one to use a

space tug to maneuver the satellites. The way the modeling needs to be adapted to

price those solutions is introduced. Finally, the problems that are not covered by the

framework and that need to be taken into account in future works are listed.

Finally, Chapter 6 summarizes the findings, identifies the limits of the analysis

and sets recommendations for future studies in this field.

The roadmap of this thesis can be found in Figure 1-2.
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Chapter 2

Value of Flexibility for Capacity

Planning under Uncertainty

2.1 Problem Definition

Large capacity systems often face high uncertainty in future demand. The main

reason is that the development process can spread over many years during which many

modifications in the targeted marketplace may occur. To identify the potential sources

of uncertainty on the market place, it can be interesting to use Michael Porter’s five

forces model for competitive strategy (see Figure 2-1). For space systems, the forces

can be described in the following way:

• Buyers/Customers: with time, the customers’ needs are likely to change and

the technology of the system may become obsolete by the time it is deployed.

Moreover, the demand curves of customers may evolve quickly with time and

the price people are willing to pay for a service decreases with time. If the prices

have not been estimated correctly and are too high, only a few customers will

be attracted.

• Suppliers: the suppliers for space systems are mainly spacecraft manufacturers

and launch vehicles operators. They directly affect the performance of the

system and the time required for development. Any delay in manufacturing or
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Figure 2-1: Adapted form of Michael Porter’s five forces model for competitive strat-
egy (from [Por98]).

any launch failure will extend the deployment time. Any flaw in the performance

after the deployment of the system may result in a loss of customers.

• Industry Competitors: if the system is in competition with other systems, it

can lose part of the market, thus reducing the expected number of customers.

• Potential Entrants: New systems with better performance or lower prices may

attract a percentage of the market, thus reducing the number of customers.

• Substitutes: New technologies that can provide the same services as space

systems can also attract an important portion of the market. A long devel-

opment time for a system increases the possibility of substitutes arising in the

marketplace. This is what happened to Low Earth Orbit Constellations with

the successful development of terrestrial cellular networks.

• Policy and Regulations: This force was added on the side of the diagram

because it affects all of the five main forces. Changes in policy or regulations

concerning the technology may affect the development phase and impact delays.

An example of policy impact is export control, which can prohibit the use of

certain foreign launch vehicles. Another example is the allocation of frequencies

for communications by the ITU and the FCC. However, it has to be noted that
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certain policies could reveal helpful, even though it is unlikely.

There exist two main strategies to deal with uncertainty: robustness and flexibility.

Robustness consists in designing a system that is not affected by variations in un-

certain parameters. The system designed is fixed and is not modified to adapt to

uncertainty. Flexibility gives the ability to a system to adapt to uncertain param-

eters. Saleh [Sal02] represented the relation between flexibility and robustness of a

design as a function of the system’s environment. It has been represented in Figure

2-2. The system is thus modified with the variations of the uncertain parameter.

The distinction between flexibility and robustness is not always clear for designers.

Robustness is often considered as a form of flexibility in the sense that it can endure

any outcomes. Actually, there is a subtle conceptual difference as Ku [Ku95] explains:

“Flexibility means the ability to change by (quickly) moving to a different

state, selecting a new alternative or switching to a different production

level. Robustness on the other hand is associated with not needing change.

While flexibility is a state of readiness, robustness is a state of being.

Flexibility and robustness are not opposite or the same, but two sides of

the same coin, two ways of responding to uncertainty.”
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Figure 2-2: Flexibility and Robustness as a function of the system’s objectives and
environment (from [Sal02]).
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The opposition between those two strategies is a classic problem illustrated in the

17th century by the French poet Jean de La Fontaine [dLF43] with The Oak and the

Reed :

The Oak spoke one day to the Reed

“You have good reason to complain;

A Wren for you is a load indeed;

The smallest wind bends you in twain.

You are forced to bend your head;

While my crown faces the plains

And not content to block the sun

Braves the efforts of the rains.

What for you is a North Wind is for me but a zephyr.

Were you to grow within my shade

Which covers the whole neighbourhood

You’d have no reason to be afraid

For I would keep you from the storm.

Instead you usually grow

In places humid, where the winds doth blow.

Nature to thee hath been unkind.”

“Your compassion”, replied the Reed

“Shows a noble character indeed;

But do not worry: the winds for me

Are much less dangerous than for thee;

I bend, not break. You have ’til now

Resisted their great force unbowed,

But beware.”

As he said these very words

A violent angry storm arose.

The tree held strong; the Reed he bent.

The wind redoubled and did not relent,
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Until finally it uprooted the poor Oak

Whose head had been in the heavens

And roots among the dead folk.

The lesson taught by this poem is that the robust approach may fail to take into

account certain outcomes and thus may not be able to adapt to them. On the other

hand, the flexible approach giving the ability to adapt to unforeseen conditions may

be able to deal with more situations. This shows how those approaches change the

relationship between uncertainty and risk. The robust approach will not try to use

uncertainty but will try to forecast all the outcomes as well as possible. If that were

possible, there would not be any real uncertainty. That is why this approach fails

to reduce risks. Flexibility will not try to understand uncertainty but admit that it

exists and find ways to adapt to unforeseen outcomes. This adaptation reduces the

risks of the project since many responses will be available for the system to particular

conditions. Flexibility will benefit from uncertainty, while robustness will suffer from

it. however, embedding flexibility does not generally come for free.

The way projects are valued will lead to one of those two approaches. It is thus

important to know the different valuation methods that exist. This chapter first

presents the traditional approach that tries to design for a fixed capacity system and

discusses the influence of uncertainty on the selected designs. Then, it introduces the

concept of flexibility for a system and analyzes the economic advantages it presents

in uncertain contexts. To value flexibility of a system, the chapter presents two im-

portant methods: decision tree analysis and real options analysis. Finally, it proposes

a framework to study the value of staged deployment for large capacity systems.

2.2 Traditional or Net Present Value Approach

This section presents the traditional approach that relies on discounted cash flow

methods to valuate projects. The most common methods are Net Present Value and

Internal Rate of Return. This section introduces only Net Present Value since it is

widely used for investment decisions and explains how it influences the design process.
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2.2.1 Net Present Value (NPV)

If one were to invest in a project, the first thing he or she would try to know is if

the project is worthwhile, that is to say if it will bring more money than it will cost.

An intuitive and simple method would be to look at the expected cash flow of the

project, sum all the cash receipts then subtract all the expenditures and see if the final

value obtained is negative or positive. Unfortunately, this approach fails to take into

account the time value of money, that is to say that a dollar now is worth more than

a dollar tomorrow. This difference is due to the productivity of money. If one has

dollar now, he can invest and get greater amount of money later. To mathematically

represent this time value of money, the discount rate r is introduced. The discount

rate should equal the rate of return of equivalent investment alternatives in the capital

market place. This means that if one chooses a discount rate of r percent per years,

having Q dollars now is equivalent to receiving Q(1+r) dollars in one year. Inversely,

the present value (today) of Q dollars in one year is Q
(1+r)

. Assuming that the discount

rate r stays constant in time, a generalization of this statement consists in writing

that the present value of a quantity Q whose payoff occurs in T years is:

PV (Q) =
Q

(1 + r)T
(2.1)

This example concerned cash receipts but Present Value calculations are also

acceptable in the case of expenditures, that is to say when Q ≤ 0. In this case, the

main argument is that a dollar spent tomorrow is worth more than a dollar spent

next year since this money can be invested differently for one more year.

Now that different amounts can be compared with respect to their position in

time, in order to decide if one should invest in a project, a discount rate r is selected

and the present value of the expenditures is subtracted from the present value of the

expected cash receipts. This is exactly what the Net Present Value method does and

it can be summarized in the following way:

36



NPV (Project) = PV (RECEIPTS)− PV (EXPENDITURES) (2.2)

Net Present Value offers a fast way to decide on whether or not to invest in

a project: only the sign of its NPV has to be considered. It also allows an easy

comparison of projects that are totally different, such as investing in the construction

of a bridge or buying bonds. NPV is a very broadly used method because of the ease

of the calculations and the simple selection rule it provides when comparing projects.

But one has to keep in mind that the calculations of the Net Present Value of a

project implies looking at a fixed cash flow. Consequently, the projects considered

are fixed. This approach is often used when comparing different fixed architectures

for a system and the next part shows how it affects the design process.

2.2.2 Traditional Selection of an Architecture

The traditional approach for designing a system performs an optimization to meet a

set of requirements in order to obtain a certain capacity. This approach encourages the

selection of architectures that are fixed over time because the requirements themselves

are fixed. To illustrate the response to uncertainty of the traditional way of designing

systems, this subsection introduces the concept of trade space of architectures. In

particular, it shows which architecture is selected by the traditional approach in the

trade space.

The objectives relevant to decision makers are the Net Present Value or the ex-

pected costs for an architecture but also its performance or capacity since it deter-

mines the size of the market that can be assessed. The trade space is a representation

of the life cycle costs and capacities of a set of architectures. Creating a trade space

involves having a simulation tool able to compute the objective vector, J, given a

design vector, x, that mathematically represents an architecture. A framework to

create such a simulation tool and implement a system architecture evaluation is given

by Jilla [Jil02].
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A trade space can contain an important number of architectures. However, for

the traditional approach, only the ones that minimize the life cycle costs for a given

capacity present an interest. Such architectures are not dominated by any of the

architectures. To explain this notion a simple illustration is used. Five architectures,

A1, A2, A3, A4 and A5 are considered. Figure 2-3 represents their cost versus their

performance. The selection of a fixed architecture is an optimization problem where
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Figure 2-3: Pareto Frontier and Utopia point for a Trade Space composed of 5 archi-
tectures.

one tries to have maximum performance for minimum cost. This is represented by

an arrow pointing in the bottom right direction toward an imaginary point called

Utopia Point. Some architectures look less interesting than others: A5 provides less

performance than A3 for a higher cost. With the traditional point of view, A3 will

always be preferred to A5. Architecture A5 is thus dominated. Similarly, A4 is

dominated by A2. A formal definition of dominance is given by Steuer [Ste86] when

there are k objectives. Let J1, J2 ∈ Rk be two criterion (objective) vectors. Then,

J1 dominates J2 weakly iff J1 ≥ J2 and ∃i such that J1
i > J2

i . Architectures A1,

A2 and A3 are nondominated: it is impossible to reduce the cost while increasing the

performance of those architectures simultaneously by selecting another architecture.

Those nondominated architectures are called Pareto optimal. The set of all Pareto

optimal architectures is called the Pareto set and is represented by connecting the
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architectures A1, A2 and A3. The Pareto set is also known as the cost function (see

[dN90]). It is really useful since it can reduces a vast trade space to a subset of

relevant architectures.

The result of the traditional design can be illustrated with the concept of trade

space. Given a capacity, designers seek an architecture that provides this capacity

for a minimal cost. This is equivalent to projecting vertically this capacity on the

Pareto front and look for a Pareto optimal architecture that is the closest from this

projection and that provides a capacity at least equal to the one desired. An example

for LEO constellations of communications satellites is represented in Figure 2-4. A

capacity equal to 105 thousands of users is desired. It is projected on the Pareto front.

The Pareto optimal architecture that satisfies the requirements and is the closest from

this capacity is selected. From this architecture, the cost of the project is obtained.

It is 9.5B$ in this particular example.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-1

10
0

9.5

10
2

Capacity [thousands of users]

S
y

st
em

 L
if

ec
y

cl
e 

C
o

st
 [

$
B

]

Figure 2-4: Traditional selection of an architecture for a desired capacity in the case
of LEO constellations.
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2.2.3 Response to Uncertainty in Demand

The traditional approach for selecting architectures implies designing for a fixed target

capacity. When demand is uncertain, this capacity can be difficult to estimate and the

risks appear to be significant. Indeed, if the capacity selected is too large and demand

does not grow, the revenues may not be sufficient to balance the initial investment.

This situation has been represented for the example of LEO constellations in Figure

2-5. In this example, future demand has a probability density function. If the actual

demand is equal to 104 thousands of users, a system with a smaller capacity should

have been designed. This results in a certain waste which is the difference between

the life cycle costs of the system selected and the one of the system that is optimal for

a capacity of 104 thousands of users. The waste in this case represents 6.3 $B. On the

other hand, if the capacity is too small, a market opportunity may be missed. In the

example developed, it corresponds to an actual demand of 4×105 thousands of users.

The result is that a lot of money is invested in forecasts that do not reduce the risks

mentioned. To respond to uncertainty, a fixed architecture must be able to cope with

any predicted outcomes. Consequently, the Net Present Value approach will lead to

a robust design that is to say a design that can deal with a “worst-case” scenario.

The main risk of this approach is that the “worst-case” scenario for demand may

not be forecast correctly. Moreover, this can lead to designing a large capacity with

high initial deployment costs that may suffer from low revenues during the first years

following the start of service. Consequently, by considering fixed architectures, the

NPV method does not completely reduce the risks associated with the uncertainty in

future demand.

2.3 Value of Flexibility

2.3.1 Economic Advantage of Flexibility

A design is said to be flexible if it can adapt to unforeseen conditions. It implies

the existence of decision points through time. At a decision point, the values of
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Figure 2-5: Response to uncertainty in demand of the traditional way of selecting a
design.

parameters that were uncertain are analyzed. Depending on these values, a decision

is made to adapt to them. Since uncertain parameters are observed through time,

uncertainty is reduced, thus reducing the risks of the project. Decisions can be of

various types, ranging from extending the life of a project to canceling its deployment.

This thesis focuses on the flexibility provided by staged deployment when demand

is the uncertain parameter. This strategy deploys a system in a staged manner,

starting with an affordable capacity that is increased when necessary. The decision

in this case is about whether or not to move to the next stage in the deployment

process. This decision is of course influenced by the market conditions but other

circumstances can be taken into account such as the availability on new technologies

that decision makers want to embed in the next stages or the presence of sufficient

revenues to invest in the next stages. This approach presents an economic advantage

compared to the traditional way of designing systems because it takes current market

conditions into account. Two mechanisms explain this advantage and are described

in this subsection. The staged deployment strategy tries to minimize the initial

deployment costs by deploying an affordable system but, the expenditures associated

41



with transition between two stages can be large. However, since those expenditures

are pushed forward in time, they are discounted and are smaller in terms of present

value. The first mechanism that staged deployment allows is that expenditures are

spread in time. The second mechanism that is important is that the stages are

deployed with respect to market conditions. If the market conditions are bad, there

is no need to deploy the capacity further and nothing is done. The expenditures are

kept as low as possible to avoid economic failure. On the other hand, if demand

is large enough and revenues realized are sufficient, the capacity can be increased.

The economic risks are considerably decreased with this approach since stages can be

deployed as soon as they can be afforded and when the market conditions are good.

The technological risks are reduced too since state of the art technologies could be

integrated to the system as the stages are deployed.

This approach reframes the design selection process. It no longer designs for

capacity but for flexibility. The questions that need to be solved are different and are

discussed in the next subsection.

2.3.2 Issues Related to the Valuation of Flexibility

Designing for flexibility poses new issues for designers. Flexibility has a price so if

it is not embedded wisely, the system may still be too expensive and result in an

economic failure. Moreover, the price of flexibility is difficult to know. Indeed, the

way flexibility is embedded in a system has to be distinguished from its effects. For

instance, being able to deal with a flat tire is a flexibility that can be embedded in

many different ways. Of course there could be a spare tire but another car or sufficient

tools on board to repair the tire are other possible solutions.

Since the technology to embed flexibility may not be known, it can be interesting

as a first step to look at the value flexibility can provide. This value can be defined

as the economic advantage that flexibility provides over a fixed design. This number

gives also the maximum price some people should be willing to pay for flexibility

and may reveal an economic opportunity and encourage a further study on ways to

embed flexibility. The valuation process is complicated because it takes into account
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uncertain parameters. A consequence is that the value of a form of flexibility is not

inherent to it but depends on the context. To illustrate this, consider the example of

a spare tire. If one lives in a suburban environment, a spare tire presents a certain

value, a second spare tire has less value and a third spare tire has no value because

the probability to have a flat tire is really low. On the other hand, in the desert,

having one spare tire has less value than having three or four because the probability

of having a flat tire is more significant. The value of flexibility depends on the

underlying uncertainty that it tries to deal with. therefore, it needs to be represented

accurately, which is a difficult task.

2.4 Valuing Flexibility Methods

This section focuses on two important methods to calculate the value of flexibility

for a project or an architecture: decision analysis and real options analysis. They

represent two different point of views concerning strategic planning. Decision analysis

tries to look at all the possible outcomes for a project and determine the strategy that

maximizes the average value of the project through time. On the other hand, real

options analysis considers flexibility as an “option” that can be kept or abandoned

and looks at its value with respect to time and uncertain parameters. It is important

to understand these two point of views since the framework uses elements from both

approaches.

2.4.1 Decision Analysis

Decision Tree

Decision Analysis (DA) looks at all possible scenarios for a project. A scenario desig-

nates a series of decisions that were made and events that occurred over the lifetime

of a project. The set of all possible scenarios can be conveniently represented by a

decision tree. The tree consists of nodes and branches. There exist two types of nodes

(see Figure 2-6):
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• Decision nodes: from this node leave as many branches as there are possible

decisions. Decision nodes represent decision points in time where managerial

flexibility is taken into account. A decision node cannot be connected to another

decision node since a succession of two decisions can be gathered in a single

decision.

• Chance nodes: branches leaving such nodes represent the different possible

evolutions of the uncertain parameter considered. Each branch thus represents

an outcome called event to which a probability of occurrence is attached. The

events that are related to a same chance node have to be mutually indepen-

dent. Moreover, these events have to represent all the possible outcomes. A

consequence of those two properties is that, if Pi is the probability associated

with event i and if there are k events, then
∑k

i=1 Pi = 1. Two chance nodes can

be connected to enhance the representation of uncertainty of a parameter or to

take several uncertain parameters into account.

Decision 1

Decision 2

Decision n
Decision

Node

Chance

Node

Event 1

P
1

Event k

P
k

Figure 2-6: Basic nodes of a decision tree.

Decision nodes represent the flexibility of the system whereas chance nodes rep-

resent uncertainty. The tree has a unique initial node on the left that represents the

initial situation for the project considered. A scenario is a path from the initial node

to a terminal node on the right. A terminal node represents the situation at the end

of life of a project for a particular scenario. The succession of nodes through which

a path goes corresponds to the repartition in time of decisions and events for the

associated scenario.
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To illustrate the previous definitions, an example can be considered. In the

roulette game, if bets are placed only on colors, there are three possible events:

red (R), black (B) and green which corresponds to 0. There are 37 numbers in the

roulette game, 18 are red, 18 are black, the last one being 0. If those numbers are

considered evenly likely, the probability associated with the events R and B are the

same: PR = PB = 18
37

. The probability of obtaining 0 is P0 = 1
37

. The decisions that

a gambler can make are red, black and 0. A gambler plays two roulette games and

bets $10 each time. If he wins, he gains 10 more dollars otherwise the bet is lost. A

decision tree can be built for this case to represent all the possible scenarios. The

basic structure of this decision tree is represented in Figure 2-7. The decision times

correspond to the beginning of a game, when the player has to place a bet. A period

corresponds to the bet and the outcome of the corresponding game. A scenario for

which the player wins in the first game and loses in the second is also represented

in the decision tree. The final gain for this scenario is equal to $0 and this value is

represented next to the corresponding terminal node.
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Figure 2-7: Structure of the decision tree corresponding to the roulette example.

The decision tree is a powerful way to represent all the possible scenarios for a

project and manages to take into account both uncertainty and flexibility in the same

representation. The next section presents how it determines the value of a project

and a complete strategy.
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Value of Flexibility and Strategy

For each scenario on the decision tree, the objective of interest can be computed.

For instance, in the roulette example, the final gain of the gambler could have been

computed. Decision analysis tries to find the decision that will optimize the expected

value of the objective considered at each decision node. Consequently, the tree needs

to be solved backwards with the following process:

1. Initialization: the objective that is maximized (resp. minimized) is computed

for each scenario and written on the associated terminal nodes. This defines

an initial column (see Figure 2-8). The algorithm calculates a new column of

values at each iteration moving from the right of the tree to the left.
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Figure 2-8: Initial column of values of the decision tree.

2. Computations for chance nodes: if the column of values considered is con-

nected on the right to chance nodes, the expected value of the branches of each

chance node are computed and written on top of the chance node (see Figure

2-9).

3. Computations for decision nodes: if the column of values considered are

connected on the right to decision nodes, the branch that leads to a chance

node with the maximum (resp. minimum) expected value for the objective is
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Figure 2-9: Computation of the value of a chance node from the column of values.
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Figure 2-10: Computation of the value of a decision node from the column of values.

kept and this expected value is written on top of the decision node. The other

branches are “cut” that is to say removed form the decision tree (see Figure

2-10).

4. Termination: the algorithm terminates when the initial node is reached. The

value associated with this node represents the expected objective for the project.

At the end of this algorithm, the decisions that maximize the objective are the only

ones remaining in the tree but all possible events are present. Consequently, once

solved, the tree defines a best strategy: decision makers just have to follow the

branches associated with the different events and make the decisions that are in

the tree. This value can be compared to the one that a fixed design would give, thus
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providing the value of the flexibility studied.

Analysis of the Method

Decision analysis is easy to understand because it provides a simple decision rule

and a clear representation of the relation between uncertainty and flexibility. But

the complexity of the tree depends directly on the number of decisions available and

the representation of uncertainty. The tree can easily get complex and impossible

to read. Moreover, the more detailed the tree is, the more scenarios will have to be

considered which can be expensive in terms of computation. If decision analysis is

applied to compare a set of different architectures, it can be seen how complex the

calculations will be because a tree will have to be built and solved for each of the

architectures. Even if the tree does not have to be built manually, the computational

time can become prohibitive.

