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The introduction of concurrent design practices to the aerospace industry has greatly increased the 
productivity of engineers and teams during design sessions as demonstrated by JPL’s Team X.  
Simultaneously, advances in computing power have given rise to a host of potent numerical optimization 
methods capable of solving complex multidisciplinary optimization.  Unfortunately, such methods are tedious 
to set up and require significant amounts of time and processor power to execute, thus making them 
unsuitable for rapid concurrent engineering use.  This paper develops a framework for Integration of 
System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network 
approximations of the subsystem models.  These approximations are then linked to a system-level optimizer 
that is capable of reaching a solution quickly due to the reduced complexity of the approximations.  The 
integration structure is described in detail and applied to the multiobjective design of a simplified Space 
Shuttle external fuel tank model.  Further, a comparison is made between the new framework and traditional 
concurrent engineering (without system optimization) through an experimental trial with two groups of 
engineers.  Each method is evaluated in terms of performance, time to solution, and ease of use. The results 
suggest that system-level optimization, running as a background process during integrated concurrent 
engineering sessions, is potentially advantageous as long as it is judiciously implemented.   

Nomenclature 
    Variables               Abbreviations 
 

Ai = Component surface area (m2)    BB   Black Box 
C = Cost ($)          BLISS  Bi-Level Integrated System Synthesis 
h/R = Cone height to radius ratio     CO   Collaborative Optimization 
κ = Material cost-per-unit-mass ($/kg)   EFT  External Fuel Tank 
L = Cylinder length (m)       GA  Genetic Algorithm 
l = seam length (m)        GM  General Motors  
λ = Seam cost-per-unit-length ($/m)    ICE  Integrated Concurrent Engineering 
Mt = Total tank mass (kg)       ISLOCE Integrated System-Level Opt. for Conc. Eng. 
pn = Nominal tank payload (kg)     MATE  Multi-Attribute Trade Space Exploration 
ρ = Material density (kg/m3)      MDO   Multidisciplinary Design Optimization 
R =  Tank radius (m)        NN  Neural Network 
σ = Component stress (N/m2)     RSM  Response Surface Modeling 
t1 = Cylinder thickness (m) 
t2 = Sphere thickness (m) 
t3 = Cone thickness (m) 
x = Input design vector 
∆v = Change in velocity (m/sec) 
ζ = Vibration factor 
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I. Introduction 

A. Motivation 
 

ULTIDISCIPLINARY Design Optimization (MDO) has made significant progress in helping design and 
optimize complex systems and products over the last two decades1,2. There exist, however, a number of 

obstacles that impede further dissemination of MDO in real product development organizations, particularly at the 
system level. Chief among these impediments is the apparent incompatibility of automated decomposition-based 
system optimizers with established Integrated Concurrent Engineering (ICE) practices. In ICE the highest level 
trades in a system are generally explored and resolved interactively, by human designers, using a variety of linked 
parametric tools (e.g. Excel spreadsheets). In MDO, on the other hand, a system level optimizer automatically seeks 
designs that maximize one or more objectives, while satisfying all inequality, equality and side constraints of the 
problem. Human interaction in traditional MDO is restricted to choosing promising start points or to providing 
preference weights between objectives. Ultimately, one would like to concurrently take advantage of the intuition 
and creativity of human engineers as well as the speed and impartiality of computer-based system optimizers. The 
principal problem that must be overcome is that the actions of one must be prevented from inadvertently overriding 
the actions of the other. The method introduced in this paper, Integrated System-Level Optimization for Concurrent 
Engineering (ISLOCE), solves this problem by letting the human design team and the automated system optimizer 
operate on different � but linked � representations of the same system. The human designers operate on a high-
fidelity parametric representation of the system in the foreground, while the system level optimizer explores a lower 
fidelity approximation of the system in the background. 
 Such a scheme raises a number of questions: How are the fore- and background processes linked together? How 
is the parametric approximation of the subsystems generated? What is the mathematical formulation of such a 
framework? Can one show � in practice � that this is more effective than ICE without the augmentation of system 
optimization? We will provide answers to these questions after a brief review of the relevant literature. 

B. Background of ICE 
   Integrated Concurrent Engineering (ICE) is a collection of practices that attempts to eliminate inefficiencies in 
conceptual design and streamline communication and information sharing among a design team.  Based heavily on 
methods pioneered by JPL�s Team X, concurrent engineering practices have been adopted by major engineering 
companies like Boeing�s Integrated Product Teams and GM�s Advanced Technology Design Studio.  Modern 
engineering teams that are well versed in these practices see a significant increase in productivity  (see Figure 1). 

 
Figure 1. Typical ICE environment       Figure 2. Simplified ICEmaker architecture 

 
Traditional design inhibits interdisciplinary trades because of a lack of communication among subsystem teams. 

Information is often scattered throughout the project team, meaning those seeking data on a particular subject have 
no central location to search.  Engineers thus spend a significant fraction of time not developing new information, 
but rather searching for information that already exists. Fundamentally, ICE addresses these issues by: 

 
� Encouraging communication between subsystem teams 
� Centralizing information storage 
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� Providing a universal interface for parameter trading 
� Stimulating multidisciplinary trades 
 
An ICE framework allows teams to work independently on problems local to a subsystem and to coordinate 

effectively on issues that affect other teams.  ICE also provides for near-instantaneous propagation of new 
requirements.  Projects using ICE are more flexible and can quickly adapt to changes in top-level requirements.  All 
these factors together allow engineering teams to conduct rapid trades among complex multidisciplinary subsystems.   

