

A Comparative Study of Iterative Prototyping vs. Waterfall
Process Applied To Small and Medium Sized Software

Projects

by

Eduardo Málaga Chocano

B.S., System Engineering (1996)
National University of Engineering, Lima, Peru

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF IN ENGINEERING AND MANAGEMENT AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

APRIL 2004

© 2004 Massachusetts Institute of Technology. All rights reserved.

Signature of Author .
Eduardo Malaga Chocano

System Design & Management Program

Certified by .
Olivier de Weck

Thesis Supervisor
Robert N. Noyce Career Development Professor

Assistant Professor of Aeronautics & Astronautics and Engineering Systems

Accepted by .
Tomas J. Allen

Co-Director, LFM/SDM
Howard W. Johnson Professor of Management

Accepted by .
David Simchi-Levi

Co-Director, LFM/SDM
Professor of Engineering Systems

2

3

A Comparative Study of Iterative Prototyping vs. Waterfall
Process Applied To Small and Medium Sized Software

Projects

by

Eduardo Malaga Chocano

B.S., System Engineering
National University of Engineering of Peru, 1996

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM ON
APRIL 22, 2004 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCES IN ENGINEERING AND MANAGEMENT

Abstract

After Royce introduced the Waterfall model in 1970, several approaches looking to provide
the software development process with a formal framework have been elaborated and tested.
While some of these followed the sequential line of thought presented by Royce and Boehm,
other methodologies have suggested the use of iterations since early stages of the lifecycle as
a mean to introduce feedback and gain understanding.

This thesis takes a look at both types of approaches in an attempt to identify their strengths
and weaknesses and based on this build criteria to recommend a particular approach or
approach’s elements for a given a set of conditions.

Literary research and interviews with experienced project managers were conducted to
identify software development issues and understand how these can be better addressed by
the use of development methodology. Based upon this research a system dynamics model
was developed. This model was used to simulate the effects that different approaches might
have on a software project under similar and different situations.

Analysis of the data suggests that, under certain conditions, iterative approaches are more
effective to increase productivity due to learning and therefore more likely to finish earlier.
They also promote a better distribution of time diminishing developers’ idle time. On the
other hand, sensitivity analysis shows that sequential approaches are more stable in terms of
duration and quality and therefore a less risky option when initial conditions are uncertain.

Thesis Supervisor: Olivier de Weck
 Robert N. Noyce Career Development Professor
 Assistant Professor of Aeronautics & Astronautics and Engineering
 Systems

4

5

Acknowledgements

This work wouldn’t have been possible without the help of many people. First of all, I want

to thank my thesis advisor, Professor Olivier de Weck, who gently accepted to supervise my

work. His guidance and support was fundamental to the development of this study.

Thank to all the colleagues in Peru that kindly shared with me their experiences developing

software projects. Your help was fundamental to interpret previous studies and build the

model that was developed as part of this thesis.

I also want to thank the faculty, staff and classmates in the SDM program. You helped to

make of this a great experience that I will never forget. A special thank to Christos Sermpetis

and Keen Sing Lee, my teammates in System Project Management coursework, whose work

contributed greatly to the study presented in Appendix E.

Finally, I’d like thank my family and all my friends who, despite the distance, helped me and

gave me all the support I needed to write this thesis and successfully finish my studies at

MIT.

Gracias Totales!

6

Table of Contents

Table of Contents... 6

List of Figures .. 8

List of Tables ... 10

Chapter I: Introduction .. 11

I.1. Motivation .. 11

I.2. Objectives and Hypothesis ... 12

I.3. Approach .. 13

Chapter II: Theory Review... 15

II.1. Software Concepts ... 15

II.1.1. Abstraction ... 15

II.1.2. Flexibility ... 16

II.1.3. Learning Curve... 16

II.1.4. Metrics ... 18

II.2. Software Development Methodologies.. 19

II.2.1. Sequential Methodologies.. 19

II.2.2. Iterative Methodologies ... 21

Chapter III: Research Methodology... 25

III.1. Comparative Analysis by phase... 25

III.2. Interviews... 25

III.3. System dynamics model .. 26

Chapter IV: Analysis.. 27

IV.1. Comparative Analysis .. 27

IV.1.1.Definition Phase .. 27

IV.1.2.Requirements... 29

IV.1.3.Design ... 31

IV.1.4.Coding ... 32

IV.1.5.Testing... 33

7

IV.2. Interviews... 34

IV.3. Simulation Model... 37

IV.3.1.Overview ... 37

IV.3.2.Description of the Model... 38

Chapter V: Results .. 51

V.1. Sensitivity Analysis ... 61

V.1.1. Changes in the Insight Development ... 61

V.1.2. Changes in the Verification Period .. 63

V.1.3. Changes in the productivity ... 65

Chapter VI: Summary .. 67

Chapter VII: Conclusions and future work ... 68

VII.1. Conclusions.. 68

VII.2. Future Work ... 69

Bibliography .. 71

Appendixes .. 73

Appendix A. Survey.. 73

Appendix B. System Dynamics Model... 78

Appendix C. Stocks, Flows and Variables of the Model .. 80

Appendix D. Project Example .. 86

Appendix E. A closer look at Validation Phase in Company A................................... 88

8

List of Figures

Figure 1. Thesis Roadmap ... 14

Figure 2. Aggressive manpower acquisition.. 17

Figure 3. Waterfall Model.. 20

Figure 4. Spiral Model ... 22

Figure 5. Spiral Win Win... 23

Figure 6. Estimate-convergence graph... 28

Figure 7. High level view of the Model ... 38

Figure 8. Tasks to be done. .. 45

Figure 9. Tasks ready for verification.. 45

Figure 10. Task that need rework. ... 46

Figure 11. Tasks that don’t need rework.. 47

Figure 12. Insight ... 49

Figure 13. Development rate.. 50

Figure 14. Default scenario results. ... 51

Figure 15. Task distribution by development stage (sequential approach)............................ 53

Figure 16. Task distribution by development stage (iterative approach)............................... 53

Figure 17.% of work accomplished. .. 54

Figure 18. Accumulated rework. ... 55

Figure 19. Relative accumulated rework. .. 56

Figure 20. % of effective development working time. .. 57

Figure 21. Task distribution after verification (sequential approach).................................... 58

Figure 22. Task distribution after verification (iterative approach)....................................... 59

Figure 23. % of tasks with errors after verification. .. 60

Figure 24. Insight. .. 61

Figure 25. Insight evolution curves. .. 62

Figure 26. Insight evolution sensitivity.. 63

Figure 27. Verification period sensitivity. ... 64

9

Figure 28. Productivity sensitivity. .. 66

Figure 29. System Dynamics Model – Part I ... 78

Figure 30. System Dynamics Model – Part II.. 79

Figure 31. Testing cycle... 88

Figure 32. Rework Cycle ... 89

Figure 33. Time Control .. 89

Figure 34. Cost vs. Number of Testers .. 90

Figure 35. Costs vs. Max Day per Cycle ... 91

Figure 36. Total MP Cost (Max Errors and Max Cycle Time).. 92

10

List of Tables
Table 1. Small and medium sized projects’ characteristics in Peruvian companies. 35

Table 2. Software project success’ definitions... 35

Table 3. Most common problems sort by importance ... 36

Table 4. Overview of parameter settings ... 50

Table 5 Default scenario results... 51

Table 6. Insight evolution sensitivity... 63

Table 7. Verification period sensitivity.. 64

Table 8. Productivity sensitivity. ... 66

Table 9. List of variables of the Model.. 85

Table 10. Components of the example project .. 86

Table 11. Conversion factor to calculate adjusted function-point ... 86

Table 12. Adjusted function-point ... 86

Table 13. Project duration estimation .. 87

11

Chapter I: Introduction

I.1. Motivation

“A quarter of a century later software engineering remains a term of
aspiration. The vast majority of computer code is still handcrafted from
raw programming languages by artisans using techniques they neither
measure nor are able to repeat consistently."1

Since its creation in the late 1950s, software systems have dramatically evolved in terms of

size, complexity, presence and importance. As a result of this evolution, different issues

related to the development of software have emerged. One of the most common critiques is

the appreciation about how unpredictable software projects are2.

Software engineering, emerged as a discipline in 1968 at the NATO Software Engineering

Conference, has been studying mechanisms to address the challenges that the increasing size

and complexity of software has brought3. Efforts have covered a wide range of categories

including improvements in programming languages, development techniques, development

tools and development methodologies.

The waterfall model, one of the first software development methodologies developed in the

1970s, is one of the most remarkable examples of engineering applied to software. One of

the most important contributions of this model was the creation of a culture of “thinking”

1 Gibbs W. Wayt, “Software’s Chronic Crisis”, Scientific American, September 1994: p. 86.
2 Although success in software can have different definitions, in terms of conformity with initial
budget and delivery time, studies conducted in by the Software Engineering Institute (SEI) at
Carnegie Mellon University, suggest that schedule and cost targets are usually overrun in
organizations without formal management methodologies. In “Software project management for small
to medium sized projects”, Prentice-Hall, 1990, Rakos says that initial estimations in software
projects are 50% to 100% inaccurate.
3 Kruger Charles, “Software Reuse”, ACM Computing Surveys, Vol. 24, No. 2, June 1992: p 132.

12

before “coding”. In the 1980’s, and in the absence of other approaches, this model became a

development standard. This model, with some variations, is still widely used in the software

industry today.

In opposition to this approach, some other models embracing iterative development cycles

and the use of prototyping emerged in the 80’s and 90’s. In 2001, some of the most

recognized leaders of these methodologies decided to share their common thoughts and

propose a new way to develop software. Their ideas are published in what they called the

Agile Manifesto4.

Which approach is better and under which conditions is one approach more appropriate?

These are questions that haven’t been unanimously answered. In the meantime, more

methodologies are being created without a careful study of what we can learn from past

experience.

I.2. Objectives and Hypothesis

The first objective of this thesis is to identify the main strengths and weaknesses of iterative

cycle based models vs. sequential-based models applied to small and medium sized software

projects. A second objective is to measure the impact these features have in the management

of projects. A third objective is to understand under which conditions each of these

approaches is recommended. Finally, a fourth objective is to study the new trends in this

field and propose recommendations regarding their use.

In order to accomplish these objective this thesis poses several hypothesis. The central

hypothesis is that software development methodologies have a significant impact in success

of software project. A second hypothesis is that most software development methodologies

can be categorized in two main groups: sequential phase models and iterative cycle models.

A third hypothesis is that some features of these methodologies can be isolated in order to

4 “Manifesto for Agile Software Development” (http://agilemanifesto.org/)

13

study their impact on developing projects. Finally, a fourth hypothesis is that some of these

features can be combined in order to propose new approaches that can improve the

management of software projects.

Although many aspects are equally applicable to all kinds of software development,

flexibility in goals’ definition and prioritization are significantly different regarding the

context where systems will be used. In this regard, this thesis focuses only on the

development of business application software within business organizations.

I.3. Approach

The research approach to be used for this study includes as a first step a literary review. This

review focuses on three aspects: the story and evolution of the development methodologies,

critical analysis and studies of these methodologies, and the use of system dynamics as a tool

to simulate behavior in software projects. A second approach is to conduct interviews with

project manager experts in order to understand how these methodologies are used in practice.

Using the information from the literary research and the interviews, models to simulate

different scenarios and understand the behavior of the two approaches will be made. An

analysis from the results obtained from the simulations will provide the basis to evaluate the

hypothesis and accomplish the goals of this thesis.

Chapter 1 provides an introductory review about this study including goals and hypothesis.

Chapter 2 provides an overview of some key software concepts including a brief description

of the most important software development methodologies. Chapter 3 provides and

explanation of the methodology research used in this study and developed in the next chapter.

Chapter 4 includes a phase decomposition of sequential and iterative methodologies, an

overview of the interviews conducted to project managers, and the explanation of the system

dynamics model developed to compare sequential and iterative methodologies. Chapter 5

show the data obtained running the model described in the previous chapter. Finally, Chapter

6 and 7 provides a summary and the conclusions of this study (see Fig. 1).

14

Chapter 2: Theory Review
Methodologies, Origins, Characteristics

Chapter 3: Research Methodology

Chapter 4: Analysis
Analysis by phase, Interviews, Model

Chapter 5: Results
Sensitivity Analysis

Chapter 6: Summary

Chapter 7: Conclusions

Chapter 1: Introduction
Motivation, Hypothesis, Goals

Figure 1. Thesis Roadmap

15

Chapter II: Theory Review

This chapter discusses some underlying software concepts as well as the evolution and

definitions of some of the most often used development methodologies. This review will

provide the theoretical basis necessary to understand the analysis illustrated in the following

chapters.

II.1. Software Concepts

II.1.1. Abstraction

Abstraction, defined as a succinct description that suppresses unimportant details and

emphasizes relevant information, is one of the most unique characteristics of software5. It is

abstraction what allows us to develop systems out of ideas and concepts.

Abstraction gives us the ability to manage concepts that don’t have any specific instance or

physical representation. This ability plays a key role in software because, in contrast to any

other engineering field, software products are just sets of information structures stored in

some physical media that are able to perform a pre-defined set of functions under some

specific conditions. In the absence of physical representations, traditional techniques used by

other engineering fields to design, model, build, test and maintain software systems cannot

be directly applied to software.

