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ABSTRACT

Precision opto-mechanical systems, such as space tele-
scopes, combine structures, optics and controls in order to
meet stringent line-of-sight (LOS) pointing and wavefront
error (WFE) phasing requirements. In this context a novel
approach to the design of complex, multi-disciplinary sys-
tems is presented in the form of a multivariable isoperfor-
mance methodology. The performance outputs are treated
as equality constraints and the non-uniqueness of the design
space is exploited by trading key system parameters with
respect to each other. The goal is to find a performance in-
variant set of design options, I.

Three algorithms (branch-and-bound, tangential front
following and vector spline approximation) are developed
for the bivariate and multivariable isoperformance problem.
An experimental validation is carried out on the DOLCE
laboratory testbed and it is shown that the predicted perfor-
mance contours match the experimental data well at low ex-
citation levels. This paper focuses on the algorithms used
to find I, rather than the systems engineering implications.
The isoperformance approach enhances the understanding
of complex multi-disciplinary systems by exploiting perfor-
mance information beyond the local neighborhood of a par-
ticular point design.
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1 Introduction

In designing complex engineering systems there are typ-
ically two conflicting quantities that come into play: re-
sources and system performance. One traditional paradigm
fixes the amount of available resources (costs) and attempts
to optimize the system performance given this constraint.
One often voiced criticism of such a computational design
is that it focuses too much on performance optimization,
when a good system should merely “satisfice” the required
performance levels and consider other objectives in order to
achieve a balanced design.

The other approach is therefore to constrain the system
performance to a desired level and to find a design (or a fam-
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Figure 1. Block diagram of NEXUS spacecraft. The per-
formances, Jz , are typically expressed in terms of the root-
mean-square (RMS) or root-sum-square (RSS) values of the
outputs.

ily of designs) that will achieve this performance at minimal
cost or risk. This paper explores the second approach by de-
veloping a framework termed the “isoperformance method-
ology” for dynamic, linear time-invariant (LTI) systems,
such as the one in Figure 1.

Once a nominal design (vector), pnom, has been found
that meets all requirements with sufficient margins, it is im-
portant to realize that this design is generally not unique.
This drives the following problem formulation.

1.1 Problem Definition

Given the required system performances, Jz;req;i, where
i = 1; : : : ; nz, attempt to find a set of independent solu-
tion vectors, piso = [p1; p2; : : : ; pnp ], whose entries are the
variable design parameters, pj , where j = 1; 2; :::; np, such
that an efficient system design can be achieved. This can be
formulated mathematically as follows:

An appended state space representation of the dynamics
of a linear time-invariant (LTI) system is given as

_q = Azd (pj) q +Bzd (pj) d+Bzr (pj) r
z = Czd (pj) q +Dzd (pj) d+Dzr (pj) r

(1)



whereAzd is the state transition matrix,Bzd and Bzr are the
disturbance and reference input coefficient matrices, Czd is
the performance output coefficient matrix, Dzd and Dzr are
the disturbance and reference feedthrough matrices, d are
unit-intensity white noise inputs, r are reference inputs, z
are system performance outputs, q is the state vector and p j
are the independent variable system parameters. Given that
the functionals

Jz;i (pj) = F (z) , e.g. Jz;i = E
�
zTi zi

�1=2
(2)

where i = 1; 2; :::; nz, are a definition of the performance
metrics of interest, find a set of vectors, piso, such that the
performance equality (isoperformance) constraint

Jz;i (piso) � Jz;req;i 8 i = 1; 2; :::; nz (3)

is met, assuming that the number of parameters, np, exceeds
the number of performances

np � nz � 1 (4)

and that the parameters pj are bounded below and above as
follows:

pj;LB � pj � pj;UB 8 j = 1; 2; :::; np (5)

The isoperformance condition (3) has to be met subject to a
numerical (percent) tolerance, �����Jz (piso)� Jz;req

Jz;req

���� � �

100
(6)

Alternatively this can be formulated in terms of set
theory. Figure 2 shows various sets in the vector space

p =
�
p1 p2 ... pnp

�T
and their mutual relationship in the

general case.