C. ICEMaker 
 
Parameter-trading software has become an integral part of ICE teams, allowing users to quickly share 

information and update each other of changes to the design.  Caltech�s Laboratory for Spacecraft and Mission 
Design3 has made several important contributions to the ICE method under the direction of Dr. Joel Sercel4. This 
includes software known as ICEMaker5, which was used as a starting point for this research.  

ICEMaker is a parameter exchange tool that runs in Excel® and facilitates sharing of information amongst the 
design team, see Fig. 2.  ICEMaker has a single-server / multiple-client interface (Fig. 3).  With ICEMaker, a design 
problem is broken down into modules or subsystems with each module (�client�) consisting of a series of computer 
models developed by the corresponding subsystem team.  These models are developed offline, a process that can 
take anywhere from a few days to a few months depending on the desired level of model fidelity.  During a design 
session, each client is interactively controlled by a single team representative (�chair�).  The individual clients are 
linked together via the ICEMaker server (Fig. 2).  Chairs can query the server to either send their latest numbers or 
receive any recent changes made in other clients that affect their work.  The querying process is manual, preventing 
values from being overwritten without permission from the user.  Design sessions using ICEMaker typically last 
three hours and usually address one major trade per design session.  Although it has recently become possible to 
automate this iterative process, human operation of the client stations is almost always preferred.  The human 
element and the ability to detect bugs or nonsensical parameters are crucial to the ICE process.  The necessity of 
keeping humans in the loop will be discussed in greater detail in Section IV. 

 

    
ICEMaker Server Functions:  
maintains parameter list, adds new clients, tracks 
�send� and �receive� requests, error notification 

ICEMaker Client Functions: 
input, output and status sheets for each 
subsystem, link to or performs detailed 
calculations 

Figure 3. (left) ICEMaker server sheet and functions, (right) ICEMaker client sheet and functions 
  
During a design session, the server notes all �send� and �receive� requests made by the clients.  This information 

is time-stamped so that the facilitator can track the progress of an iteration loop and know how recent a set of data is.    
In addition to the input, output and status main sheets, a finished ICEMaker client will also have several user-
designed sheets.  These sheets contain the calculations needed to process the input data and calculate the output data. 

D. Improvements to ICEMaker 
 
 While a powerful tool in its own right, attempts have been made to improve ICEMaker by incorporating 

automated convergence and optimization routines into the program.  Automatic convergence presents no major 
problems as the routine simply mimics the role of a human operator by querying each of the clients in turn and 
updating the server values published by each client.  Optimization algorithms have proven more difficult to 
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implement.  Each module is usually designed with subsystem-level optimization routines built in that are capable of 
producing optimal values for the inputs provided to it based on whatever metrics are desired.  However, even if 
every subsystem is optimized in this way, there is no guarantee that the design is optimized at the system level.  A 
system-level optimizer for ICEMaker has been elusive so far, as the human team would be unable to work on a 
design while the optimizer was running as any values they changed would likely be overwritten by the optimizer as 
it searched for more optimal solutions.  Such an optimizer would not be conducive to rapid design and is therefore 
unsuitable for this problem.  It is therefore desirable to develop an optimization method that complements � rather 
than competes with - the concurrent engineering practices currently in use. 

E. Multidisciplinary Design Optimization 
 
 Multidisciplinary Design Optimization is a formal methodology for finding optimum system-level solutions 

to engineering problems involving multiple interrelated subsystems and/or disciplines.  This area of research has 
benefited greatly from advances in computing power, and has made possible a proliferation of powerful numerical 
techniques for attacking engineering problems.  A number of techniques have emerged in an attempt to integrate 
facilitate both system decomposition and optimization. 

One such approach, known as Collaborative Optimization (CO), has been developed by Kroo, Braun and others 
at Stanford University7,8. This approach divides a problem along disciplinary lines into sub-problems that are 
optimized according to system-level metrics of performance through a multidisciplinary coordination process. Each 
sub-problem is optimized so that the difference between the achievable subsystem response and target variables 
established by the system optimizer is minimized. This combination of system optimization with system analysis is 
potent, but leads to setups with high dimensionality. This can drastically increase the amount of processing power 
needed, and often requires optimization specialists to setup the problem. CO (like most other distributed methods) is 
most effective for problems with well-defined disciplinary boundaries, a large number of intra-subsystem variables 
and calculations, and a minimum of interdisciplinary coupling. CO has been successfully applied to a number of 
different engineering problems typically in the area of vehicle design. 

A more recent method, using hierarchical decomposition is Bi-level Integrated System Synthesis (BLISS), 
developed by J. Sobieski, Agte, and Sandusky at the NASA Langley Research Center9,10,11. Like CO, BLISS is a 
process used to optimize distributed engineering systems developed by specialty groups who work concurrently to 
solve a design problem. The main difference with CO is that the quantities handed down from the system level in 
BLISS are not targets, but preference weights that are used for multi-objective optimization at the subsystem level. 
The subsystems in BLISS are called black boxes (BB) � a designation which we will follow here.  Constraints and 
coupling variables are also handled somewhat differently. The two levels of optimization are coupled by the 
optimum sensitivity derivatives with respect to the design variables in BLISS9,10, whereas BLISS 200011 (a newer 
version of the framework) uses response surfaces (RSM) instead of the optimum sensitivity derivatives. A similar 
approach is taken in this paper, where neural net (NN) approximations are used instead of RSM.. The design 
parameters in BLISS are divided into three groupings. So-called X-variables are optimized at the local level and are 
found only within each of the subsystems. Y-variables are those which are output by one subsystem for use in 
another. Finally, system-level design variables are denoted as Z-variables, shared by at least two subsystems.  