The method minimizes the economic risk by always selecting the branches that

maximize the expected value of the system. However, it fails to represent the exact

value that may be expected from the project because it considers expected values.

Indeed, it provides a weighted average of the possible outcomes but the value obtained

may not represent any of the outcomes. This issue can be illustrated with a simple

example. The price of a ticket to participate in a lottery is $30. The probability of

winning $100 is pwin = 0.7 and the probability of losing the $30 paid for the ticket

is thus plose = 1 − 0.7 = 0.3. Decision analysis provides an expected gain equal to

0.7 ∗ $100 − 0.3 ∗ $30 = $61. However, the gain is never $61 with any of the two

outcomes. Actually, a participant could lose $30. Consequently, it is not because the

expected value is positive that the possible outcomes will provide a positive value.

This is why decision analysis needs to be used with a lot of caution.

Consequently, decision analysis is really useful to find a best strategy for a system

that is already known, but may be difficult to implement when comparing differ-

ent projects. It provides a clear presentation of the link between uncertainty and

managerial flexibility. However, the values provided by decision analysis need to

be interpreted with caution because they represent the expected value from several

48



possible outcomes.

2.4.2 Real Options Analysis

Option Theory

Real options analysis has been inspired by financial options theory. There exist two

main types of options: calls and puts. A call option gives the right to the holder to

buy a particular asset at a certain price by a certain date. Inversely, a put option

gives the right to sell a certain asset at a certain price by a given date. The price

is called the strike or exercise price and is fixed on the day the option is acquired.

The date, also called expiration date, exercise date or maturity, is fixed too but can

represent two distinct things whether the option is American or European. American

options can be exercised at any time until the expiration date. European options can

only be exercised on the expiration date. A complete description of options can be

found in [Hul89]. Options are a powerful way to deal with the uncertainty of the

price of an asset because they give the holder the right but not the obligation to take

an action in the future. This flexibility creates an asymmetry in the profit the holder

can expect from the underlying asset.

This asymmetry can be illustrated with an example. Consider an asset whose

current price is $ 100 and a European call option with an exercise price of $ 105 that

expires in one year. The price of this option is $10. If the terminal price of the asset

is over $ 105, the owner of the option exercises it since he can get this asset for $

105. If the terminal price is below $ 105, he does not exercise the option. The profit

realized as a function of the future price is represented in Figure 2-11. Even though

the profit is negative when the terminal price is below the exercise price plus the

price of the option ($115), this deficit is at most equal to the price of the option. The

value of the flexibility provided by the option is equal to zero if the terminal price is

smaller than the strike price. However, for future prices higher than the strike price,

the value of the option increases with the future price. Consequently, a call option is

an initial investment with an asymmetric value: its future value is higher or equal to
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Figure 2-11: Profit made with the option for different future values of the stock price.

zero. Significant profits could be obtained from it and the maximum loss possible is

equal to the price of the option.

This idea of having a right but not the obligation to take an action in the future

is a form of flexibility. The fact that valuation methods existed in the financial

domain for this flexibility encouraged seeking parallels with the engineering domain.

Stewart Myers [Mye77] was the first to propose the term “real options” when using

the financial concepts for the analysis of real assets. The next section presents the

relationship between financial options and real options.

From Financial Options to Real Options

Financial theory proposes a different approach to flexibility. This approach has been

translated into the engineering world to provide more accurate estimations of the

value of flexibility. An option for a system would be a technical element embedded

initially into the design that gives the right but not the obligation to decision makers

to react to uncertain conditions. For instance, installing a docking device on a geo-

stationary satellite to achieve on-orbit refueling and expand the life of a satellite if

judged necessary could be an engineering option. Consequently, engineering options

are physical elements. They have thus been called “real options in systems” to dif-

ferentiate them from financial options or “real options on systems”. This approach

treats the physical artifact as a black box.
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The analogy with the financial world can be pushed forward. For instance, tech-

nical reasons or the lifetime of the system may limit the use of the real option to a

certain period of time. This corresponds to a time to expiration date Tex. Moreover,

the cost X to use the real option corresponds to an exercise price. The real option

will be exercised only if the value it brings is higher than the exercise price. In the

case of financial options, the comparison was made between the exercise price X and

the actual stock price S that was subject to uncertainty. Real options compare the

price to acquire the asset X with the value expected from it, S, that is also sub-

ject to uncertainty since it depends on external conditions. The parallel between the

financial and engineering spheres is summarized in Table 2.1.

VARIABLE REAL FINANCIAL
OPTION OPTION

S Present Value of asset Stock or
to be acquired commodity price

X Required investment Exercise Price
to acquire option (Strike)

Tex Time over which decision Time to
can be deferred expiration date

Table 2.1: Comparison of financial options and real options (adapted from [Ram02]).

In theory, the relationship between the financial and engineering world seems

obvious. In reality, however, technical systems may take into account parameters that

are not easily quantifiable and the use of real options can be difficult. In particular,

S can be hard to define when it depends on parameters such as “users’ satisfaction”

and there is no clear methodology existing to solve this problem. The choice of the

representation of S1 is essential because it is through this variable that uncertainty

is taken into account.

The main interest of this analogy with the financial world is that the existing val-

uation methodologies can be applied. The next section presents the basic underlying

principles of option evaluation.

1In the particular case of LEO constellations of communications satellites, S will be used to
represent uncertainty in future demand.
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Principles of Option Valuation

The main argument that serves as a basis to options valuation is arbitrage pricing.

Arbitrage consists in profiting from discrepancies between two markets on the price

of an asset. When a difference is noticed between two prices, the asset is bought on

the market offering the lowest price and sold on the other market. If the competitive

markets are well-operated, such arbitrage opportunities should not exist. This implies

that two assets that have the same risk distribution should trade at the same price

and offer the same payoffs. This assumption allows a simplification of the pricing

process for complex investments such as options.

A replicating portfolio that is subject to the same uncertainty as the underlying

asset is created so that its return is independent of future outcomes. This portfolio

has the exact same risk as the option that is considered. Therefore, the combinations

of buying the portfolio and selling the option or selling the portfolio and buying the

option are riskless. This method may look simple but it requires complex mathemat-

ical representations, in particular to represent the evolution of S with time. A classic

assumption in finance is to say that the behavior of stock prices follows a general-

ized Wiener process also known as geometric Brownian motion. This section does

not describe the mathematics of Wiener processes in detail but simply considers the

discrete-time version of the model:

∆S

S
= µ∆t + σε

√
∆t (2.3)

S represents the current price of the stock, ε is a random variable with a standardized

normal distribution and ∆t the time step of the discretization. Consequently, ∆S
S

represents the rate of change of the stock price during an small interval of time

∆t. ∆S
S

depends on a random variable consequently it is a random variable. µ

and σ are constants in this formula. Their meaning can be understood with simple

mathematical considerations. The expected value of the rate of change of S is:

E
[
∆S

S

]
= E [µ∆t] + E

[
σε
√

∆t
]

(2.4)
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= µ∆t + σ
√

∆t E [ε]︸ ︷︷ ︸
=0

(2.5)

= µ∆t (2.6)

Consequently, if the current value of the stock is S, the expected variation of it in

the time interval ∆t is µS∆t. Therefore, µ is the expected return per unit time on

the stock, expressed in a decimal form. Let’s consider the variance of ∆S
S

:

var
(

∆S

S

)
= var

(
µ∆t + σε

√
∆t

)
(2.7)

=
(
σ
√

∆t
)2

var (ε)︸ ︷︷ ︸
=1

(2.8)

= σ2∆t (2.9)

σ2 is thus the variance rate of the relative change in the stock price. σ is usually called

the volatility of the stock price. It is interesting to note that σ “scales” uncertainty

in future prices. Moreover, the bigger the time step considered is, the bigger the

variance of the relative change in stock prices will be. This mathematical property is

a translation of the fact that uncertainty increases as the time horizon is farther from

us. From this model, Black, Scholes and Merton (see [BS73] and [Mer73]) were able

to derive a closed form solution for the price of an option given many assumptions.

One of the main assumption behind the Black-Scholes equation is that the options

considered are European options which is rarely the case with “real options”. Most

of the time, numerical procedures have to be used because no closed form solutions

are available. The Wiener model involves random variables, consequently a common

method is to run a Monte-Carlo simulation over the price of the stock. However, when

the time intervals considered are big enough, a binomial model can be used as a time

discrete representation of the stock price. The binomial model simplifies the Wiener

model by stating that the stock price S can only move up or down during an interval

or time leading to a new price Su or Sd (see Figure 2-12). There is a probability p

to move up and a probability 1− p to move down. To be consistent with the Wiener

model, this representation needs to provide the same expected return and variance
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Figure 2-12: Basic structure of the binomial model.

when ∆t gets close to zero. Hull [Hul89] demonstrates that it can be achieved by

setting p, u and d in the following manner:

u = eσ
√

∆t (2.10)

d =
1

u
(2.11)

p =
eµ∆t − d

u− d
(2.12)

When used over many periods, the binomial model provides a tree for the price of the

stock. An example of a binomial tree over four periods is represented in Figure 2-13.

For each nodes of the tree, the value of the underlying asset has been computed. In

this example, µ = 10%, σ = 40%, ∆t = 1 and S = 100. For those parameters, the

values of u, d and p are u = 1.49, d = 0.67 and p = 0.67.

The binomial tree is useful for real options and allows an easy and systematic

pricing methodology illustrated by an example. Consider a European call option on

the opportunity to buy a stock in one year for $21. The current price of the option is

$20 and, from its expected return and volatility, a simple binomial model is created.

It is represented in Figure 2-14. The stock price will either move up to $22 or $18.

If the stock price goes up, the value of exercising the option is $1. If the price goes

down, exercising the option does not have any value. From those considerations, the

binomial tree is converted into an event tree. The event tree represents the best

decision between keeping the option open (KO) or exercising the option (EX) at each

54



S=100

Sd=67

Su=149

Sud=100

Su2 =222

Sd2 =45

Su3 =332

Su2d =222

Sud2=67

Sd3 =30

Su4 =495

Su3d =222
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p4 = 0.19

4p3(1-p)= 0.39

6p2(1-p)2 = 0.29

4p(1-p)3 = 0.09

(1-p)4 = 0.04

Σ = 1

Figure 2-13: Example of a binomial tree and evolution of the value of the underlying
asset over four periods.

node of the original binomial tree.

S=$20

S=$22

S=$18

Option value =$1

Option value =$0

EX

KO

Strike Price X =$21

Figure 2-14: Value of the option and suggested decision for the possible values of the
stock price.

The cost and payoff obtained with the call option considered are summarized in

Table 2.2. To determine the price f of the option, a replicating portfolio with the

same cost and payoff needs to be created with different assets. This portfolio consists

of m shares of the stock and an amount B of money borrowed with an interest rate ri.

The stock and loan costs and payoffs have been represented for this portfolio in Table

2.3. This portfolio should provide the same costs and payoffs than the call option for

55



Start End End
(S=$20) (S=$18) (S=$22)

Buy call option -f 0 1
(X=$21)

Table 2.2: Call option cost and payoffs.

Start End End
(S=$20) (S=$18) (S=$22)

Buy stock -20m 18m 22m

Borrow money B −B(1 + ri) −B(1 + ri)

Net −20m + B 18m−B(1 + ri) 22m−B(1 + ri)

Table 2.3: Stock and loan costs and payoffs.

both outcomes. This leads to the following set of equations:

−f = −20m + B (2.13)

0 = 18m−B(1 + ri) (2.14)

1 = 22m−B(1 + ri) (2.15)

(2.16)

From Equations 2.15 and 2.16 the values of m and B are obtained: m = 0.25 and

B = 9
2(1+ri)

. The final value of f is obtained from Equation 2.14:

f = 20m−B (2.17)

= 5− 9

2(1 + ri)
(2.18)

(2.19)

For an interest rate ri = 10%, the price of the option is f = $0.909.

It is interesting to point out that this determination of the price of the option
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does not use the probabilities associated with the down and up movements. Indeed,

this method only considers the payoffs of the outcomes and not their probabilities of

occurrence. It is an important result that marks a difference with decision analysis.

The value of flexibility is consequently represented more accurately. Moreover, it

provides a strategy represented by decision points where the real option should be

exercised or not. The valuation for real options is more complicated but the principles

are the same. The main difficulty is to find the volatility of the asset considered. A

presentation of the issues and methods to solve them can be found in [Tri96]. Good

examples of “real options” valuations can be found in [Lam01] and [Ram02].

The real options analysis presents many advantages but the implementation may

seem sometimes difficult. Moreover, ROA is based on a financial framework that can

be difficult to explain to engineers because the creation of a portfolio to value an

option is less intuitive than the clear decision rules provided by Decision Analysis or

NPV. However, without going through all the different implementation methods, the

concept used for real options calculations can enforce a different way of considering

flexibility. In general, the implementation of real options calculations depends on

the particular aspect of a problem but the principle remains the same. Flexibility

is considered as an initial investment and the opportunities it provides to decision

makers is estimated. This represents a big change in the way flexibility is considered

by decision makers. A “real options” approach in adopted in the framework proposed

to study the economic opportunity of staged deployment. This framework is presented

in the next section.

2.5 Valuation Framework for Staged Deployment

2.5.1 Presentation of the Problem

Staged deployment is a particular way of introducing flexibility in a system. It reduces

the economic risks of a project by deploying it progressively, starting with a smaller

and more affordable capacity than the one proposed by the traditional approach.
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When there is enough money to increase the capacity or if demand for the service

provided goes over the current capacity, the system is upgraded to a new stage with

a higher capacity. This approach does not design for a target capacity but tries to

find an initial architecture that will give to system managers the most flexibility to

adapt to market conditions. However, it poses new challenges to designers. A first

issue is that the possible evolution from an initial architecture has to be identified

and understood. An ideal staged deployment would follow the Pareto Front but this

is not necessarily feasible. Fundamentally this is true because Staged deployment

implies the use of legacy components (the previously deployed stages) which reduces

the number of degrees of freedom in the system. Consequently, the structure of the

Trade Space and the relations existing between architectures have to be clearly defined

and modeled. A second issue is that the price to pay to embed flexibility into the

design is not known. The reason is that the technologies involved may not be known

or accurately modeled.

The framework proposed solves all of those issues with different assumptions and

models that are presented in the next sections. The notion of paths of architectures on

which the method relies is first introduced as well as definitions used in the description

of the framework. Then, the assumptions and principles of this valuation method are

exposed. Finally, the general steps necessary for the implementation of the framework

are detailed.

2.5.2 Paths of Architectures

When the concept of trade space was first introduced in the description of the tra-

ditional approach, the architectures were considered fixed over their lifetime. Staged

deployment considers these architectures in a different manner: evolutions in the trade

space are allowed. The evolutions that are possible from a given architecture depend

on the flexibility that was embedded. In particular, only particular architectures can

be obtained through evolution. Consequently, the initial architecture is not sufficient

information to fully describe the system. To solve this problem, the framework con-

siders only allowed evolutions called “paths”. This section introduces the concept of
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“paths” of architectures and other definitions that are used in the description of the

framework.

A trade space is a mapping between a design space and an objective space. The

architectures are represented by design vectors x and an associated objective J(x).

For instance, if the system considered is a bridge, the design variables could be the

length, the width and the objectives the number of cars per days the bridge can

support and its life cycle cost. However, the architectures are not fixed and can

evolve through time in the trade space. This evolution is possible only if certain

design variables can be modified after the deployment. This leads to a decomposition

of the design vector into two parts (see Equation 2.20):

• xflex gathers all the design variables that provide flexibility to the system. This

means that a real option is considered that allows a modification of those vari-

ables.

• xbase represents all the design variables that cannot be modified after the de-

ployment of the system. Those variables may not be changed for physical or

for strategic reasons: system designers may not want to consider the potential

flexibility provided by certain variables.

x =




xflex

xbase


 (2.20)

From an initial architecture x0, evolution is possible only toward architectures x such

that xbase = x0
base. For this reason, the trade space is divided into sets of architectures

that share the same vector xbase. Those particular sets are called families. The set of

all families form a partition of the trade space that sometimes allows simplifications in

the implementation process of the framework. The variables of xflex may be changed

according to certain evolution rules. It is important to identify them since they will

define feasible evolutions. Those rules can concern the variables itself. For instance,

a design variable may be modified only by increasing its value or decreasing it. The

evolution rules can also concern the relations between variables. In fact, problems
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of priority or simultaneity may arise between certain variables that need to be taken

into account.

This thesis focuses on staged deployment to adapt the capacity of a system to

market conditions. This can be done in two different ways. A first way would be to

increase the capacity when necessary, a second would be to aim at a perfect adapta-

tion, increasing and decreasing the capacity to get as close as possible to the actual

demand. The first approach is interesting when the development costs and the cost

of evolution are significant compared to operation costs. In this situation, decreas-

ing the capacity does not present any value since the reduction in operation costs

expected may be smaller than the investment necessary to decrease capacity. The

second approach is applied when the operations costs represent the most important

part of the expenditures. An example would be a taxi company for which capacity

depends on the number of available drivers or cars and expenditures are mainly the

wages and the fuel. The systems considered in this thesis are large capacity systems

with low relative operations costs. Consequently, the first approach will always be

the one considered in the framework. This implies that if Cap(x) is the capacity of a

given architecture, one will always consider evolutions from an architecture xi to an

architecture xj such that Cap(xi) < Cap(xj). “Path” will thus designate a series of

architectures (x1, x2, . . . , xn) such that:

• all of the architectures are in the same family, i.e. (xi)base = (xj)base ∀i, j ∈
{1, 2, . . . , n} and i 6= j;

• ∀i ∈ {1, . . . , n− 1}, the evolution from xi to xi+1 does not violate any evolution

rules;

• ∀i ∈ {1, . . . , n− 1}, Cap(xi) < Cap(xi+1).

An example of a path is represented in Figure 2-15. Because of all the constraints that

a path needs to satisfy, it is usually impossible to have a path that follows exactly

the Pareto frontier. Therefore, the valuation will have to compare many possible

paths and perform an optimization over them. The selection of a system differs from
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the traditional approach in this framework. Fixed architectures are not considered

anymore but rather paths that represent the available capacities for the system and

the deployment strategy at the same time.
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Figure 2-15: Example of a path of architectures in a Trade Space. The series of
architectures (A1, A2, A3, A4) represents the path.

2.5.3 Valuation of Flexibility

Assumptions

The framework proposes the value that staged deployment offers when market con-

ditions are uncertain. To solve this problem, several assumptions are made. First,

the system should be able to provide service for a maximum demand. This means

that a maximum capacity Capmax is set and that a path can be considered if and

only if at least one architecture has a capacity higher or equal to Capmax. This as-

sumption allows a selection of the paths that will be considered but also defines the

traditional design with which the final solution is going to be compared with. A

second assumption is that the system tries to adapt to demand. As soon as demand

is higher than the current capacity, the next stage of the system is deployed. This

corresponds to a worst-case strategy for staged deployment since it corresponds to the

maximum expenditures for the system. Consequently, if an opportunity is revealed

for a worst-case scenario, it can safely be assumed that the real option considered

presents value. This assumption is natural for systems that provide a service with-
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out trying to generate profits. For instance, for a water supply system, it is vital

that the system adapts to demand. A third assumption is that the price to embed

flexibility into existing designs is not taken into account. Eventually, the cost of

the optimal staged deployment solution will be compared to the cost given by the

traditional design. If the staged deployment strategy is cheaper, then the difference

with the traditional design will give an estimate of the maximum price one should be

willing to pay to embed such flexibility. Consequently, this approach tries to reveal

opportunities rather than studying their technical details. This can motivate research

for technically embedding flexibility into systems. A last assumption is that demand

follows a geometric Brownian motion. In particular, the binomial model can be used.

Valuation Principles

The goal of the framework is to compare the life cycle costs obtained with flexibil-

ity with those obtained with a traditional design. The traditional design is a fixed

architecture that minimizes the life cycle costs and with a capacity at least equal to

Capmax. Once this design and its objectives are determined, each path is considered.

Demand scenarios are generated with the geometric Brownian motion model and the

life cycle costs are estimated for a path when adapting to demand. The expected

value of those life cycle costs is then compared to the life cycle cost obtained with the

traditional approach. If the path provides a smaller life cycle cost, then an economic

opportunity is revealed. Otherwise, flexibility does not present any value and the pro-

posed path should not be considered for staged deployment. Considering many paths,

an optimization over life cycle costs can be done to find a best path. This best path

will define the best deployment strategy since it describes the series of architectures

that should be followed. The difference between the cost of the traditional design and

the optimal life cycle cost obtained with staged deployment gives an approximation

of the maximum price designers should be willing to pay to embed flexibility into the

design. Therefore, even though the technical way to embed flexibility may not be

known, an estimate of the maximum price one should be investing to develop this

technology can be obtained.
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This valuation method tries to reveal economic opportunities of “real options”

that may not be known in detail. This is one of the main interest of the approach.

To complete it for commercial systems, a decision analysis or a real options analysis

could be carried out to see how the profits could be maximized with the optimal path.

This really simplifies the process since only one decision tree has to be created and

the decision nodes are easy to represent since they have a maximum of two branches:

one representing the fact that the system is deployed to the next architecture in the

path, the other represented the decision to keep the design the way it is.

2.5.4 Implementation

This section describes the main steps through which the implementation of the frame-

work has to go through. Those steps have to be adapted to the particular system

that is studied but the principle remains the same.

Identification of Flexibility

The sources of flexibility that designers want to study have to be identified. Once

the design variables that provide flexibility are identified, the design vector should

be decomposed as in Equation 2.20. For the design variables in xflex, evolution rules

have to be identified and modeled. Finally, the Trade Space should be divided in

families of architectures.