Abstract sophistication has allowed software to evolve and produce larger and more

powerful systems. Layers of abstraction have been increasingly added to software to

16

facilitate design by eliminating the complexity of handling physical devices. High-level

programming languages are the result of this evolution. Likewise, software technologies

such as structured programming and objected oriented are also built over abstract concepts6.

II.1.2. Flexibility

People attribute to software a very controversial feature: flexibility. In fact, experience

shows that small systems can be easily modified by the people who developed them. This

seemingly ease to introduce changes has been reinforced by the wide range of functionality

that programming languages offer these days. However, although many changes can be

quickly introduced, integration analysis and testing should always be conducted along with

the changes7.

Flexibility has shown not always to be a good feature. If not properly managed, it can lead to

significant delays in the lifecycle of a project.

II.1.3. Learning Curve

According to Brooks, if a task can be partitioned among many workers with no

communications among them, then men are interchangeable 8 . However, software’s

characteristics, such as abstraction and flexibility, require a high level of communication

among the development team members and, hence, men are rarely interchangeable.

5 Kruger Charles, “Software Reuse”, ACM Computing Surveys, Vol. 24, No. 2, June 1992: pp. 134-
136.
6 For more information about the importance of abstraction in software see Kruger Charles, “Software
Reuse”, ACM Computing Surveys, Vol. 24, No. 2, June 1992
7 Studies of failures in complex system show how chains of apparent unrelated insignificant events
could trigger terrible consequences. See papers by Leveson Nancy, “Medical Devices: The Therac-
25” , University of Washington, 1995, and “Systemic Factors in Software-Related Spacecraft
accidents”, Massachusetts Institute of Technology, 2001 (available from http://sunnyday.mit.edu)
8 Brooks Frederick, “The Mythical Man-Month”, Addison Wesley Longman, 1995: p. 16.

17

More insight about Brook’s Law was provided by Madnick and Tarek’s work (see Fig. 2).

Their model showed that adding new people to a late project generates a decrease in

productivity, restraining the new employees from reaching a high or even normal level of

productivity within the remaining time of the project9.

Time

Average Nominal
Potential Productivity

New Workforce

Start of
Testing Phase

Figure 2. Aggressive manpower acquisition, Source: Adapted from “Software Project Dynamics”
(Madnick and Tarek, 1982)

Moreover, according to his studies, ratios between the best and the worst programmer can be

about 10:1 in terms of productivity and 5:1 in terms of speed. Although, as is discusses in the

next section, metrics for software haven’t shown to give consistent results to improve the

development, still these numbers are an indication of how important the experience factor is

for software development.

These two aspects highlight the benefits of an integrated, experienced team to achieve

success in software development. Once again, traditional approaches to increase productivity,

9 A study of Brook’s Law and the conditions for its validity is discussed in Madnick Stuart, Abdel-
Hamid Tarek K., “The dynamics of software project scheduling: a system dynamic perspective”,
Center for Information Systems Research, Alfred P. Sloan School of Management, 1982: pp. 111-122.

18

such as incorporating new people into a project to shorten its duration, are not applicable for

software.

II.1.4. Metrics

Having no physical representations, metrics to quantify aspects of software are also hard to

define. Although some attributes such as performance, memory allocation, etc., can certainly

be quantified some other important aspects such as size, complexity, friendliness and overall

quality tend to be highly influenced by subjective factors.

One of the most common measures is Lines of Code (LOC). Conte, Dunsmore, and Shen

define a Line of Code as “any line of program text that is not a comment or blank line,

regardless of the number of statements or Fragments of statements on the line”10. Although

this is a very simple and objective metric, it usually fails to provide accurate insight

regarding the size of a program. Nevertheless, factors such as programming language,

modularity, reuse, complexity and even the programmer style can seriously impact the line

of codes of a program.

Another metric for size is the Function Count, which represents a module or logical unit. A

function is an abstraction of part of the tasks that the program is to perform. Again, unless

strict rules about how a code can be split in modules and functions are made, different

persons will likely interpret this metric in different ways.

Size metrics for data structures are less subject to interpretation. Number of entities,

attributes and relationships provide a good insight about the size of a data structure.

Likewise, size of raw data, size of indexes, and size of space used in a database, are also

good metrics to determine the characteristics of a database.

10 Conte S. D., Dunsmore H. E., and Shen V.Y., “Software Engineering Metrics and Models”,
Benjamin/Cummings, 1986: p. 35.

19

Aspects such as productivity are not exempt from these difficulties. Due to the lack of a

more accurate metric, productivity is usually measure with LOC/man/month. We have

already mentioned the possible misinterpretation that LOC can generate. A metric derived

from LOC will also be affected by the same subjectivity factors.

II.2. Software Development Methodologies

II.2.1. Sequential Methodologies

a. The Boehm-Waterfall Model

The Waterfall Model was first introduced by Royce in 1970. In 1981, Boehm expanded the

model adding additional steps11. This model described the software development process as

a sequence of steps. The most common version includes seven non-parallel steps or phases,

each of which includes validation against the previous one. If necessary, steps back to

previous phases can be done (see Fig. 3).

11 Blanchard Benjamin S., Fabrycky Wolter J., “Systems Engineering and Analysis”, Third Edition,
Prentice-Hall, 1998: p. 31.

20

System feasibility
Validation

Software plans and
requirements Validation

Product design
Verification

Detailed design
Verification

Code Unit
Test

Integration Product
Verification

Implementation System
Test

System feasibility
Validation

Software plans and
requirements Validation

Product design
Verification

Detailed design
Verification

Code Unit
Test

Integration Product
Verification

Implementation System
Test

Figure 3. Waterfall Model. Source: Adapted from “Software Risk Management” (Boehm, 1989).

The Waterfall Model is a document-driven approach; communication strongly relies on the

quantity and quality of the documents generated in each phase12.

Over the years, this model has captured great attention in the software industry and become

one of the most widely used models, especially in large government systems.

Some strengths of this model are:

• It was one of the first software engineering models

• It helped to develop a culture of thinking before coding

• It is easy to understand and adopt

Some of the main problems attributed with this model are:

12 McConnell Steve, “Rapid Development”, Microsoft, 1996: pp. 136-139.

21

• Changes in requirements have a great impact on the original schedule, the model

forces to define requirements thoroughly during the System Requirements Definition

Stage.

• Validation is not enough. Errors can escape this process and be found in further stages.

In general, most of them are identified late in the project during the System Testing

stage. To introduce changes at this point not only has higher costs but it can even be

unfeasible.

• Feedback to previous stages is not easily introduced. In general, potential

improvements would be included in future versions.

II.2.2. Iterative Methodologies

b. The Boehm-Spiral Model

The Spiral Model was developed by Boehm in 1986. This model leads the software

development through a series of cycles or loops, each of which can be described as a reduced

Waterfall model. The first cycle starts with an outlining of the objectives and an assessment

of risk in meeting the objectives. The following cycles use feedback from previous stages to

increase the level of detail and accuracy of the prospective system's objectives, constraints,

and alternatives13 (See Fig. 4).

Prototyping is needed for this model. A prototype is a reduced version of the system that is

being built. They help to reduce the level of abstraction and improve the level of

communication between users and developers. Prototypes are built and revised at the end of

each cycle.

A recognized problem with this model has been the lack of guidance to increase the level of

detail and accuracy after each cycle.

13 McConnell Steve, “Rapid Development”, Microsoft, 1996: pp. 141-143.

22

Risk
Analysis Proto-

type 1

Concept of
operation

Requirements plan
life-cycle plan

Risk
Analysis

Proto-
type 2

Software
Require-
ments

Risk
Analysis

Proto-
type 3

Risk
Analysis

Operational
Prototype

Simulations, models, benchmarks

Requirements
Validation

Development
Plan

Integration and
Test Plan

Software
Product
Design

Design validation
And verification

Detail
design

Code

Unit
Test

Integration
Test

Acceptance
TestImplemen-

tation

Plan next phases

Commitment

partition

Determine
objectives,
alternatives,
constraints

Cumulative Cost

Progress
through
steps

Develop, verify
Next-level product

Evaluate alternatives,
Identify, resolve risks

Risk
Analysis Proto-

type 1

Concept of
operation

Requirements plan
life-cycle plan

Risk
Analysis

Proto-
type 2

Software
Require-
ments

Risk
Analysis

Proto-
type 3

Risk
Analysis

Operational
Prototype

Simulations, models, benchmarks

Requirements
Validation

Development
Plan

Integration and
Test Plan

Software
Product
Design

Design validation
And verification

Detail
design

Code

Unit
Test

Integration
Test

Acceptance
TestImplemen-

tation

Plan next phases

Commitment

partition

Determine
objectives,
alternatives,
constraints

Cumulative Cost

Progress
through
steps

Develop, verify
Next-level product

Evaluate alternatives,
Identify, resolve risks

Figure 4. Spiral Model. Source: Adapted from “Software Risk Management” (Boehm,1989)

c. NGPM: A Win-Win approach to the Spiral Method14 15.

In 1994, Boehm and Bose introduced an extension of the Spiral model using the Theory

Win-Win: the Next Generation Process Model (NGPM). This model allows stakeholders to

impose heterogeneous constraints called win conditions. Theory W is then applied to

manage individual concerns of the stakeholders and search for win-win solutions.

NGPM add two new sectors in each spiral cycle: “Identify Next-Level Stakeholders” and

“Identify Stakeholders' Win Conditions” (see Fig. 5). It also adds a new a “Reconcile Win

Conditions” task in the third sector.

14 Boehm Barry W., Bose Prasanta, “A Collaborative Spiral Software Process Model Based on Theory
W”, USC Center for Software Engineering, University of Southern California, 1994: pp 1-2.

23

2. Identify Stakeholders’
win conditions

3. Reconcile win
conditions. Establish
next level, objectives,
constraints, alternatives

4. Evaluate product and
process alternatives.
Resolve Risks.

5. Define next level
of product and process –
including partitions

1. Identify next-level
Stakeholders

7. Review, commitment
6. Validate product
and process definitions

2. Identify Stakeholders’
win conditions

3. Reconcile win
conditions. Establish
next level, objectives,
constraints, alternatives

4. Evaluate product and
process alternatives.
Resolve Risks.

5. Define next level
of product and process –
including partitions

1. Identify next-level
Stakeholders

7. Review, commitment
6. Validate product
and process definitions

Figure 5. Spiral Win Win. Source: Adapted from “A Collaborative Spiral Software Process Model
Based on Theory W” (Boehm, Bose, 1994)

d. Rapid Application Development

Rapid Application Development (RAD) appeared in the mid 1980’s. It is a systems

development method that arose in response to business and development uncertainty in the

commercial information systems engineering domain16.

RAD can be described as a response to two types of uncertainty: that of the business

environment and that introduced by the development process. To address these issues, this

methodology suggests: use of automated tools instead of manual code to increase

productivity, people with knowledge of the business environment and communication skills

should be involved in order to maximize feedback from users, and focus on development

instead of analysis and design.

In the 1980’s several companies released tools to implement the RAD methodology.

15 Beynon-Davies P., Holmes S., “Integrating rapid application development and participatory design”,
IEE Proceedings Software, Vol. 145, No. 4, August 1998: pp 105-112.
16 Really John P., Carmel Erran, “Does RAD Live Up to the Hype?”, IEEE Software, September 1995:
pp. 24-26.

24

e. Agile Software Development17 18

In February 2001, a group of software engineers working in alternative development

methodologies signed the so-called manifesto for agile software. In this document, they list a

set of principles explaining their thoughts regarding the software development process.

Business and technology have become turbulent, they said, and we need to learn how

respond rapidly to the changes.

Unlike traditional approaches that focus on processes, documents, task distribution and

development phases, the agile manifesto focuses on individuals, working software, customer

collaboration and responsiveness to changes according to a plan. Agile software recognizes

the importance of conformance to original plans but they claim satisfying customers at the

time of delivery is most important.

The Agile manifesto states that using short iterations and working together with customers

achieves better communication, maneuverability, speed and cost savings.

Among the most prominent Agile Methodologies that can be found are: extreme

programming (XP) 19 , Crystal Method 20 , Dynamic Systems Development Methodology

(DSDM)21, and Adaptive Software Development (ASD)22.

17 Highsmith Jim, Cockburn Alistair, “Agile Software: The Business of Innovation”, Software
Management, September 2001: pp. 120-122.
18 Highsmith Jim, Cockburn Alistair, “Agile Software Development: The people factor”, Software
Management, November 2001: pp. 131-133.
19 See Beck Kent, “Extreme Programming explained”, Addison-Wesley, 2000
20 See Crystal Web Site (http://alistair.cockburn.us/crystal/index.html/)
21 See DSDM Web Site (http://www.dsdm.org/)
22 See Highsmith, James A., “Adaptive Software Development”,Dorset House Publishing, 2000

25

Chapter III: Research Methodology

III.1. Comparative Analysis by phase

To understand the differences of the two approaches of software management a comparative

analysis by phase will be developed. This analysis will identify the main features of each

methodology and will contrast and highlight those aspects that differ the most. Whenever

possible, quantitative data based on published studies is provided to illustrate these

differences.