I

E
P

U

B

pn

R

piso*

Figure 2. Sets for isoperformance problem definition.

set description
R
np np-dimensional Real valued

Euclidean vector space
B � Rnp subset of Rnp , which

is Bounded by (5)
I � B subset of B, which satisfies

Isoperformance, see (3),(6)
U � Rnp Unstable subspace, where

max(Re(�i)) > 0
P � Rnp Pareto optimal subset
E = I \ P Efficient subset

The first task is to find the elements of the isoperfor-
mance set I in B. Since the performance requirements are
bounded, i.e. jJz;req;ij < 1 8 i, it is true that the in-
tersection U \ I = ?. In other words only stable solu-
tions can be part of the isoperformance set, thus I � U,
where the overline denotes the stable, complementary set
U = fxjx 62 Ug1. The ultimate goal is to find a family of
designs p�iso, which are elements of the efficient set E. The
efficient set is the intersection of the isoperformance set I
and the pareto optimal set P, i.e. E = I \ P, see [1].

1.2 Previous Work

According to Crawley et al. the allocation of design require-
ments and resources (costs) as well as an assessment of risk
during early stages of a program is based on preliminary
analyses using simplified models that try to capture the be-
havior of interest [2]. The kernel of the performance and
sensitivity analysis framework, which is used as a starting
point for developing the isoperformance methodology was
established by Gutierrez [3]. The H2-type performances
used here are defined in accordance with Zhou, Doyle and
Glover [4].

The idea of holding a performance metric or value of
an objective function constant and finding the correspond-
ing contours has been previously explored by researchers in
other areas. Gilheany for example presented a methodology
for optimally selecting dampers for multidegree of freedom
systems [5]. In the field of isoperformance methodology,
work has been done by Kennedy, Jones and coworkers [6].
They present the application of isoperformance analysis in
military and aerospace systems design, by trading off equip-
ment, training variables, and user characteristics.

The application of isoperformance draws on previous
research results in multidisciplinary design optimization.
Seminal contributions in this field were made by Messac [7],
Sobieski [8] and others. A fundamental book on the theory
of multiobjective optimization was published by Sawaragi,
Nakayama and Tanino [1]. An important application of mul-
tiobjective optimization is concurrent control/structure opti-
mization. The method developed by Milman et al., [9], does
not seek the global optimal design, but rather generates a se-
ries of Pareto-optimal designs. This work comes closest to
the spirit followed in this paper. A systematic approach to
isoperformance in complex, opto-mechanical systems, how-
ever, is lacking at this time.

1.3 Research Approach - Roadmap

The roadmap in Figure 3 starts with a given integrated model
of the system of interest, which is populated by an initial
design vector po. The performance assessment calculates
the performance vector J k

z and compares it to the require-
ments Jz;req . If the inequality j�J k

z =J
k
z j < �=100, where

�Jkz = Jkz �Jz;req , is met, we have found a solution, pnom,
that satisfies the isoperformance condition. If the relative

1The eigenvalues �i are obtained by solving the eigenvalue problem
[Azd � �iI]�i = 0.



error is larger than �=100 we perform a sensitivity analysis,
which yields the gradient vector (Jacobian) rJ k

z . This is
used in a gradient search algorithm, which attempts to drive
all performances to the isoperformance condition by updat-
ing pk.
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Figure 3. Isoperformance Roadmap

Once pnom is found, we begin the actual isoperfor-
mance analysis. First, the problem space is restricted to only
two variable parameters pj , j = 1; 2, and one performance
nz = 1 (Section 2). The generalization to the multivari-
able case with np > 2 is the topic of Section 3. The main
result from the isoperformance analysis is a set of points,
piso, which approximate the isoperformance set I in Rnp . If
this set is empty, it means that the algorithm was not able
to detect elements in the isoperformance set. The recom-
mended procedure is then to (a) switch to a more general
algorithm, (b) modify the upper or lower parameter bounds
pLB or pUB as indicated by the active constraints or (c) to
modify the requirements Jz;req in order to obtain a feasible
solution. The methodology then proceeds to the multiobjec-
tive optimization step, see [10]. The solution is not a single
point design, but rather a family of pareto optimal designs,
p�iso, which make up the “efficient” set E.