Transition Matrix and Initial Development Costs

From the trade space, the costs for development and deployment of each architecture

should be computed. IDC(x) will designate the initial development costs of an

architecture represented by a design vector x. The evolution costs should be also

estimated for each possible evolution. A convenient way to store those costs is the

introduction of a transition matrix ∆C. The transition matrix is defined in the

following manner: if xi and xj are two architectures, then (∆C)(i,j) is equal to the

expenditures necessary to go from xi to architecture xj if this evolution is feasible
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and to −1 otherwise. −1 is one way to represent infeasible evolution but any other

convention can be used. Since evolutions between architectures of different families

are infeasible, it is recommended to define transition matrices only for families instead

of one global matrix almost completely filled with −1’s. IDC and the transition

matrices are the two necessary elements to calculate life cycle costs. To take into

account maintenance and operations costs that occur yearly, or more generally in a

time period ∆t, a function OM can be also considered. For a given architecture x,

OM(x) represents the recurring costs of the architecture over one year.

Demand Representation and Capmax

To describe the evolution of demand through time with a geometric Brownian motion,

σ and µ need to be defined. From there, different demand scenarios are generated

and their probabilities of occurrence are estimated. The time step used to represent

demand will be considered equal to the period between two decisions. If there are n

scenarios,
(
scenario1, . . . , scenarion

)
with probabilities (p1, . . . , pn), then:

∑n

i=1
pi = 1 (2.21)

The maximum capacity Capmax has also to be defined. With this capacity and using

the Pareto Front of the Trade Space, an optimal traditional architecture xtrad is

identified with which the best path will be compared.

Creation of Paths

For each design vector x, the possible paths starting with x are generated following

the evolution rules identified previously. If the decision rules do not change as well

as the design variables considered, this process may be done only once and all the

possible paths can be stored. To this effect, it can be interesting to associate an index

with each design vector and represent paths by a series of indices. A selection is made

among the paths to see which one can provide a capacity higher or equal to Capmax.
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Expected Life Cycle Costs

For each selected path, the life cycle costs that are necessary to adapt to the demand

scenarios are calculated. Then, the expected life cycle cost of the path is computed.

If LCC
(
scenarioi

pathj

)
is the life cycle cost of pathj for scenarioi then, the expected

life cycle cost of this path is:

E
[
LCC

(
pathj

)]
=

∑n

i=1
piLCC

(
scenarioi

pathj

)
(2.22)

Optimization and Termination

The minimum over all possible paths of the expected life cycle costs is found and the

path that provides this value is called path?. E [LCC (path?)] and LCC
(
xtrad

)
are

finally compared to see if an economic opportunity has been revealed.

This framework has been applied to the particular of LEO constellations of com-

munications satellites.
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Chapter 3

Staged Deployment Strategy for

Reconfigurable LEO Constellations

The framework introduced at the end of Chapter 2 has been applied to the particular

case of LEO constellations of communications satellites. Recent constellations such

as Iridium or Globalstar were designed with a traditional approach which resulted in

an economic failure for both systems. By adapting the framework to this particular

case, the economic opportunity that a staged deployment strategy may have provided

was studied. The basic tool for this study was the simulator developed by de Weck

and Chang [dWC02]. This chapter first presents the simulator and then explains

how the different steps of the framework have been implemented. Throughout the

sections, recommendations to improve the computations or simplify the process are

given. The final section describes the different steps of the optimization process.

3.1 Problem Definition

3.1.1 Presentation of the Simulator

To conduct an architectural trade study of LEO constellations of communications

satellites, de Weck and Chang [dWC02] developed a simulator. The role of a simulator

is to map a design space containing design vectors x to an objective space, containing
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the objective vectors J(x). Other important inputs are usually added such as a

constant parameters vector c and a constraints vector q1. De Weck and Chang also

took into account a vector p reflecting policy decisions. The mapping between the

design space and the objective space is represented by the following expression:

x
mapping→ J = f (x, c, p, q) (3.1)

The architecture of a constellation of communications satellites is represented in Fig-

ure 3-1. The design vector of the simulator captures the essential elements of a

constellation. Namely, those elements are:

• Constellation type C: there exist two main types of constellations to achieve

global coverage with circular orbits at low altitudes. The first one is called a

Walker constellation. It was developed by J.G. Walker [Wal77] and is composed

of inclined planes with ascending nodes equally spaced along the equator. The

second type of constellation is called polar. The term polar is used because

the inclination of the orbital planes is close to ninety degrees and the satellites

go over the poles as they orbit the Earth. An introduction to the characteris-

tics of both types of constellations can be found in [LWJ00]. This study only

considered polar constellations.

• Orbital altitude a: the altitude is constant for satellites in circular orbits.

The acronym LEO designates orbits with altitudes ranging from 200 km to

2000 km.

• Minimum elevation angle ε: it is the angle between the satellite and the

horizon from which a user on the ground sees the satellite. This angle and the

altitude of the satellite are sufficient to define the area covered by the satellite.

The geometric meaning of ε has been represented in Figure 3-2.

• Satellite transmitter power Pt

1The notation used for the constraints vector differs from [dWC02] where r is used to avoid
confusion with the discount rate.
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a

Figure 3-1: Architecture of a LEO constellation of communications satellites (from
[dWC02]).
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Figure 3-2: Geometric definition of the elevation angle. The coverage area of the
satellite is shaded. S: satellite; U:user; O: Earth’s center.

• Antenna diameter DA

• Inter satellite links ISL: this technology may (ISL = 1) or may not (ISL =

0) be embedded in the constellation. Inter satellite links allow transmissions of

data directly between the satellites. This connectivity reduces the number of

ground stations necessary to transmit information. This technology has been

used on the Iridium constellation. It represented a technical challenge because

a satellite must transmit information to the neighboring satellites on its own

orbital plane, but also to the closest satellites in adjacent planes.

• Per-channel bandwidth ∆fc: in this study, ∆fc has been fixed to 40 kHz.

• System lifetime Tsys

Those variables are the elements of each design vector. The simulator computes the

objective vector J for each design vector. This vector consists of six elements but

only three of them are of interest for this study:

• Instantaneous number of duplex channels of the system Nchannels: when

a subscriber uses the service, one duplex channel is assigned.

• Lifetime capacity Ctot: it corresponds to the total number of billable minutes

over the lifetime of the constellation. It is thus expressed in minutes.
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• Life cycle cost LCC

The simulator is used to create a trade space representing Ctot and LCC. Table 3.1

presents the range of the different design variables used to generate the trade space.

A total of 1800 architectures have been simulated. From this trade space and the

Variable Unit Range Step
C - Polar Fixed
a km 400 - 2000 400
ε deg 5 - 35 15
Pt W 200 - 1800 400
DA m 0.5 - 3.5 1
∆fc kHz 40 Fixed
ISL - 0 - 1 1
Tsys years 5 - 15 5

Table 3.1: Range of the different design variables used to generate the trade space.
Step corresponds to the increment used.

data provided by the simulator, the valuation framework can be applied. However,

certain modifications are necessary in order to study the uncertainty in the number

of future users. The next subsection discusses this issue.

3.1.2 Definition of Capacity

The metric used by the simulator to define capacity is the lifetime capacity, Ctot, that

is to say the total number of billable minutes over the lifetime of the constellation.

From this capacity, the cost per minute (CPM) of a constellation can be obtained.

Indeed, the cost per minute is computed dividing the life cycle costs of the system

by the total number of billable minutes of the system. De Weck and Chang [dWC02]

showed with the trade space that the CPM of the constellations decreased as capacity

was increased. This is due to economies of scale and learning curve effects. The CPM

seems to be an interesting metric to compare architectures since it gives the necessary

investment to provide a unit of service. However, this metric should be used with

caution because it does not take any market considerations into account. The conse-

quences of this approach are illustrated with an example. Two constellations, A and
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B, are considered. The life cycle costs, capacities and CPM of both constellations

are presented in Table 3.2. Constellation A has a larger capacity than constellation

Constellation A Constellation B
LCC (B$) 5 1
Ctot (min) 5 · 1012 1011

CPM ($/min) 0.001 0.01

Table 3.2: Characteristics of constellations A and B.

B and its CPM is lower. A priori, constellation A seems more interesting than con-

stellation B. However, the CPM metric makes sense to compare architectures if and

only if the full capacity is eventually used. Indeed, if the actual demand is such that

only 1010 minutes of service are billed over the lifetime of both constellations, the

actual cost per minute is 0.5$/min for constellation A and 0.1$/min for constellation

B. Consequently, constellation B is cheaper and has a lower cost per minute for this

demand. It should thus be selected rather than constellation A. Therefore, the CPM

metric encourages the selection of systems with large capacities and high life cycle

costs. But, it implicitly assumes that the entire capacity of the system will be used

and fails to take into account market uncertainties. The system selected with this

approach are among the most expensive but their actual cost per minute can reveal

higher than expected if demand stays low. This case leads to an economic failure

since the system selected requires high initial investments and a high price for the

service needs to be set which limits the number of potential users. This is what

happened with the Iridium constellation that proposed an airtime charge between

$1.5 and $7 per minute according to Lutz, Werner and Jahn [LWJ00] while terrestrial

networks provided the same service for less than $1 per minute. Formulas have been

proposed to compute the service charge of a constellation of communications satel-

lites (see [CGH+92]). This thesis introduces one in Appendix A. However, it relies

on assumptions that do not take the uncertainty of future demand into account and

lead to the same issues as the CPM metric.

To compute the CPM of a constellation, the total number of minutes the system

can provide needs to be determined. To know this number of minutes, the future
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behavior of the system needs to be known perfectly. Consequently, only fixed systems

can be considered. It is not the case in this study: the staged deployment strategy

change the capacity with respect to uncertain market conditions. To study adaptation

to demand, it would be convenient to define capacity as the maximum number of

users the system can support since it can be easily related to demand. The simulator

provides the instantaneous number of duplex channels, Nchannels, for an architecture.

To relate Nchannels to the maximum number of subscribers the system can support,

Nuser, the following parameters need to be introduced:

• Auser: average user activity in minutes per month. It is assumed constant over

the lifetime of the systems.

• US: global system utilization in percent. This parameter is fixed by decision

makers and determines the target percentage of capacity that can really be used

at each moment. It is similar to a target load factor 0 ≥ US ≤ 1.

The number of channels that are made available to subscribers is not Nchannels but

USNchannels. To know the maximum number of subscribers the system can have, the

number of available duplex channels needs to be divided by the average activity of

users:

Nuser =
USNchannels

(
365
12
· 24 · 60

)

Auser

(3.2)

With those formulas, Nuser can be computed for each architecture. Nuser is the

metric used for capacity throughout the study. Of course, values for US and the

average activity level have to be set first. According to [LWJ00], typical values for

those parameters are:

• US: between 5 and 15%;

• Auser: between 100 and 150 min/month;

The Iridium case can be used to check the validity of those values. For this constel-

lation, Nchannels = 86000 and 3 million subscribers were expected. If US=10% and
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Auser=125 min/month, then:

Nuser =
0.1× 86000

(
365
12
· 24 · 60

)

125
= 3.013 · 106 (3.3)

This maximum number of users is close to 3 million predicted users and the range

proposed for the parameters can be considered valid. From now on, capacity will be

designated as the maximum number of users Nuser for a constellation and will be be

noted Cap = Nuser.

3.1.3 Assumptions

To apply the framework to the particular case of LEO constellations of communi-

cations satellites, the assumptions it implies need to be reviewed. First, the system

studied is assumed to be designed for a certain maximum demand. So, the system

should be able to provide a particular capacity Capmax if necessary. Consequently, a

maximum number of subscribers will have to be set and it will be equal to Capmax.

For instance, if the Iridium constellation is studied, Capmax would be set to 3 × 106

users.

The second assumption of the framework is that the system adapts to demand.

This means that, if demand is over the maximum number of subscribers that the

system can support at a decision point, the system evolves to the next architecture

in the path.

A third assumption is that the price to embed flexibility is not taken into account.

The technical way to embed flexibility is not known in advance and the framework

only tries to reveal the economic opportunity of this flexibility. The interpretation of

this particular assumption for this study is discussed in the next sections.

A last assumption is that demand follows a geometric Brownian motion. Conse-

quently, a volatility will be set for the number of users and demand scenarios will be

generated.
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3.2 Decomposition of the Design Vector

A first step of the framework consists in identifying the sources of flexibility that will

be evaluated. For staged deployment, this means that the design variables that can

be modified after the deployment of a first architecture need to be identified. The

particularity of space systems is that on-orbit modification of the satellites is virtually

impossible even though there is an increasing interest in reconfigurable spacecrafts.

On-orbit servicing is not sufficiently developed to consider that the hardware of a

satellite can be easily modified once in space. Consequently, design variables such as

Pt, Da or ISL have to be considered fixed. Moreover, the lifetime of the constella-

tion cannot be considered as a design variable anymore. In fact, Tsys will be a fixed

parameter since the behaviors of different systems with respect to the evolutions of

demand over a certain period are compared. Of course, the economic opportunity of

flexibility for different values of Tsys could be investigated but for a single analysis, it

needs to be fixed. ∆fc and C are considered constant in this model and they are not

considered as design variables. If the simulator could take into account Walker con-

stellations, C would have been a good candidate as a flexible variable since changing

the type of constellation does not necessarily imply any modifications of the satellites

themselves.

The remaining design variables are a and ε. The altitude a can be changed after the

satellites are deployed because it does not necessitate any changes in the hardware

of the system. The variables a and ε are only affected by the arrangement of the

fleet of satellites that form the constellation. Such arrangement will be called a

configuration. The variable ε corresponds to the minimum angle the satellite should

have with respect to the horizon to be able to provide communication to users. If a

user can communicate with satellites when they are above 5 deg for instance, it will

also be possible to communicate with them when they are above 35 deg. Consequently,

ε does not depend on the satellite hardware and can easily be changed. However, a

first evolution rule appears. Indeed, ε can be increased but cannot necessarily be

decreased. A user that can see a satellite above 35 deg may not see it when it is
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below 35 deg. Thus, ε can only be increased.

Using notations of Equation (2.20), the design vectors x can now be partitioned

in two parts:

xflex =




a

ε


 (3.4)

xbase =




Pt

DA

ISL




(3.5)

The ranges used for the different design variables are the same as those presented in

Table 3.1. A family of architectures corresponds to a certain vector xbase that is to

say to particular values of Pt, DA and ISL. This means that a family of architectures

consists of constellations with satellites that share the exact same hardware but that

are in different configurations. Since Pt can take 5 different values, ISL 2, and Da

4, there are 40 different families. Each is composed of architectures with different

altitudes a and minimum elevation angles ε. The altitude a can take five different

values and ε only three different values so there are fifteen different constellations per

family and a total of 600 different constellations2.

The real options considered in this study are technical devices that offer the flex-

ibility to change a and ε after a constellation is deployed. Those design variables

depend only on the configuration of the constellation. Therefore, the real options

give the opportunity to reconfigure constellations after they have been deployed. To

move the satellites, the propulsion systems of the satellites could be used if the pro-

pellant available is sufficient. Moreover, since the altitudes of the satellites may vary,

phased array antenna have to be used to adjust the spot beams. Consequently, there

exist different technical solutions to embed this flexibility. However, they will not be

considered in the implementation of the framework. Indeed, the framework focuses

only on the value of this flexibility and not on its price. This principle is contained

2The original simulator generated 1800 architectures but since the lifetime of the satellites Tsys

is no longer a design variable, this number is reduced to 600.
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in the assumptions of the framework, when it is stated that the price of real options

is not taken into account. Therefore, the technical way to embed flexibility does not

need to be discussed in this analysis but should be the subject of future research.

Reconfiguration are studied in detail in Chapter 5.

This section identified two candidates to provide flexibility to the architectures: a

and ε. The next section describes the different evolution rules of those design variables

and establishes the conditions that paths of architectures need to satisfy.

3.3 Identification of Paths

3.3.1 Evolution Rules

To identify paths, the evolution rules of the different variables of xflex need to be

defined first. Two types of evolution rules should be distinguished though. A first

type of evolution rule concerns individual variables. Those evolution rules will be

called intra-variable rules. For instance, if the height of a wall that is progressively

built is considered, a first intra-variable rule is that this height can only be increased.

A second intra-variable rule is that the increment to increase the height has to be a

multiple of the height of the bricks used. The second type of evolution rule concerns

the relationships between the variables. Those evolution rules will thus be called

inter-variables rules. For instance, if the length of a plane is increased to increase its

capacity, its mass is increased. Therefore, the wingspan will also have to be increased

to adjust to this new mass and generate additional lift. On the other hand, if the

wingspan is increased, the length of the plane may not be affected. When those

evolution rules are identified, it is important to see if the flexible variables selected

can increase the capacity of the system while respecting the evolution rules. If it is

possible, the variables are relevant, otherwise, it is not necessary to consider them as

flexible. In this section, the different evolution rules for a and ε are identified.

It has already been explained that ε can only be increased. However, it was not

specified if an increase in ε had an interesting effect on the capacity of the constella-
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tion. As discussed before, if the elevation angle is constrained to be 35 deg instead of

5 deg, a user for which the satellite is at 5 deg above the horizon cannot communicate

anymore. So, the area covered by a single satellite is decreased when ε is increased.

Constellations of communications satellites have to achieve global coverage, which im-

plies that more satellites are necessary. Each satellite represents a certain number of

duplex channels Nchannels that depend on the hardware. Consequently, having more

satellites increases the capacity of the constellation. An increase in ε will increase

the capacity of the constellation and the minimum elevation angle appears to be a

relevant flexible variable.

There are no restrictions on the evolution of the altitude of the satellites. How-

ever, if ε is kept the same for a satellite that is moved from a position S1 to a position

S2 by lowering its altitude, its coverage area decreases as illustrated in Figure 3-3.

Consequently, to achieve global coverage, more satellites will be necessary for a con-

stellation with a lower altitude if ε is kept the same. The capacity of the constellation

is thus increased when altitude is lowered. This is consistent with the finding by

de Weck and Chang [dWC02]. However, there exist cases where the capacity of the

constellation increases when altitude is increased and ε is increased. Even though an

increase of a does not always seem relevant, it cannot be forbidden by an evolution

rule. Consequently, there are no evolution rules concerning a.

Finally, inter-variable evolution rules need to be considered. a and ε are physically

independent and can be changed without affecting each other. Consequently, there

is a unique decision rule that states that ε cannot be decreased for an evolution.

3.3.2 Representation of Paths

Now that the evolution rules have been identified, the paths can be completely defined.

A path of architectures in the trade space is a series of design vectors (x1, x2, . . . , xn)

such that:

• All the architectures are in the same family: ∀i ∈ {2, . . . , n}, (xi)base = (x1)base

• The evolutions do not violate any evolution rules: ∀i ∈ {1, . . . , n− 1}, εi ≤ εi+1
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Figure 3-3: A decrease in altitude from position S1 to S2 decreases the coverage area
of a satellite if ε is kept constant.

• An evolution corresponds to an increase in capacity: ∀i ∈ {1, . . . , n− 1},
Cap(xi) < Cap(xi+1)

3.

When the design vectors consist of many variables, the representation of a path

as a series of design vectors can be difficult to manipulate. This is why it is often

necessary to index each of the architectures. This way, an architecture is not repre-

sented by a design vector but by an integer. Of course, this implies the creation of a

function that provides the design vector associated with this index. This function is

called xall. If i is the index of architecture x, then xall(i) = x. In the same manner,

it can be interesting to transform functions such as Cap so that the index of the

architecture is the only input. This reduces the number of inputs to only one integer

compared to many design variables. With this indexation, a path becomes a series

of indexes such as (i1, i2, . . . , in) which is easier to manipulate. For this reason, it is

considered that a unique integer i is associated with a given architecture x and that

xall(i) = x. Also, to simplify notations, the capacity of a given architecture will be

noted indifferently Cap(i) or Cap(xall(i)) and paths will be represented by a series of

indexes or design vectors.

3This study only allows increase in capacity because the non-recurring costs are larger than
the operations and maintenance costs for constellations of communications satellite. Consequently,
decreasing capacity to adapt to demand is not worthwhile and capacity can only be increased.
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As in Chapter 2, paths of architectures are represented in the trade space. This

has been done in Figure 3-4. For each architecture on the path, the altitude a, the

minimum elevation angle ε and the number of satellites Nsats have been indicated.

Two comments have to be made about this figure. First, note that an evolution im-

plies an increase in the number of satellites and, consequently, the launch of additional

satellites. This is one of the main costs for an evolution. Secondly, the reconfigu-

ration costs are not the difference between the life cycle costs of the initial and the

final architectures. Actually, the costs that are represented are the life cycle costs

when fixed architectures are considered. Paths are represented in the trade space to

show the evolution from one architecture to another and how capacity evolves but the

figure does not represent the evolution of expenditures correctly. The way to estimate

the costs will be detailed in Section 3.4.
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Figure 3-4: Example of a path in the trade space.

3.3.3 Ordering Families

The concept of families of architectures provides a convenient partition of the trade

space. It can be interesting to index architectures with respect to their families.

Indeed, the previous subsection proposed to associate an index to architectures but

no particular ordering was exposed. There are 40 families, each consisting of 15
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architectures. Architectures could be indexed so that family k consists of architectures

15(k − 1) + 1 to 15k. Particular ways to rank the architectures inside families could

be sought to simplify certain operations. It could be interesting for the generation of

paths to rank architectures so that it is impossible to evolve from any architecture

to one with a lower rank, i.e. the ranking has embedded in it the evolution rules.