 

F. Problem Formulation 
 One of the biggest issues in modern design arises from tension between multidisciplinary optimization and 
problem decomposition.  Decomposing a problem into smaller pieces makes the overall problem more tractable, but 
it also makes it more difficult for system-level optimization to make a meaningful contribution.  Linking together a 
number of separate (and often geographically distributed) models is not an easy task.  As the complexity of the 
various subsystems grows, so too does the size of the model needed to perform the system-level optimization.  For 
aerospace designs, an optimization run can take many days or even weeks to finish.  This introduces a factor of lag 
time into the interaction between the optimization staff and the rest of the design team distances the two groups from 
each other.  This is a major impediment to full integration of MDO in modern product design. While waiting for the 
optimization results to come back, the design team presses on with their work, often updating models and reacting to 
changes in the requirements.  When an optimization does finally produce data, the results are often antiquated by 
these changes.  This ICE teams cannot afford to wait for weeks for optimization data when performing a trade 
analysis. On a more practical level, an integrated engineering team and a computer-based optimizer cannot be 
allowed to operate on the same design vector, x, for fear of overriding each others actions.  Thus, we require a 
framework to mitigate the fundamental conflict between these two approaches throughout the design cycle. 
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The generic multi-objective system optimization problem formulation is: 
 

Find:    *S ∈ Χx        such that              (1) 
 

( ) ( )* *      S S S S S S≤ ∀ ≠ ∈ ΧJ x J x x x  whereby            (2) 

( ) 1 2, ,
TS S S BB S S S

zJ J J =  J x p y …  is minimized          (3) 

Subject to:   ( )S: ( ) 0 and  0SΧ = < =g x h x      system-level constraints       (4) 
S S S
L U≤ ≤x x x      system-level design vector bounds        (5) 

( ) ( )0,    0,    BB BB BB BB BB
L Ug h< = ≤ ≤x x x x x         and constraints of each BB   (6) 

 
Here S

iJ  is the i-th System-level objective and , ,S S BBx p y  are vectors of system design variables, system-level 
(fixed) parameters and black box sub-system-level responses, respectively.  

II. The Integrated System-Level Optimization and Concurrent Engineering (ISLOCE) Method 

G. Overview 
 
The ISLOCE method makes use of an optimizer that operates in the background during design sessions without 

interfering with the work being done by the team members in the foreground (Fig.4).  

 
Figure 4. Architecture of ISLOCE framework 

 
The optimizer is initialized before the design session begins and trains a BB approximation12 (e.g. using neural 

networks13) for each subsystem sheet. Once the approximations are constructed, they are saved and effectively act as 
façades. The optimizer then links them together and runs a heuristic optimization technique (e.g. GA14, SA) on the 
system. As the optimizer is working in the background, the human team runs their own design session as normal, 
periodically referencing the background optimization process for new insights into the problem. As the optimizer 
begins to identify candidate designs that are feasible and non-inferior to previous designs, the ICE session facilitator 
steers the design team towards those solutions. It must be reiterated that this approach is not meant to automatically 
solve problems but is intended to serve as a guide allowing increased session efficiency by quickly eliminating 
dominated point designs. As the fidelity of the clients grows over time, the human team can export the upgrades to 
the optimizer and update the subsystem approximations, leading to more accurate designs and a better understanding 
of the trade space. An illustration of the process and framework is shown in Figure 4.  
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A major driver for the approach detailed above is that the mating of the two processes be as transparent as 
possible. ICE and optimization are independently very complex problems already. Any approach that added 
significantly to this complexity would be useless in a modern design environment. Therefore, an overarching 
principle of this approach is to integrate optimization with current ICE practices while minimizing the additional 
work required for either process. 

H. Changes implemented to ICEMaker 
The decision to use approximations of the ICEMaker modules with the system-level optimizer was based on 

previous work in distributed processing by Braun, Kroo, Sobieski and Kodiyalam15. The current scheme is as 
follows: 

1. An optimization sheet is added to each subsystem client workbook. This sheet is responsible for 
generating the NN approximation of the subsystem model and passing that data on to the system-level 
optimizer. The only information required from the subsystem chair should be the cell references for the 
inputs, outputs, and internal parameters of the subsystem. Updating the neural network during a design 
session should take as little time as possible (on the order of 5-10 minutes). 

2. A virtual optimization subsystem is created and linked to the other clients via the ICEMaker server. The 
optimization client is responsible for collecting the neural network data from the other subsystems. 
Once this data has been assembled, the optimization client runs a system-level optimizer and generates 
a set of non-dominated designs using the BB approximations. In a non-hierarchical scheme the 
execution sequence of BBs and convergence must be automated. 

 
It should be noted that the optimization subsystem is not a �dummy� client and requires a skilled human chair 

just like every other subsystem. The operator must be capable of interpreting the optimizer results and passing that 
information, along with his or her recommendations, to the session facilitator. This implementation method 
minimizes the impact of integrating optimization with concurrent engineering.  