III.2. Interviews

As a complement of the comparative analysis, interviews of project managers working in

different companies in Peru were conducted to understand what type of methodologies are in

use and what the most relevant aspects were found in developing small and medium size

software applications. These interviews were focused in three aspects: most relevant features

of the small and medium sizes projects, main problems associated with software

development, and effectiveness of formal methodologies.

The results of these interviews were also used as inputs in the development of the system

dynamics model.

26

III.3. System dynamics model

As a complement to the comparative analysis and the interviews, a system dynamics model

implementing the most relevant features of both approaches has been developed. This model

uses a simplified version of the Waterfall Model to represent a traditional sequential

approach. To represent the iterative approach this model uses a hybrid version based on

extreme programming and agile methods. These two methodologies were selected because

there is enough literature about them and because, arguably, they represent the most opposite

approach to the traditional waterfall model.

27

Chapter IV: Analysis

This chapter discusses the most significant differences between sequential and iterative

methodologies described in the previous chapter. It also explains the characteristics of the

survey conducted to identify the key elements in the development of software that will be

used to build the system dynamics model.

IV.1. Comparative Analysis

This part is organized into five sections each one describing a particular phase of the

software development lifecycle. Goals, activities, and characteristics considering the points

of views of sequential and iterative methodologies are discussed for each phase. So as to

clarify the context, comments associated to the iterative approach are presented in italic.

IV.1.1. Definition Phase

The goal of this phase is to develop an initial understanding of the project. Based on this

understanding a first estimation about the time and cost can be made.

The first phase of Waterfall Model, according to Boehm, is called “System Feasibility”23 and

it considers the development of a proposal with an initial estimation of the project. As part of

the proposal, an initial project plan should also be delivered. Although there is always

pressure for a precise estimation, project’s features at this point are commonly vague and

dynamic, and therefore estimations should be treated carefully. Authors have different

opinions regarding how inaccurate these estimations can be. Rakos, for example, mentions

23 Barry W. Boehm, “Software Risk Management”, IEEE Computer Society Press, 1989: p. 27

28

studies done at NASA, DEC and TRW showing that “an estimate done at this point is 50%

or 100% inaccurate”24. McConnell has a less optimistic view and suggests larger deviations

at the beginning of the project (see Fig. 6)25.

4x

2x

1.5x

1.25x

1x
0.8x

0.67x
0.5x

0.25x

Project Cost
(effort and size)

Project
Schedule

Initial
product

definition

Approved
product

definition

Requirements
specification

Product
design

specification

Detailed
Design

specification

Product
Complete

1.6x

1.25x

1.15x

1.1x

1x
0.9x

0.85x
0.8x

0.6x

4x

2x

1.5x

1.25x

1x
0.8x

0.67x
0.5x

0.25x

Project Cost
(effort and size)

Project
Schedule

Initial
product

definition

Approved
product

definition

Requirements
specification

Product
design

specification

Detailed
Design

specification

Product
Complete

1.6x

1.25x

1.15x

1.1x

1x
0.9x

0.85x
0.8x

0.6x

Figure 6. Estimate-convergence graph. Source: Adapted from “Rapid Development” (McConnell,
1996)

Another component that needs to be analyzed during this phase is the risk associated with

the project. Thus, a list of potential risks including aspects such as technology, finance,

resources, and schedule is developed.

24 Rakos John J., “Software project management for small to medium sized projects”, Prentice-Hall,
1990: p 128.
25 McConnell Steve, “Rapid Development”, Microsoft, 1996: p. 168.

29

The Spiral Model, as defined by Boehm, can be depicted as a sequence of several waterfall

models growing in scope after each iteration26. Thus, each cycle begins with a definition of

objectives, alternatives and constraints. The next step includes an analysis of alternatives

and risks. The order and scope of each cycle is defined by the priority assigned to the

remaining risks. In terms of scope, in a typical Spiral Model the first iteration could be

compared to the first phase of a Waterfall Model.

Most recent iterative methodologies, such as agile methodologies an extreme programming,

focus their attention on how best practices can be improved and adopted to achieve

flexibility, quality, and productivity. Although a definition phase is not incompatible with

these approaches, a more flexible working plan and scope should be considered. Extreme

programming, for example, suggests breaking down a project into a series of small releases

that are easier to plan and track27. A project using this methodology could sacrifice part of

the remaining scope in order to keep the initial schedule. This can be achieved because the

system is constantly under verification and, therefore, ready for the final testing phase. More

differences between these methodologies and the typical Spiral Model are discussed in the

next phases.

IV.1.2. Requirements

The goal of this phase is to define with a greater level of detail the functionality of the

system. Some documents that can be considered in this phase are the functional specification,

the analysis proposal and the top level design28.

This is one of the most critical and yet uncertain phases for the Waterfall model. In its

original version, this model doesn’t consider overlapping between phases and requires a fair

and complete documentation before moving to the next phase. However, the level of

understanding about the requirements and the alternatives of implementation cause the

26 Barry W. Boehm, “Software Risk Management”, IEEE Computer Society Press, 1989: p. 39-36.
27 Beck Kent, “Extreme Programming explained”, Addison-Wesley, 2000: p. 56.

30

generation of ambiguous specification documents which, in turn, generate large quantities of

code likely to be changed or eliminated. In 1988, Boehm recognized that because of its

rigidity this model might not work well for some classes of software such as end-user

applications29.

A natural response to this problem is to relax the separation between the phases of the

waterfall model. In practice, the distribution of activities within a phase is not absolutely

even. Towards the end of a phase the number of tasks gets smaller and phase overlapping

might help to reduce idle time. This approach, known as the Sashimi Model30, is not exempt

of problems. A common problem associated with this approach is the ambiguity that

emerges as result of the overlapping effect, which increases the difficulty to track the

progress and manage the project.

Iterative methodologies show a more radical solution to the changing nature of the

requirements. Agile methods and extreme programming emphasize the use of the code to

achieve a good definition of the requirements. For these methodologies, the scope of this

phase is much reduced. It is used to define the priorities of the features to implement in the

current cycle. The priority of the requirements is then used to reduce the scope if necessary.

Agile methodologies combine analysis and development and recommend the user to be an

active member of the development team. Using this approach, before coding there is only a

list of basic functionality to be implemented. The level of detail is incrementally refined by

the user and the development team through constant feedback. Extreme programming, for

example, recommends having daily development cycles with an executable version of the

system at the end of each day.

Another aspect that is suggested by the extreme programming methodology is the use of

storyboards as a tool to describe what the system should accomplish. These storyboards are

short and simple business “stories” directly related to a specific functionality of the system

28 Rakos John J., “Software project management for small to medium sized projects”, 1990 Prentice-
Hall: p.56-69.
29 Barry W. Boehm, “Software Risk Management”, IEEE Computer Society Press, 1989: p. 28.
30 McConnell Steve, “Rapid Development”, Microsoft, 1996: p. 143-145.

31

and are extensively used to test and verify the quality of the development. Storyboards are

defined before the coding and guide the team through the development process.

IV.1.3. Design

The goal of this phase is to define the architecture of the system. According to the Waterfall

Model, the design comprises two phases: product design and detailed design31. The product

design identifies the top level components of the system and how they interact. The detailed

design described the architecture of each component. This design is included in a document

called the Design Specification. The Waterfall Model also suggests elaborating the

Acceptance Test Plan during this phase. This document, whose development should be led

by the user, explains what tests will be performed to validate that the system is working

properly and according to the original specifications.

Boehm called the third round of a spiral model as the “top-level requirements specification”.

In a typical development, this phase could be compared to the design phase of the waterfall

model. However, there is a significant difference. The spiral model focuses the organization

and the scope of its cycles around the risks of the projects. Each round helps to address a set

of risks and therefore decide what to do next. Using this approach, every project could have

a different scope for every round32. A small project could have fewer iterations than a large

one.

Agile software and extreme programming have a different approach to the design. The

design and the coding are highly coupled tasks and, therefore, should be performed together.

These methodologies claim that the user and the developer increase their understanding of

the problem with each new iteration. To leverage this understanding, extreme programming

31 Boehm, Barry W., “Software Risk Management”, IEEE Computer Society Press, 1989: p. 27-28.
32 An example of how this principle can be applied to elaborate a project plan can be found in the
development of Microsoft Office 2000. This project was broken into major milestones each of them
with a death-line. When a milestone was delayed, the scope in next stages was reduced so that the
schedule could still be attained (Harvard Business School, 9-600-097, June, 2000).

32

recommends short development cycles of one to four weeks and continuous daily integration

and unit tasks33.

IV.1.4. Coding

The goal of the coding phase is to write the necessary code to implement the system

specified in the design. Along with the code, other typical deliverables of this phase are the

System’s Guides for the user, the maintenance, and the operator). Coding is usually

perceived as the easiest phase probably because the level of ambiguity decreases as more

code is developed.

In his articles, Brooks mentioned studies that show that an experienced programmer can be

up to 10 times more productive than non-experienced ones34. This significant difference

might have been ameliorated by the evolution of programming languages but still remains as

an important factor of success and needs to be considered. Because of this important

difference experienced programmers are more expensive resources. Potential causes of

delays must be identified in advance to avoid idle times.

In a typical waterfall model, coding starts after the design has been completed. However, due

to the users’ pressure for concrete results, to initiate coding tasks before design is completed

is a common practice. If not properly managed this might become a risky practice because,

in a sequential approach, early phases’ definitions are more susceptible to changes and,

hence, developing code until complete approval might require considerable rework. As in

any other phase of the waterfall model, at the end of the coding phase validation tasks must

be performed. These activities are called unit tests.

The spiral model is more flexible and coding can be introduced in any iteration. However, in

a typical implementation, coding starts in the third or fourth iteration depending upon the

size of the project. It can start with some type of prototyping and in the next iteration deliver

33 Beck Kent, “Extreme Programming explained”, Addison-Wesley, 2000: pp. 56, 59, 64, 133.
34 Brooks Frederick, “The Mythical Man-Month”, Addison Wesley Longman, 1995: p. 30.

33

the first integrated version of the system. Regarding the type of activities to be included in

the coding phase this model is not significantly different from the waterfall model.

Proponents of agile methodologies believe that code is the only real deliverable of a

software project and therefore it should be used to learn and gain insight from the beginning

of the project. Analysis and design tasks should not be separated from coding but rather they

all be performed together in small iterations.

Another difference brought by these methodologies is the role of testing. Unlike waterfall

and spiral models that suggest to consider unit tests at the end of coding, these new

approaches established that testing should be performed along with coding. Another

important feature of coding in Extreme programming is pair programming, a technique that

is supposed to increase the quality of the code. This technique allows two programmers to

collaborate at one computer, typically one person using the keyboard and the other one

using the mouse. Proponents of this technique claim that two people looking at the code

increases the likelihood of finding mistakes. They also argue that it increases the creativity

of the team and improve the learning experience35.

Pair programming is a technique that addresses one aspect of coding and it is not exclusive

of any methodology. It can also be applied in waterfall and spiral models.

IV.1.5. Testing

The goal of the testing phase is to validate that the system performs properly according to

the initial specifications. Tests are conducted reproducing tasks that the users will do after

the system is released. For large or complex programs it is suggested to develop small

programs that test the system automatically.

35 A complete description of this technique can be found in Williams Laurie, Kessler Robert, “Pair
Programming illuminated”, Addison-Wesley, 2002.

34

The waterfall model recommends performing validation tasks at the end of each phase. After

tasks have been approved the next phase is not officially started. Although validation helps

to identify possible errors, due to the first phases’ ambiguity, definitions and requirements

even in written documents might be understood in different ways, which makes the

validation tasks more difficult. During the coding phase unit tests are performed. These tasks

validate a specific component or function. The testing phase is the first time that the product

is tested as a whole. Modified versions of the waterfall model suggest overlapping between

phases. Using this approach, testing might overlap during the coding and, thus, rework might

be discovered earlier.

The spiral model introduces validation activities after the third round along with the coding

activities. Just as in the waterfall, the spiral model suggests to perform coding, unit tests,

and integral tests separately. The difference with the waterfall model is the scope considered

by each iteration, which may increase the ability to identify errors earlier.

Extreme programming recommends a completely different approach. Proponents of this

methodology believe that testing is also a central activity of development and needs to be

executed along with coding. Moreover, they say that testing cases and tools should be

developed before the actual code. This helps the team to identify errors in earlier stages and,

thus, reduce unnecessary rework.

The following phases after testing, such as acceptance, implementation, and maintenance,

do not show significant differences between the iterative and sequential approaches.

IV.2. Interviews

The interviews were conducted with 12 project managers in 5 different companies in Peru.

These project managers received a survey form including questions regarding their

experience in software development. After forms were completed they were consolidated in

a database. The complete set of questions and results is presented in Appendix A.

35

Results show that, on average, small and medium software projects in these companies have

a duration of 7.4 months and required 54.2% more time to complete than originally

estimated (See Table 1). Regarding the quality of these projects, only 56.2% were perceived

as successful. However, success might have different interpretations. To clarify this concept

the project manager were asked to define this concept.