In fact, this ranking limits the number of evolutions to consider to evolutions from

an architecture to the ones with higher ranks. Using the particular structure of the

problem, a ranking system that exhibits this property can be determined. The only

decision rule is that ε can only be increased. Consequently, architectures need to be

ordered so that the elevation angle increases with the rank. Moreover, Subsection

3.3.1 showed that when ε is kept constant, decreasing the altitude will correspond

to an increase in capacity. An evolution needs to increase capacity to be feasible,

consequently, it is interesting to order architectures with a similar elevation angle

from the higher altitude to the lowest. With this ranking, evolutions from a rank

to higher ones are the only one to consider. Those particular evolutions satisfy the

evolution rules so there is no need to verify them. However, the capacity may not

increase for those evolutions and this is the only condition that needs to be checked.

From those different remarks, families are ordered with respect to ε and a as shown

in Table 3.3. The number of satellites Nsats associated with a particular rank is given

to show that the number of satellites, and thus the capacity, does not necessarily

increase as a rank is increased.

An essential characteristic of this classification is that rank 1 corresponds to the

minimum capacity of the family and rank 15 to the maximum capacity. Indeed, as

explained before, increasing the minimum elevation angle with a constant altitude

or decreasing the altitude with a constant ε will increase the capacity of the system.

The minimum capacity will thus be provided by a constellation with the smallest ε

possible and the maximum altitude, that is to say with rank 1. On the other hand,

the maximum capacity will be provided by the constellation with a the highest ε and

the lowest altitude which corresponds to rank 15. Three remarks can be made about

those extremes:
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Rank ε [deg] a [km] Nsats

1 5 2000 24
2 5 1600 28
3 5 1200 35
4 5 800 54
5 5 400 112
6 20 2000 45
7 20 1600 60
8 20 1200 84
9 20 800 144
10 20 400 416
11 35 2000 98
12 35 1600 135
13 35 1200 198
14 35 800 375
15 35 400 1215

Table 3.3: Rank of architectures in a family.

• It is possible to evolve toward the architecture with maximum capacity (highest

rank) from any architecture in the family.

• From the architecture with minimum capacity(lowest rank), it is possible to

evolve toward any architecture in the family.

• There is no possible evolution form the architecture with highest rank.

One of the main consequences of the first remark is that it can be told in advance

if, from an architecture, it is possible to evolve over a certain targeted capacity. Any

architecture can evolve toward the architecture with maximum capacity in the family.

If this capacity is smaller than the one targeted, all the architectures of the family can

be ruled out. This principle has been used in the optimization to reduce the number

of computations (see Section 3.7). The second remark can be used to simplify the

computation and storage of the different paths within a family. Assume the different

paths leaving architecture 1 were generated and stored in a matrix, each row of the

matrix representing a path 4. If the rows of the matrix are correctly arranged, a

4The different paths leaving an architecture may have different lengths. To store them in a
matrix, zeros need to be added at the end of the paths that are shorter than the number of columns
of the matrix.
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matrix A1 can be obtained that exhibits the following organization:

A1 =




1 0 · · · · · ·
1 2 · · · · · ·
...

... · · · · · ·
1 2 · · · · · ·
1 3 · · · · · ·
...

... · · · · · ·
1 14 · · · · · ·
1 15 0 · · ·




(3.6)

The first column is filled with 1’s because all the paths considered leave the architec-

ture with rank 1. The first row corresponds to the path containing only architecture

1. This is a particular path that corresponds to the case for which 1 is considered

fixed, i.e. the constellation is initially deployed but it is never changed. The following

rows are ranked in order to gather all the paths leaving 1 and going to a particular ar-

chitecture i on the first evolution. The last row will thus correspond to the particular

evolution from architecture 1 to 15 that cannot go any further because architecture

15 is the last architecture with maximum capacity in the family. Note that the set of

all paths leaving 1 and evolving to 2 on the first evolution can also be obtained by

adding the evolution from 1 to 2 to each of the paths leaving from 2. This motivates

the introduction of the submatrices (Ai)i=2...15, Ai representing the set of all possible

paths leaving architecture i. Matrix A1 can thus be decomposed in the following way:

A1 =




1 0 · · · 0
1 A2

... A3

...
...

... A14

1 A15




(3.7)
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So, from the paths leaving architecture 1, all the paths leaving the different architec-

tures of the family can be obtained. This reduces the necessary memory to store the

paths.

To generate paths from architecture 1, many algorithms can be imagined. The

basic principle is to go from architecture to architecture, trying to consider all the

possible evolutions that respect the evolution rules and increase the capacity. The

particular ordering of the family is useful to find the potential evolutions because

from an architecture i, there are no acceptable evolutions toward architectures with

a lower rank in the family. Consequently, the number of cases to consider is limited

to the ranks higher than i. As explained previously, when evolutions toward higher

ranks are considered, the evolution rules are always satisfied. Therefore, the only

condition that needs to be verified for an evolution to be relevant is that the capacity

of the system increases with the evolution.

3.4 Costs Decomposition

3.4.1 Flexibility and Reconfiguration

This framework tries to reveal the economic opportunity of introducing flexibility in

the original design. In the case of LEO constellations, it means having the ability to

change xflex that is to say a or ε after the initial deployment of a constellation. One of

the main assumptions of the framework is that the price to embed this flexibility does

not have to be taken into account. The reason is that the technical way to embed

this real option may not be known in detail. Future work will add fidelity in this

respect. However, there are certain costs related to evolutions that can be estimated

from the model and that will be taken into account. As noticed in Figure 3-4, during

an evolution, the increase in capacity is the effect of an increase of the number of

satellites. Instead of launching an entire set of new satellites during an evolution, the

on-orbit satellites are reconfigured and the necessary number of additional satellites

are launched. Hybrid (multi-altitude) constellations are not considered in this study.
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As explained previously, the price of the real options necessary to reconfigure the

satellites will not be taken into account. Consequently, only the price to launch the

additional satellites is taken into account in the evolution costs.

3.4.2 Evolution Costs

The price to pay to evolve from a constellation to another is not the difference between

the life cycle costs of the two constellations. Indeed, costs that are directly linked to

the development and research of the hardware will occur only for the first constellation

in a path but will not be necessary for the next configuration5. This cost belongs to

a first class of costs: the ones that depend only on the elements of xbase. Those costs

are the same for all architectures in the family and need to be taken into account for

the first architecture in the constellation but not in the evolution costs. The second

class of costs correspond to the ones that also depend on xflex that is to say on the

particular characteristics of architectures inside a family. The modification of xflex

during an evolution will effect those costs and they need to be taken into account.

The way the life cycle costs of the different constellations have been calculated in the

original model thus needs to be understood. One of the key consequences is that the

simulator cannot be considered anymore as a “black box”.

The cost module of the simulator computes the initial development costs IDC and

the operations and maintenance costs OM for a given architecture. The operations

and maintenance costs do not need to be taken into account in the evolution costs but

they are necessary for the calculations of the life cycle costs of a path. Consequently,

from the cost module, the vector OM of operations and maintenance cost for all

architectures will have to be built. To estimate the evolution costs, the decomposition

of IDC has to be studied as well as the relation between each one of its components

with xflex and xbase. The cost module is based on a parametric study that relates

the costs to certain characteristics of the constellations. The characteristics are not

always design variables and are obtained via different modules. A certain amount

of work is necessary to find the origin in terms of design variables of the different

5The situation is different in cases where evolution is an after thought.
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costs. Table 3.4 presents the different elements of the initial deployment cost and

their relation to xflex and xbase. The software costs are assumed constant in the

model. To compute the evolution costs, the individual costs that depend on xflex

Individual Cost xbase xflex constant
Development of hardware +
Manufacturing of satellites + +
Aerospace ground segment +
equipment
Total program level cost +
Launch operations and + +
orbit support
Flight software +
Ground software +
Ground segment development + +
Launch vehicles + +

Table 3.4: Decomposition of the initial development costs and dependence with re-
spect to xbase and xflex (the symbol “+” is used when there is a dependence).

need to be considered. Those costs are:

• Manufacturing of additional satellites: satellites are launched during an

evolution. So, during an evolution from constellation i to constellation j,

Nsats(j) − Nsats(i) will have to be manufactured and the associated costs will

have to be taken into account in the evolution cost.

• Launch Operations and Orbit support: these costs corresponds to correc-

tions in the orbits of the additional satellites once they are launched.

• Launch Vehicle: during an evolution, additional satellites are deployed and

the cost to launch them has to be taken into account.

• Ground Segment Development: the model considers that the constellation

needs one ground station per orbital plane when there are inter satellite links.

An evolution may imply additional orbital planes and extra ground stations will

have to be built.
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Those four individual costs can be calculated using the simulator. Those computa-

tions have to be done for each one of the possible evolutions. It may be convenient to

store the evolution costs for each evolution. The transition matrix is useful for this

purpose; it is presented in the next subsection.

From the decomposition of the evolution costs presented and the remarks made, it

seems that the evolution costs depend linearly on the additional number of satellites.

If it was the case and if the operations and maintenance costs were neglected, the

evolution costs would be exactly equal to the difference of life cycle costs between the

final and initial architectures. However, it may not be the case. Indeed, the costs

corresponding to the launch of additional satellites depend on the strategy used to

deploy the satellites. The simulator finds a minimum number of launch vehicles to

deploy a given set of satellites. Since a certain number of satellites can go in a par-

ticular launch vehicle, the costs do not depend linearly on the number of satellites.

The staged deployment strategy may actually increase those costs compared to the

traditional approach. This problem is illustrated with an example. Consider a con-

stellation B containing 28 satellites. The optimal launch vehicle that the simulator

proposes can launch 4 satellites simultaneously. A total of 7 launches will thus be nec-

essary to deploy this constellation directly. Assume the staged deployment strategy

proposes to deploy a constellation A with 18 satellites first and then deploy 10 more

satellites to evolve toward constellation B. The first series of launch will require the

use of 5 launch vehicles. Later, to launch the additional 10 satellites, 3 vehicles will be

necessary. Consequently, the staged deployment uses a total of 8 launch vehicles and

the costs associated are higher than the ones obtained with the traditional approach.

The evolution costs will thus be higher than the difference of life cycle costs between

A and B: ∆CA→B ≥ LCC(B) − LCC(A). This situation is represented in Figure

3-5. From this perspective, staged deployment seems to be an expensive strategy.

However, the economic mechanisms that were presented in Section 2.3 apply in this

case. Therefore, the fact that the evolution from A to B occurs after the deploy-

ment of constellation A implies that its cost is discounted. In terms of net present

value, the evolution costs can thus be smaller than the difference of life cycle costs:
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Figure 3-5: Difference between ∆CA→B and LCC(B) − LCC(A) due to the launch
costs.

PV (∆CA→B) ≤ LCC(B) − LCC(A). This situation is represented in Figure 3-6.

Moreover, the evolution from A to B may never be necessary. In this case, there is

no evolution costs and the savings achieved via the staged deployment strategy are

exactly equal to LCC(B)−LCC(B). Consequently, even though the evolution costs

may be higher than the difference of life cycle costs between two architectures, it has

to be kept in mind that evolutions may not occur and that, when they are decided,

the costs associated are discounted.
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Figure 3-6: Difference between the present value of ∆CA→B and LCC(B)−LCC(A).
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3.4.3 Transition Matrix

The cost of evolutions are essential to calculate the life cycle costs of paths and may

have to be used several times during computations. To decrease the computation

times, it is convenient to compute them in advance and store them. The transition

matrix is a convenient tool to store those data. If ∆C is the transition matrix, then,

the evolution cost between architecture i and architecture j is equal to ∆C(i, j) when

the evolution is feasible and to −1 otherwise6. Consequently, the transition matrix

is a square matrix whose size is equal to the number of architectures considered. If

three architectures are considered, an example of a transition matrix would be:

∆C =




0 4 −1

−1 0 5

6 −1 0




(3.8)

From the first row of this matrix, it can be seen that the evolution from architecture

1 to 1 does not cost anything, the evolution from 1 to 2 has a cost equal to 4 and the

transition from 1 to 3 is impossible.

If the number of architectures is large, ∆C can be cumbersome. In the case

studied, it is a 600 by 600 matrix square matrix. The elements of ∆C that are

different from −1 have been represented in Figure 3-7. Only few elements of ∆C are

different from −1. Indeed, the transitions from an architecture to another from a

different family being infeasible, most of the transitions are infeasible and many −1

appear in ∆C. Because of the particular ordering of families used, ∆C is a block

diagonal matrix. Each block matrix corresponds to the transition matrix associated

with a particular family that will be noted ∆Cfamily. Using only one transition

matrix to represent all the different cases does not relevant since the matrix obtained

is almost empty in terms of useful information. It would be much simpler to use

only the matrices ∆Cfamily and benefit once again from the family approach. A

6−1 was used as an internal convention. Other conventions can be used to represent infeasibility
but 0 should be used with care to avoid confusion with between infeasible evolutions and evolutions
with no costs such as evolving from i to i.
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Figure 3-7: Representation of the elements of ∆C that are different from −1 and
zoomed view of a ∆Cfamily submatrix.

zoomed view of such matrix is included in Figure 3-7. Those matrices are upper

triangular because of the way architectures were indexed. As explained in Section

3.3, families are ordered so that an evolution from a certain rank in the family to a

lower is infeasible. The result of this ordering was presented in Table 3.3. Since the

rank can only be increased with an evolution, ∆Cfamily(i, j) = −1 if i > j and the

matrix is upper triangular. This reduction of ∆C into smaller matrices that contain

the essential data about the cost to reconfigure reduces the memory needed and uses

the family approach.

3.5 Definition of Demand

In this study, demand is represented by the number of subscribers to the service. To

represent the fact that it is uncertain, the assumption was made that it follows a

geometric Brownian motion7. The binomial tree is used as an approximation of this

property for the ease of use it provides. However, the framework also assumes that

the system adapts to demand. This means that if the capacity of the system is smaller

7The parameter Auser is also a random variable in reality. However, in this study, it is assumed
to be fixed.
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than demand at a particular decision time, an evolution to the next architecture on

the path is decided. Consider two possible evolutions of demand over two periods

represented in Figure 3-8. The system has initially a capacity Cap0 and the next

Cap0 Cap0

Cap1Cap1

Dfinal Dfinal

Dinitial Dinitial

t1t1 t2 t2

(a) (b)

Figure 3-8: Two possible evolutions of demand over two periods.

evolution increases the capacity to Cap1. In case (a), demand increases during the

first period and gets over Cap0. Consequently, at t1, there will be an evolution to

the next constellation. Then, demand decreases and no evolution is necessary. In

case (b), demand decreases first and then increases, reaching the same level Dfinal

as in case (a). However, demand never gets higher than Cap0 in case (b) and no

evolution is necessary during the two periods. Consequently, even though case (a)

and (b) lead to the same level of demand Dfinal at time t2, they do not lead to the

same evolution of the system. Therefore, in the binomial tree, the value of demand

at a particular node will not be considered, but the entire progression of demand over

time. Scenarios in the binomial tree will thus be considered. If there are n periods,

a scenario will be a series of n up and down movements of demand. Consequently,

there are 2n possible scenarios. Since the up and down movements are independent

events in terms of probability, the probability of a scenario will be:

P (scenario) = pk(1− p)n−k (3.9)
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where p is the probability of going up (given by Equation (2.12) ) and k the number of

up movements in the scenario. An example of a scenario in the binomial model is given

in Figure 3-9. The binomial tree now needs to be built. The volatility of demand,
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Figure 3-9: Example of one scenario out of 25 = 32 in the binomial tree (n = 5).

σ, its expected return per unit time,µ, and an initial value of demand, Dinitial, have

to be defined. Also, the length of periods has to be set. This length will define the

time between two decisions and needs to be chosen with care. A short time length

will create a very dense binomial tree and will exponentially increase the number of

scenarios to consider (2n, where n is the number of periods). A long time length will

reduce the number of decision points and also the value they present. However, the

necessary time to achieve an evolution is on the order of one or two years because

many satellites need to be launched and the lifetime usually considered for a system

are comprised between 5 and 20 years. Therefore, it is not necessary to decrease the

length of the periods below this limit and a maximum of 10 decision points should

be considered. In this particular case, 210 = 1024 scenarios will be considered.
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3.6 Life Cycle Costs

The life cycle cost of a path is the expected value of the life cycle costs for each

scenario (see Equation (2.22) ). Indeed, each path-scenario pair has a life cycle cost.

From the cost module and with appropriate modifications, the following functions

can be obtained:

• IDC: if i is the index of an architecture, IDC(i) is the initial development cost

of this architecture.

• OM: if i is the index of an architecture, OM(i) is the sum of the operations

and maintenance cost of the architecture for one year.

• ∆C: if i and j are the indexes of two architectures such that the evolution from

i to j is feasible, ∆C(i, j) is the evolution cost between i and j.

It has been explained how the function ∆C function can be decomposed with respect

to families. The IDC and OM functions can be computed in advance for each one of

the architectures and stored into vectors. From those three functions, the life cycle

cost of a path given a demand scenario can be computed. If a path (i1, i2, . . . , ik) is

considered, the rules to compute its life cycle cost are:

1. In the first year, the expenditures are IDC(i1) + OM(i1). All the development

and deployment of constellation index1 are assumed to occur on the first year.

also, operations are assumed to start directly.

2. At a decision point, the corresponding value of demand in the scenario and

the capacity of the system are considered. This capacity is equal to Cap(ij)

if ij is the current architecture. If demand is over the current capacity and if

further deploy is possible, capacity is increased. For the year corresponding to

the decision point, the expenditures are ∆C(ij, ij+1)+OM(ij+1). Consequently,

deployment delays of the next stage are not taken into account. If the system

cannot be deployed further or if demand is below the current capacity, the

expenditures are just OM(ij). No change in architecture occurs in that last

case.
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3. In a year which does not correspond to a decision point, the expenditures are

just the ones corresponding to operations and maintenance that is to say OM(ij)

where ij is the current architecture.

Once the repartition of expenditures is calculated, their net present value is computed.

A discount rate r thus needs to be defined. Using the notations of Equation (2.22),

this present value is called LCC
(
scenario(i1,i2,...,ik)

)
. For each one of the scenarios of

the binomial tree, this value is computed using the same discount rate r. If there are

n periods, a total of 2n scenarios and their probabilities need to be considered. The

life cycle cost of the path (i1, i2, . . . , ik) is the expected value over all the different

scenarios and is given by:

LCC (path) =
∑2n

l=1
P (scenariol)LCC

(
scenariol

(i1,i2,...,ik)

)
(3.10)

To associate a life cycle costs to the paths, this approach has to consider an average

value over the scenarios. Consequently, the value obtained may not reflect the life

cycle costs that could be obtained with the different scenarios and the results will

have to be interpreted with caution. In particular, the fact that the average life cycle

cost of a path is smaller than the life cycle cost of the optimal traditional design does

not imply that it is true for all the scenarios of demand. However, this framework

always consider a worst-case situation for staged deployment since a reconfiguration

is decided every time demand gets higher than the capacity of the system. In reality,

decision maker take into account other parameters than the value of demand and a

reconfiguration will be decided only if it is judged profitable. Therefore, even thought

the life cycle costs can get higher than the traditional life cycle cost for certain demand

scenarios, one has to keep in mind that in reality, the decision of deploying a next

stage depends and other parameters than the actual value of demand. Moreover,

if a deployment is decided, this implies that demand got over the capacity of the

system and that there is a significant number of potential customers. Even thought a

reconfiguration implies a cost, the fact that the level of demand is large ensures that

revenues will be large too.
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For the validity of the comparisons between the traditional and the flexible ap-

proaches, the life cycle costs of the different architectures considered fixed need to

be calculated the same way. In the case of fixed architectures, there is no need to

take market conditions or evolutions into account. First, it is considered that the

costs associated with the initial development and the beginning of operations occur

on the first year. Then, every year over the lifetime of the system, operation and

maintenance costs are taken into account. Finally, those expenditures are discounted

and their present value is computed. This present value is actually the life cycle cost

of the fixed architecture.

3.7 Optimization

The optimization process consists in looking for the “best” path that is to say the

one that will respect the requirements while minimizing the average life cycle costs

LCC(path) (see Equation(3.10)). In the previous sections, many inputs correspond-

ing to certain requirements were introduced. They need to be defined to achieve the

computations. Once defined, particular parameters that remain constant throughout

the calculations can be computed and stored to reduce the optimization time. Finally,

the computations can be run to find an optimal path of architectures. Therefore this

section lists the different variables that need to be defined and the different param-

eters that could be computed in advance. It can be seen as a “check-list”: all those

parameters or values need to be known to run the optimization. Then, the different

steps of the optimization process and the different modules they require are described.

3.7.1 Input Parameters

Along the previous sections, some inputs were introduced. Designers need to define

them before the optimization can be achieved. Those parameters are the following:

• US and Auser: those parameters are necessary to convert the number of channels

of the system into a maximum number of subscribers (see Subsection 3.1.2).
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• Discount rate, r: it needs to be defined for the calculations of the life cycle

costs.

• µ and σ: those parameters are defined to generate the binomial tree and the

probabilities associated with the up and down movements (see Subsection 2.4.2).

• Initial demand Dinitial: the level of demand at the beginning of the first year

needs to be defined to generate the binomial tree (see Section 3.5).

• Maximum number of subscribers expected Capmax: this value corresponds to

the size of the market targeted by designers. The system does not have to

provide this capacity after the initial deployment but it has to be able to pro-

vide this capacity after several evolutions at least within n time periods (see

Subsection 3.1.3).

• Minimum capacity of the system Capmin: designers may require a minimum

capacity that the system should always provide. This means that for a given

path, the first architecture should provide a capacity at least equal to Capmin. If

designers do not want to define a minimum capacity, Capmin can be set to zero.

However, it is better to have Capmin ≥ Dinitial otherwise the initial architecture

of some of the paths may not provide a sufficient capacity on the first year.

• Lifetime of the system Tsys: this parameter is necessary to generate the binomial

tree but also to calculate the life cycle costs of the fixed architectures. Setting a

particular value of Tsys does not prevent the system from being operated beyond

this time in practice.