I. Neural Network Approximations 
Initial work on the ISLOCE method focused on the code needed to generate the approximations used in the 

background process. Two candidate solutions were response surfaces (RSM)15 and neural networks(NN)13. RSMs 
are easier to code and could be implemented directly in Excel by using Visual Basic macros. Unfortunately, they are 
only well suited to approximate multiple-input/single-output functions. Given that the majority of aerospace project 
clients have multiple outputs to other subsystems, this would require greatly simplifying the models used in the 
clients. Neural networks are more versatile and can approximate functions with large numbers of both inputs and 
outputs. A neural network consists of layers of neurons, each containing a transfer function and an associated weight 
and bias, see Figure 5.  

 
Figure 5. Sample Neural Network with three layers 

 
The network is �trained� by presenting it with a series of inputs and corresponding outputs. The network 

attempts to simulate the results presented to it by altering the weights associated with the various neurons using 
least-squares or another minimization routine. If properly trained, a neural network can accurately approximate most 
families of functions. The Matlab neural network toolbox is used to construct the NNs used in this project13.  The 
procedure is to automatically generate NN training data in Excel, to export this data to Matlab (via the Matlab-Excel 
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link toolbox) and to create and train a NN in Matlab. The neural network generation scheme was incorporated into 
the external fuel tank model discussed in Section III, to be used in the live trial exercise of Section IV.  
 

 
Figure 6. (left) Neural network prediction for Structures BB subsystem of EFT. Total tank mass, R~1  
Figure 7.(right) Neural network prediction for Structures BB subsystem of EFT, Cone stress, R~0.91 

 
Figure 6 (left) plots the specific performance of the structures neural network at matching the target value for the 
total tank mass output. The network performs extremely well at this task, with a regression factor, R, of nearly 1. 
Most of the outputs for all of the networks were very near this level. However, there were a few outputs that 
consistently proved problematic to approximate. Figure 7 (right) shows the structures neural network performance at 
predicting cone stress. The regression factor for this output is only about 0.91. This lower level of performance can 
be potentially improved through modification of neural network parameters. Some problems generated by 
mismatches between full fidelity subsystems (represented by the client sheets (Fig. 3 right) and NN approximations 
were discovered during the live trials (Section IV), particularly with respect to constraint violations. 

J. Genetic Algorithm Optimizer 
 

The genetic algorithm operated by the optimization chair during design sessions is based on a third-party GA 
toolbox for MATLAB§.  A fitness function was developed that penalized individuals both for being dominated and 
for violating constraints. The genetic algorithm code was modified slightly to allow for this type of fitness function.  
Once the GA code was developed, the neural networks generated in the previous section were collected and linked 
to the optimizer. A number of test runs were performed to verify proper GA behavior. Some sample data from the 
trial runs is provided in Fig. 8 and 9. 
 

       
   Fig. 8 Converged GA population for EFT problem   Fig.9 Non-dominated designs extracted from GA 

 

                                                           
§ Matlab Genetic Algorithm Toolbox, Version: January 24, 1994 Written by: Andrew F. Potvin The Mathworks, Inc. 
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Figure 8 plots the payload-versus-cost performance of all viable (no constraint violation) individuals discovered 
during the GA run of the EFT sample problem (Section IV). A relatively clear Pareto front develops towards the 
lower right corner of the plot. Interestingly, the trade space for viable designs does not appear to be evenly 
distributed, as several thick bands of points can be discerned in the plot. Figure 9 plots the non-dominated 
individuals from the previous chart on a separate graph. The �Pareto� front of non-dominated designs is fairly 
obvious towards the high-payload region of the curve, but there is a large gap between the �knee� of the curve and 
the low-payload region. These gaps were frequently found during GA runs (a well known phenomenon) and made it 
difficult to completely fill in the Pareto front for the EFT trade space. The incorporation of restricted mating and 
other techniques into the GA code could help spread the Pareto front out along more uniformly. 

III. Case Study: STS External Fuel Tank 

K. Model Description 
 

The model used in this study is a simplified version of the Space Shuttle external fuel tank (Fig.10). It was originally 
developed as an illustrative tool to demonstrate how changes in a problem�s objective function influence the optimal 
design solution in the design (x) space16. This choice of problem was made for several reasons: 

- The model is based in Excel (as is ICEMaker), allowing easy integration into the desired test environment. 
- The original model could be solved numerically for a variety of objectives using Excel�s solver routine. 
- There is sufficient complexity in the model to provide a reasonable test of the method�s capabilities  
- Many of the participants were already familiar with the model from previous use.  

 

 
 

Figure 10. (left) Space Transportation System (STS) External Fuel Tank configuration, (right) External 
Fuel Tank (EFT) in front of Vehicle Assembly Building at the NASA Kennedy Spaceflight Center 

 
The model divides the tank into three hollow geometric segments: a cylinder 

(length L, radius R), a hemispherical end cap (radius R), and a conical nose (height 
h, radius R), see Figure 11. These segments have thicknesses t1, t2, and t3, 
respectively. Each segment is assumed to be a monococque shell constructed from 
aluminum and welded together from four separate pieces of material. This results in 
a total of fourteen seams (four seams per segment times three segments plus the 
seams at the cone/cylinder and cylinder/sphere interfaces). Surface areas and 
volumes are determined using geometric relations, and first principles and rules of 
thumb are used to calculate stresses, vibration modes, aerodynamic drag, and cost. 
The subsystems are briefly described. 