 Total Average Standard

deviation
Number projects develop in the last 2 years 66 projects 4.9 projects 2.3 projects
Initial estimated duration 4.8 months 1.6 months
Real duration 7.4 months 2.6 months
Testing phase duration 1.5 months 0.6 months
Development team size 7.7 people 3.2 people
% of successful projects 56.2% 29.9%

Table 1. Small and medium sized projects’ characteristics in Peruvian companies.

Table 2 shows a distribution of the terms used by the project managers to define success.

The three most frequently mentioned aspects were the users’ requirements, cost and time. It

is interesting to observe that important aspects such as system internal quality and the total

value of ownership were rarely included in the definition of success.

A successful project is one that … %
… satisfies the user’s requirements 92%
… doesn’t need budget extensions 58%
… ends on time 50%
… exceeds user’s expectations 25%
… creates value to the company 25%
… ends reasonably on time (less than 10% delay) 17%
… has a long useful life 17%
… has an excellent technical design 8%

Table 2. Software project success’ definitions

The second part of the interviews intended to gain more understanding of the common

problems that software projects face. A list of possible problems was initially suggested and

project managers were asked to rank these aspects according to their importance, which was

defined as the level of impact these problems may have if occurred. Finally, relative weights

36

were assigned to consolidate the results. If a particular task was selected by all project

managers as the most important it would receive a score equal to 100%.

Table 3 shows that the most important source of problems is the user specifications’

ambiguity, a common characteristic associated with software that highlights the difficulties

software engineers face to develop a common language with users. Unrealistic planning was

selected as the second most important problem. It must be noticed that all the participants of

these interviews acknowledged having trouble achieving initial estimations. In this regard,

75% of the participants identified coding as the phase most likely to be delayed. The third

problem was the number of changes in the specifications after analysis phase was completed,

which is closely related to the first problem. Changeability has been largely identified as one

of the biggest challenges in developing software and it is been the inspiration for several new

development methodologies. In fact, the agile manifesto includes as one of its principles the

following “Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage”36. In other words, changes should

not be considered a nuisance or risk but an opportunity.

Source of problems (sort by importance) %
1 User specifications’ ambiguity 89%
2 Unrealistic planning 80%
3 Changes in the specifications during planning 77%
4 Lack of technical experience 58%
5 Lack of a development methodology 58%
6 Poor risk management 52%
7 Parallel projects affecting team’s productivity 48%
8 Low budgets 36%
9 Poor coordination to allocate resources 34%
10 Poor testing 28%
11 Lack of motivation 25%
12 Other technical problems 21%

Table 3. Most common problems sort by importance

Regarding the use of methodologies, a third of the participants said that they don’t use any

commercial methodology but rather one developed based on the good practices of the

36 “Manifesto for Agile Software Development” web site (http://agilemanifesto.org/)

37

company. The rest of participants mentioned three methodologies: Capability Maturity

Model (CMM), Project Management Office (PMO), and Microsoft Solutions Framework

(MSF). All these methodologies are intended to improve organizational management

practices and are, in theory, independent of whether the development is following a

sequential or iterative approach. Finally, regarding the use of a sequential methodology or

iterative, all the participants affirm to use waterfall methodologies based hybrids. Some of

the more typical variations were phase overlapping and parallel sub-projects.

IV.3. Simulation Model

IV.3.1. Overview

This model simulates the development of a small sized37 information system within a typical

business organization. The model recreates this development considering two different

development methodologies: the first is a sequential waterfall-based approach, and the

second is an iterative-based approach that gathers elements from agile and extreme

programming methodologies.

The model defines the projects a static set of tasks to be worked through different

development phases. Each phase has a different development rate. In the sequential approach

the first three phases have two distinctive parts: development and verification. During

development tasks are worked but no verified. Verification starts after all tasks have been

worked. During this part tasks that need to be reworked are detected and sent back, the rest

are approved and sent forward to the next phase. The next phase doesn’t start until all the

tasks have been verified and approved. However, because of the lack of insight and

verification rigor in the initial stages of a project, a subset of tasks that need rework are not

identified as deficient during verification and are mistakenly approved. In the next phase

37 The definition of small sized used in this section refers to the average duration of projects
calculated from the interview answers: 7 men x 5 months ≈ 3 man years.

38

these tasks will generate more rework. In the last phase, testing, the verification accuracy

increases and most of these tasks are finally identified and sent back to be fixed.

Tasks to
be done

Tasks ready
for verification

Tasks sent to
the next phase

Tasks that
need rework

Tasks that don’t
need rework

Tasks that need rework
and were identified

Tasks that don’t
need rework

Tasks that need rework
and were not identified

Development
Rate

Verification
Rate

Verification
Accuracy

Code
Quality

End of
Phase

Figure 7. High level view of the Model.

In the iterative approach, analysis, design, and coding are grouped into one big first phase

that includes several small cycles of validation. The size of each cycle can change between

methodologies. A spiral model could have iterations of many weeks. Some more recent

approaches such as extreme programming recommend performing integration and validation

tasks on daily basis. For the model this period is adjustable to any value.

IV.3.2. Description of the Model

a. The phases considered.

The model represents the evolution of a project starting from the analysis phase thru the

testing phase. The feasibility phase, as described in the waterfall model and spiral model,

was not considered in this model. It was excluded because the nature of this phase is

significantly different from the rest of the phases: it involves fewer people, it is not

immediately followed by the next phases of development (there are usually preparation

activities before the development actually starts) and it can be equally applied to sequential

39

and iterative methodologies. To simplify the model only four phases has been considered for

the sequential approach: analysis, design, coding and testing38. The iterative model was

implemented as a subset of the sequential approach, considering only two phases. The first

phase comprises a series of iterations including analysis, design and coding tasks. The

second phase is testing. These assumptions allow to better extract the important differences

of these approaches.

Appendix E includes a more detailed view of testing phase at one of the companies that

participated in the interviews. A slightly different model focusing only in testing is used to

analyze how testing configuration might be adjusted to get better results.

b. The size of the project.

The simulation considered a small project with 90 function-points. A function-point is a unit

that, unlike the traditional lines of code, considers different elements to estimate the size of a

program such as user-interface components, applications interface components, and data

storage components (files, tables, etc.). Because of this feature function-points are more

suitable for projects with a high number of database components such as an information

system. Using the factors provided by Jones39 a project with 40 components may generate

between 90 and 123 function-points depending on its complexity. This measure is then used

to estimate the necessary schedule to complete a project of this size. Considering an average

quality level, a 40 components project may require approximately 0.43102=7.3 months to be

completed. This corresponds to the average actual duration of projects identified in the

interviews.

c. The size of the phases

The relative effort associated with a phase varies upon several elements such as the size and

type of project, the development methodology or the experience of the development team.

38 In addition to these phases, Boehm’s Waterfall Model considers a Feasibility phase, a Preliminary
Design Phase and an Implementation Phase.

40

For this model, we are considering the relative sizes for a small project suggested by

McConnell40. For the iterative approach the first phase has a size equivalent to the first three

phases of the sequential approach.

d. The rework generation

Rework is defined in this model as function of the level of understanding the team and the

user have about the application they are developing. This level of understanding or Insight

increases as the users and the development team move forward through the phases. A greater

Insight generates a smaller level of rework. Previous models, such as Madnick and Tarek’s41,

have studied the impact on productivity and quality due to experience and learning. This

level of understanding is qualified in the model described here as the “insight”. To estimate

the appropriate level of insight, we considered an initial level for each phase and also a curve

describing how the insight evolves. The model described insight as a function of the % of

tasks verified. It assumes that understanding is achieved after verifying work in progress and

how well it satisfies the systems specifications. To estimate the initial insight of each phase

the average uncertainty suggested by McConnell for each phase42 was used. Then, three

different evolution curves are considered in the model: the first assumes that there is a good

clarity at the beginning of each level and therefore not much insight is gain with the first

stages of the progress, the second curve assumes a linear increase of the insight, and the third

curve assumes that much insight can be gained from the start of each phase. The insight is

used to estimate the percentage of rework that is generated at any point in time.

e. The resources

39 Jones Capers, “Applied software measurement: assuring productivity and quality”, McGraw-Hill
1991
40 McConnell Steve, “Code complete: a practical handbook of software construction”, Microsoft Press,
1993: p 522.
41 Stuart Madnick, Tarek K. Abdel-Hamid, “The dynamics of software project scheduling: a system
dynamic perspective”, Center for Information Systems Research, Alfred P. Sloan School of
Management, 1982: p. 83, 98-99.
42 McConnell Steve, “Rapid Development”, Microsoft, 1996: p. 122.

41

The model assumes a stable team during the entire project. The addition of resources to the

project during the development is not considered in this model because the effects of this

practice have been largely studied before and because, being a small project, the learning

time for a new resource to become productive invalidates hiring as a common practice for

small projects. This model considers a different team for validation and testing. Therefore,

development and validation can be performed in parallel. However, since validation and

testing frequently needs the participation of the development team to solve questions and

show the users the results, the model considers a percentage that is subtracted from the

development rate when validation or testing is being conducted in parallel.

f. The productivity

This model considers an increase in the productivity due to learning. For this project a 25%

increase of productivity associated with this factor was considered. This percentage was

suggested by Madnick and Taruk based on IBM studies43. Other external factors such as

motivation and pressure are not being considered because their impact on a small project is

less significant.

g. Other assumptions

To build a simple and accurate model was a premise of this work. Simplicity is important

because the development of a model is by itself an iterative job that needs many cycles until

it behaves properly. Initial results usually point out opportunities for improvement and

simple models facilitate the identification of mistakes and the introduction of improvements.

Simplicity should not be confused with lack of accuracy. Accuracy, defined as the

conformity to reality, is achieved identifying the most important elements of the process and

understating the type of relations they have. Although this model doesn’t reflect a specific

project in particular, accuracy can be confirmed by comparing the initial results with those

suggested by the literature and data obtained from the interviews.

43 Stuart Madnick, Tarek K. Abdel-Hamid, “The dynamics of software project scheduling: a system
dynamic perspective”, Center for Information Systems Research, Alfred P. Sloan School of
Management, 1982: p. 83.

42

In order to develop a simple model that focuses on the more important aspects of the

methodologies object of this study, some assumptions were employed. These assumptions

are as follows:

• Constant number of tasks. Although a constant number of tasks is not a frequent

scenario, this assumption was made because this is a management issue that is

independent of the methodology approach used and, therefore, out of the scope of this

study.

• No delay pressure or other factors affecting the motivation are considered. Unlike the

previous assumption, changes in the motivation can dramatically impact the

development speed and quality of a project. They can also behave differently in an

iterative or sequential approach. However, since the model represents small projects it

is reasonable to assume that the impact of changes on the motivation is not significant.

• Tasks that need rework are only reworked in the current phase. In theory, both

iterative and sequential approaches contemplate the possibility of sending a task back

to a previous phase. Several authors have studied how the cost to fix a mistake

increases as the project moves forward. Conte, Dunsmore, and Shen mentions studies

made at IBM, GTE, and TRW showing that “… an error introduced during the

requirements phase, but not discovered until maintenance, can be as much as 100

times more than that of fixing the error during the early development phases …”44.

Likewise, Madnick and Tarek found that as the error density goes down the more

expensive it becomes to detect and correct errors45. This increasing cost is caused by

the overhead time to fix tasks from previous phases and by the additional rework that

tasks with errors generate. Although to capture this effect would be beneficial to

increase the accuracy of the model, it would require the creation of a specific set of

levels for each phase which, in turn, would increase dramatically the number of

elements and relations of the model. For that reason, with the exception of the testing,

this model considers that rework is only done in the current phase. However, the

44 Conte S. D., Dunsmore H. E., and Shen V.Y., “Software Engineering Metrics and Models”,
Benjamin/Cummings, 1986: p. 7.

43

model does keep track of the tasks mistakenly approved in the previous phase and use

it as a variable to calculate the quality of the work done in the next phase.

h. Model Parameters

• Number of tasks. Number of tasks or function-points that will be developed. This

value is set to 102.

• Normal Development Rate. Number of tasks that can be developed in one day by the

whole team. To complete a 102 project function-point project in 7.3 months it will be

necessary a net development rate equal to 102 function-points /7.3 months/ 22 days =

0.63 function-points/day. However, this rate must take into account non-productive

time associated with rework and support in validation tasks. Assuming a 50% of time

spent on those activities the development rate to finish in 7.3 months would be

0.63/0.5 ≈ 1.2 function-point per day.

• Normal Verification Rate. Number of tasks that can be verified in one day by the

whole team. This model assumes that verification activities can be performed at twice

the speed of development.

• Flag Iterative or Sequential. When it is set to 0 the model simulates a sequential type

of project. A value equal to 1 forces the model to simulate an iterative type of project.

• Verification Period. When the model is simulating an iterative type of project this

parameter set the number of days elapsed between two verification cycles.

• Phase Size Table. It indicates the percentage of effort that each phase of development

represents. The values were adapted from McConnell46. The values for the sequential

approach are as follows: Analysis or Phase 0 = 0.1, Design or Phase 1=0.2, Coding or

Phase 2=0.45, and Testing or Phase 3=0.25. For the iterative approach the values are

Development or Phase 0 = 0.75 and Integration and Testing = 0.25.