• Period between two decision points ∆t: this parameter associated with Tsys will

define the number of decision points throughout the lifetime of the system. This

parameter is necessary to generate the binomial tree.

For computations, those parameters can be gathered inside a vector such as the

vectors c and q introduced in Section 3.1. If this vector containing the parameters of
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the optimization is noted w, its elements are:

w =




Us

Auser

µ

σ

Dinitial

r

Capmax

Capmin

Tsys

∆t




(3.11)

3.7.2 Stored Values

Many values are used several times throughout the optimization and are not affected

by changes in the parameters. It can be interesting to compute those values before

the optimization and store them to avoid calculating them several time. Moreover, if

the optimization has to be done several times for different values of the parameters,

time is saved by having stored those values. These values are:

• Cap and LCC: they need to be obtained from the simulator with the appropri-

ate modifications for each one of the architectures. Cap needs to be expressed

in thousands of users and LCC should be computed with the same rules used

to calculate the life cycle costs of a path.

• IDC and OM : for each of the architectures, the initial deployment costs and

costs for operations and maintenance need to be known. They can be calculated

in advance from the cost module and stored into the vectors IDC and OM .

• ∆C: the transition matrices can be computed in advance for each family. Those

costs only depend on the design vectors and capacities of the initial and final

architectures considered in an evolution. Consequently, they do not depend on
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any of the elements of w and need to be computed only once. Consequently,

even though the transition matrices can be computationally expensive, they

only need to be computed once and can then be used for any values of the

parameters considered.

It should be pointed out that different approaches can be considered to generate

paths. The paths of architectures depend only on evolution rules and architectures

themselves but not on any of the parameters contained in the vector w. Consequently,

all of them could be generated and stored in advance. The optimization process will

then have to go through each one of them and compare them. However, the number

of paths in a family is approximately 2000 and there are 40 families. Storing all these

paths could be relatively costly and most of them may be unnecessary because they

may not meet the particular requirements set by the parameters of the problem. for

instance, they may not be able to ultimately achieve Capmax. Generating the paths

concurrently with the optimization can add extra computation time if the algorithm

used is not efficient. An intermediate solution can be found in between by storing the

paths leaving the first architecture of each family. As explained in Section 3.3.3, from

those paths, all the paths of the family can be generated easily. Consequently, all the

paths can be generated with only a few computations and the necessary memory to

store paths can be reduced. An efficient algorithm to generate the paths can also be

sought to avoid storing them.

3.7.3 Path Optimization Process

This subsection presents the optimization process in a step by step manner. It is

assume that the parameters introduced in this section have been defined by designers

and that the necessary values for computations are stored or can be obtained.

Determine xtrad

The goal of the framework is to compare the staged deployment strategy with the

traditional approach. The traditional approach will select the architecture on the

98



Pareto Front that is closest to Capmax but with a higher capacity. The first step of

the framework is to determine this architecture noted xtrad. The life cycle cost of this

architecture is LCC(xtrad) and it will eventually be compared with the life cycle cost

of the best path obtained through the optimization. If the Pareto front is already

known, xtrad can be easily obtained. Otherwise, an algorithm can determine xtrad by

looking at the architecture with minimal life cycle costs among the architectures with

a capacity greater than Capmax.

Identify Relevant Paths

The parameters Capmin and Capmax set limitations of the trade space. In particular,

the first architecture of a path should provide a capacity greater than Capmin and

the last architecture a capacity greater than Capmax. This constraint reduces the

number of paths to consider. In particular, if an architecture has a capacity smaller

than Capmin, it is not necessary to consider the paths that it leaves. Moreover, if a

path has a maximum capacity smaller than Capmax, it is not necessary to consider it.

Actually, an entire family can be ruled out with the same argument by considering

the last architecture of the family. If its capacity is smaller than Capmax, none of

the paths inside the family will be able to provide a sufficient capacity in case it is

needed and the architectures of this family should not be considered. Other paths

can be excluded too. Indeed, if an architecture has a capacity that is strictly higher

than Cap(xtrad), then it is not necessary to consider the paths leaving it because they

will always lead to life cycle costs that are higher than LCC(xtrad) because xtrad is

Pareto optimal. Consequently, the initial architectures that are relevant are included

between Capmin and Cap(xtrad) and the paths that they leave need to be considered

if and only if their maximum capacity is higher than Capmax. Those restrictions

limit the number of cases to consider and allow a determination the set of paths to

consider.
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Generate Demand Scenarios

From the parameters Tsys, ∆t, µ and σ, the different scenarios for demand can be

generated. The probability of each scenario can be computed too using Equation

(3.9). A scenario being a series of values of demand at each decision point, each

scenario can easily be represented by a row vector with those values and all the sce-

narios can be gathered in a matrix D, each row representing a scenario and each

column representing a decision time. The corresponding probabilities for each sce-

narios can be gathered in a column vector P for which the i-th element corresponds

to the probability of the i-th row in D. An example is presented in Figure 3-10.

D = P =

........................................

........................................

........................................

........................................

........................................

........................................

........................................

........................................

20  35  12  ................. 7020  35  12  ................. 70

...

...

...

...

0.02
...
...
...
...

scenario i probability

of scenario i

decision 

times:
 t1     t2   t3   .................  tn

Figure 3-10: Example of a matrix D and a vector P to represent demand scenarios.

Compute Life Cycle Costs

Using the method described in Section 3.6, the average life cycle costs of the paths

that satisfy the requirements are computed. The path that provides the minimum

average life cycle cost is identified. This life cycle cost is noted LCCbest and the

optimal path is called path?.

Compare Approaches

LCC(xtrad) and LCCbest are compared. The difference between those two values

reveal the magnitude of the economic opportunity associated with staged deployment.
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Figure 3-11: Link between the different steps of the optimization process.

This optimization process has been summarized in Figure 3-11. The results ob-

tained with this adaptation of the framework will be presented in the next chapter.
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Chapter 4

Case Study

4.1 Introduction

In this chapter, the framework developed for LEO constellations of communications

satellites is applied to a particular case. The economic opportunity of staged deploy-

ment is evaluated when the size of the market targeted is close to the one Iridium

originally expected. The average life cycle costs obtained will not be compared with

the actual one of Iridium for two reasons. First, as explained by de Weck and Chang

[dWC02], LCC is difficult to determine exactly. Moreover, according to the same

study, the Iridium constellation is not Pareto optimal and the framework compares

the staged deployment strategy with a best traditional design. Consequently, an

architecture that is Pareto optimal and that can provide the same capacity as the

Iridium constellation needs to be determined first. This architecture will then be

compared to the relevant paths of architectures. The influence of different parame-

ters on the best paths will be analyzed. Finally, the different results obtained will be

presented.

4.2 Determination of xtrad

To identify a best traditional design, certain parameters need to be set to estimate

the capacity of the different systems and their life cycle costs. Once determined, the
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trade space can be generated and the Pareto optimal architecture xtrad that meets

the capacity requirement can be identified. This section presents the different values

of the parameters for this case study.

4.2.1 Capacity

To define a capacity for the architectures, US and Auser need to be defined. In

Section 3.1.2, it was shown that the capacity of the Iridium constellation was Nuser =

3.013 · 106 subscribers for US = 10% and Auser=125 min/month. The same values of

US and Auser will be used throughout the study. To find a system equivalent to the

Iridium constellation in terms of capacity, the targeted capacity for the system was

set to Capmax = 2.8 · 106 1.

4.2.2 Life Cycle Costs

To determine the life cycle costs of the architectures, the discount rate r used and

the lifetime of the systems considered need to be known. The Iridium constellation

was originally designed with a 10 years lifetime. Tsys will thus be set to 10 years.

Setting the discount rate to a particular value is not interesting since its value is

going to be changed several time to study its influence on optimal solutions. The most

important part of the life cycle costs for a fixed architecture is the initial development

costs. Those costs are discounted at the same time and in the same manner for all

architectures given a discount rate. Consequently, if an architecture is more expensive

than another for a given discount rate, it will still be more expensive for any other

value of r. The architectures, when considered fixed, can thus be compared using

any value of r. So, to determine the best optimal architecture, the trade space is

generated by setting r to a particular value.

1The targeted capacity is not set exactly to 3.013 · 106 to take into account architectures with a
capacity close from this number but with a lower capacity.
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4.2.3 Trade Space

To represent the trade space and calculate the life cycle costs, r is set to zero. The

trade space obtained has been represented in Figure 4-1. A vertical line represents the

capacity targeted Capmax and from there the optimal traditional architecture xtrad

is identified. xtrad is represented in a square. Its capacity is Cap(xtrad) = 2.82 · 106

and its life cycle cost is LCC(xtrad) = 2.03 $B for r = 0. According to Lutz, Werner
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Figure 4-1: Position of the Iridium constellation and the optimal traditional archi-
tecture xtrad for Capmax = 2.8 · 106.

and Jahn [LWJ00], the total cost of the Iridium constellation was estimated at $B5.7.

For this value of LCC, the Iridium constellations has been represented in the trade

space. The characteristics of xtrad and Iridium are also given in this figure.

This particular design will be compared to the staged deployment strategy. To

achieve the necessary optimization, as explained in Chapter 3, certain parameters

need to be defined. The next section explains how the influence of those parameters

on the economic opportunity have been studied.
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4.3 Determination of a Best Path and Parameter

Study

4.3.1 Parameters Selected

To achieve the optimization, r needs to be set and a binomial tree has to be gen-

erated. To study the influence of r, this parameter will be set to several different

values. For the binomial tree, the time step ∆t is set to 2 years. Consequently, de-

cisions concerning the deployment of the constellation will be taken every two years.

Moreover, the expected increase in demand per time unit µ is assumed constant. It

is set to µ = 20% per year. The remaining parameters that need to be set are the

initial demand Dinitial and the volatility of demand σ. The influence of σ will also be

studied so this parameter will take several different values. The Iridium constellation

only had 50000 subscribers after almost one year of service (see Table 1.1). This

value will be considered for Dinitial. Also, the initial architectures are constrained to

deliver a capacity at least equal to the initial demand. So Capmin = Dinitial. Table 4.1

summarizes the different constant values that were have assigned to the parameters

for the case study.

Parameter Value Unit
US 10 %
Auser 125 min/month
Capmax 2.8 millions of subscribers
Tsys 10 years
∆t 2 years
µ 20 %
Capmin 50000 subscribers
Dinitial 50000 subscribers

Table 4.1: Values of the fixed parameters.

4.3.2 Value of Flexibility

The parameter study will consider the value of flexibility. This value of flexibility can a

priori be defined as the discounted money saved compared to the traditional approach
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that is to say the difference between the life cycle cost of xtrad with the average life

cycle cost of the optimal path path?. This difference has been represented in Figure

4-2. However, for different values of the discount rate r or for different methods to

estimate the life cycle costs, this value may change. To achieve the parameter study

concerning the discount rate or the volatility, it is thus necessary to scale this value

with respect to the life cycle cost of the traditional design. Consequently, the value

of flexibility will now designate the percentage of money saved with respect to the

traditional approach:

V alue =
LCC(xtrad)− LCC(path?)

LCC(xtrad)
(4.1)

With this definition of the value of flexibility, the parameter study can now be done.
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Figure 4-2: Difference between the life cycle cost of the optimal traditional design
xtrad and the average life cycle cost of the optimal path path?.
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4.3.3 Discount Rate r

To study the parameter of a solution with respect to the discount rate, the volatility

is set to σ = 70%. For this value, the binomial tree obtained is represented in Figure

4-3. σ directly affects the span of the binomial tree. For values of σ smaller than

70%, the maximum demand that can be attained is smaller than Capmax and the

probability to have a demand higher than the one targeted is equal to zero. That

is why σ is set to this particular value. In the next section, when different values

of σ are studied, it will be shown how the fact that the targeted capacity cannot be

reached affects the value of flexibility.
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Figure 4-3: Binomial tree for Dinitial = 5.104, σ = 70% and µ = 20%.

To study the influence of the discount rate on the economic opportunity of staged

deployment, an optimization is run over the paths of architectures for values of r

ranging from 0% to 100% with a step of 5%. For each value of the discount rate,

the optimal path is obtained and the value of flexibility associated to it. The results

obtained are presented in Figure 4-4. It can be seen that the value of flexibility

increases with the discount rate. The reason is that the higher r is, the less expensive

a reconfiguration appears in terms of net present value and the more valuable it

108



15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

���������	�
���

��
�
��
�
�
��
�
��
��
��
�
�
�
��

Figure 4-4: Value of flexibility in % of money saved with respect to r.

is. This is the first mechanism that justifies the value of flexibility. For a discount

rate equal to zero, the staged deployment strategy still presents an economic value.

The reason is that average life cycle costs are considered. Consequently, for certain

demand scenarios, a reconfiguration may not be necessary and the life cycle costs

correspond to the one of the initial architecture that are smaller than the life cycle

cost of the traditional architecture. However, even though the average life cycle cost

considered are smaller than LCC(xtrad), the final life cycle cost may be higher for

certain demand scenarios. This does not imply that flexibility has no value in this

case. Indeed, the framework considers a worst case scenario for staged deployment

that is to say that adaptation to demand is done when possible. In reality, the decision

of increasing the capacity depends on other factors, in particular the availability of

money to achieve the evolution. Consequently, even though the staged deployment

solution could reveal more expensive for a discount rate of 0% and important increase

in demand, it should be kept in mind that the decision to deploy the next architecture

belongs to the managers and is not an automatic process. Another comment that

needs to be done about this figure is that the value of flexibility can be over 30% which

is a significant value. Moreover, it is on the average which means that for situations
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where demand does not grow, the economic risk is lowered at least by 30%. For high

discount rates, the curve flattens out. Indeed, even though the value of flexibility

increases with the discount rate, it cannot go over a certain limit. Indeed, since the

architectures considered are constrained to provide an initial capacity at least equal

to Capmin = Dinitial, the life cycle costs of the paths will always be greater or equal to

the life cycle cost of the Pareto optimal architecture that provides a capacity greater

than Dinitial. Consequently, there is an asymptotic value for flexibility.

The optimal path to consider depends directly on the discount rate. When r

ranges from 0% to 100%, five different paths are obtained. Path 1 is optimal when

r = 0%; Path 2 is optimal when r = 5%; Path 3 is optimal when 10% ≤ r ≤ 30%;

Path 4 is optimal for r = 35%; Path 5 is optimal when 40% ≤ r ≤ 100%. Their

position in the trade space with respect to Dinitial and Capmax has been represented

in Figure 4-5. The number of evolutions in a path increases with the discount rate.

As explained previously, the higher the discount rate is, the less expensive a recon-

figuration will be in terms of present value. Having the possibility to achieve many

reconfiguration allows a more precise adaptation to demand and reduces the overall

costs if reconfiguration are not too epxensive. For instance, Path 2 and Path 3 have

the same initial and final architectures but, since Path 3 has more architectures than

Path 2, it can adapt to demand with a higher precision.

From those five paths, it can also be observed that the capacity of the initial

architecture of an optimal path decreases with the discount rate. The reason is that

reconfigurations are more discounted when they occur late in time. If the initial ca-

pacity is low, the need for a reconfiguration may occur early after the initial start

of service. If the discount rate is low, this reconfiguration will be expensive. Con-

sequently, when r is low, the reconfiguration should occur as late as possible. If the

initial architecture has a high capacity, the demand will have to grow significantly

before getting over this capacity thus delaying the need for a reconfiguration. On the

other hand, if the discount rate is high, reconfiguration do not seem too expensive

and the best way to lower the life cycle costs is to lower the initial development costs

as much as possible. That is why an initial capacity with a low capacity should be
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sought when r is large.

The ideal case for staged deployment would be to follow the Pareto front when

increasing the capacity. However, because of the particular decomposition of the trade

space into families and the technical or physical limitations that drive the evolution

rules, it cannot generally be done. The optimal paths that are obtained sometimes

have architectures on the Pareto front but they do not perfectly follow it. The staged

deployment strategy does not look for architectures that are Pareto optimal anymore

but for architectures that provide the maximum flexibility in an affordable manner.

Consequently, some paths may have an initial architecture that is off the Pareto front,

such as path 2 or 3.
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So far, the value of the paths were considered when they are optimal. Comparing
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the values of the different paths for the range of r considered could reveal paths

that are robust with respect to variations in r. The life cycle costs of the different

paths obtained with the parameter study with respect to the discount rate have been

represented in Figure 4-6. The life cycle costs of xtrad have been represented too.

LCC(xtrad) decreases slowly as r increases. This is because the most important part

of the expenses for fixed architectures corresponds or initial investment which are not

discounted since they occur early in time. Path 1 consists only of two architectures,

consequently, the effect of the discount rate on its life cycle cost is not important.

Paths 4 and 5 can lead to very low life cycle costs but for low values of r, they do not

present any economic opportunity. Finally, paths 2 and 3, even though they are not

always optimal, always present an important economic value for any given discount

rate. Consequently, it is possible to find a path that presents an opportunity for

any discount rate when the volatility, σ, is fixed. Figure 4-6 also reveals the crossover

points between paths. Given the fact that 10% ≥ r ≤ 50% for these types of projects,

Path 3 seems to be the most interesting.
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4.3.4 Volatility σ

To study the parameter of the optimal paths to volatility, a discount rate r = 25%

was used. The binomial representation sets constraints on the values that σ can take.

In the binomial tree, the probability of going up is given by Equation (2.12). This

probability of going up cannot be smaller than zero or greater than one. The first

case cannot occur but the second can. To prevent that, the following equations have

to be verified:

eµ∆t−d
u−d

≤ 1 (4.2)

⇔ eµ∆t ≤ u (4.3)

⇔ eµ∆t ≤ eσ
√

∆t (4.4)

⇔ µ
√

∆t ≤ σ (4.5)

Consequently, σ needs to be greater or equal to µ
√

∆t. In the present case, µ = 20%

and ∆t = 2 years so σ needs to be greater or equal to 0.2×√2 = 0.2828. The values

that will be considered for σ will range from 0.3 to 1.5.

The value of staged deployment as a function of σ has been represented in Figure

4-7. The value of flexibility is always higher than 30%. Everytime a volatility is
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Figure 4-7: Value of flexibility with respect to σ when r = 25%.

considered, a new binomial tree has to be generated with associated demand scenarios.
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For values of volatility smaller than 70%, the value of flexibility tends to decrease as

volatility is increased which is initially counter-intuitive. As explained in the previous

section, the span of the different binomial trees generated is lowered when σ gets

smaller and demand does not reach Capmax in any of the scenarios if σ < 70%.

Having the capability to reach Capmax will not present much value for those cases

since this case will never occur. However, the paths considered are constrained to

ultimately provide this capacity if necessary. Consequently, when σ is smaller than

70%, the capacity that is targeted is not relevant since it is never attained. The

value of flexibility being measured with respect to it, the results obtained are relevant

either. When σ is higher than 70%, the scenarios reach important levels of demand

and in particular, in many of the scenarios, the demand gets over Capmax. It can be

seen that the value of flexibility increases with volatility. The value of flexibility thus

increases with uncertainty in future demand.

Six different optimal paths are obtained when σ is changed. Their position in

the trade space has been represented in Figure 4-8. For values of σ greater than

70%, as volatility increases, the capacity of the initial architecture decreases. The

reason is that the probability of going up, p, decreases as σ increases when µ is

fixed. Consequently, the probability of the optimistic scenarios decreases and the

best strategy is to start with a capacity as small as possible. The life cycle costs of

the optimal paths with respect to σ have been represented in Figure 4-9. It is more

difficult in this case to find a path of architecture that offers an interesting value for

any level of volatility. However, paths such as paths B and D are almost optimal for

any value of σ and could be good candidates. When studying the parameter of the

paths with respect to r, a path that offered an interesting value for all r was identified,

Path 3. This path is path C in this case. Even though this path is not optimal, it

always provides the same value for any level of volatility but is not as interesting as

paths B or D. It is thus difficult to find a path that will present value for any values

of r and σ and, in order to achieve such choice, an idea of the ranges of those two

parameters will be necessary.
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4.3.5 Other Parameters

The influence of Dinitial and µ has not been studied in details. However, a few

comments can a priori be made about those parameters. It was shown that the value

of flexibility is limited when a minimum capacity Capmin is set for the system. If

this capacity is constrained to be equal to Dinitial, the value of flexibility will then be

limited by Dinitial. The higher this parameter is, the lower the value of flexibility is.

Indeed, as Dinitial gets closer to Capmax, the staged deployment solution does not seem

relevant since the actual demand is significant at the beginning of the service. The

parameter µ does not affect the span of the binomial tree. Indeed, from Equations

(2.11), (2.12) and (2.12) it can be seen that it only affects p. As µ increases, the

probability of going up increases too. This parameter thus represents the confidence

in the future of the decision makers. Very high values of µ will imply that decision

makers consider that the demand will grow with a high probability. Consequently,

flexibility will not present value since the future is considered well known.

Setting Dinitial or µ to high values lowers the value of flexibility. However, doing

that is equivalent to considering that the capacity targeted will be reached with a high

probability. Consequently, it is equivalent to considering that there is no uncertainty

in future demand which is not the case. That is why the influence of these parameters

have not been studied much further.
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4.4 Conclusions

This case study revealed that staged deployment presents an important economic

opportunity since decreases in the life cycle costs between 20% and 45% are ob-

tained. This implies that staged deployment can lower the effective Pareto frontier:

the expected life cycle costs of the paths of architectures are lower than the fixed

architectures even though they can provide the same capacity. As explained, this

strategy also reduces the economic risk associated with the deployment of a large

capacity systems. This improvement in the life cycle cost should motivate designers

to think about the trade space differently. First, the architectures may not be always

considered fixed. Then, as noticed in this case study, the best architectures for staged

deployment are not necessarily the ones on the Pareto front but the one that give the

maximum flexibility in the future capacity.