2 Bivariate Isoperformance Methodology

This section solves the bivariate isoperformance problem for
two independent variable parameters pj , where j = 1; 2,
and one (scalar) performance objective p j 7! Jz(pj). Three
alternative algorithms (exhaustive search, gradient-based
contour following and progressive spline approximation) are
developed and compared.

2.1 Exhaustive Search Algorithm (I)

This method discretizes the parameter space by overlaying
a fine grid and completely evaluating all grid points. The
subdivisions of the grid are defined by means of uniform
parameter increments�p1;�p2. The size of the increments
should be small enough to capture details of the isoperfor-
mance contours. Each grid point on the grid represents a
unique parameter combination pk;l = [ p1;k p2;l ]T . The
parameter values are obtained from p1;k = p1;LB + (k �
1)�p1 and p2;l = p2;LB + (l � 1)�p2, respectively, which
leads to a linearly spaced grid as shown in Figure 4.

Note that the result of a particular parameter combina-
tion pk;l does not affect the computation of the next point.
Once all the parameter combinations pk;l have been evalu-
ated, linear interpolation between neighboring grid points is
used to find isoperformance points, p iso;r2:

piso;r =

�
p1;k
p2;l

�
+

(Jz)k;l � Jz;req

(Jz)k;l � (Jz)m;n

�

�
p1;m � p1;k
p2;n � p2;l

�
(7)

p
1,LB

p
2,UB

p
2,LB

p
1,UB

∆p
1

p
1

p
2

∆p
2

Parameter space B

Jz,req

grid
point

iso
contour

Figure 4. Algorithm I: Discretization of B in a linearly
spaced grid with increments �p = [�p1;�p2]

T .

2.2 Gradient-Based Contour Following (II)

The basic idea of gradient-based contour following is to first
find an “isopoint”, piso;k, which is known to yield the re-
quired performance Jz;req. A steepest gradient search is
performed in order to intercept such a point, p iso;k, starting
from an initial guess [10]. One can then find a neighboring
point piso;k+1 = piso;k+�pk such that Jz(piso;k+�pk) =
Jz(piso;k+1) = Jz;req by recalling the Taylor series expan-
sion of the vector function Jz(p) around piso;k:

Jz (p) = Jz (piso;k) + (rJz)
T
���
piso;k

��p+

1
2�p

T H jpiso;k �p+H:O:T:
(8)

Note that p = piso;k + �p and that rJz and H are the
gradient vector and Hessian matrix, respectively. Neglect-

2This is similar to the MATLAB built-in function contourc.m used
for contouring.



ing second-order and higher terms and setting the first or-
der term (perturbation) to zero allows finding a neighboring
point piso;k+1. Specifically, if

Jz (piso;k+1) = Jz (piso;k +�pk) �=

Jz (piso;k) + (rJz)
T
���
piso;k

�pk � Jz;req
(9)

is to be true, then

�Jz;k = (rJz)
T
���
piso;k

�pk � 0 (10)

In other words, one must choose the vector �pk, such
that it is in the nullspace of the transposed gradient vector
(rJz)

T . This condition can be written out componentwise
as

�Jz;k =
@Jz
@p1

����
p1;k

�p1;k +
@Jz
@p2

����
p2;k

�p2;k � 0 (11)

Geometrically this condition corresponds to following the
tangential vector tk along the isocontour. Figure 5 shows
that tk can be considered the tangential vector at point p iso;k
and that it is orthogonal to the normal vector nk.
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Figure 5. Algorithm II: Depiction of gradient vector rJ z,
normal vector n and tangential vector t along the isoperfor-
mance contour.

There are two ways in which tk can be obtained from
rJz(pk). First one can compute the normal vector nk and
rotate it by 90 degrees to obtain the tangential vector tk.

tk = R � nk =

�
0 �1
1 0

�
� nk (12)

The second method is more general, since it is also applica-
ble to the case of nz > 1 performances and np > 2 parame-
ters and utilizes the singular value decomposition (SVD) of
the gradient vector [10].

With the step direction tk and a judicious choice of
step size �k one can find the next point on the isoperfor-
mance contour piso;k+1 = piso;k + �ktk. At this new point
the performance Jz(piso;k+1) is recomputed along with the
gradient vector rJz(piso;k+1). The process is repeated un-
til the parameter boundaries of B are reached, the solution
reaches the unstable subspace U or the isoperformance con-
tour closes on itself.