45 Stuart Madnick, Tarek K. Abdel-Hamid, “The dynamics of software project scheduling: a system
dynamic perspective”, Center for Information Systems Research, Alfred P. Sloan School of
Management, 1982: p. 105-106.
46 McConnell Steve, “Rapid Development”, Microsoft, 1996: p. 122.

44

• Insight per phase. It reflects the level of understating the users and the development

team have about the project. This level defines the % of tasks that will need to be

reworked at any point in time during the project. In this model the insight is a value

that increases in each phase as a function of the % of tasks that has been verified

within in each phase. The initial values of insight were based on the inaccuracy

suggested by McConnell47 at each phase of the project. The values are as following:

Phase 0 = 0.25, Phase 1= 0.5, Phase 2 = 0.7, Phase 3 = 0.85.

• Insight development. This curve represents the insight evolution within each

development phase. Three curves were proposed to represent respectively slow,

average, and fast insight development.

• Verification accuracy. It indicates the probability that a task with errors is identified

during verification activities and sent back to development. This likelihood increases

with each phase. For the sequential approach the values are Phase 0 = 0.5, Phase

1=0.55, Phase 2=0.65, and Phase 3=0.90. The iterative approach uses the values of

Phase 2 and Phase 3. These values are not based on any previous study and are

proposed here based on my own experience.

• % dedicated to verify. It measures the percentage of time the development team is

dedicated to support verification activities, i.e. interaction with the testing team.

i. Model Stocks48

The following paragraphs provide a brief description of the main stocks of the model and

their inputs and outputs.

• Tasks to be done. This stock stores the number of tasks that need to be worked in a

phase. At the beginning of each phase the value of this stock is equal to the Number of

47 McConnell Steve, “Rapid Development”, Microsoft, 1996: p. 168.
48 Stocks (also known as Entering Levels, State Variables, or Accumulations) and Flows are the basic
elements used to build the principle of accumulation in system dynamics. A stock can be depicted as a
bathtub. A flow can be thought of as a pipe and faucet assembly that either fills-up or drains the
bathtub. A complete explanation of System Dynamics can be found in Forrester, Jay W., “Industrial
Dynamics”, Pegasus Communications, 1961

45

tasks. At the end of each stock the value of this stock is zero. During a phase tasks are

worked according to the development rate. Those with errors detected are sent back to

this stock.

Tasks to be
done Tasks being

developed

Development rate

New Tasks

<Tasks with errors
detected>

Number of tasks

Figure 8. Tasks to be done.

• Tasks ready for verification. After development tasks are completed they are

immediately sent for verification. This stock stores the number of tasks waiting to be

verified. The Verification Rate parameter defines how many tasks are verified each

day and the variable Time to verify? defines how often. In the sequential approach

tasks wait until the end of the phase to be verified. In the iterative approach tasks are

constantly being verified. At the beginning and at the end of each phase the value of

this stock is equal to zero.

Tasks ready for
verificationTasks being

developed

Verification RateDevelopment rate

Tasks being verified

<Time to verify?>

Figure 9. Tasks ready for verification.

• Tasks that need rework before verification. This stock stores the number of tasks that

have been worked and need rework. Its input, Tasks being developed with errors, is a

percentage of Tasks being developed. This percentage changes over time and depends

on the insight and the quality of previous phases. All tasks needing rework that were

46

mistakenly approved during verification will come back to this stock in the subsequent

phase.

• Tasks that need rework after verification. This stock stores the false negatives, that is

the number of tasks with errors not detected during verification.

• Tasks that were reworked. This stock stores the number of tasks with errors detected

and sent back to development again.

Tasks that need
rework before

verificationTasks being
developed with errors

Tasks that need
rework after
verification

Tasks that
were

reworked

Tasks with
errors

detected<Tasks being
developed>

<Insight>

<% that needed rework at
the beginning of the phase>

<All tasks
developed once>

<Tasks that need
rework after
verification>

Tasks with errors
not detected

Figure 10. Task that need rework.

• Tasks that don’t need rework before verification. This stock stores the number of tasks

that have been worked and don’t need rework. Its input, Tasks being developed

without errors is equal to the Tasks being developed minus Tasks being developed

with errors.

• Tasks that don’t need rework after verification. This stock stores the number of tasks

without errors that were approved during verification.

47

Tasks that don't need
rework before

verification
Tasks being

developed without
errors

Tasks that don't need
rework after
verificationTasks without errors

approved

<Tasks being
developed>

<Tasks without
errores verified>

<Tasks being
developed with

errors>

Figure 11. Tasks that don’t need rework.

j. Main Flows

• Tasks being developed. This flow measures how many tasks are develop a day. When

Tasks to be done has a positive value, this flow is equal to the variable Development

Rate (see Main Variables).

• Tasks being developed with errors. This flow is a fraction of Tasks being developed.

Its formula is:

Tasks being developed with errors = Tasks being developed * (1-Insight)

At the beginning of each phase and before all tasks have been sent at least once to

verification the formula also includes the quality of the previous phase. In other words

the quality of the code at the beginning of a phase cannot be better than the quality of

the code at the end of the previous phase. The quality starts to improve when

verification activities starts. The formula is:

Tasks being developed with errors =

Tasks being developed *
(
 % of tasks that need rework at the beginning of the phase +
 (1-Insight(Phase)) * (1-% of tasks that need rework at the beginning of
 the phase)
)

• Tasks being developed without errors. The value of this variable is calculated

subtracting the tasks with error from Task being developed. Its formula is:

48

Tasks being developed without errors =

Tasks being developed - Tasks being developed with errors

• Tasks being verified. It is a fraction of the Normal Verification Rate. Its formula is:

Tasks being verified =

Normal Verification Rate / (Relative Size (Phase))

• Tasks with errors detected. It is fraction of Tasks being verified. Its formula is

Tasks with errors detected =

Tasks being verified * (% that need rework) * Verification Accuracy (Phase)

• Tasks with errors not detected. It is fraction of Tasks being verified. Its formula is

Tasks with errors not detected =

Tasks being verified * (% that need rework) *
(1-Verification Accuracy (Phase))

• Tasks without errors approved. It is fraction of Tasks being verified. Its formula is

Tasks with errors detected =

Tasks being verified * (1-% that need rework)

k. Main variables

• Insight. The insight measures the level of understanding the development team and the

user have about the application they are building. This variable takes its value form the

variable Insight per phase table and it increases as a function of the verification tasks.

Each phase has an initial level of insight and it grows as a function of the % of tasks

verified. Insight type indicates whether the development of the insight is slow, average

of fast. The Insight is used to calculate the rework generation.

49

Insight

<% of tasks
verified once>

Insight per phase
table

<Phase>

Insight Type

Insight
Development

Figure 12. Insight

• Productivity Factor. In their model, and based on Aron’s studies49, Madnick and

Tarek50 depicted improvement in productivity due to learning as an S-shaped curve

that goes up to 25% at the end of the project. This model uses the same approach and

implements productivity as a linear function of the percentage of worked tasks. Since

different project phases have different type of tasks and, therefore, experience gained

in one phase has little impact on other phases, this model calculates productivity

evolution for each phase independently. In this model productivity doesn’t impact the

quality of development it only speeds up the pace of development.

• % that need rework. It is the % of tasks that need rework. Its formula is:

% that need rework =

Tasks that need rework before verification /
(Tasks that need rework before verification +
 Tasks that don’t need rework before verification)

• Development Rate. This variable measures the number of tasks that can be developed

in a day. To calculate this value, the Normal Development Rate is divided by the

relative size of each phase. Another element that affects this value is the percentage

49 Aron J. D., “Estimating resources for Large Programming Systems”, Litton Educational Publishing,
Inc., 1976
50 Madnick Stuart, Abdel-Hamid Tarek K., “The dynamics of software project scheduling: a system
dynamic perspective”, Center for Information Systems Research, Alfred P. Sloan School of
Management, 1982: p 83.

50

dedicated to support verification activities. This percentage is only considered when

tasks are being verified.

Development rate

<Tasks being
verified>

% dedicated to
verify

Normal
development rate

<Phase>

Phase size table

Productivity factor

Productivity
evolution table

Initial productivity
factorExpected

productivity factor

<% of worked
tasks>

Figure 13. Development rate.

Table 4 shows a consolidated overview of the main parameters of the model.

Parameters Sequential Iterative
Tasks 102 102
of Phases 4 2
Relative Size of Phases
 Analysis 10%
 Design 20%
 Coding 45%

75%

 Testing 25% 25%
Verification Accuracy
 Analysis 50%
 Design 55%
 Coding 65%

65%

 Testing 90% 90%
Verification Period After tasks has

been developed
Daily process

Initial Insight per phase
 Analysis 25%
 Design 50%
 Coding 70%

25%

 Testing 85% 85%

Table 4. Overview of parameter settings

51

Chapter V: Results

This section shows the results of the model using the default values for the parameters. Fig.

14 and Table 5 show the time of completion and the number of errors that were not detected

at the end of the project.

Tasks that need rework at the end of the project
6

4.5

3

1.5

0
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 26 52 78 104 130 156 182 208 234 260
Time (Day)

Tasks that need rework at the end of the project : Iterative - Average 1 1 1
Tasks that need rework at the end of the project : Sequential - Average 2 2

Figure 14. Default scenario results.

 Iterative Sequential
Number of days to completion 152 (5% smaller than

expected)
164 (2% larger than
expected)

Tasks with error after completion 4.39 (4.3% of 102) 3.52 (3.4% of 102)

Table 5 Default scenario results.

Although the iterative approach finishes the project earlier, the quality of the final product,

in terms of undetected errors, is lower.

52

A good starting point to understand these results and how different the two approaches are is

to analyze the distribution of tasks by stages of work. A task can only be in one of these

possible stages: waiting for development, waiting for verification, or waiting for the next

phase. The stocks that store this information are respectively: Tasks to be done, Tasks ready

for verification, and Tasks ready for next phase. Figures 15 and 16 show this distribution for

both approaches. The sequential approach shows a similar performance for the first three

phases. At the beginning of each phase tasks are only developed. Verification starts after all

tasks have been developed and then some tasks needing rework are detected. It is observed

that time spent doing verification and rework tasks accounts for more than the half of the

first three phases. The last phase, testing, shows a different type of distribution because it

doesn’t start with any development and tasks are immediately sent to verification. The

iterative simulation shows only two phases. The first phase shows some differences when

compared to the first phases of the sequential approach. Some of these differences are: the

decreasing number of Tasks to be done, the small number of Tasks ready for verification,

and the small but steady improvement in the rate at which the number of Tasks ready to the

next phase increases. Another difference displayed in the iterative approach is the oscillation

in the number of tasks to be done. This pattern is caused by the % of tasks with errors that

are discovered during the verification tasks. The length of these oscillations corresponds to

the size of the verification cycles.

53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

Days Tasks ready to next phase
Tasks ready for verification
Tasks to be done

Figure 15. Task distribution by development stage (sequential approach)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

Days
Tasks ready to next phase
Tasks ready for verification
Tasks to be done

Figure 16. Task distribution by development stage (iterative approach)

54

The following paragraphs analyze some variables of the model to understand their impact on

the results. The first stock to be studied is “% of work accomplished”. Fig. 17 shows that,

with a minor exception at the beginning of the project, work was accomplished at a faster

pace in the iterative model, which gives an initial indication of why this approach ends first.

Figure 17.% of work accomplished.

The variable Accumulated rework, that measures the number of tasks that were reworked,

shows that the sequential approach sent a larger number of tasks to be reworked than the

iterative approach. A larger number of tasks will generate more development work and that

might explain the sequential approach’s delay.

55

Figure 18. Accumulated rework.

However, to compare these numbers is somehow misleading because, as opposed to the

iterative approach that merges analysis, design, and coding activities in a single phase, in the

sequential approach the rework effort is different in each phase. Dividing the Accumulated

rework by the Phase size allows us to make a fairer comparison between the values of the

two approaches. Fig. 19 shows in fact that, when the size of each phase is taken into account,

the iterative approach spends more effort in rework activities.

56

Figure 19. Relative accumulated rework.

Since both approaches in this model share a similar development rate, a larger number of

reworked tasks in a smaller period of time suggests a better use of time. To confirm this

hypothesis a new variable was created. This variable, % of effective development working

time, shows what percentage of the total available time the development team had was spent

doing development tasks and not waiting for new tasks nor supporting verification tasks.

57

Figure 20. % of effective development working time.

Fig. 20 shows that the iterative approach, except during the first week, had a more effective

use of time. The short cycles of development helped to keep the team busier, either working

on new tasks or fixing previous work. As result, this approach was able to deliver more

rework in a shorter period of time. On the other hand, tasks in the sequential approach were

verified only towards the end of the phase which caused an uneven distribution of working

time and periods were the team was not fully occupied.

This explains the reasons why the iterative approach ends first but why it had a slightly

lower quality still remains unclear. Tasks, after being verified, have only three possible

destinations: if correct they are sent to Tasks that don’t need rework, if they have errors and

these are found they are sent to Tasks to be done, and if they have errors but these are not

detected they are sent to Tasks with errors undetected. In the sequential approach (see Fig.