 
Structures 
Input: six tank dimensions (L, R, t1, t2, t3, h/R) 
Output: component and tank surface areas and volumes, component and tank 

masses, stresses, first vibration mode frequency 
The volume of the tank is held constant to accommodate an equal amount of 

propellant regardless of the tank design and serves as an equality constraint. The 
mass of each component mi is calculated as:  

R  
Fig. 11 EFT Model 
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    i i im A t ρ=               (7) 
where ρ is the density of the material used for the tank (Al). Stresses σi are calculated based on the assumed 

internal pressure of the tank and are measured in two directions per component as shown in Figure 11. These 
calculations result in a component equivalent stress given by 

    2 2
1 2 1 2eσ σ σ σ σ= + −            (8) 

This equivalent stress may not exceed the maximum allowable stress parameter set within the model. Together, 
the three component equivalent stresses serve as additional model constraints. A final constraint is placed on the first 
bending moment of the tank. A vibration constraint ζ is calculated which is proportional to the tank radius and 
cylinder thickness and inversely proportional to the mass. 

 
Aerodynamics 
Input: tank radius R and cone height h , surface and cross-sectional areas 
Output: maximum shuttle payload, mp 
The aerodynamics module computes the resulting drag on the tank during flight. Cone drag is calculated based on 
empirical trends according to 

exp 1 hD b a c
R

 = + ⋅ −  
           (9) 

where a, b, and c are experimentally determined constants. The drag and surface areas are then compared to nominal 
values for the original tank. The change in available payload is calculated from a weighted linear interpolation of 
these comparisons, by  

p n tm p M p= − ∆ + ∆             (10) 
where pn is the nominal payload, ∆Mt is the deviation in tank mass from the nominal value, and ∆p is the change in 
available payload described above. 
 
Cost 
Input: tank dimensions and component masses 
Output: seam (= welding labor) and material costs 
The cost module uses the tank dimensions set by the structures module to calculate the seam lengths required to 
weld each component. A seam�s cost is dependent upon its length and the thickness of the material being welded. A 
base cost-per-unit-length parameter λ is set within the model and is multiplied by the seam length l and an empirical 
function of the material thickness 

( )seamC l f tλ=               (11) 
with the function f given by 

( ) ( ) ( )2f t a b t c t= + − ∆ + − ∆          (12) 
Here, t is the material thickness, ∆ is the weld offset, and a, b, and c are industry-determined constants. For the 
twelve intra-component welds, the thickness t is just the component thickness. The two inter-component welds use 
the average thickness of the two components in the function f(t). The procedure for calculating material costs is 
similar. A base cost-per-unit-mass parameter κ is set within the model. This parameter κ is then multiplied by the 
component mass and another function of thickness. The material cost of all components plus the sum of the seam 
costs calculated above yields the total cost of the tank, C. 
 
Systems 
Input: tank dimensions, total cost, available payload mass 
Output: visual representation of tank, running history of tank designs, Pareto front construction 
The systems module presents a high-level summary of the overall tank design. It does not perform any calculations 
but instead helps the team to visualize the current tank and track the team�s progress as it explores the trade space.  
 
Optimization (optional) 
Input: neural network data from the three main modules (structures, aerodynamics, cost) 
Output: prediction of expected Pareto front and table of possible Pareto-optimal designs in terms of their 
performance (payload) and cost as well as their associated design vectors.  
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The optimization module is not developed from the original EFT model but is instead an optional add-on to the rest 
of the system as described in Section G. The objective vector is chosen to be J = {mp, C}. Eleven constraints are 
levied on the design space. The first six constraints are a set of limits placed on the input vector (side constraints). 
These constraints limit modification of the input variables to a range of values that could be realistically developed. 
The next restriction is an equality constraint on the tank volume (~3000 m3 +/- 100 m3). This constraint creates an 
interesting dilemma in that it is difficult for both humans and heuristic optimization techniques to match such a 
constraint. In this case, the tank volume is dependent upon three variables (L, R, h/R) meaning that any two 
parameters can be free while the third is dependent upon the others. However, no restriction is placed on which 
parameter is chosen as dependent. Finally, inequality constraints are placed on the maximum allowable component 
stress and on the first bending mode of the tank. The first bending mode of the tank must be kept away from the 
vibration frequencies experienced during launch. The instantiation of the general design optimization problem from 
Eq.(1-6) is: 
 

Maximize:  
T

pJ m C = −   such that   ( ) ( )*       *J J≥ ∀ ≠x x x x   subject to       (13) 

design vector bounds:  

3 3 3 3

1 100 50.5 49.5 0

2.25 9 5.625 3.375 0

1.75 10 14 10 7.875 10 6.125 10 0

0.1 5 2.55 2.45 0

i i

L L

R R

t t

h h
R R

− − − −

≤ ≤ ⇒ − − ≤

≤ ≤ ⇒ − − ≤

⋅ ≤ ≤ ⋅ ⇒ − ⋅ − ⋅ ≤

≤ ≤ ⇒ − − ≤

             (14) 

 
Volume constraint: 
2826 3026 100 2926 0t tV V≤ ≤ ⇒ − − ≤                    (15) 
 
Stress and vibration constraints 

8 8
, ,4 10 4 10 0

0.8 0.8 0
e i e iσ σ

ζ ζ
≤ ⋅ ⇒ − ⋅ ≤
≤ ⇒ − ≤

                      (16) 

IV. ISLOCE Live Trials (Experiments) 

L. Trial Motivation 
 
Satisfactory demonstration of a new method typically involves successful application of the method to a test case 

as described above. However, there is no fixed criterion for what is considered a �success�. Previous papers have 
usually chosen to apply their methods to a problem for which an optimal solution is already known. The method is 
then shown to converge to the optimal solution in a reasonable amount of time. If the main purpose of the test is to 
confirm that the method can reach a solution, then this type of experiment is adequate. However, it neglects several 
key factors that are of great importance to the engineering teams that will actually use the method for industry-
related design. Engineering teams are concerned not just with reaching a single optimal solution, but also completely 
exploring a trade space and arriving at a family of optimum solutions that covers the range of multiple objectives. 
Further, time-to-convergence is not as important as ease of setup and use for the design team. A method that is 
cumbersome to setup, use, and modify does not increase the productivity of the team that uses it. These are all 
highly relevant issues that are not addressed by a simple convergence test. The only way to evaluate a method 
accurately according to these metrics is with a live test by actual engineers in a distributed design session. 