2.3 Progressive Spline Approximation (III)

The progressive spline approximation algorithm assumes
that the isoperformance contour intersects the boundary B,
i.e. that no closed loops are present. This is most often the
case, when the performance function Jz(p1; p2) is mono-
tonic in at least one of the two parameters. The basic idea
of this algorithm is to approximate the isoperformance con-
tour with a piecewise polynomial (pp) function. The spline
mathematics and tools developed by de Boor [11] are lever-
aged for this algorithm. The progressive spline approxima-
tion algorithm assumes that the two endpoints a; b are on the
parameter space boundary B, see Figure 6.

A mathematical description of an isoperformance con-
tour as a k-th order vector spline, P l(t), is given as

Pl (t) =

�
piso;1 (t)
piso;2 (t)

�
=

�
s1 (t)
s2 (t)

�
= piso(t) (13)

where
t 2 [0; 1] 7! Pl (t) 2 [a; b] (14)

the vector components of each spline piece are approxi-
mated as piecewise polynomials, where

sj (t) = fj;l (t) for j = 1; 2 and 8 l (15)

The initial estimate of the isoperformance contour consists
of a single piece. The isoperformance contours are parame-
terized with parameter t from endpoint a to endpoint b. Thus
at endpointawe have t = 0 and at endpoint bwe set t = 1:0.
The functional approximation for each piece is then given as

fj;l (t) =
kX

i=1

(t� �l)
k�i

(k � i)!
cj;l;i where t 2 [�l : : : �l+1]

(16)
Note that all relevant information is contained in the break
point sequence, �1 : : : �l+1 and in the polynomial coefficient
array cj;l;i. Next a bisection is performed at the mid-point
of the first piece, (t = 0:5), resulting in the point pmid;1,
which results in the closest point on the contour, p iso;1, via
gradient search. This bisection procedure is repeated until
the midpoints of all pieces lie on the contour, subject to a
tolerance � as defined above, see Figure 6.

2.4 Algorithm Comparison

This subsection applies the three algorithms developed
above to a single DOF sample problem and compares the an-
swers. Figure 7 shows a single degree-of-freedom (SDOF)
oscillator, which is composed of a mass m [kg], a linear
spring of stiffness k [N/m] and a linear damper (dashpot)
with coefficient c [Ns/m]. The oscillator is excited by a
zero-mean white-noise disturbance force F [N], which has
been passed through a first order low-pass filter with unity
DC-gain and a corner frequency !d [rad/sec]. The dis-
placement x [m] of the mass is passed through a first or-
der highpass filter with corner frequency !o [rad/sec], sim-
ulating the effect of an optical controller. The performance
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is the RMS of the filtered displacement output z, specifi-
cally Jz = (E[zT z])1=2, where E[ ] denotes the expectation
operator [12]. The goal is to understand how this perfor-
mance, Jz, depends on the variable design parameters, i.e.
pi 7! Jz(pi) for i = 1; 2; :::; 5 , where p = [!d m k c !o]

T .
Here, we choose the disturbance corner frequency, ! d, and
oscillator mass, m, as the variable parameters in order to
find the isoperformance contour at the Jz = 0:8 [mm] level.

In order to assess how well the resulting isoperformance
points, piso, actually meet the isoperformance condition (3)
it is necessary to define a solution “quality” metric. The
“quality” of the isoperformance solution can be quantified
as follows. Let

�iso =
100

Jz;req
�

2
664
nisoP
k=1

[Jz(piso;k)� Jz;req]
2

niso

3
775
1=2

(17)

be a quality metric expressing the relative % error with re-
spect to Jz;req . In the above equation niso is the total num-
ber of isopoints computed, Jz(piso;k), is the performance
of the k-th isopoint and Jz;req is the performance require-
ment, i.e. the desired performance level. This number,� iso,
can then be directly compared to the desired isoperformance
contour tolerance, � , and should always be smaller than it.