The flexibility that evolutions provide to architectures has a price because it needs

to be technically embedded. So far, the value of this flexibility has not been taken into

account. This solution is relevant if and only if its cost appears to be lower than its a

priori value. Chapter 5 proposes a framework to study the problem of reconfiguration

and estimate the costs of the reconfiguration process.
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Chapter 5

Orbital Reconfiguration of

Constellations

The previous chapters revealed the economic opportunity orbital reconfiguration rep-

resents for LEO constellations of communications satellites. For this opportunity to

be valid, it would be interesting to see if the price to pay for flexibility is smaller than

the maximum price one should be willing to pay for it, i.e. on the order of 20-45% of

the LCC of a fixed architecture. Therefore, the technical ways to embed this flexibil-

ity need to be stuied in detail in order to estimate the extra costs associated with it.

This chapter proposes a general method to study orbital reconfiguration. Two ways

of embedding flexibility and the associated frameworks to study them are proposed.

Finally, the end of the chapter presents several issues that will need to be assessed in

future works.

5.1 Problem Definition

5.1.1 Reconfiguration

In orbital mechanics, at a given time, the movement of a spacecraft in an elliptic orbit

is defined by its six orbital elements: Ω, ω0,i, a0, e0 and ν0. They are presented in

Appendix B. Therefore, a constellation could be described by giving at a certain time
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(Epoch) the orbital elements of each of its satellites. Those positions of the satellites

will be called “slots”1. A reconfiguration is the set of orbital maneuvers to evolve from

a constellation A to a constellation B. If the number of satellites is Nsats(A) for A and

Nsats(B) for B, since the evolutions considered only increase capacity, the number of

satellites in B should be higher than in A: Nsats(B) > Nsats(A). A reconfiguration

will thus consist of two types of maneuvers:

• The orbital transfer of Nsats(A) on-orbit satellites to slots of constellation B.

• The launch of Nsats(B)−Nsats(A) satellites to occupy the remaining slots of B.

A conceptual representation of those maneuvers is given in Figure 5-1.

Nsats(A)

satellites

Constellation A Constellation B

orbital

 transfer

launch

Nsats(B) - Nsats(A)

satellites on the ground

Nsats(B)

satellites

�

Figure 5-1: Conceptual representation of the reconfiguration maneuvers to evolve
from constellation A to constellation B.

In Chapter 3, a cost associated with the launch of additional satellites was taken

into account. However, the cost to achieve the orbital transfer of on-orbit satellites

was not considered. To do so, different technical ways to achieve those transfers

need to be studied and priced. The most important problem with reconfiguration is

that the number of possible transfers is large. Some transfers are more efficient than

1A slot for each spare satellites can be taken into account.
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others in terms of time or energy so those transfers have to be optimized. The next

subsection introduces the main issues related to this optimization.

5.1.2 Orbital Transfer Optimization Problem

To study a reconfiguration process in detail, many orbital transfers have to be con-

sidered for two reasons. First, since a reconfiguration from constellation A to con-

stellation B consists in ranking a total of Nsats(B) satellites that are initially on the

ground or on-orbit in Nsats(B) orbital slots, the number of possible reconfigurations

that exist for an evolution is (Nsats(B))!. Then, to move a satellite to an orbital

slot, there exists many different ways to achieve the transfer. Indeed, many different

propulsion systems could be used that do not allow the same types of trajectories.

Moreover, the transfer itself can be done by changing all the orbital parameters at the

same time or by changing them in a certain order one by one. All those transfers need

to be considered because the cost associated with the reconfiguration depends on the

ones selected. Indeed, an orbital transfer can be characterized by two parameters.

The first one is the time of the transfer Ttransfer and the second one is the energy that

needs to be provided. The exact energy to achieve the transfer requires a knowledge

of the mass of the spacecraft considered which may be difficult to obtain. A more

convenient way to compare transfers in terms of energy consists in computing the

changes of velocities that needs to be done. The changes of velocity are independent

of the mass of the spacecraft but, from them and a good knowledge of the propulsion

system used, the necessary mass of fuel to achieve the transfer can be obtained . This

metric is called the ∆V of the transfer. Ttransfer and ∆V will directly affect the cost

for the transfer. Indeed, if the time of transfer is too long, the satellite will not pro-

vide service for a long time which may result in direct loss of revenues corresponding

to outage costs. Moreover, if the ∆V of the transfer is too large, a lot of fuel will

have to be provided to satellites which will represent an extra cost.

The problem considered is thus an optimization problem where the constraints

and objectives depend on ∆V and Ttransfer and the variables are the different trans-

fers that are available. Reconfiguration need to be modeled in a manner flexible
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enough to take into account different ways to achieve transfers as well as different

objectives. Indeed, a military mission and a commercial mission will not have the

same requirements concerning reconfiguration and their objectives will differ. The

next sections will present the framework proposed to study reconfiguration and how

it solves the problems that were discussed.

5.2 Constellation Reconfiguration Model

5.2.1 Orbital Slots

As explained previously, an orbital slot in a constellation is defined by 6 orbital ele-

ments (a0, e0, i, Ω, ω0, ν0) and the time t at which they are considered. It is important

to understand the role of each one of those elements to study reconfiguration. The in-

clination of the orbit with respect to the equator i and the longitude of the ascending

node Ω define the orbital plane in which the satellite evolves. In a constellation pro-

viding global coverage, the satellites are equally distributed in several orbital planes.

The eccentricity e0 and the semi-major axis a0 define the characteristics of the ellip-

tical orbit of the satellite. The argument of perigee ω0 describes the position of the

perigee of the ellipse on the orbital plane and thus gives the orientation of the ellipse

in the orbital plane. Finally, the true anomaly ν0 gives the position of the satellite on

the ellipse with respect to the perigee at the time considered. When circular orbits

are considered, a0 and e0 take particular values: e0 = 0 and a0 = REarth + a where

REarth is the mean radius of the Earth and a the altitude of the orbit. Moreover, it

is impossible to define a perigee because all the points on the orbit have the same

altitude. ω0 and ν0 cannot be defined anymore and are replaced by the argument

of latitude θ which represents the angle between the position of the satellite and the

line of nodes. Consequently, circular orbits simplify the representation of orbital slots

and only 4 orbital elements need to be known at a given time. Those elements are

the altitude a, the argument of latitude θ, the inclination i and the longitude of the

ascending node Ω (RAAN). They have been represented in Figure 5-2.
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Figure 5-2: Physical meaning of a, i, θ and Ω.

A transfer for a reconfiguration will consist in changing those 4 parameters for a

satellite. Since a transfer takes a certain time Ttransfer, as a satellite is transfered to

a particular slot, this orbital slot moves. To know Ttransfer, the exact location of the

orbital slot needs to be known but, to know the position of this slot, Ttransfer also

needs to be known. Consequently, to determine the times of transfer, an algorithm

may have to be created adding several iterations to the process. This difficulty can

be avoided by splitting the transfer into two steps. The first step consists in changing

i, Ω and a to put the satellite on the same orbit as the orbital slot. After this first

step, the slot and the spacecraft may have different arguments of latitude θ. A second

step consists in moving the spacecraft to the orbital slot (phasing). This rendezvous

maneuver can be done efficiently with respect to time or ∆V . In the case of chemical

propulsion, particular orbits called sub-synchronous and super-synchronous orbits
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offer a range of different possible transfers. In particular, given a maximum time for

the rendezvous (respectively a maximum ∆V ), it is possible to find the maneuver with

minimum ∆V (respectively Ttransfer) that is independent on the relative position of

the spacecraft with respect to the orbital slot. Those orbits are presented in Appendix

C. Consequently, given this maximum time of transfer or ∆V , the transfer can be

seen as a change of orbital plane to which a time or ∆V penalty is added for phasing.

A reconfiguration now consists of transfers from orbital planes to orbital planes

with possible changes of altitudes. Additional time and ∆V penalties to achieve a final

rendezvous will have to be taken into account but those are easier to estimate than the

exact time of transfer. Moreover, those penalties are the same for all transfers since

they only depend on the characteristics of the final constellation. The next subsection

describes how this decomposition of transfers can be used to find an optimal way to

maneuver satellites to their final orbital slots.

5.2.2 Assignment Problem

The reconfiguration problem now consists in transferring and launching satellites to

fill orbital planes that have a given number of orbital slots. An analogy can be

done between this problem and a classic network flow problem called the assignment

problem (see [BT97]). The assignment problem considers n projects proj1, proj2,...,

projn, and n contractors cont1, cont2,...,contn. The contractors are interested in

obtaining a single project. For each project projj there is a reward pj associated with

running the project. But, for any contractor contk, there is a cost ckj associated with

accepting project projj so that the net profit is pj − ckj. To represent this problem

as an assignment problem, a node is created for each contractor and each project. n

arcs leave each one of the contractors nodes to connect them to the projects. The

cost associated with the arc leaving contk and going to project projj is ckj. The

network flow obtained is represented in Figure 5-3. The assignment problem looks

for an assignment of projects to contractors that will maximize the global profit. The

reconfiguration problem can be seen as an assignment problem where the satellites are

the contractors and the projects the orbital slots. An assignment will thus correspond
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Figure 5-3: Network flow representation of the assignment problem.

to an orbital transfer. The cost of this assignment will be the objective designers want

to optimize. To complete the analogy with the assignment problem, it can be assumed

that the slots are equivalent and that their reward is zero.

Representing reconfigurations as an assignment problem gives the flexibility to

change the objectives with respect to designers priorities. However, for the particular

case of LEO constellations of communications satellites, the costs of the transfers

should be represented by ∆V for two reasons. The first one is that reducing ∆V is

one of the goals since it will eventually reduce the costs for reconfigurations. The

second reason is that taking into account the times of transfer will not represent

correctly the total time for reconfiguration. Indeed, since many transfers can be

done at the same time, the sum of the times of transfer may be different from the

total time necessary for the reconfiguration. A good way to take into account time

in the assignment problem is by adding a constraint. A maximum time needs to

be set for individual transfers and only transfers that are below this time limit are

allowed to appear as arcs between the satellites and the slots. A limit on ∆V can

actually be added too by removing arcs whom ∆V is over a particular value thus
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forbidding the considered transfer 2. From now on, the reconfiguration problem will

be modeled as an assignment problem where the costs are the ∆V of the transfers.

For other cases of reconfiguration, an adapted cost function can of course be created.

The network flow obtained in the case of reconfiguration is represented in Figure

5-4. This representation takes into account the launched satellites and the on-orbit

satellites at the same time.

Constellation A Constellation B

on-orbit

satellites

N(A)

N(A)+1

N(B)

1 1

N(B)

launched

satellites

orbital

slots

∆

���

Figure 5-4: Network flow for a reconfiguration between constellation A with N(A)
satellites and constellation B with N(B) satellites.

One of the main interests of the representation proposed is that there exist efficient

algorithms to determine the best assignment. One of the easiest one to compute is the

auction algorithm that is presented in [BT97]. This algorithm develops an auction

process during which the contractors bid for the projects that appear best for them

until all the contractors are assigned a project. The speed of this algorithm depends

on the number of projects and contractors n but also on the value of the highest cost

for a project cmax. The overall complexity of the algorithm is polynomial since it runs

in time O(n4cmax).

2To discard an arc from a network flow problem without having to remove it, its cost has to be
set to a very high value. This way, this arc will never be used because it is too expensive.
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The assignment problem allows an optimization of the reconfiguration with respect

to ∆V without having to consider all the existing transfers. It also divides the problem

into two parts. First, the ∆V for each possible transfer needs to be studied and

compared with certain time or energy constraints. Then, given the best transfers for

all the satellites, the assignment problem is solved. To complete this study of the

reconfiguration process, the way to determine the ∆V and time of orbital transfers

thus needs to be known. This is a difficult problem to solve because transfers can be

achieved in many different ways. Moreover, the value of ∆V will differ from on-orbit

satellites and launched satellites in the way it is calculated. The next subsection

discusses the different problems that need to be addressed to study orbital transfers.

5.2.3 Orbital Transfers

On-orbit Satellites

The transfers considered for on-orbit satellites consist in changing i, Ω and a if there is

an altitude change in the evolution. There exist several ways to achieve those transfers

because many different trajectories can be taken into account but also because the

necessary energy can be provided in different ways. This subsection proposes to

discuss the problems that need to be solved to study the characteristics of orbital

transfers and exposes the different existing trade-offs.

It is essential to consider all propulsion systems in order to see the possible tech-

nical ways to achieve reconfiguration. In particular, chemical propulsion and electric

propulsion should be compared. Chemical propulsion allows fast transfers but re-

quires a lot of fuel in terms of mass. On the other hand, electric propulsion does not

need a lot of fuel to achieve the same transfer but is very slow and requires a lot of

electrical power. Those two types of propulsion systems should be compared sepa-

rately because the equations for transfer that they use are different. In the case of

chemical propulsion where the impulse given to the spacecrafts are considered instan-

taneous, the equations giving ∆V and Ttransfer are well known. They can be found in

books such as [WL99] or [BMW71]. For electric propulsion, numerical models need
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to be developed because the thrust that is applied to the spacecraft is continuous.

For each propulsion system considered, different trajectories have to be studied

for the transfers. The order in which the orbital elements are changed dramatically

affects ∆V and Ttransfer for a given transfer. Considering all the trajectories possible

for a given transfer can represent a lot of computations. However, some principles may

provide only relevant cases. To derive those principles, it is necessary to understand

how to change the orbital parameters. Battin [Bat99] gives general equations relating

the rate of change of i and Ω with the disturbing acceleration applied to the spacecraft

~ad.Those equations were adapted for the particular case of circular orbits:

dΩ

dt
=

√
a + REarth sin θ√
G ·MEarth sin i

~ad · ~ih (5.1)

di

dt
=

√
a + REarth cos θ√

G ·MEarth

~ad · ~ih (5.2)

G is the Newtonian constant of gravitation G and MEarth the mass of the Earth. ~ih

is a unit vector orthogonal to the orbital plane of the orbit and oriented in the same

direction as the massless angular momentum of the spacecraft ~h. Some conclusions

concerning the changes of planes can be done from those two equations. The disturb-

ing acceleration is the most efficient when the scalar product of ~ad with ~ih is maximal

that is to say when ~ad is orthogonal to the orbital plane. To affect i or Ω part of

the acceleration has to be applied orthogonally. From Equation (5.1), it can be seen

that both i and a play a role in the change of the longitude of the ascending node.

The more the plane is inclined, the more acceleration will have to be given to the

spacecraft. Moreover, the greater a is, the easier it is to change Ω. The worst-case

will thus correspond to LEO satellites with polar orbits for which i=90 deg which is

the case studied. That is why Ω needs to be changed in the most efficient manner. If

i and Ω have to be changed in a transfer, Ω should be changed when the inclination

is the smallest to minimize the necessary ∆V for the transfer. Moreover, if a has to

be changed too, Ω has to be changed when a is the highest. Equation (5.2) brings

the same type of conclusions for i. Changes in i will only depend on a and should be

done only when a is the highest possible. These conclusions already give principles
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concerning the order in which i, a and Ω have to be changed. However, another effect

could be taken into account to reduce ∆V . Earth’s oblateness induces a force on

satellites. If the first order effect of this force is considered, it is called the J2 effect.

In particular, Ω drifts with time if no corrections are done to the orbit of a satellite.

The average variation of Ω in degrees per days for circular orbits is given by [Bat99]:

dΩ

dt
= −9.96

(
REarth

REarth + a

)3.5

cos i (5.3)

For polar orbits the J2 effect does not have any effect but for lower inclinations, Ω

can be changed without propellant. However, this effect is slow for LEO satellites. If

a=1000 km and i=85 deg for instance, the rate of change is dΩ
dt

=-0.5214 degrees/day.

A change of 90 deg will thus take about 6 months with the J2 effect. But, even if

this effect is slow, it does not cost anything in terms of ∆V which can be a great

advantage.

To calculate the cost of the different transfers, a module has to be created. Given

the initial and final orbital planes, time and ∆V constraints and the type of propulsion

system used, this module should provide the optimal transfer possible by exploring

the different possibilities exposed. The basic principles presented can reduce the

number of cases to consider.

Launched Satellites

The additional satellites are launched from the ground in this model to achieve the

evolution. Even though the assignment problem gathers those launched satellites and

the on-orbit satellites in the same framework, both maneuvers need to be considered

differently. In particular, a time of transfer for launched vehicles cannot be defined

and the necessary ∆V to put the satellites in orbit is mainly provided by launch

vehicles. This subsection will see how those problems can be addressed.

With launched satellites, the time to launch all the satellites is considered rather

than the transfer time. This time depends on the launch vehicles that are used and on

the strategy used to launch satellites. It is very difficult to estimate it precisely and
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an estimation can be sufficient. Indeed, this time is a limiting factor for the recon-

figuration because there is no need to transfer the on-orbit satellites if the launched

satellites are not already put into orbit. If the on-orbit satellites were transfered

before the additional satellites are launched, the service would be disrupted for a

long time. Moreover, launching the additional satellites before transferring any of the

on-orbit satellites reduces the risk of failure for the reconfiguration because the main

risk is that a launch fails. So, it is not necessary to consider the time that it takes to

launch a satellite but the time to launch all of them should be estimated to know the

delay between the actual beginning of service of the new constellation and the time

the decision to evolve is taken. Those estimations could be based on actual cases.

For example, it took 2 years and 2 months for Iridium to launch 66 satellites plus 6

spares.

A launch vehicle can generally put several satellites at the same time in the same

orbital plane. The necessary ∆V to achieve this transfer is 0 for the satellites because

the launch vehicle maneuvers the satellites. Consequently, as a first approximation, in

the assignment problem, the arcs leaving the nodes of on the ground satellites should

have a ∆V equal to zero. However, this would be true if the assignment problem

and the launch strategy perfectly matched that is to say if all the satellites in each

launch vehicles were assigned to the same orbital planes. This may not always be

the case. Different ways to take this problem into account are proposed in the nest

paragraphs. For this, one needs to understand how the simulator determines the

number of satellites that are carried by launch vehicles.

To know how many launch vehicles will be necessary to deploy the additional

satellites, the simulator considers a database of launch vehicles. For each of them,

given the mass and volume of the satellites, it estimates the number of launch vehicles

that will be necessary and the associated cost. The launch vehicle that provides the

lower cost is considered to be the only vehicle that will be used for the launch of the

additional satellites 3. If there are Nground satellites to launch and if the best solution

3To take into account different properties of the launch vehicles, other methods can be used such
as the one proposed by Jilla [Jil02].
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proposes a vehicle that can carry Nfull satellites, Nground can be decomposed in the

following way:

Nground = Nfullk + r, 0 ≤ r < Nfull (5.4)

k and r are integers. If r = 0, exactly k launch vehicles will be necessary to achieve

the transfer and all the launch vehicles will be full. If r 6= 0, k launch vehicles that

will be full plus a vehicle carrying r satellites will be necessary. As explained, the

problem that may arise is that the assignment problem does not assign a multiple of

Nfull additional satellites in each orbital plane.

To illustrate this problem and the solutions proposed, a simple example is used.

Consider an evolution from constellation A with 24 satellites to constellation B that

contains 35 satellites divided into 5 orbital planes. Each orbital plane contains 7

satellites. The assignment problem is solved for a given propulsion system and con-

straints assuming initially that the ∆V associated with launched satellites is zero.

The assignment obtained proposes to launch a certain number of additional satellites

in particular planes. The distribution obtained is represented in Figure 5-5. 11 satel-

lites need to be launched and the simulator proposes to use a launch vehicle with a

maximum capacity Nfull of 4 satellites per vehicle. Consequently, in this case, 2 vehi-

cles are necessary with 4 satellites in them and a launch vehicle with only 3 satellites.

This last vehicle can be used to fill the third orbital plane and another vehicle can

start filling the first plane. But, the last vehicle can only place satellites in one orbital

plane and satellites are needed in the first, second and fourth plane. Three ways to

solve this type of problem are proposed and illustrated with the example that has

been introduced.

A first approach would be to change the way the launch strategy is obtained.

Instead of looking for a single type of launch vehicle to launch the Nfull satellites, a

best vehicle is sought for each one of the orbital planes. For the example, this means

that a best launch vehicle to launch 5 satellites in the first orbital plane will be sought.

Then a best vehicle to launch two satellites in the second orbital plane will be sought

and so on. This approach may increase the launch costs but the satellites will be
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Figure 5-5: Optimal assignment of the launched and transferred satellites in the
orbital planes.

launched directly to the correct orbital plane and the assignment solution will not

have to be modified. Another advantage is that the module used to find the launch

strategy can still be used. But, instead of using it once, it will be used once for each

orbital plane where additional satellites need to be launched. This approach gives

a priority to the on-orbit satellites and does not imply any penalty on the launched

satellites in terms of ∆V . The only drawback is that it may lead to a launch strategy

that is not optimal, thus increasing the launch costs.

A second approach can be to launch the satellites respecting the launch strategy

and move the satellites to different orbital planes if necessary. For instance, a launch

vehicle could launch 4 satellites in the first plane, a second 4 satellites in the second

plane and a last three satellites in the third plane. Then two satellites of the second

plane are transferred, one to the first plane and the other to the fourth (see Figure

5-6). This strategy respects the optimal launch strategy and the on-orbit satellites

assignment. But, it will imply a penalty on the launched satellites in terms of ∆V .

However, an optimization needs to be carried out to minimize the total ∆V of the
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additional transfers. For this, all the possible ways to assign the orbital planes to the

launch vehicles need to be studied which can represent a lot of cases.
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Figure 5-6: Example of a launch strategy for the second approach.