M. Trial Objectives 
 
To do this, it is necessary to both evaluate the method itself by comparing the results to more conventional 

design techniques. The well-established principles of the scientific method are applied here by introducing two 
experimental groups. First, a control group uses conventional concurrent engineering practices (with ICEMaker, but 
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no optimization) and the model described above to investigate the EFT trade space. The result should be a family of 
designs that provides a baseline level of accuracy and group productivity. Then, a test group investigates the same 
problem (with no knowledge of the control group�s results) by using the ISLOCE method, i.e. ICEMaker with 
system optimization running in the background. Presumably, the two groups will arrive at different sets of solutions 
that can be compared to each other for accuracy and completeness in terms of finding a set of non-dominated 
designs.  

 
The hypothesis to be tested is that the use of background optimization will make the test group more effective 

relative to the control group, given the same amount of time.  
 

Trial Objectives: The task presented to both groups is identical. Given the EFT model (Section K), each group 
attempts to solve the multidisciplinary design optimization problem posed above (Eq.13-16) within a fixed amount 
of time. The end result should be an approximation of the EFT non-dominated (�Pareto�) front with designs that 
maximize available shuttle payload, mp, minimize tank construction costs, Cc, and satisfy all constraints on volume, 
stress, and vibration.  The secondary goals are those that allow additional insight into the effectiveness of the 
method used. The ratio of the number of dominated to non-dominated solutions gives a feel for how efficiently a 
method produces solutions that are worth investigating further (versus solutions that are dominated and whose 
discovery represents a waste of time).  

N. Trial Protocol 
 

The total amount of time allotted for each group was three hours. One hour was spent learning about the EFT model 
and the design tools while the remaining two hours were devoted to the design sessions. The first hour was basically 
the same for both groups in terms of procedure with the major differences emerging later during the sessions 
themselves. The trial introduction was presented with information about the trial purpose and a summary of the task. 
Background information was provided about the external fuel tank and the model to be used during the design 
session. A short description of the module and a simplified N2 diagram helped all participants know what 
information each subsystem sheet had as inputs and outputs and demonstrated the overall flow of information. Trial 
participants were also given a short introduction to the use of ICEMaker. The instruction focused on client usage and 
transferring data with the ICEMaker server.  
 
Table 1. (left) Live Trial Schedule, (middle) control group composition, (right) test group composition 
Live Trial Schedule 
 
0:00�0:30 Trial introduction, 
purpose, and objectives 
 
0:30�1:00 ICEMaker tutorial, EFT 
demo, trial goals and procedure 
 
1:00�3:00 Design session and trade 
space exploration (additional design 
session optional) 
 
3:00 Post-trial debriefing and 
evaluation 

Control Group Composition 
 
 
Systems Engineer 
Structures Chair 
Aerodynamics Chair 
Cost Engineer 

Test Group Composition 
 
 
Systems Engineer 
Structures Chair 
Aerodynamics Chair 
Cost Engineer 
Optimization Chair 

 
Participants were not given full information about the specifics of this research in order to preserve objectivity and 
reduce bias. For example, participants were aware of the existence of other groups but not of other methods. Further, 
no results from the design sessions were shared between the two groups until after the conclusion of both trials. It 
was necessary to explicitly emphasize to both groups that their design sessions should not be treated as a race or 
competition. The last part of the introduction was a trial run through the full procedure so that participants could 
gain a small amount of hands-on experience using the tools before beginning the design session. At the conclusion 
of the first hour, the team was given the go-ahead to begin its independent evaluation of the EFT trade space and the 
clock was started.  
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Control Group Procedure 
The control group consisted of four participants, one for each of the four EFT modules (structures, aerodynamics, 
cost, and systems). The procedure for the control group was somewhat simpler than for the optimization group. 
Without the complication of having to generate neural networks and run the GA, the control group design session 
was simply a standard ICEMaker session. The procedure is as follows: 
 1. The structures chair modifies the input vector until he finds one that he or she believes is a good candidate. 
The chair then confirms that the selected vector meets all constraints on volume, stress, and vibration. If it satisfies 
all constraints, then the structures chair outputs his information to the ICEMaker server. If not, then the design 
vector must be tweaked until all constraints are met. 
 2. The aerodynamics and cost chairs request the latest information from the server and examine the effects the 
chosen vector has on their subsystems. In the absence of changes to the internal parameters of the model, these 
chairs primarily make observations about the results of each change and try to discern patterns for what leads to 
good tank designs. This information should feed back to the structures chair after each iteration cycle. Once the two 
chairs have finished making their observations, they output their data to the ICEMaker server. 
 3. The systems chair requests the latest information from the server and adds the new design to the running table 
of discovered solutions. The visual depiction of the current design is automatically updated. The new point is also 
plotted on the performance-versus-cost chart and compared to previous solutions. From this information and the 
input of the other subsystem chairs, a new input vector can be devised and the cycle iterates until the Pareto front of 
non-dominated designs is well populated or time expires. 
 