The isoperformance results for exhaustive search (I) are
shown in Figure 8. The isoperformance curve shows that a
small increase in the disturbance filter corner frequency !d

below about 30 radians per second (roughly 5 Hz), which is
the natural undamped frequency of the oscillator, requires a
large increase in mass m in order to maintain the same RMS
level. The isoperformance contours obtained with contour
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following (not shown) and progressive spline approximation
(Fig. 6) are very similar. A comparison of the computational
cost among algorithms is shown in Table 1.

Table 1. Comparison of Algorithms I-III for SDOF problem.

Result Exhaustive Contour Spline
Search Following Approximation

FLOPS 2,140,897 783,761 377,196
CPU [sec] 1.15 0.55 0.33
Tolerance: � 1.0 % 1.0 % 1.0 %
Error: �iso 0.057 % 0.379 % 0.087 %
isopoints 35 41 7

Algorithm I is the most computationally expensive. Al-
gorithm III (progressive spline approximation) is clearly the
fastest, however it only works for open segments and as-
sumes that there is only a single isoperformance contour,
which intersects the boundary B. Thus, it is the most re-
strictive (least general) of the three algorithms. The second
algorithm (gradient-based contour following) has a compu-
tational cost which is in between the other two methods. A
more detailed comparison is available in [10].

3 Multivariable Isoperformance Algorithms

This section generalizes the algorithms developed in the pre-
vious section to the multivariable case. Specifically, there
can be more than two variable design parameters and mul-
tiple performances, i.e. np > 2 and nz > 1. The condition
that the number of variable parameters always exceeds the



number of performances np � nz � 1 has to be maintained
in order for there to be a non-zero isoperformance set.

3.1 Branch and Bound Algorithm (I)

The exhaustive search algorithm in the multivariable case
(np > 2) discretizes the parameter set B with a fine grid and
evaluates all grid points. For np >> 2 this is not practical,
even for relatively modest problems. Assume for example
that np = 6 and that 50 grid points are used per parameter.
Then the performance evaluation pj 7! Jz has to be carried
out 506 = 1:56 � 1010 times. If it took one second of CPU
time per performance evaluation it would take 495.5 years
to evaluate the entire trade space on a single computer.

A remedy is found by modifying exhaustive search as
a branch-and-bound algorithm. The branch-and-bound al-
gorithm starts with an initial population (branches), which
are evenly, but coarsely, distributed in B. It then tests if the
performance at neighboring points (branches), pm and pn,
is such that the isoperformance surface passes in between
them:

[Jz (pm) � Jz;req � Jz (pn)][[Jz (pm) � Jz;req � Jz (pn)]
(18)

where pm; pn are np � 1 vectors and Jz;req is a nz � 1
vector. If the answer is true, both branches are retained
and further refined in the next generation. If the answer is
false the point (branch) pm is eliminated. This is graph-
ically shown in Figure 9 for two dimensions. In the mul-

generation ng

generation ng+1

pm pn

Parameter Bounding Box  B

points 
(branches)

unknown 
isoperformance

surface

Jz,req

Jz,req

branch bound

Figure 9. Multivariable Isoperformance (I): Branch-
and-Bound graphic representation. Crossed out points
(branches) are dropped in the next generation.

tivariable case the squares shown in Figure 9 are actually
hyper-rectangles. The refinement continues with each gen-
eration, ng , until the exit criterion

�iso;ng < � (19)

is met. It was empirically found that setting a tolerance
tighter than 2% becomes very expensive, since in the branch
and bound approach each generation is roughly 2np times
larger than the previous generation. An advantage of the

branch-and-bound algorithm, however, is that it does not re-
quire any sensitivity (gradient) information.

3.2 Tangential Front Following (II)

A first order Taylor approximation of the vector perfor-
mance function Jz at a point pk = [pk1 p

k
2 : : : pknp ]

T 2 B
can be written as:

Jz
�
pk+1

�
= Jz

�
pk +�p

�
= Jz

�
pk
�
+rJTz

��
pk
�p+HOT

(20)
The Jacobian,rJz, is the matrix of first order partial deriva-
tives of Jz with respect to p:

rJz =

2
666666666664

@Jz;1
@p1

@Jz;2
@p1

� � �
@Jz;nz
@p1

@Jz;1
@p2

@Jz;2
@p2

� � �
@Jz;nz
@p2

...
...

...
...