21) it is observed that the number of tasks with errors undetected shows a slight decrease

during the first three phases (55 tasks in the first phase, 45 in the second and 25 in the third).

Likewise, the last phase shows a decrease but this time it is more significant (3.5 tasks with

58

errors at the end). The iterative approach, in turn, had 29.8 tasks with undetected errors at the

end of the first phase.

Task distribution after verification (sequential approach)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

Days

of

 ta
sk

s

Tasks that need rework

Tasks that don't need rework

Tasks with errors undetected

Figure 21. Task distribution after verification (sequential approach)

59

Task distribution after verification (iterative approach)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

Days

of

 ta
sk

s

Tasks that need rework

Tasks that don't need rework

Tasks with errors undetected

Figure 22. Task distribution after verification (iterative approach)

The % of tasks with errors undetected shows the evolution of the number of tasks that were

approved even though they had errors. It only has values for those periods when tasks were

being verified. Fig. 23 shows that the sequential approach had larger periods where only

development tasks were performed. Towards the end of the coding phase both approaches

had a similar % of tasks with errors undetected. However, due to the additional days needed

to complete the project few additional tasks with errors were detected towards the end of the

project in the sequential approach, which explains why in this simulation this approach had a

final better quality.

60

Figure 23. % of tasks with errors after verification.

Another claim of iterative methodologies’ proponents is that these approaches help the team

and the users to build a better understanding about the project faster. The data obtained from

this simulation suggest that, at the beginning of the project, insight grows faster in the

sequential mode. However, towards the middle of the project the insight developed in the

iterative approach is already greater than that of the sequential approach. The initial slow

rate of the iterative approach is probably associated with the lack of a previous analysis and

design phases but the use of early code and verification helps to develop understanding in

more steady fashion.

61

Figure 24. Insight.

V.1. Sensitivity Analysis

This section discusses the results obtained after performing a series of different scenarios

using one-factor-at-a-time.

V.1.1. Changes in the Insight Development

To analyze the insight and its impact in the model it was assumed that during any phase of

development the maximum level of insight could be reached after have been verified all the

tasks twice and that more verification beyond that point don’t contribute significantly to gain

more insight. To analyze the sensitivity of this variable three different S-shape curves were

proposed. The first, assumes that much insight can be gained since the beginning of the

62

project initial verification tasks. The second curve assumes that the insight development is

equally distributed along the project. The third curve assumes that the insight grows slower

at the beginning and builds up faster after all tasks have been verified at least one (see Fig.

25).

Insight Evolution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

% of tasks verified

Le
ve

l o
f I

ns
ig

ht

Fast
Average
Low

Figure 25. Insight evolution curves.

Fig. 26 and Table 6 show that a faster insight evolution helps to finish the project earlier and

reduce the number of errors not detected at the end of the project. It is also observed that

changes on the insight have a greater impact in the iterative approach than in the sequential

approach.

63

Tasks that need rework at the end of the project
8

6

4

2

0
6 6 6 6 6

6 6

5 5 5 5 5

5 5 5

4 4 4 4 4

4 4 4

3 3 3 3 3

3 3 3

2 2 2 2 2

2 2 2

1 1 1 1

1 1 1 1

0 26 52 78 104 130 156 182 208 234 260
Time (Day)

Tasks that need rework at the end of the project : Iterative - Fast 1 1 1 1
Tasks that need rework at the end of the project : Iterative - Average 2 2 2 2
Tasks that need rework at the end of the project : Iterative - Low 3 3 3 3 3
Tasks that need rework at the end of the project : Sequential - Fast 4 4 4 4
Tasks that need rework at the end of the project : Sequential - Average 5 5 5 5
Tasks that need rework at the end of the project : Sequential - Low 6 6 6 6

Iterative
Approaches

Sequential
Approaches

Figure 26. Insight evolution sensitivity.

 Number of days
to completion

Tasks with error after
completion

Iterative – Slow 173 7.0
Iterative – Average 152 4.4
Iterative – Fast 132 2.5
Average – Slow 167 4.1
Average – Average 164 3.5
Average – Fast 161 3.2

Table 6. Insight evolution sensitivity.

V.1.2. Changes in the Verification Period

One of the most relevant features of the iterative approach implemented in this model are the

iterative cycles of development. According to new methodologies such as Extreme

programming, very small cycles help the team to develop a faster understanding of the user’s

needs. Fig. 27 shows 5 different cycles of development: every day, every week, every two

weeks, every three weeks and every month. It can be observed that, when other parameters

64

remain the same, larger verification periods cause delay in the project completion date and

also increase the number of tasks with errors not detected at the end of the project. Even so,

some of these cycles ended earlier than the sequential approach, which seems to support the

claims made by methodologies such as extreme programming that short development cycles

of integration and validation are more effective. Still the sequential approach produced

apparently a better quality at the end.

Figure 27. Verification period sensitivity.

 Number of days
to completion

Tasks with error after
completion

Sequential – Average 164 3.5
Iterative – 1–day cycle 151 4.4
Iterative – 5–day cycle 153 4.6
Iterative – 10–day cycle 158 4.8
Iterative – 15–day cycle 162 5.0
Iterative – 22–day cycle 167 5.3

Table 7. Verification period sensitivity.

65

V.1.3. Changes in the productivity

The model considers an increase in the productivity as result of the repetition of tasks. If the

development team has a considerable expertise in the technology used to develop the project

then the increase in the productivity is less significant. On the contrary, if the development

team is not familiar with the type of project being developed, then there is more space for

improvement and higher increases of productivity should be expected. To test the impact of

productivity, they were tested three different values: 0%, 25%, and 50%.

Fig. 29 shows that higher increases in productivity reduced the development time in both

cases. However, the impact of this parameter in the number of tasks with errors at the end of

the project is not significant.

66

Tasks that need rework at the end of the project
6

4.5

3

1.5

0
6 6 6 6 6

6 6 6 6 6

5 5 5 5 5 5

5 5 5 5

4 4 4 4 4 4

4 4 4 4

3 3 3 3 3 3

3 3 3 3 3

2 2 2 2 2 2 2

2 2 2 2

1 1 1 1 1 1 1

1 1 1 1

0 26 52 78 104 130 156 182 208 234 260
Time (Day)

Tasks that need rework at the end of the project : Sequential - Productivity increase 0% 1 1 1
Tasks that need rework at the end of the project : Sequential - Productivity increase 25% 2 2
Tasks that need rework at the end of the project : Sequential - Productivity increase 50% 3 3
Tasks that need rework at the end of the project : Iterative - Productivity increase 0% 4 4 4
Tasks that need rework at the end of the project : Iterative - Productivity increase 25% 5 5 5
Tasks that need rework at the end of the project : Iterative - Productivity increase 50% 6 6 6

Figure 28. Productivity sensitivity.

 Number of days
to completion

Tasks with error after
completion

Sequential – Productivity 0% 169 3.5
Sequential – Productivity 25% 164 3.5
Sequential – Productivity 50% 155 3.5
Iterative – Productivity 0% 160 4.3
Iterative – Productivity 25% 152 4.3
Iterative – Productivity 50% 145 4.3

Table 8. Productivity sensitivity.

67

Chapter VI: Summary

The waterfall model was an important first step in the evolution of software management. It

helps to highlight the need for a more carefully developed plan before a software project is

initiated. Arguably, it has been the most influent approach in the short history of software.

With some secondary variations, this model is still widely used in the industry.

The waterfall model, however, didn’t address some important aspects of software

development such as the need for flexibility and risk management. As an alternative to this

model, the spiral model was suggested by the same people that made the waterfall model

popular.

The spiral model focuses on risk management. It suggests having iterations in order to

evaluate critical aspects of a project. Every cycle has a similar structure but with increasingly

larger scope and duration. At the end of each cycle risk analysis is performed to decide

weather the project should continue to a next iteration. This model works well in theory yet

it was challenging to implement in practice. Critics say that, although a good model, it is also

very complicated and should only be used by highly experienced managers.

The spiral model helped to promotes alternative styles to the waterfall model. Recent years

have witnessed the emergence of new styles that claim more flexibility. Agile Methods and

Extreme programming suggest not only a framework in terms of project planning and

organization. They go a step further and also suggest practices to be applied in the daily

work. These methodologies leverage the power of work team and fast feedback. However, as

they themselves recognize, these methodologies are not to be applied in all cases.

68

Chapter VII: Conclusions and future work

VII.1. Conclusions

The first hypothesis of this work was that software development methodologies have a

significant impact in success of software project. The literary research and the interviews

support this affirmation. Likewise, the model shows how different approaches affect the

quality and schedule of business application software. Therefore, this hypothesis is accepted.

The second hypothesis was that most software methodologies can be broken down into two

categories: sequential and iterative. Literary research showed that, although many formal

methodologies might fall into these categories, there is also a number of hybrid models that

featuring elements of both type of approaches and therefore cannot be categorized as either

exclusive sequential or iterative. Therefore this hypothesis is rejected. The third hypothesis

was that some features of these methodologies could be isolated and combined in order to

study their impact on developing projects. Although the results of the sensitivity analysis

suggest that this hypothesis is true, lack of real projects data using both approaches prevent

us to confirm its validity. The fourth and last hypothesis was that some of these features can

be combined in order to propose new approaches and improve management software project.

The study of software evolution and, particularly, the emergence of hybrid models along

with the results of the model developed strongly support this hypothesis, for why the last

hypothesis might also be true.

Iterative and sequential software development methodologies have significantly different

characteristics that make them more suitable for different type of projects. The

understanding of these differences may facilitate the appropriate methodology selection for a

particular project depending upon aspects such as the novelty, scope, flexibility, and quality.

The iterative approach seems to offer a more effective use of time. As a result of their short

iterations, idle time spent waiting for tasks to be reworked after verification activities is

shorter and therefore a larger number of tasks can be worked with this approach. On the

69

contrary, in the sequential approach the separation of phases forces the team to wait until all

the tasks have been developed and verified before a new phase can be started. Thus, the

second half of each phase, when verification tasks begin, the idle time increases.

The iterative approach shows better results when insight can be developed fast since the

beginning of the project. This scenario is typical of projects when the user is aware of his

needs but is not familiar with the technology and, therefore, doesn’t know with certainty

what type of functionality the system may deliver. This is a common scenario for new

technologies or COTS implementations. On the other hand, sequential approaches show

more stable results in term of both time and quality. The sensitivity analysis shows that

changes in insight development, verification period, or productivity have a smaller impact on

the sequential approach than on the iterative approach. This suggests that when there is little

certainty about the initial conditions of a project (in terms of team experience or insight) and

there is not much flexibility regarding the delivery date and the final quality, the sequential

is a less risky option.

In both approaches rework accounts for more than the half of the project duration. Early

identification of rework is an excellent strategy to reduce the project’s duration. Undetected

errors not only delay the completion of the project but they also need more time to be fixed

the later they are detected. The iterative approach shows that the short iterations are an

effective mechanism to detect errors earlier and, therefore, to shorten the project.

VII.2. Future Work

The system dynamics model developed didn’t include some elements that should improve

the accuracy of the results. Some examples are: the impact of motivation on productivity,

phase overlapping in the sequential approach, different types of complexity for tasks,

willingness to add or modify tasks, and willingness to hire new employees. Benchmarking

against a set of similar projects developed using both methodologies would also help to

calibrate the model and increase the validity of the results.

70

Regarding the sensitivity analysis, additional work looking at other variables such as the

relative size of phases, the experience of the developers, and the verification accuracy should

be followed. Likewise, other design of experiments such as full factorial or orthogonal array

should also be investigated in the future to understand better the impact that different

scenarios have on software methodologies.

 Some additional topics that might follow this work are: cost-benefit analysis of software

development methodologies, study of hybrid models to increase productivity and quality,

and the price of flexibility in software.

71

Bibliography

1. Aron J. D., “Estimating resources for Large Programming Systems”, Litton Educational

Publishing, Inc., 1976

2. Beck Kent, “Extreme Programming explained”, Addison-Wesley, 2000

3. Beynon-Davies P., Holmes S., “Integrating rapid application development and

participatory design”, IEE Proceedings Software, Vol. 145, No. 4, August 1998

4. Blanchard Benjamin S., Fabrycky Wolter J., “Systems Engineering and Analysis”, Third

Edition, Prentice-Hall, 1998

5. Boehm Barry W., Bose Prasanta, “A Collaborative Spiral Software Process Model

Based on Theory W”, USC Center for Software Engineering, University of Southern

California, 1994.

6. Boehm Barry W., “Software Risk Management”, IEEE Computer Society Press, 1989

7. Brooks Frederick, “The Mythical Man-Month”, Addison Wesley Longman, 1995

8. Constantine Larry L., “Beyond Chaos: The expert Edge in Managing Software

Development”, Addison-Wesley, 2001

9. Conte S. D., Dunsmore H. E., and Shen V.Y., “Software Engineering Metrics and

Models”, Benjamin/Cummings, 1986

10. Gibbs W. Wayt, “Software’s Chronic Crisis”, Scientific American, September 1994

11. Highsmith Jim, Cockburn Alistair, “Agile Software Development: The people factor”,

Software Management, November 2001

12. Highsmith Jim, Cockburn Alistair, “Agile Software: The Business of Innovation”,

Software Management, September 2001

13. Jones Capers, “Applied software measurement: assuring productivity and quality”,

McGraw-Hill 1991

14. Kruger Charles, “Software Reuse”, ACM Computing Surveys, Vol. 24, No. 2, June 1992

15. Leveson Nancy, “Safeware: System Safety and Computers”, Addison-Wesley, 1995

72

16. Madnick Stuart, Abdel-Hamid Tarek K., “The dynamics of software project scheduling:

a system dynamic perspective”, Center for Information Systems Research, Alfred P.