Optimization Group Procedure 
The optimization group requires five participants. With five participants, the setup is the same as for the control 
group with the extra participant placed in charge of the optimization module. With access to the optimization 
module, the optimization group follows a different procedure for its trial. It consists of a series of nested iterative 
loops: 
 1. At the beginning of the design session, the three main EFT modules (structures, aerodynamics, and cost) call 
up the optional optimization sheet within their ICEMaker client and initiate the neural network generation process 
(Section I). This takes approximately ten minutes. Once the process is complete, the NN data is saved in a common 
folder. 
 2. At this point, the design team breaks off into the foreground and background processes described in Section II. 
a) The conventional design team (foreground) begins exploring the trade space as described for the control group. 
b) Simultaneously, the optimization chair (background) collects the neural network data from the EFT model and 
uses the data to initiate a system-level optimization using a genetic algorithm. 
 3. Once the GA is finished and post-processing is completed, the optimization chair communicates the results to 
the rest of the team. Predicted non-dominant (Pareto) points are tabulated and provided to the structures chair for 
evaluation using the high-fidelity EFT model. 
 4. Steps 2 and 3 can be repeated. The foreground process investigates the new points discovered by the GA while 
the background process begins a new optimization run using different parameters (possible choices for GA 
parameter modification include population size, number of generations, crossover probability, and mutation rate). 
Due to the stochastic nature of GAs, this parameter modification frequently results in the discovery of new non-
dominant solutions and allows the team to explore different parts of the trade space. It is important to note that step 
1 never needs to be repeated unless some of the internal parameters of the EFT model are changed. The time spent 
generating the neural networks should be seen as a one-time investment that provides the design team with 
information about the trade space at the very beginning of the trial and continues to pay off periodically throughout 
the session. 

O. Evaluation Metrics 
 
The experimental framework described above as applied to evaluating different design methods is, to the 

author�s knowledge, unique. Previous papers on new design methods certainly demonstrate their power and utility, 
but no direct comparisons using an experimental setup were used. It is usually left to the reader to attempt to 
quantify the differences between the methods, but in the absence of a controlled environment this data is difficult to 
obtain. This paper is a first attempt at developing such a comparative method. It is necessary to develop metrics by 
which the ISLOCE method can be compared to the conventional ICE method. Since no previous trials are available, 
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a series of possible performance measures will be described below. Both the metrics and the reasoning behind them 
will be given.  
 
Absolute metrics 

These metrics can be used to quantify the stand-alone performance of a design method. 
1. Maximum/minimum objective values � These values (located at the anchor points) come from the designs that 
have the �best� possible value for a single objective, i.e. the global optima. In the EFT model, the key values are 
maximum available payload and minimum cost subject to meeting all constraints (Eq.14-16). 
2. Raw number of point designs � This metric counts the total number of unique viable point designs developed by a 
method. While this gives no information about the quality of point designs (a random input vector generator would 
conceivably have a very high score), it provides insight into how long a method takes to create a viable solution. 
Combined with other metrics, this score can be used to determine average process loop time. 
3. Raw number of �Pareto� optimal designs � This metric counts the number of unique point designs that are non-
dominated when compared to all the solutions generated by a method. This metric also requires context to be 
interpreted correctly. It is easy to create a scatter of points with a fraction of non-dominant ones among them if none 
of them are close to the true Pareto front. However, this metric serves as a measure of productivity as a method 
explores the trade space. A larger number of predicted non-dominated points means a greater number of points can 
be recommended for higher fidelity examination. 
4. Ratio of non-dominated designs � This ratio provides a measure of method efficiency. A higher ratio implies less 
time is wasted discovering dominated solutions. 
5. Normalized minimum Pareto front / utopia point distance � Given a spread of point designs, the trade space is 
normalized by placing the anchor points at opposite corners (1,0) and (0,1) with the nadir and utopia points defined 
as (0,0) and (1,1), respectively (for a two-objective maximization problem such as the one defined in Eq. 13-16). 
This metric is defined as the shortest Euclidian distance between any point design on the Pareto front and the utopia 
point. The point chosen on the Pareto front must be an actual design that satisfies all constraints. 
 
Relative metrics 

These metrics are best used to compare the relative performance of two different design methods. 
1. Anchor point spread � This metric is given as the range of objective values defined by the anchor points. It is a 
measure of how completely a method explores a trade space within specified side constraints on the design vector. 
2. Ratio of cross-dominated solutions � This metric takes the Pareto front of one method and counts the number of 
dominated Pareto front designs generated by the other method. The ratio of these two counts provides a measure of 
how much more effective one method was over the other in approaching the true Pareto front. A ratio close to one 
implies both methods are relatively equal in performance (or explored disparate areas of the trade space). A ratio far 
from unity implies one method was significantly better than the other at approximating the true Pareto front.**. 
 

P. Trial Results 
 
The live test with the setup and procedures listed above was conducted in May of 2004 in the MIT Department 

of Aeronautics and Astronautics Design Studio (Fig.1). Eight MIT graduate students were recruited to participate in 
the trial. The students were selected based on availability, familiarity with the EFT model, past experience with 
concurrent engineering, knowledge of optimization basics, and personal interest in the project. Team assignments 
were made according to Table 1 (middle, right); individual participants are acknowledged below. The control group 
trial was conducted first, then the optimization group trial a week later. No information about the results of the trials 
was shared between groups until after the conclusion of the second test. The results of the live tests will be presented 
one group at a time and then combined in Section Q for comparative analysis. 