@Jz;1
@pnp

@Jz;2
@pnp

� � �
@Jz;nz
@pnp

3
777777777775

(21)

The singular value decomposition (SVD) of the Jaco-
bian is a key step. It provides a set of orthogonal unit-length
vectors, vj , as the columns of matrix, V , thus forming the
column space and null space of the Jacobian, respectively.

U�V T = rJTz (22)

and the individual matrices are as follows:

U =
�
u1 � � � unz

�
| {z }

nz�nz

�=
�
diag

�
�1 � � � �nz

�
0nz�(np�nz)

�
| {z }

nz�np

V =

2
64 v1 � � � vnz| {z }

column space

vnz+1 � � � vnp| {z }
null space Vt

3
75

(23)

Thus, at each point there are np � nz directions in the null
space. It is a linear combination of the vectors in the null
space, Vt, which is used to determine a tangential step, �p,
in a performance invariant direction.

�p = � �
�
�1vnz+1 + : : :+ �np�nzvnp

�
= �Vt� (24)

where �p is the performance invariant step increment in
R
np , � is a vector of coefficients, which determines the lin-

ear combination of directions in the nullspace, V t, and � is a
step size. The principal front points, as shown in Figure 10,
propagate in one of the positive or negative directions given
by the principal vectors, vi, in the null space. The interme-
diate front points on the other hand propagate in directions,
which have equal contributions from all vectors in V t. The
� sign for each �i determines in which “quadrant” the front
point propagates. The idea is to gradually explore the isop-
erformance set I, starting from an initial point, pnom, and
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subsequently stepping in tangential, orthogonal directions,
vj , where j = nz +1; : : : ; np, which lie in the null space of
the Jacobian. The active points form a “front”, when con-
nected to each other. The front grows gradually outwards
from the initial point until the boundary B is intercepted.
The main advantage of this algorithm is that it converts the
computational complexity from a np to a np � nz problem.

3.3 Vector Spline Approximation (III)

This algorithm is constructed by generalizing the bivariate
progressive spline approximation. The basic idea of vec-
tor spline approximation is to only capture important bor-
der and interior points of the isoperformance set I. A t-
parameterized vector spline in np-dimensional space con-
necting two points A and B can be written as

p (t) =

2
6664

p1 (t)

pj (t)
...

pnp (t)

3
7775 =

2
66666666664

kP
i=1

(t� tA)
k�i

(k � i)!
� c1;i

kP
i=1

(t� tA)
k�i

(k � i)!
� cj;i

...
kP

i=1

(t� tA)
k�i

(k � i)!
� cnp;i

3
77777777775
= C �t̂

(25)
where C is the vector spline coefficient matrix and t̂ is a
vector, which depends on the parameter t ,whereby t 2
[tA; tB ]. The vector spline approximation algorithm uses
cubic splines of order, k = 4, we can then write:

t̂ (t) =

�
1 t� tA

(t� tA)
2

2

(t� tA)
3

6

�T
(26)

The first step of the vector spline approximation algo-
rithm is to find the border points, piso;border, which meet
the isoperformance condition (3) and lie on an edge of the
parameter bounding box B. These points are found by first
computing the performance vector, Jz, at all 2np corner
points and searching for border points, p iso;border, which lie
on an edge connecting two corner points. The next step is to
connect the isoperformance border points with cubic splines
along the boundary of B. In this step the mid-points of the

border splines are also determined. Finally interior points
of the isoperformance set I are obtained by computing the
centroid. This can be considered to be the center point of I.
An initial guess for the centroid is:

p̂cent =
�
p̂c;1 � � � p̂c;j � � � p̂c;np

�T
where p̂c;j =

1

nb

nbX
i=1

piso;border;i;j
(27)

and nb is the number of border points. The actual centroid,
pcent, is found by steepest gradient search. Finally the cubic
splines connecting the centroid and the mid-points of the
border splines are found, subject to tolerance, � .

3.4 Multivariable Algorithm Comparison

The multivariable SDOF problem with three variable (de-
sign) parameters, !d, m and !o is considered. Again, the
desired performance level is Jz;req = 0:8 [mm] RMS. Re-
sults for the single DOF oscillator problem are shown in
Figure 11. The outline of the isoperformance surface can
clearly be seen.
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Figure 11. Multivariable Isoperformance (III): Vector
Spline Approximation for SDOF sample problem.