Sloan School of Management, 1982.

17. McConnell Steve, “Code complete: a practical handbook of software construction”,

Microsoft Press, 1993

18. McConnell Steve, “Rapid Development”, Microsoft, 1996

19. Paulk Mark, Curtis Bill, Chrissis Mary Beth, Weber Charles, “The Capability Maturity

Model”, Software Engineering Institute, Carnegie Mellon University, 1993

20. Rakos John J., “Software project management for small to medium sized projects”,

Prentice-Hall, 1990.

21. Really John P., Carmel Erran, “Does RAD Live Up?”, IEEE Software, September 1995

22. “Manifesto for Agile Software Development” web site (http://agilemanifesto.org/)

73

Appendixes

Appendix A. Survey

This survey was conducted to 12 software project managers from 5 different companies in

Peru:

• Company A is a Bank with branches in several countries in South America.

• Company B is an international Non-profit organization that helps people through
microlending.

• Company C is a Bank specialized in Retail Banking.

• Company D is a software company specialized in developing Business Applications
for the Banking Industry

• Company E is a consulting company specialized in developing Business Intelligence
projects.

1. In the last 2 years, in how many business applications software development have
you participated?

Total Average Standard Dev
 66 4.9 2.3

2. In average these projects …

Average Standard Dev Units
 4.6 1.7 months
 6.6 2.1 months
 21.0 13.8 %
 1.3 0.5 months
 7.7 3.2 people
 4.1 1.5
 1.8 1.2 months

3. How would you define a successful project?

A successful project is one that … %
… satisfies the users' requirements 92%
… doesn't need budget extensions 58%

74

… finishes on time 50%
… exceeds user's expectations 25%
… creates value to the company 25%
… ends reasonably on time (less than 10% delay) 17%
… has a long useful life 17%
… has an excellent technical design 8%

4. According to your definition, what percentage of projects you were involved was
successful?

Average Standard Dev
56.2 29.9

5. What would you identify as the most important factor for this success?

Factor %
Good specifications 42%
Project management 33%
Communication 25%
Technical Experience 8%
Planning 8%

6. According to your experience, what are the most common sources of problems in
the development of business application software?

Problem %
User specifications’ ambiguity 89%
Unrealistic planning 80%
Changes in the specifications during planning 77%
Lack of technical experience 58%
Lack of a development methodology 58%
Poor risk management 52%
Parallel projects affecting team’s productivity 48%
Low budgets 36%
Poor coordination to allocate resources 34%
Poor testing 28%
Lack of motivation 25%
Other technical problems 21%

7. According to your experience, how often do software projects suffer delays?

Frequency %
Never 0%
0 - 25% 0%
25% - 50% 0%
50% - 75% 0%
Always 100%

8. What are the causes of this delay?

75

Causes %
Poor estimation 67%
Requirements changes 50%
Poor quality of deliverables during analysis and design 8%
Poor management of user expectations 8%
Lack of communication between users and development
team 8%

9. What would you recommend to address this issue?

Causes %
Improve estimation 50%
Improve tracking 25%
Train users 17%
Train developers 17%

10. Which phase would you characterize as the most critical?

Phase %
Analysis and Design 50%
Design 20%
Testing 20%
All 10%

11. Which phase is the most likely to experience delays?

Phase %
Coding 75%
Analysis 25%

12. Do you use a formal development methodology?

Answer %
No 33%
Yes 67%

13. If your previous answer was yes, please mention which methodology do you use?

Methodology %
Capability Maturity Model (CMM) 8%
Microsoft Solutions Framework (MSF) 17%
Program Management Office (PMO) 42%

14. Do you use sequential or iterative methodologies?

Methodology %
Sequential 83%
Iterative 0%
Hybrid 17%

76

15. Please rank the following problems according to their impact in the project

Problem Rank %
Ambiguity in specifications 1 91%
Lack of a more realistic estimation 2 76%
Adding functionality during coding 3 76%
Lack of technical experience 4 59%
Lack of a formal development methodology 5 52%
Poor risk management 6 47%
Multiple projects in parallel 7 45%
Lack of funding 8 38%
Lack of coordination between users and the
development team 9 37%
Poor testing 10 31%
Lack of motivation 11 28%
Unexpected technical problems 12 27%

16. Please rank problems according to their frequency

 Rank %
Ambiguity in specifications 1 91%
Adding functionality during coding 2 89%
Lack of a more realistic estimation 3 76%
Poor risk management 4 52%
Lack of technical experience 5 51%
Lack of a formal development methodology 6 47%
Poor testing 7 42%
Lack of funding 8 38%
Lack of motivation 9 38%
Unexpected technical problems 10 37%
Multiple projects in parallel 11 36%
Lack of coordination between users and the
development team 12 35%

17. State your positions regarding the following statements (-2=Strongly Disagree,
2=Strongly Agree)

Statement Average
In general, business applications software development require
extensions of budget or schedule 1.7
In general, development issues could have been avoided with a
better management practice 1.4
In general, after they are put in production, users identify many
problems that should have been captured during testing 1.3
Due to pressure to end the project on time, some tasks such as
documentation are usually deprioritized 1.3
To estimate the ROI of a software application is usually an
ambiguous task 0.9
During Coding, it is common to add functionality that wasn't 0.9

77

specified during analysis
To add new people to a late project doesn't help to end a project
on time 0.3
It's better to postpone the end of a project than to postpone some
tasks to a new phase 0.1
In general, it's hard for users and analysts to identify and translate
into functional specifications all the users' needs 0.1

78

Appendix B. System Dynamics Model

Figure 29. System Dynamics Model – Part I

79

Figure 30. System Dynamics Model – Part II

80

Appendix C. Stocks, Flows and Variables of the Model

Variable Definition
Dimensio
n

% dedicated to verify =0.75 Dmnl
% of effective
development working
time

 =if then else(Accumulated potential development
work>0,Accumulated developed tasks/Accumulated
potential development work,0) Dmnl

% of effective working
time

 =if then else (Accumulated potential
work>0,Accumulated developed tasks/Accumulated
potential work,0) Dmnl

% of reworked tasks =Tasks that were reworked this phase/Number of tasks Dmnl
% of task verified once =Tasks verified/Number of tasks Dmnl

% of tasks with errors
after verification

 =if then else(Tasks that don't need rework in
Total>0:OR:Tasks that need rework after
verification>0,Tasks that need rework after
verification/(Tasks that don't need rework in
Total+Tasks that need rework after verification),0) Dmnl

% of tasks with errors
before verification

 =if then else(Tasks that don't need rework before
verification>0:AND:Tasks that need rework before
verification>0,Tasks that need rework before
verification/(Tasks that don't need rework before
verification+Tasks that need rework before
verification),0) Dmnl

% of work accomplished = INTEG (m1+n1,0) Task

% of worked tasks
 =if then else (Number of tasks>0,Tasks
worked/Number of tasks,0) Dmnl

% that need rework

 =if then else (Tasks that don't need rework before
verification>Delta error :AND: Tasks that need rework
before verification>Delta error,Tasks that need rework
before verification/(Tasks that need rework before
verification+Tasks that don't need rework before
verification),0) Dmnl

% that needed rework at
the beginning of the
phase = INTEG (f1-g1,0) Dmnl

a

 =if then else ("Finished?"=0, if then else (All tasks
developed once=0,Tasks being developed*"% that
needed rework at the beginning of the phase"+Tasks
being developed*(1-"% that needed rework at the
beginning of the phase")*(1-Insight),Tasks being
developed*(1-Insight)), if then else (("Iterative or
Sequential?"=0:AND:Phase=2) :OR: ("Iterative or
Sequential?"=1:AND:Phase=0),Tasks that need rework
after verification,Tasks being developed*"% that
needed rework at the beginning of the phase"+Tasks
being developed*(1-"% that needed rework at the
beginning of the phase")*(1-Insight))) Task/Day

a1 =if then else ("Finished?"=1,Tasks worked,0) Dmnl
Accumulated developed = INTEG (Tasks being developed 2,0) Task

81

tasks
Accumulated potential
development work = INTEG (Development rate 2,0) Task
Accumulated potential
work = INTEG (Real developement rate 2,0) Task
Accumulated rework = INTEG (w1,0) Task

All tasks developed once
 =if then else (Number of tasks>0,if then else(Tasks
worked/Number of tasks>=1,1,0),0) Dmnl

b =(Tasks being developed+c1)-a Task/Day

b1
 =if then else ("Finished?"=1,Tasks that were reworked
this phase,0) Task/Day

c1
 =if then else (z>0:AND:z+Phase=3,Number of
tasks,0) Task/Day

Days to initiate
verification = INTEG (+w-v,Verification Period) Dmnl
Delta error =0.1 Dmnl

Development rate
 =Development rate before productivity*Productivity
factor Dmnl

Development rate 2
 =if then else (Tasks being developed>0,Development
rate,0) Task/Day

Development rate before
productivity

 =if then else("Iterative or
Sequential?"=1:AND:Phase<3, Normal development
rate/(1-Phase size table(3)),Normal development
rate/Phase size table(Phase)) Dmnl

Expected productivity
factor =1.25 Dmnl

f1
 =if then else ("Finished?"=1,Tasks that need rework
after verification/Number of tasks,0) Dmnl

Finished?
 =if then else (Tasks ready to next phase+Delta
error>=Number of tasks,1,0) Dmnl

g1
 =if then else (f1>0,"% that needed rework at the
beginning of the phase",0) Dmnl

h1
 =if then else ("Finished?"=1,Tasks that need rework
after verification,0) Task/Day

i1
 =if then else ("Finished?"=1,Tasks that don't need
rework in Total,0) Task/Day

Initial productivity factor =1 Dmnl

Insight

 =if then else ("Iterative or
Sequential?"=1:AND:Phase<3,Insight per phase
table(0)+(Insight Development)*(Insight per phase
table(3)-Insight per phase table(0)),Insight per phase
table(Phase)+(Insight Development)*(Insight per phase
table(Phase+1)-Insight per phase table(Phase))) Dmnl

Insight Development

 =if then else (Insight Type=0,Insight development
table 0("% of task verified once"),if then else(Insight
Type=1,Insight development table 1("% of task
verified once"),Insight development table 2("% of task
verified once"))) Dmnl

Insight development
table 0

 =([(0,0)-
(2,1)],(0,0),(0.4,0.01),(0.75,0.03),(1.09,0.1),(1.3,0.23),(Dmnl

82

1.5,0.5),(1.69,0.81),(1.85,0.965),(2,1))
Accumulated developed
tasks = INTEG (Tasks being developed 2,0) Task
Accumulated potential
development work = INTEG (Development rate 2,0) Task
Accumulated potential
work = INTEG (Real developement rate 2,0) Task
Accumulated rework = INTEG (w1,0) Task

All tasks developed once
 =if then else (Number of tasks>0,if then else(Tasks
worked/Number of tasks>=1,1,0),0) Dmnl

b =(Tasks being developed+c1)-a Task/Day

b1
 =if then else ("Finished?"=1,Tasks that were reworked
this phase,0) Task/Day

c1
 =if then else (z>0:AND:z+Phase=3,Number of
tasks,0) Task/Day

Insight development
table 1

 =([(0,0)-
(2,1)],(0,0),(0.5,0.08),(0.75,0.2),(1,0.5),(1.25,0.78),(1.5
,0.92),(1.75,0.97),(2,1)) Dmnl

Insight development
table 2

 =([(0,0)-
(2,1)],(0,0),(0.15,0.035),(0.31,0.19),(0.5,0.5),(0.7,0.77)
,(0.91,0.9),(1.25,0.97),(1.6,0.99),(2,1)) Dmnl

Insight per phase table
 =([(0,0)-
(4,1)],(0,0.25),(0.990826,0.5),(2,0.7),(3,0.85),(4,0.95)) Dmnl

Insight Type =1 Dmnl
Iterative or Sequential? =1 Dmnl
j1 =if then else(Phase=3:AND:h1>0,h1,0) Task/Day

k
 =if then else (z>0:AND:(Phase+z)<3,Number of
tasks,Tasks with errors detected) Task/Day

l1 =if then else(z>0,Tasks verified,0) Task/Day
m =Tasks without errors verified Task/Day

m1

 =if then else ("Iterative or
Sequential?"=1:AND:Phase=0,Tasks without errors
verified*(1-Phase size table(3)),Tasks without errors
verified * Phase size table(Phase)) Task/Day

N =Tasks with errors not detected Task/Day

n1

 =if then else ("Iterative or
Sequential?"=1:AND:Phase=0,Tasks with errors not
detected*(1-Phase size table(3)),Tasks with errors not
detected * Phase size table(Phase)) Task/Day

Normal development
rate =1.23 Dmnl
Normal verification rate =2.5 Dmnl
Number of tasks =102 Task
o =Tasks with errors not detected Task/Day
o1=if then else
("Iterative or
Sequential?"