A last approach consists in respecting the launch strategy and change the optimal

assignment. This implies that orbital slots are reserved for the launched satellites

so that all the satellites of a vehicle can be in the same orbital plane. The on-orbit

satellites are thus denied the access to particular slots. To do that the assignment

problem needs to be modified by removing the arcs coming from on-orbit satellites

going to the reserved orbital slots. For instance, in the example, 4 slots in the first

plane could be reserved as well as 4 slots in the second plane and 3 in the third plane

to respect the launch strategy. This approach will imply that the assignment is solved

twice. A first time to see how the satellites are optimally assigned and a second time

after the slots are reserved. However, a best way to reserve the slots needs to be

found. This may be difficult to compute because many cases need to be considered.

Moreover, this approach will add an extra ∆V to on-orbit satellites because some of

them will have to be transferred to slots in a non-optimal manner.

With all those considerations, a module can be created to provide a final as-
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signment and the ∆V associated with each satellites. To know the cost to embed

flexibility, the technical way to provide ∆V to the satellites needs to be known. The

next section provides a method to study to different technical possibilities based on

the model.

5.3 Technical Solutions

This section will propose two technical opportunities to achieve reconfiguration and

proposes a method to derive their costs. The technical solutions that are sought

should allow maneuvers of the satellites after their initial deployment, sometimes

several times. There are two ways to do that. The satellites can move using their

own propulsion system or can be moved by another spacecraft. In the first case, the

extra cost comes from the fact that satellites will need to carry more fuel. Their

masses will thus be increased and more launch vehicles may have to be used. For the

second solution, the cost is associated with the spacecraft that will move the satellites.

Such spacecrafts are called space tugs. If the space tug is a service provided by another

company, there is a price associated with it that needs to be taken into account. A

third solution could be imagined that uses aspects from those two approaches. Indeed,

the satellites could be designed to be “refuelable”. A fuel servicer is then needed to

provide the extra fuel for reconfiguration to the satellites before evolutions. This

section presents how the first two solutions can be studied but does not consider the

intermediate solution.

5.3.1 Additional Propellant

From the assignment problem, the necessary ∆V associated with each satellite for

transfers can be obtained. This ∆V has to be linked to the necessary mass of fuel

to add to each satellites. The relationship between the mass of a spacecraft, the

propulsion system used and ∆V is given by the rocket equation that can take two
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forms:

Mp = Mf

[
e(∆V /Isp·G) − 1

]
(5.5)

Mp = M0

[
1− e(−∆V /Isp·G)

]
(5.6)

In those equations, Mp is the necessary mass of propellant for the considered transfer,

M0 is the mass of the satellite before the transfer, Mf the final mass of the satellite

and Isp is the specific impulse of the propellant used. The specific impulse is a mea-

sure of the energy content of the propellant and how efficiently it can be converted

into thrust. The specific impulse has the dimension of a time. The higher the spe-

cific impulse is, the less mass of propellant is necessary for a given transfer. With

electric propulsion, Isp’s between 300s and 3000s can be obtained whereas chemical

propulsion will provide Isp’s on the order of 250s. Consequently, even though electric

propulsion is slow because small thrust levels imply small accelerations, it can reduce

the mass of fuel to carry compared to a chemical propulsion system.

The rocket equation shows that, to know the necessary mass of propellant for a

transfer, the initial or the final mass of the spacecraft considered need to be known.

The simulator gives the mass of the satellites without any flexibility. This mass

should be the same as the final mass of the satellite after it has gone through all the

necessary evolutions. Consider a path of architectures (i1, . . . , in) and suppose the

different assignment problems were solved for each one of the evolutions. For each

one of the satellites of the last constellation in, the ∆V that has been necessary to

go through all the evolutions is known. With the rocket equation and assuming that

the final mass of the satellites should be equal to the original mass of the satellites

obtained with the simulator, the mass of propellant for each one of the satellites can

be found. Adding this mass Mp to the final mass of the satellites Mf , the initial mass

of the satellite is obtained.

The fact that the initial mass of the satellites now differs from the one in the

original model implies a revision the way the launch costs are calculated once more.

Now, to find the best launch strategy, the new masses of the satellites need to be
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taken into account. The original way to find the launch strategy assumed that all

the satellites had the same mass. A different mass for each satellite now needs to be

considered. Of course, if a certain approach has been used with launch vehicles to

solve the assignment problem, it still needs to be used to calculate the launch costs

with the new masses. However, to define a launch strategy in the case where the

satellites have to carry extra fuel, the most convenient approach seems to be the first.

This approach finds a best strategy for each orbital plane and does not affect the

optimal assignment. Even though it will not give an optimal launch strategy, it can

easily take into account new masses for the satellites and provide the total launch

costs for each evolution.

This method allows a complete estimation of the extra cost for evolutions when

the technical solution is to provide some extra fuel to the satellites. It is important

to note that the transition cost between architectures are now dependent on the ini-

tial and final architectures but also on the path. For instance, since a path such

as (i1, . . . , in−1, in) as one more evolution than (i1, . . . , in−1), there will be different

transition and deployment costs for those paths. The price of the real options which

is the extra fuel will thus depend on the paths considered and a transition matrix

anymore cannot be used anymore. Indeed, the Markov property is lost in this case.

Consequently, the optimization process will have to consider the transition costs dif-

ferently and use a different value for each paths. This does not have any impact on

the time of computations but it will increase the necessary memory to store all the

evolution costs.

5.3.2 Space Tug

To maneuver the on-orbit satellites without providing extra fuel, a space tug can be

used. It is not a classic real option since no initial investment has to be done to

use the space tug unless the constellation owner wants to own and operate the tug.

However, technical changes may have to be overcome to allow the docking of the tug

with the spacecrafts. The cost associated with this change is difficult to estimate but

can be consider smaller than the price to pay to use a space tug. Currently, no such
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space tug exists so it is impossible to use a database of prices to estimate the cost

of this solution. This subsections proposes a different approach. Since the price one

should be willing to pay for this real option is known, certain requirements concerning

the tug can be derived. In particular, it would be interesting to know how much fuel

a tug needs to carry or how many satellites can be maneuvered by a single tug that

carries a certain amount of propellant. Once again, the network flow model will reveal

itself as useful.

To present the framework developed to study the space tug, only one evolution

will be considered. Then, it will be explained how to generalize the method to several

evolutions. First, the method to obtain the necessary propellant of a single tug will

be presented. Even though it may lead to an infeasible solution, this approach will

eventually show how to split the work between many tugs. The optimal way for

a single tug to move the on-orbit satellites is sought. It is assumed that it does

not maneuver the launched satellites at all. As soon as the tug has transfered a

satellite to its final orbital slot, it needs to maneuver to another on-orbit satellite.

Consequently, a ∆V to move from an orbital slot to an on-orbit satellite will also need

to be taken into account. Two possible ways can be explored to solve this problem.

A first could consist in solving the original assignment problem and then find an

optimal way for the tug to respect this assignment. The second would be to solve the

assignment problem and find an optimal strategy for the tug at the same time. The

next paragraphs explain how both methods should be represented and solved.

The first approach proposed uses the optimal assignment. Once the assignment

problem is solved, it is known which orbital slots will be occupied by satellites that

were initially on-orbit. If this assignment is respected, the tug places all the on-orbit

satellites in the correct slots. An analogy can be made with the traveling salesman

problem (TSP) to represent this problem as a network flow problem. With the TSP, a

salesman has to visit several cities once and he wants to minimize the total expenses to

visit them all. This problem can be represented as a network flow problem. Each city

is represented by a node and arcs are created between the nodes every time a travel

is possible. The cost associated with an arc corresponds to the cost of the travel. An
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example of TSP network is represented in Figure 5-7. The main interest of the TSP
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Figure 5-7: Example of a network flow diagram for the Traveling Salesman Problem
with 8 cities.

representation is that efficient algorithms exist to solve it (see [BT97]. The space tug

problem is a particular type of TSP because the space tug has to respect the optimal

assignment. To represent that, a network flow with particular connections has to be

created. From the nodes representing on-orbit satellites, only one arc leaves the node.

This arc connects the node to the assigned orbital slot. The cost of this arc is the

∆V of the transfer that has already been calculated. From the nodes representing

orbital slots assigned to on-orbit satellites, there are arcs connecting the nodes to all

the nodes for on-orbit satellites except for the node to which it is assigned. The cost

associated with this arc corresponds to the necessary ∆V for the transfer of the tug

and should be calculated with the same method that has been used to compute all the

∆V in the assignment problem. The nodes of the launch vehicles are not considered

as well as the nodes corresponding to the orbital slots to which they were assigned.

The final network flow obtained to go from a constellation A to a constellation B is

represented in Figure 5-8. With the network built, as soon as the tug gets to an on-

138



orbit satellite, it has no choice but going to the assigned orbital slot. The assignment

solution will thus be respected. Moreover, if the tug gets to an orbital slot, it can

only go to on-orbit satellites for its next transfer. From this network representation,

the TSP can be solved. The optimal path for the tug that respects the optimal

assignment and the ∆V of its transfers are finally obtained.
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Figure 5-8: Network flow proposed by the first approach.

The second approach proposes to solve directly the assignment problem and the

traveling salesman problem. To do that, the network of the assignment problem

is considered but, arcs leaving the nodes of the orbital slots are added to all the

nodes that represent the contractors in the assignment problem. Consequently, the

same network as in the assignment problem is obtained except that the arcs go both

ways. Since the tug is not supposed to take into account the launched satellites, this

network needs to be adapted. To do that, one just has to consider that to a launched

satellite from an orbital slot does not have any cost and that going from a launched

satellite to any orbital slot does not have any cost either in terms of ∆V (see Figure

5-9). Transfers to launched satellites will appear in the final path of the tug but their

impact on the ∆V of the tug will be equal to zero. From this network, the traveling

salesman problem can be solved for the space tug and a best path is obtained as
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Figure 5-9: Network flow proposed by the second approach.

well as the total ∆V that is necessary. The segments in the path corresponding to

visits of launched satellites should be removed. From the path, the assignment of

satellites can be easily found since the tug always goes from an on-orbit satellite to

an orbital slot. If a single tug was used for the transfers, the ∆V obtained could be

infeasible. Several tugs may have to be used to reduce the ∆V of each vehicle. To

know how many tugs are necessary, the path followed by the theoretical single tug

should be divided in parts so that the ∆V associated with each smaller path is below

a certain limit ∆Vmax. The number of parts necessary to fall below this limit will

give the necessary number of tugs. Another problem that needs to be solved is to

find the necessary capacity of the tugs when there are have several evolutions. The

approaches presented can be followed the same way to get the necessary ∆V of a

single tug when there are many evolutions but the final position of the tug after an

evolution need to be set as an initial position of the tug for the next evolutions. If

many tugs are taken into account, the same principle should apply.

The masses of the tugs is an important parameter because it will directly define

the price necessary to launch them. To determine them, it is of course necessary to

use the rocket equation. The total ∆V of the tugs cannot be considered to get the
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mass of propellant when using the rocket equation. Indeed, if the tug is transferring

a satellite, the final mass that needs to be considered in the rocket equation is the

final mass of the tug plus the mass of the satellite. If the tug is moving to an on-orbit

satellite, the final mass to consider is only the one of the tug. Consequently, the exact

decomposition in terms of transfers needs to be known for each one of the tugs.

The space tug will thus be a much more difficult problem to solve but the model

can provide insights concerning the minimum number of tugs that is necessary to

achieve several evolutions given a maximum ∆V . The masses of the tugs can also be

obtained for a given propulsion system. The use of a space tug removes the need to

provide extra fuel to the on-orbit satellites. Consequently, the transition costs that

were previously used are not affected in this case. As a first approximation, given a

certain number of space tugs Ntugs, one can consider that the maximum price to pay

for a tug is the ratio of the economic opportunity revealed with Ntugs. The model

can thus be used to study the potential of reconfiguration for space tugs since it

provides a maximum price companies may be willing to pay to have their spacecrafts

reconfigured.

5.4 Remaining Issues

The framework proposed can solve several problems about reconfiguration. However,

many issues still need to be considered that are discussed in this section.

The best strategy to evolve from a constellation is to launch the additional satel-

lites first. Once all the launched satellites are placed in their final orbital slots, the

on-orbit satellites are transfered. There are two issues related to this process that

need to be studied in more detail. The first one is that launch vehicles need to be

reserved one or two years in advance to be available. If the reservation is not done,

there will be an extra delay before the reconfiguration can be done. A way to deal

with this problem would be to assume that the launch vehicles are reserved every

year for a possible evolution and if the evolution is not necessary, the reservation is

sold. This can be seen as an option on launching the satellites and can be taken into
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account in the framework. A second problem is that the additional satellites need to

be manufactured and that can cause an extra delay. A solution can be to assume that

the satellites for the next evolution are built in advance in case of a reconfiguration.

This is an extra cost that has to be taken into account.

Once the additional satellites are launched, the on-orbit satellites need to be ma-

neuvered. As they are transfered, they may not be able to provide any service anymore

and there may be gaps in the coverage. If the final constellation does not start ser-

vice as the initial constellation is transfered, it might be impossible to provide any

service at some point which is unacceptable. Consequently, both constellations, even

though they are partially filled by satellites, should provide service simultaneously.

The impact of the quality and availability of the service on the customers should be

assessed. If a method can estimate this, a best schedule to move the satellites can be

found that reduces the gaps of the constellations.

The last thing that needs to be done with this framework is the link with the

economic framework. Once the reconfiguration process is studied in detail and that

the price of the real option is known, it needs to be taken into account in the cost

calculations. The optimization process is the same except that the transition matrix

cannot be used anymore. This final step will show whether the technical solutions

proposed are cheaper than the economic opportunity revealed or not.
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Chapter 6

Summary and Conclusions

6.1 Summary

The goal of this thesis was to develop a framework to value the economic oppor-

tunity provided by staged deployment and apply it to the particular case of LEO

constellations of communications satellites. In Chapter 1, the failure of the tradi-

tional approach for designing LEO constellations of communications satellites has

been presented. Then, the new approach the thesis proposes has been introduced.

Finally, an overview of the thesis was given via a thesis roadmap.

In Chapter 2, classic valuation frameworks were presented as well as a particu-

lar framework to study staged deployment. In Section 2.1, the potential sources of

uncertainty for a system were detailed. Two ways of dealing with uncertainty were

presented and compared: flexibility and robustness. In Section 2.2.1, the Net Present

Value approach was introduced. It was shown how it fails to value correctly flexi-

ble designs and encourages the selection of robust architectures without reducing the

economic risk. In Section 2.3, the way flexibility can reduce the economic risk of

a project was presented. The issues related to the valuation of flexibility were also

exposed. In Section 2.4, two methods to value flexibility were analyzed: Decision

Analysis and Real Options Analysis. Finally, Section 2.5 presented the assumptions

of the proposed framework to value staged deployment as well as the detailed process

to implement it.
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In Chapter 3, the implementation of the framework to the particular case of

LEO constellations of communications satellites was presented. In Section 3.1, the

simulator that has been used for the study was presented. In Section 3.2, the design

vector is analyzed to identify the potential sources of flexibility. Two design variables,

the altitude and the minimum elevation angle were selected as flexible variables.

Then, the possible paths of architectures that could be created from the variations of

those variables were analyzed in Section 3.3. This section also revealed the advantage

of ordering the families of architectures to implement the framework. Section 3.4

explained how the evolution costs could be determined from the simulator from the

decomposition of the design vector. The effects on the shape of the transition matrix

of the particular ordering of the architectures were also presented. Section 3.5 shown

how the demand scenarios and their probabilities could be obtained from the binomial

tree. In Section 3.6, the assumptions used to calculate the life cycle costs of a path

given a scenario for demand are presented. Finally, in Section 3.7, the different steps

of the optimization process are detailed and recommendations to reduce the necessary

computations are given.

In Chapter 4, a particular case study was presented that is inspired by the eco-

nomic failure of the Iridium constellation. Section 4.2 sets some of the parameters for

the study and determined a best fixed architecture that satisfied the same require-

ments as the Iridium constellation. In Section 4.3, a parameter study was performed

with the discount rate and the volatility. The value of flexibility as well as the way

best paths of architectures behave for different values of those parameters were an-

alyzed. Significant economic opportunities were obtained for certain values of the

discount rate and the volatility. On the order of 20-45% reduction in discounted life

cycle cost was consistently shown.

Chapter 5 proposed a general framework to price the reconfiguration process. In

Section 5.1, the reconfiguration process was introduced as well as the motivations

to optimize it with respect to different objectives. Section 5.2 proposed to model

reconfiguration as an assignment problem between satellites and orbital slots. Several

considerations concerning orbital transfers were presented. Also, different methods
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to take into account the launched satellites correctly in the assignment problem were

proposed. In Section 5.3, two technical solutions are proposed to transfer the satellites

during reconfiguration. The first solution proposed is to add extra fuel to the on-orbit

satellites. It is explained how to find the exact penalty in launch costs of this solution

and price correctly the solution. The second solution proposed consists in using one

or several space tugs to transfer the satellites. It was shown how a maximum price

to pay for each space tug could be determined. Finally, Section 5.4 exposed the

problems that need to be solved to complete the study of orbital reconfiguration for

constellations of satellites.

6.2 Conclusions and Recommendations

6.2.1 Value of Staged Deployment

This thesis showed the economic value of staged deployment for LEO constellations of

communications satellites. In particular, through a case study, it has revealed how this

strategy could lower the Pareto front with respect to the life cycle costs. This approach

asks designers to think differently about the trade space. Indeed, it proposes to seek

for paths of architectures in the trade space instead of Pareto optimal architectures.

Moreover, it takes into account technical data and a probabilistic representation of

the evolution of demand through time. Consequently, the staged deployment strategy

represents a real challenge for designers. It does not ask them to design a fixed system

from a specific set of requirements but to design a flexible system that can adapt to

highly uncertain market conditions. This flexibility needs to be embedded before the

deployment of the system. This implies that a real options thinking is adopted. Real

options are not necessarily used after the deployment of the system. Designing a

system that may not be used is opposed to the traditional approach. So, designers

will need to understand the value of designing a system with real options and decision

maker the value of investing in such flexibility.

The principles of the approach presented in this thesis do not concern constella-
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tions of satellites only. The general framework can be applied to systems with similar

characteristics. Future studies could focus on the value of staged deployment for

different systems facing a high uncertainty in future demand with important non-

recurring costs. If economic opportunities are revealed, such studies could motivate

the seek of innovative technical solutions to embed flexibility in the systems.

6.2.2 Reconfiguration

Orbital reconfiguration revealed valuable for constellations of satellites. To determine

if this solution is relevant, it has to be priced. A framework was developed in chapter

5 to this effect. However, many considerations that do not appear in this method

should be taken into account to complete the study. In particular, the fact that during

a transfer, a satellite cannot provide service needs to be modeled and integrated in the

optimization in the form of service outage costs. There will certainly be a trade-off

between fast but expensive transfers of the satellites and slow transfers that do not

require a large mass of fuel but may result in a loss of performance during transfers.

Moreover, if the altitude of the satellites is changed, the hardware of the satellites

requires modifications. In fact, to produce a particular beam pattern on the ground,

the characteristics of the antenna vary with the altitude of the satellites. Reconfig-

uration within the satellites themselves will thus have to be considered. Actually,

significant interest now exists for intra-satellite flexibility (within a single spacecraft)

and this topic may reveal more challenging technically. The method should also be

completed by taking into account Walker constellations in addition to polar constel-

lations. The variety of configurations this type of constellation offer may provide sets

of architectures that are easiest to reconfigure.

The method developed in Chapter 5 could be applied to other staged deployment

problems. Indeed, if the capacity is provided by identical elements that are distributed

in a particular manner, when capacity is increased, the network flow representation

proposed could be applied with necessary adaptations. The systems that could benefit

from this approach range from buildings and infrastructures to aircraft fleets. The

main interest is that efficient algorithms and software exist to optimize those networks
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problem and this representation is flexible and adapts well to new constraints.

6.2.3 Other Opportunities for Constellations of Satellites

The flexibility that was studied concerned a possible increase of the capacity of the

constellations. It would be interesting to study the value of having the flexibility

to change the capability of the constellations (type of service offered) and develop a

particular framework for this. Indeed, the Iridium constellation was designed only for

mobile phones communications at a data rate of 4.8Kbps per duplex channel. If it

had the flexibility to change its bandwidth, it could have provided a totally different

type of service such as worldwide access to the internet. The problem that needs to

be assessed is to know if it would have saved the Iriridum constellation and what the

price for this flexibility is.

If reconfiguration appears too expensive, another type of constellations could be

considered to achieve staged deployment. For instance, hybrid constellations that

consist of multiple layers of satellites at different altitudes could be considered. Those

constellations could be deployed in a staged manner, one layer at a time. Moreover,

layers could be deployed to increase the capacity only for certain parts of the globe,

thus adapting to the variations in the geographic distribution of demand. Many

problems yet need to be studied about those constellations. The capacity has to be

defined differently if the coverage differs between regions. Also, if inter satellite links

are used, links between the layers need to be created which is a very challenging

problem.

This thesis is not about the past, but about the future. It is not claimed that

Iridium would have been an economic success if the method proposed here had been

employed. The amount of economic damage to shareholders/investors would have

been significantly lower, possibly on the order of 20-30% of $B 5.7 thus resulting in

$B 1.1-1.7 smaller loss.
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Appendix A

Estimation of the envisaged charge

per minute

This appendix proposes a formula for the envisaged price per minute of a constellation

of communications satellites. It is ultimately compared to the formula proposed in

[CGH+92]. The following parameters will be used:

• I [US-$]: net investment for the system. The totality of I is spent at the

beginning of operations (its present value is I).

• k [%]: annual interest rate. It is assumed to be equal to the discount rate r.

• T [years]: period until amortization.

• Auser [min/month]: average user activity.

• Nuser [-]: number of subscribers in the system.

• P [US-$-min]: service charge per minute airtime.