A comparison of the multivariable algorithms is pre-
sented in Table 2.

Table 2. Comparison of multivariable algorithms for SDOF
problem: Exhaustive Search, (I) Branch-and-Bound, (II)
Tangential Front Following and (III) Vector Spline Approx-
imation.

Metric Ex Search I II III
MFLOPS 6,163 891 106 1.5
CPU time [sec] 5078.19 498.56 69.59 4.45
Tolerance � 1.5 % 2.5 % 1.5 % 1.5%
Error �iso % 0.87 2.43 0.22 0.42
# of isopoints 2073 7421 4999 20



As expected the exhaustive search is the most expen-
sive algorithm and requires almost 1.5 hours to run 3. The
vector spline approximation on the other hand completes
in merely 5 seconds. Branch-and-Bound improves over ex-
haustive search by a factor of roughly 10 and tangential front
following in turn improves over branch-and-bound by a fac-
tor of roughly 7. The tangential front following algorithm
results in the best numerical solution quality as measured
by �iso. Branch-and-bound provides the largest number
of isopoints (� 7500), whereas vector spline approxima-
tion yields “only” 20 such points. Recall, however, that
the spline approximation also provides the spline coefficient
matrices, such that additional points could be easily gener-
ated along the connecting splines.

The general strategy is to first attempt an isoperfor-
mance solution with vector spline approximation and move
to the other, more expensive algorithms if a solution in B
is expected to exist, but cannot be found. Complexity con-
siderations [10] suggest that the isoperformance problem is
intrinsically non-polynomial in np. The actual number of
floating point operations (FLOPS) required is problem de-
pendent. There is no doubt, that isoperformance problems
with more than 10 parameters are expensive to solve.

4 Experimental Validation

The goal of the experimental validation is to demonstrate
the ability of the isoperformance methodology to accu-
rately predict performance contours for a physical labora-
tory testbed.

4.1 Testbed Description

The main feature of the DOLCE testbed is that system pa-
rameters can be varied over a large range. Figure 12 shows
the testbed, which, starting from the top, is comprised of
an uniaxial vibration exciter (shaker), with a seismic mass,
ms, driven by a band-pass filtered (0-100 Hz), random ex-
citation voltage, Vs. Next the upper stage contains a single
small bay of a square truss and a coupling plate. The lower
stage consists of a large square truss, a weight bed holding
a payload mass, mp, and an aluminum sandwich base plate.
Finally an axial stabilization system and four (4) suspension
springs of stiffness ks complete the arrangement.

The shaker generates a random axial disturbance force,
Fd, whose magnitude and frequency content depend on the
excitation voltage, Vs. The performance is the root-mean-
square (RMS) of the base plate displacement

Jz = E
�
zT z

�1=2
(28)

The primary instrumentation consists of a uniaxial load
cell, which is attached to the seismic mass and measures the
disturbance force, Fd. The performance is measured via an
inductive gap sensor.
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Figure 12. DOLCE Testbed

4.2 Experimental Approach

The experimental approach is presented in Figure 13. First
the testbed was assembled, instrumented and calibrated. It
was decided to conduct a bivariate isoperformance test, with
the performance given by Equation (28). The variable pa-
rameters were the excitation voltage, Vs, ranging from 0.1-
1.0 [Vrms] as well as the payload mass, mp, ranging from 0-
200 [lbs]. A test matrix was run on the testbed and recorded
with parameter increments �Vs = 0:1 and �mp = 10, re-
spectively. From this gridded data isoperformance contours
were extracted via linear interpolation, see Subsection 2.1.
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Figure 13. Experimental Approach

Independently and without knowledge of the experi-
mental results an apriori finite element model (FEM) was
constructed (“Theoretical FEM”). This model only used as-
sembly drawings, masses from scale measurements and cat-
alogue values for material properties and spring stiffnesses.
The predictions from this model would be equivalent to
what could be expected from isoperformance analyses for
opto-mechanical systems in the conceptual and preliminary



design phases. A more accurate prediction is expected
from an updated FEM, which has its physical parameters
tuned such that the FEM and experimental transfer func-
tion (measurement model) from Fd to z coincide well at
one design point in B. Finally the isoperformance contours
for DOLCE are predicted with a single degree-of-freedom
(SDOF) model, which lumps the entire testbed mass to-
gether with the payload mass mp. The hope is that insights
can be gained by comparing different performance contours
for the experiment with the ones predicted for the models.