 =1:AND:Phase=0,t*(1-Phase size table(3)),t*Phase
size table(Phase)) Task/Day

p =Tasks without errors verified Task/Day
Phase = INTEG (z,0) Dmnl
Phase size table =([(0,0)-(3,1)],(0,0.1),(1,0.2),(2,0.45),(3,0.25)) Dmnl

83

Productivity evolution
table

 =([(0,0)-
(2,1)],(0,0),(0.25,0.04),(0.5,0.1),(0.75,0.25),(1,0.5),(1.2
5,0.75),(1.5,0.9),(1.75,0.96),(2,1)) Dmnl

Productivity factor

 =Initial productivity factor+Productivity evolution
table("% of worked tasks") *(Expected productivity
factor-Initial productivity factor) Dmnl

r

 =if then else (Tasks to verify this time+s>=Tasks
being verified,Tasks being verified,Tasks to verify this
time) Task/Day

Real developement rate
2 =Real development rate Task/Day

Real development rate

 =if then else(Tasks being verified>0,Development
rate*(1-"% dedicated to verify"*(Tasks being
verified/Verification Rate)),Development rate) Dmnl

relative % that need
rework

 =if then else ("Iterative or
Sequential?"=1:AND:Phase=0,"% that need
rework"*(1-Phase size table(3)),"% that need
rework"*Phase size table(Phase)) Dmnl

Insight development
table 1

 =([(0,0)-
(2,1)],(0,0),(0.5,0.08),(0.75,0.2),(1,0.5),(1.25,0.78),(1.5
,0.92),(1.75,0.97),(2,1)) Dmnl

Insight development
table 2

 =([(0,0)-
(2,1)],(0,0),(0.15,0.035),(0.31,0.19),(0.5,0.5),(0.7,0.77)
,(0.91,0.9),(1.25,0.97),(1.6,0.99),(2,1)) Dmnl

Insight per phase table
 =([(0,0)-
(4,1)],(0,0.25),(0.990826,0.5),(2,0.7),(3,0.85),(4,0.95)) Dmnl

Insight Type =1 Dmnl
Iterative or Sequential? =1 Dmnl
j1 =if then else(Phase=3:AND:h1>0,h1,0) Task/Day

k
 =if then else (z>0:AND:(Phase+z)<3,Number of
tasks,Tasks with errors detected) Task/Day

l1 =if then else(z>0,Tasks verified,0) Task/Day
m =Tasks without errors verified Task/Day

m1

 =if then else ("Iterative or
Sequential?"=1:AND:Phase=0,Tasks without errors
verified*(1-Phase size table(3)),Tasks without errors
verified * Phase size table(Phase)) Task/Day

N =Tasks with errors not detected Task/Day

n1

 =if then else ("Iterative or
Sequential?"=1:AND:Phase=0,Tasks with errors not
detected*(1-Phase size table(3)),Tasks with errors not
detected * Phase size table(Phase)) Task/Day

Normal development
rate =1.23 Dmnl
Normal verification rate =2.5 Dmnl
Number of tasks =102 Task
o =Tasks with errors not detected Task/Day
o1=if then else
("Iterative or
Sequential?"

 =1:AND:Phase=0,t*(1-Phase size table(3)),t*Phase
size table(Phase)) Task/Day

84

p =Tasks without errors verified Task/Day
Relative accumulated
rework = INTEG (o1,0) Task

S
 =if then else (Tasks being verified>0:AND:Tasks to
verify this time=0,Tasks ready for verification,0) Task/Day

T =Tasks with errors detected Task/Day

Tasks being developed

 =if then else (Tasks to be done>Real development
rate,Real development rate,if then else (Tasks to be
done>0,Tasks to be done,0)) Task/Day

Tasks being developed 2 =Tasks being developed Task/Day

Tasks being verified

 =if then else ((Tasks ready for
verification>1:AND:"Time to
verificate?"=1):OR:Phase=3:OR:(Tasks to be
done=0:AND:Tasks ready for verification>0),if then
else (Tasks ready for verification>=Verification
Rate,Verification Rate,Tasks ready for verification),0) Task/Day

Tasks ready for
verification

 = INTEG (Tasks being developed-Tasks being
verified+c1,0) Task

Tasks ready to next
phase = INTEG (m+n-u,0) Task
Tasks that don't need
rework before
verification = INTEG (b-p,0) Task
Tasks that don't need
rework in Total = INTEG (p-i1,0) Task
Tasks that need rework
after verification = INTEG (o-h1,0) Task
Tasks that need rework
at the end of the project = INTEG (j1,0)
Tasks that need rework
before verification = INTEG (a-o-t,0) Task
Tasks that were
reworked in the project = INTEG (b1,0) Task
Tasks that were
reworked this phase = INTEG (t-b1,0) Task
Tasks to be done = INTEG (k-Tasks being developed,Number of tasks) Task
Tasks to verify this time = INTEG (s-r,0) Task
Tasks verified = INTEG (Tasks being verified-l1,0) Task

Tasks with errors
detected

 =if then else (Tasks being verified>Delta error, Tasks
being verified-Tasks without errors verified-Tasks with
errors not detected,0) Dmnl

Tasks with errors not
detected

 =if then else (Tasks being verified>Delta error,Tasks
being verified*"% that need rework"*(1-Verification
accuracy),Tasks being verified*"% that need rework") Dmnl

Tasks without errors
verified =Tasks being verified*(1-"% that need rework") Dmnl
Tasks worked = INTEG (x-a1,0) Task/Day

Time to verificate?

 =if then else ("Iterative or Sequential?"=1,if then else
(Days to initiate verification=0,1,0),if then else(All
tasks developed once=1,1,0)) Dmnl

85

u
 =if then else("Finished?"=1, Tasks ready to next
phase , 0) Task/Day

v =if then else (Days to initiate verification>0,1,0) Dmnl

Verification accuracy

 =if then else ("Iterative or
Sequential?"=1:AND:Phase<>3,Verification accuracy
per phase table(2),Verification accuracy per phase
table(Phase)) Dmnl

Verification accuracy per
phase table =([(0,0)-(3,1)],(0,0.5),(1,0.55),(2,0.65),(3,0.9)) Dmnl
Verification Period =1 Dmnl

Verification Rate

 =if then else ("Iterative or Sequential?"=1,if then
else(Phase=3,Normal verification rate/Phase size
table(Phase),Normal verification rate/(1-Phase size
table(3))),Normal verification rate/Phase size
table(Phase)) Dmnl

w

 =if then else (((Tasks to verify this time=0):OR:(Tasks
to verify this time=r)):AND:Days to initiate
verification=0:AND:((s=0):OR:(r=s:AND:Tasks to
verify this time=0)),Verification Period,0) Dmnl

w1 =t Task
x =Tasks being developed Task/Day

z
 =if then else(u>0:AND:Phase<3, if then else
("Iterative or Sequential?"=1,3,1) , 0) Dmnl

Table 9. List of variables of the Model

86

Appendix D. Project Example
The following tables show the calculation of the number of function points for small project
of medium complexity. These values are calculated identifying the number and type of
components the project has (see Table10). Then these values are multiplied by the factor
assigned to each type of component (see Table 11). The sum of the results defined the
number of function-points (see Table 12).

Complexity Inputs Outputs Inquiries

Logical
internal
files

External
interface
files

Low 2 1 2 1 1
Medium 2 2 2 1 1
High 2 1 2 0 0
Subtotal 6 4 6 2 2
Total 40

Table 10. Components of the example project

Complexity Inputs Outputs Inquiries

Logical
internal
files

External
interface
files

Low 3 4 3 7 5
Medium 4 5 4 10 7
High 6 7 6 15 10

Table 11. Conversion factor to calculate adjusted function-point

Function
Points Inputs Outputs Inquiries

Logical
internal
files

External
interface
files

Low 6 4 6 7 5
Medium 8 10 8 10 7
High 12 7 12 0 0
Unadjusted function-point 102
Influence multiplier 1
Adjusted function-point total 102

Table 12. Adjusted function-point

The suggested duration of the project is calculated using the quality level exponent. An
average business organization will develop this project in approximately 7.3 months (see
Table 13).

87

Best in class Average Worst in class
0.41 0.43 0.46
1020.41=6.7 1020.43=7.3 1020.46=8.4

Table 13. Project duration estimation

88

Appendix E. A closer look at Validation Phase in
Company A

This section presents an additional system dynamics model that focuses on the last phase of
a project. This model doesn’t differentiate between sequential and iterative approaches but it
helps to understand what the driven forces are behind this phase and how they can be
adjusted to control it better.

The model has three parts. The purpose of the first part (see Fig. 31) is to model how tasks
get transferred from the developers to the testers. Upon error corrections these rework tasks
will be returned to the stock (tasks to be checked) for another testing cycle.

The number of cycles repeated will be captured by the stock (testing cycles) through the new
cycle rate which is a function of task submission, every time the tasks are passed from the
stock (tasks checked) to the stock (tasks to be checked) it goes through the task submission
rate which serves as a counter for the stock (testing cycles).

The auxiliary variable (test time per cycle) is a function of the table (testing speed) and the
stock (testing cycles) that controls the checking rate.

Figure 31. Testing cycle

The second part of the model focuses on the rework cycle, from identifying the coding errors
to solving the errors (see Fig 32). Coding error rate, a function of error introduction rate and
error submission, defines how many errors are generated. These errors are stored as
undiscovered errors first. Then they become discovered errors via the error discovery rate
that is a function of the table (probability of detection), error density, checking rate, checking
finished, undiscovered errors to the stock (discovered errors). It then passes to the stock
(error solved) via the error rework rate which is a function of the number of development
resources, rework rate, and discovered errors. From the stock (error solved) it goes to the

89

stock (error inventory) via the error submission rate which is a function of the errors solved
and all errors were solved.

Figure 32. Rework Cycle

The third part of the model captures the total time spent on the phase (see Fig 33). The Stock
and Flow diagram starts with a source via the time checking rate which is a function of
checking rate and time step to the stock (cycle time). It then passes to the stock (total cycle
time) via the checking end rate which is a function of the cycle time and checking finished.

Figure 33. Time Control

Using information provided by company A (see Appendix A) a total of 14 simulations were
performed to analyze how changing their current parameters cost and testing time improved.
Thus, the model has four main parameters that allow simulating different scenarios variables.
These are the: the number of testers, the number of developers, the maximum number of
errors per cycle, the maximum number of days per cycle. To control the duration of testing
cycles this model assumes the following policy: cycles finish whenever the maximum

90

number of errors or the maximum number of days are reached. When one of those events
happens tasks testing is stopped and waits again until development is ready.

All simulations considered the average scenario of a project in Company A which includes:
2.5 Testers, 6 developers, and 100 tasks.

The metrics used to compare the results of each simulation were:
• Total time spent on work: defined as the total days the developers and the testers were

working.
• Work Days: defined as the total number of days required to complete all the testing

cycles. It also takes into consideration the time when no testing is done and only the
developers are working.

• Total MP Cost: defined as the total man power cost. This is calculated multiplying the
number of work days by the number of people (testers and developers).

• Total Idle Cost: defined as the cost of time when the developers and tester were idle.
• Total Real MP Cost: defined as the cost of time when developers and testers were

working.
• Ratio idle/total: Total idle cost/Total Cost

Total Cost vs. # of Testers

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

1 2 3 4 5

of Testers

$

0

10

20

30

40

50

60

70

80

90

Da
ys

Total idle cost
Total Real cost
Overall MP cost
Work Days

Figure 34. Cost vs. Number of Testers

Fig. 34 shows the results after trying different values for the number of tester. We observe
that having more than 3 testers doesn’t reduce the duration of testing phase. Conversely,
having just one tester increases the idle cost (i.e. developers waiting for errors to be fixed).

Fig. 35 shows that increasing the maximum number of days per cycle over 10 days reduces
both the duration of the testing phase and the overall MP cost.

91

Total Cost vs. # Max Day per Cycle

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

5 10 15

Max Days per Cycle

$

0

10

20

30

40

50

60

70

80

90

Da
ys

Total idle cost
Total Real cost
Overall MP cost
Work Days

Figure 35. Costs vs. Max Day per Cycle

Analyzing the behavior of two variables combined (max number of errors and max number
of days per cycle) we observe that the optimal combination is 30 errors and 10 days (see Fig.
36). This seems to indicate that increasing the duration of cycling times could reduce the
duration of the phase.

Our simulations indicated that current setting of Company A (a maximum number of 30
errors or five days per testing cycle, 2.5 tester and 6 developers) are close to optimum values
yet it seems to be space for some improvement. Increasing the maximum number of errors
per cycle could decrease the Total Time MP Cost. Similarly, increasing the number of
developer reduces the duration of the testing phase but increases the cost.

92

Total MP Cost (Max Errors per Cycle vs Max Cycle Time)

35,880 34,500 40,020

49,680

40,710

35,880

35,880

40,710

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18

Days

Er
ro

rs

Figure 36. Total MP Cost (Max Errors and Max Cycle Time)