For the minimum service charge per minute, the revenues after T years should be

equal to the initial investments in terms of present value:

I = PV (Revenues) (A.1)
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For a given year, the revenue made corresponds to the number of billed minutes

over the year multiplied by the service charge. The number of billed minutes is

Auser ×Nuser × 12. Consequently, the present value of the revenue for the year i is:

PV (revenuei) =
12×Nuser × Auser × P

(1 + k)i (A.2)

The present value of the revenues over T years will thus be:

PV (Revenues) =
T∑

i=1

12NuserAuserP

(1 + k)i (A.3)

= 12NuserAuserP

(
1− (1 + k)T+1

1− (1 + k)
− 1

)
(A.4)

= 12NuserAuserP
(1 + k)T+1 − (1 + k)

k
(A.5)

= 12NuserAuserP
(1 + k)

k

(
(1 + k)T − 1

)
(A.6)

= I (A.7)

The minimum price for the service is thus:

P =
kI

12NuserAuser(1 + k) ((1 + k)T − 1)
(A.8)

The formula proposed in [CGH+92] is:

P =
I(1 + k)T

(365 · 24 · 60)TNchannelsUS

(A.9)

The relationship between Auser, US, Cs and Nuser is given by the following equation:

NchannelsUs =
NuserAuser
365
12
· 24 · 60

(A.10)

Consequently, the minimum charge for service can also be expressed as:

P =
12 · I(1 + k)T

TNuserAuser

(A.11)
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Those two equations have been compared for three different constellations. The

results obtained are presented in Table A.1. The prices obtained with the equation

System: Globalstar Iridium Teledesic
k 0.22 0.22 0.22
I [US $B] 2.5 5 9
T [years] 3 3 3
Nchannels 65 · 103 86 · 103 7.2 · 106

US 0.1 0.1 0.05
Price with 0.44 0.67 0.03
Equation (A.9)[ US-$/min]
Price with 0.16 0.25 0.01
Equation (A.8)[ US-$/min]

Table A.1: Prices obtained with the different equations.

proposed in this appendix are on the same order of magnitude than the prices obtained

with Equation (A.9). The difference between the results obtained seems to be the

difference in the time reference used by the equations. Equation (A.9) computes

P with the end of life as a reference, while Equation (A.8) is based on the present

value (PV) at time of deployment. However, those two formulas rely on different

assumptions that may not be true in reality. In particular, it is assumed that the total

capacity of the system is used through time which may not be the case. Moreover,

the average user activity is supposed constant. These assumptions do not take into

account market considerations and a low demand will force decision makers to increase

the service charge.
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Appendix B

Orbital Elements

This appendix will present the six orbital elements that are used to position a space-

craft at a given time when it is in an elliptic orbit. First, the orbital elements that

determine the position of the spacecraft on the ellipse will be given and then the

orbital elements giving the position of the ellipse with respect to the central body

will be presented.

B.1 Position of the Spacecraft on the Ellipse

The geometric characteristics of the ellipse on which the spacecraft is can be obtained

from two parameters: the semi-major axis a0 and its eccentricity e0. For an elliptic

orbit, we have 0 ≤ eo < 1 1. The point on the ellipse that is the closest from the

central body is called the periapsis and the point that is the farthest is called the

apoapsis. If Earth is the central body, those points are called the perigee and the

apogee. From now on, it will be considered that Earth is the central body. a0 is equal

to half the distance between the apogee and the perigee. The distance between the

perigee and Earth’s center is equal to a0 (1− e0) and the distance between the apogee

and Earth is equal to a0 (1 + e0). If e0 = 0, those two distances are equal and all the

points of the orbit are at the same distance with respect to Earth. This particular

case will thus correspond to a circular orbit. The position of the spacecraft on its

1e0 = 1 corresponds to a parabolic orbit and e0 > 1 to a hyperbolic orbit.
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orbit at a given time is given through the true anomaly ν0. The true anomaly is the

angle between the perigee and the spacecraft measured from Earth. All the elements

and distances introduced in this section are summarized in Figure B-1.
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Figure B-1: Geometric meaning of a0, e0 and ν0.

B.2 Position of the Ellipse with Respect to Earth’s

Frame

Earth’s frame2 is defined with respect to fixed stars. The X axis is also called the

vernal equinox and points in the direction of the constellation of the Ram. It is

represented with the zodiacal symbol �. The Z axis points from the center of the

Earth to the geographic North pole (not the magnetic North pole). The Y axis is

obtained from those two axes: ~Y = ~X× ~Z. The plane defined by the X axis and the Y

axis is the equatorial plane. To position the elliptic orbit with respect to this frame,

3 orbital elements are necessary. The first orbital element determines the inclination

of the orbit with respect to the equator. If ~h is the massless angular momentum of

the spacecraft, this vector is perpendicular to the orbital plane. The inclination of

the orbital plane is thus defined as the angle i between the Z axis and the vector

~h. The second element positions the intersection of the orbital plane with respect to

the equator. If the orbital plane is inclined, the orbit of the spacecraft intersects the

2This frame corresponds to Earth-centered inertial coordinates that are frequently called Geo-
centric Inertial (GCI).
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equatorial plane in two points. In one case, the spacecraft goes through the equatorial

plane from the South pole to the North pole. The associated point of intersection

will thus be called the ascending node. In the other case, the spacecraft goes from

the North pole to the South pole and the corresponding intersection will be called

the descending node. The angle between the X axis and the ascending node is called

the longitude of the ascending node (also called right ascension of the ascending node

RAAN) and is noted Ω. Ω and i are sufficient to define the orbital plane. To position

the ellipse on this orbital plane, only the relative position of the perigee with respect

to the ascending node needs to be known. The third orbital element is thus the angle

between the ascending node and the perigee. It is called the argument of perigee and

is noted ω0. The three orbital elements i, Ω and ω0 have been represented in Figure

B-2.
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Figure B-2: Geometric representation of i, Ω and ω0.
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Appendix C

Sub-synchronous and

Super-synchronous Orbits

This appendix introduces two particular orbital transfers: sub-synchronous and super-

synchronous transfers. They are used when spacecrafts are placed on the correct orbit

but need to achieve a final maneuver in order to be at a particular position on the

orbit at a given time (phasing). Those transfers only concern spacecrafts with a high

thrust propulsion system. It is shown how to obtain the ∆V and time of transfer

Ttransfer and the trade-off existing between those two objectives. Also, principles to

determine a priori time or ∆V penalties for the transfer are presented.

C.1 Problem Definition

Let’s consider a spacecraft Sp on an elliptic orbit at a given time. This orbit will be

called the reference orbit. We want this spacecraft to move to another orbital slot Sl

on this same reference orbit. The relative position of this orbital slot with respect to

the spacecraft will be noted in two different manners depending on the eccentricity

e0 of the orbit. If e0 = 0, the orbit is a circular orbit and we position Sl with respect

to Sp by considering the difference between their arguments of latitude1 which is

1θ can also be seen as the argument of latitude of Sl when the argument of latitude of Sp is equal
to zero.
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constant through time. If 0 < e0 < 1, we consider the true anomaly ν0 of Sl when Sp

is at the apogee of the orbit. The different notations have been represented in Figure

C-1.

Sp

Sl
θ

Sp

Sl

ν0

Earth Earth

������������	
����	������	��	����

Figure C-1: Relative position of Sl with respect to Sp when the reference orbit is
circular or elliptic.

To achieve the transfer of Sp to Sl, we consider two particular types of transfers:

sub-synchronous and super-synchronous transfers. The first type of transfer has been

decomposed in Figure C-2 in the case of a circular reference orbit. During a sub-

synchronous transfer, an impulse is initially given to place Sp on a new orbit with a

lower perigee but with the same apogee (step (a) in Figure C-2). Such orbit will be

called a transfer orbit (represented in step (b) of Figure C-2). To do so, the impulse

has to be given at the apogee of the orbit and tangentially to the velocity. With a

circular orbit, the apogee and the perigee are the same so the impulse can be given

at any point in time. The effect of lowering the perigee is that Sp “accelerates” with

respect to the reference orbit and consequently relatively to Sl. Since the reference

orbit and the transfer orbit share the same apogee, after one period of the transfer

orbit, Sp is on the apogee of the reference orbit. If the perigee of the transfer orbit

is selected correctly, after a certain number of periods, Sl and Sp rendezvous at the

apogee of the reference orbit (step (c) in Figure C-2). A final impulse is then given

to Sp to place it back on the reference orbit (step (c) and (d) in Figure C-2).
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Figure C-2: Decomposition of a sub-synchronous transfer and rendezvous between
Sp and Sl when the reference orbit is circular.

Super-synchronous rely on the same principle except that the impulse is given to

the spacecraft so that the perigee is increased. The result is that Sp seems to slow

down compared to Sl. If the transfer orbit is selected correctly, the rendezvous can

be achieved after a certain number of periods. The next section will explain how

the total ∆V for such transfers can be calculated as well as the necessary time for

transfer.
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C.2 Calculating Ttransfer and ∆V

To explain the necessary calculations for sub-synchronous and super-synchronous

orbit, we will consider separately the two cases relative to the eccentricity of the

reference orbit that we already introduced. The circular case will be explained first

and then the way it can be generalized to the elliptic case will be introduced.

C.2.1 Circular Reference Orbit

Transfer Time

Selecting the good transfer orbit for Sp is a synchronization problem. The time

reference that will be used corresponds to the instant at which the first impulse is

given to Sp. The initial position of Sp will be the only point shared by the reference

and the transfer orbit and thus will be the only position where the rendezvous can

occur. To know the time of transfer, we should consider the trajectories of Sp and

Sl separately before the rendezvous. Sp initially gets to the transfer orbit that has

a period Πtransfer. We assume it orbits kSp times before the final rendezvous. The

time of transfer for Sp will thus be:

Ttransfer = kSp × Πtransfer (C.1)

The rendezvous can only occur at the initial position of Sp. We can decompose the

trajectory of Sl into two parts. First, Sl gets to the initial position of Sp. The

necessary time for this maneuver will be called Tdelay. The angle between Sl and the

initial position of Sp is θ at time t = 0. To get to the initial position of Sp, Sl needs

to achieve a rotation of π − θ radians. Consequently, we have:

Tdelay =
π − θ

π
× Πref (C.2)

Πref corresponds to the period of the reference orbit. The second part in the trajectory

of Sl corresponds to a certain number of full orbits before the rendezvous maneuver.
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If there are kSl orbits, it corresponds to a time equal to kSl ×Πref . consequently, the

time of transfer will also be equal to Tdelay + kSl × Πref . We thus have:

Ttransfer = Tdelay + kSl × Πref = kSp × Πtransfer (C.3)

For given values of kSl and kSp, synchronizing Sl and Sp corresponds to determining

the value of Πtransfer that will satisfy Equation (C.3). The possible choices for kSl

and kSp seem infinite. However, two particular cases only need to be considered:

kSp = kSl + 1 and kSp = kSl. In the first case, we can also write kSl = kSp − 1 to

see that the spacecraft orbits one more time than the orbital slot. The spacecraft

is necessarily on a sub-synchronous orbit since it “accelerates”. If kSp gets higher

than kSl + 1, the spacecraft orbits many more times than Sl but needs to be more

accelerated than for kSl = kSp − 1. The necessary impulse will thus be larger than

for kSp = kSl + 1. However, the time of transfer will still be the same since it only

depends on kSl. So, the same time of transfer is obtained with a higher necessary

impulse. Consequently, the cases for which kSp > kSl + 1 are not relevant and don’t

need to be considered. kSp = kSl is the second case we need to study. In this case, the

orbital slot and the spacecraft achieve the same number of orbits but the orbital slot

also has the time to achieve the π−θ rotation. Consequently, the spacecraft is slower

than the orbital slot and the transfer orbit is a super-synchronous orbit. If kSp < kSl,

Sp needs to be more decelerated but Ttransfer remains the same. Consequently, the

transfers corresponding to kSp < kSl should not be considered.

Finally, for a given value of kSl, only two values of kSp need to be considered:

kSl + 1 that corresponds to a sub-synchronous orbit and kSl that corresponds to a

super-synchronous orbit. We will thus replace kSl by k and set kSp to k + 1 if a sub-

synchronous orbit is considered or to k if a super-synchronous orbit is considered.

From Equation (C.3), it can be seen that the time of transfer for a given k is:

Ttransfer =

(
π − θ

π
+ k

)
Πref (C.4)

161



∆V of the Transfer

The ∆V budget for Sp consists of two impulses: one to place Sl on the transfer

orbit, one to bring it back to the reference orbit during the rendezvous. Those two

impulses have the same absolute value so only one of them needs to be computed.

The calculations for the sub-synchronous transfer are going to be described. The

formula for the super-synchronous transfer will be given directly but the principles

used are the same.

We call ∆V initial the necessary impulse to place Sp on the transfer orbit. ∆V initial

is the difference between the velocity of the spacecraft on the reference orbit Vref and

its velocity at the apogee of the transfer orbit Vapogee. The velocity of the spacecraft

on the reference orbit can be obtained directly from the radius Rref . Indeed, we have:

Vref =

√
GMEarth

Rref

(C.5)

The velocity of the spacecraft at the apogee of the transfer orbit can be obtained

using the Vis-Viva Integral:

Vapogee
2 = GMEarth

(
2

Rapogee

− 1

atransfer

)
(C.6)

In this equation, atransfer is the semi-major axis of the transfer orbit and Rapogee the

distance between the center of the Earth and the apogee. From Figure C-3, we note

that Rapogee = Rref . Consequently, to determine Vapogee, we only need to determine

atransfer. It can be obtained from the period of the transfer orbit:

Πtransfer = 2π

√√√√ a3
transfer

GMEarth

(C.7)

Πtransfer can be related to the period of the reference orbit using Equations (C.3) and

(C.4) and by replacing kSl with k and kSp with k + 1. We obtain:

Πtransfer =

(
π − θ

π
+ k

)
Πref

k + 1
(C.8)
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Figure C-3: Representation of the notations used for the calculations of ∆V apogee.

The period of the the reference orbit is related to Rref through the following equation:

Πref = 2π

√√√√ R3
ref

GMEarth

(C.9)

Consequently, from Equations (C.7), (C.8) and (C.9) we can write:

2π

√√√√ a3
transfer

GMEarth

=

(
π − θ

π
+ k

)
2π

√
R3

ref

GMEarth

k + 1
(C.10)

This last last equation can be simplified to express atransfer as a function of k, θ and

Rref :

atransfer =

(
π − θ

π
+ k

) 2
3 Rref

(k + 1)
2
3

(C.11)

By replacing atransfer in Equation (C.6), we obtain a final expression for Vapogee:

Vapogee =

√√√√√GMEarth


 2

Rref

−
(

π − θ

π
+ k

)− 2
3 (k + 1)

2
3

Rref


 (C.12)
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As explained previously, the total ∆V for the transfer is twice the difference between

Vref and Vapogee. Consequently, we have:

∆V sub
transfer = 2

√
GMEarth




√
1

Rref

−

√√√√√ 2

Rref

−
(

π − θ

π
+ k

)− 2
3 (k + 1)

2
3

Rref


 (C.13)

The same process can be followed to derive the equation giving ∆V super
transfer. In this

case, it has to be noted that Rperigee = Rref if Rperigee is the perigee of the transfer

orbit. Moreover, the impulse is not given in the same direction so the signs are not the

same in the final expression. Finally, kSp = k for a super-synchronous orbit. We all

those considerations, the equation giving the necessary ∆V for a super-synchronous

transfer can be derived directly:

∆V super
transfer = 2

√
GMEarth




√√√√√ 2

Rref

−
(

π − θ

π
+ k

)− 2
3 k

2
3

Rref

−
√

1

Rref


 (C.14)

C.2.2 Elliptic Reference Orbit

A generalization of the discussion we made can be done for reference orbits that are

elliptic. We will not give the exact equations of those cases but give the necessary

elements to achieve the derivations.

With elliptic orbits, the parameter Tdelay is more difficult to calculate. For this,

we need to introduce the eccentric anomaly of the orbital slot at time t = 0 that we

will note Esl. Kepler’s equation links the eccentric anomaly of Sl to the time t and a

time reference τ :
2π

Πref

(t− τ) = ESl − e0 sin ESl (C.15)

e0 and Πref are the eccentricity and the period of the reference orbit. TDelay is the time

for Sl to go from its initial eccentric anomaly to the initial position of Sp. Since Sp is

initially considered at the apogee, its eccentric anomaly is equal to π. Consequently,
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Kepler’s equation gives us the relationship between Tdelay and ESl:

Tdelay =
Πref

2π
[(π − eo sin π)− (ESl − eo sin ESl)] (C.16)

=
Πref

2π
[π − (ESl − eo sin ESl)] (C.17)

t=To determine Tdelay, the initial eccentric anomaly of Sl needs to be determined.

There exists a relationship between the true anomaly ν0 of a spacecraft and its ec-

centric anomaly. It is given by Battin [Bat99]:

ESl = 2 arctan

(√
1− e0

1 + e0

tan
ν0

2

)
(C.18)

From those equations the time of transfer can be obtained for elliptic orbits. From

the time of transfer, the characteristics of the transfer orbits can be obtained as well

as the necessary ∆V .

C.3 Performance of the Transfers

The advantage of the sub-synchronous and super-synchronous transfers is that only

two impulses are necessary. This reduces the necessary ∆V to achieve the transfer.

Another way to achieve the rendezvous consists in using two Hohmann transfers. In-

deed, in a first time, Sp could be transferred with a Hohmann transfer to a lower orbit

to synchronize with Sl. Then, when the synchronization is achieved, Sp is transfered

with another Hohmann transfer to the reference orbit and the rendezvous is realized.

Each Hohmann transfer requires two impulses. The time for transfer and ∆V depend

on the altitude used for the transfer. The equations necessary to compute those ob-

jectives can be found in [WL99]. To show the advantage of the proposed transfers,

we represented Ttransfer and ∆V for sub-synchronous and super-synchronous trans-

fers as well as for the transfers involving two Hohmann transfers. The results are

presented in Figure C-4. The double Hohmann transfers are represented with a line

because these transfers depend on the altitude of the low orbit considered which is
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Figure C-4: ∆V and Ttransfer for different transfers (e0 = 0, Rref = 11400 km and
θ=270 deg).

continuous. Sub-synchronous and super-synchronous transfers depend on k which is

an integer and are thus in discrete quantities. We can see from this example that

the transfers we propose are more performant with respect to ∆V and Ttransfers than

any of the double Hohmann transfers. In this example, the sub-synchronous transfers

appear to be less performant than the super-synchronous transfers. This is because

the value of θ is between 180 deg and 360 deg. In this case, it is easier to decelerate

Sp than accelerate it to rendezvous with Sl. When θ is between 0 deg and 180 deg,

sub-synchronous transfers appear to be more performant. The worst-case for our

transfers will thus correspond to θ = 180 deg. The next section will explain how this

property can be used to determine upper limits on ∆V or Ttransfer for a transfer when

θ is not known.

C.4 Constraints on ∆V and Ttransfer

Having the possibility to choose between different transfers to achieve a rendezvous

allows an optimization with respect to some constraints. The two cases that we

propose to study are the optimization of the time of transfer when a maximum ∆V

is set and the minimization of ∆V when a maximum time for the transfer is set. In
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particular, we want to estimate the maximum time or ∆V for a transfer given some

constraints and no a priori knowledge of θ. In this part, the circular case will be the

only one considered but the considerations can be generalized to the elliptic case.

C.4.1 Time Constraint

Let’s assume a constraint is set on the time of transfer and that we want to minimize

the ∆V of the transfers. For each possible angle θ, we compare sub-synchronous and

super-synchronous transfers for different values of k to find a transfer that minimizes

∆V . Figure C-5 gives an example of the value of ∆V obtained with respect to θ

for an altitude of 5000 km and a maximum time for the transfer of 6 days. We see

that the worst case in terms of ∆V corresponds to θ = 180 deg. The reason is that

sub-synchronous transfers are efficient for angles lower than θ and super-synchronous

transfers for angles greater than 180 deg. But both transfers are the less efficient

when θ is equal to 180 deg. For this value of θ, the distance between Sp and Sl is

the largest possible. Consequently, if a time constraint is set, an upper limit for the

∆V of the transfer can be found considering the ∆V for θ = 180 deg. When the

angle for the transfer is not known but a time constraint for the transfer is set, this

particular value of ∆V can be considered as a time penalty for the transfer. The same

argument can be used with elliptic orbits. However, the notations being different, the

worst-case scenario will correspond to ν0 = 0.

C.4.2 ∆V Constraint

We now assume that a constraint has been set on the ∆V of the transfer. In this case,

we want to reduce the necessary time to achieve the transfer. The time of transfer as

a function of the angle of transfer θ has been represented in Figure C-6 for a circular

orbit at an altitude of 5000 km when the maximum ∆V is set to 400m·s−1. To respect

the constraint set by the maximum ∆V , k has to be increased as θ is increased. Then,

around θ = 170 deg, super-synchronous orbits are more efficient than sub-synchronous

orbits and the number of orbits k is decreased as θ is increased. Parameter k can only

167



0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

∆
V

 [
k

m
.s

-1
]

θ [deg]

180

Figure C-5: Optimal ∆V for different values of θ when the reference orbit is circular
with an altitude of 5000 km.
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Figure C-6: Optimal Ttransfer for different values of θ when the reference orbit is
circular with an altitude of 5000 km.
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be increased in a discrete manner and the final function is almost pyramidal. We see

that the angles around θ=180 deg correspond to worst-case scenarios. Once again, to

determine a time penalty for the transfer when θ is not known but a maximum ∆V

is known, considering the time of transfer to rendezvous with Sl when θ = 180 deg

seems a good approximation. For elliptic orbit, the time of transfer for ν0 = 0 has to

be considered.
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