4.3 Testbed Characterization

The transfer function from disturbance (shaker) force to
base plate displacement, Gzd(s) = Z(s)=Fd(s), where
s = j!, is obtained experimentally and by model predic-
tion, see Figure 14.
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Figure 14. DOLCE transfer function Gzd = Z(s)=Fd(s)
for mp = 0, Vs = 1:0

As can be seen, there are two observable modes in the
bandwidth up to 100 Hz. The first mode at 10 Hz is the ax-
ial base suspension mode, where the testbed translates ver-
tically up and down on the four suspension (compression)
springs. The second mode at 65 Hz is the upper coupling
plate bending mode, see Figure 15.
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Figure 15. DOLCE Testbed Observable Modes

4.4 Isoperformance Results

The basis for obtaining the experimental isoperformance
contours is the test matrix with Vs and mp as described in
Subsection 4.2. At each parameter combination the time
histories of Fd(t) and z(t) were recorded and the perfor-
mance Jz = Jz(Vs;mp) was computed with 25 averages.
The peak displacement RMS value of 57.6 [�m] is obtained
for the maximum excitation level (Vs = 1:0 [Vrms]) with an
empty weight bed (mp = 0 [lbs]). This is intuitively satis-
factory, since at this point the maximum disturbance energy
enters the system (about 7 N of force Fd RMS), while the
disturbability of the system is at a maximum. Conversely the
lowest response (“best performance”) is found for V s = 0:1
andmp = 200. This information is used to obtain isoperfor-
mance contours at the 7.5, 15 and 30 [�m] RMS displace-
ment levels (Figure 16).
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Similar contours are predicted for the SDOF and FEM
models. This suggests that the axial suspension mode is
dominant in most of the trade space. Excellent correlation
between experiment and theory is found at low forcing lev-
els, see the 7.5 �m contour. Deviations are found for larger
forcing levels (15 and 30 �m contours), even though the
general trends are still predicted correctly by the isoperfor-
mance models. The cause for this deviation is likely due to
non-linear effects in the structural plant as the shaker ampli-
tude increases. This will require further analysis. In conclu-
sion the isoperformance prediction capability is good at low
disturbance levels which are representative of the vibration
environment on precision opto-mechanical systems. Cau-
tion must be exercised if non-linearities are present in the
system.



5 Summary and Recommendations

5.1 Summary

This paper attempts to develop and validate a novel design
approach for complex multi-disciplinary systems. The isop-
erformance approach enhances the understanding of opto-
mechanical systems by exploiting physical parameter sensi-
tivity and performance information beyond the local neigh-
borhood of a particular point design. It seeks to avoid situa-
tions, where very difficult requirements are levied onto one
subsystem, while other subsystems hold substantial mar-
gins. It accomplishes this by fixing the desired output per-
formance levels of a system apriori and searching for design
points on the performance invariant surfaces in Rnp -space.
An application of isoperformance to the large order NEXUS
spacecraft model shown in Figure 1 is contained in [10].

5.2 Limitations

The current limitations of the isoperformance framework
are that it assumes Linear-Time-Invariant (LTI) systems and
operates onH2-performance metrics for zero-mean random
processes. Furthermore the dynamics are treated in contin-
uous time (no z-domain capability). The algorithms (except
exhaustive search) require continuous and differentiable pa-
rameters in Rnp -space and work within a given topology or
architecture.

5.3 Recommendations

The recommendations for future work focus on removing
some of the current limitations and applying the isoperfor-
mance concept on a more holistic level in product design
and system architecture. Isoperformance meshes well with
a product design philosophy called “satisficing”. In this
approach not a product that optimizes the performance is
sought, but rather a product that meets identified customer
performance requirements, while being designed in a cost
effective way. Specific recommendations are:

� Perform a closed loop experimental validation

� Extend methodology to discrete parameter problems

� Extend methodology to non-steady-state processes

� Allow more complex constraints g(pj) � 0

� Link to system architecture and conceptual design
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