 
Control Group Performance 
 

The control group�s performance set the baseline for evaluation of the ISLOCE method. With no access to 
optimization, the only trade space knowledge the group started with was a single data point: the nominal values of a 
standard Shuttle external fuel tank. The control group�s initial approach was to make small perturbations to the 
original design vector and examine the effects on the tank�s performance. During this stage, most changes were 
                                                           
** All points on the �true� Pareto front would perfectly satisfy the Karush-Kuhn-Tucker (KKT) conditions for non-inferiority. 
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made to the tank�s geometric dimensions with only secondary consideration paid to the component thicknesses. The 
result was a series of designs that became progressively cheaper, but could not carry a significant amount of 
additional payload (see points 1-7 in Fig.14). Later, as the team gained more knowledge of the interaction of various 
parameters, they became more adept at modifying multiple parameters at once. They learned how to tune the 
component thicknesses to the minimum values allowed by the constraints in order to achieve the lightest design 
possible for a given set of geometric dimensions. This knowledge led them to the high payload/ high cost region of 
the trade space (see points 11-18 in Fig.14). Towards the end of the design session, the control group progressed 
back to the nominal design regime and completed their exploration of the trade space in the low payload / low cost 
region. The detailed results of the control group�s design trajectory are contained in Appendix A. Note that point 9 is 
significantly worse than all other designs and is not shown on the plot (Fig.14) for scaling reasons. The majority of 
solutions found by the control group are arranged in a fairly linear pattern between the two anchor points. With the 
exception of two outliers, there is very little scatter of points away from the predicted Pareto front. No point was 
found which dominated the nominal (starting) solution.  Table 2 summarizes the performance of the control group.  
 

Table 2 – Control group performance summary 
Min/Max objective values max payload = 35,948 kg 

min cost = $449,640 

Number of point designs 
26 feasible designs, or roughly 13 per hour 

Number of “optimal” designs 10 non-dominated designs (including the nominal point) 

Ratio of non-dominated designs 10/26 or ~ 38% 
Normalized minimum utopia point distance closest Pareto point to utopia: design 19 

(0.538, 0.591) => 0.617 from the point (1,0) 
Anchor point spread payload: {19221,35948} => 16727  

cost: {449640, 567545} => 117905 
 

Optimization (Test) Group Performance 
 
The optimization group�s performance benefited significantly from access to optimization through the ISLOCE 
method. Although the team�s progress over time came in spurts, the overall result was an improvement over the 
baseline established by the control group. The group had no problems generating the neural networks for the 
optimization chair (Section I) and running genetic algorithms (Section J) during the design session. This represented 
an initial investment and meant that the progress of this group was initially delayed relative to the control group.  

The exploration in parallel by the optimizer and the human team worked as predicted. The optimization chair 
and the rest of the team complemented each other�s work.  Progress for the optimization group came in waves as the 
optimizer provided new sets of points for exploration by the rest of the team. Due to the stochastic nature of genetic 
algorithms, some predicted Pareto points actually resulted in dominated designs, when evaluated with the high 
fidelity model, thus wasting time. However, the GA was also able to point the optimization group towards regions of 
the trade space that the control group did not find. The numerical results of the optimization group trial are listed in 
Appendix B (Fig. 15), in the order in which they were discovered. Note that design 28 is much worse than the other 
designs and is not shown on the plot for scaling reasons. The performance of the optimization group is summarized 
in Table 3.  

Table 3 – Test group performance summary 
Min/Max objective values max payload = 37,181 kg 

min cost = $471,825 

Number of point designs 
33 viable designs, or roughly 17 per hour 

Number of “optimal” designs 7 non-dominated designs 

Ratio of non-dominated designs 7/33 or ~ 21% 
Normalized minimum utopia point distance closest Pareto point to utopia: design 25 

(0.797, 0.595) => 0.453 from the point (1,0), 
Anchor point spread payload: {20548,37181} => 16633  

cost: {471825, 554732} => 82907 
 
The results of the optimization group display a very different pattern from those generated by the control group. 

Whereas the control group�s data showed a more linear distribution, and relative proximity of neighboring designs, 
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the optimization group�s solutions are far more scattered across the trade space. This effect is due mainly to the 
team�s investigation of GA-supplied points that turned out to be dominated when evaluated using the full EFT 
model (driven by NN inaccuracies discussed in Section I). In terms of performance, the optimization group was able 
to find points that dominated the nominal point provided at the start of the trial, as well as most of the points found 
by the control group 

Q. Combined Results and Interpretation 
 
The combined results of both trials provide a great deal of information, not only on the effectiveness of the two 

methods but also on the benefits and issues associated with using optimization in a concurrent engineering 
environment.  The two primary sources for this information are the combined results of the tradespace exploration 
and the comparison of metrics established in the two trials.  While most of the data gleaned from the trials is 
quantitative, it is equally important to investigate the qualitative data produced by the trials, specifically from 
comments made by participants during the trial.  As will be shown, these less-tangible features of the two 
approaches can significantly contribute to a method�s performance. 
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Figure 12. Combined Results: !!!!=ctrl group, """"= test group  Fig.13. Normalized Results: !!!!=ctrl , """"= test grp, ####= GA 

 
 
The combined results of the two trials are shown in Figures 12 and 13, respectively. Figure 12 plots the data 

from Figures 14 and 15 on the same axes for the purpose of direct visual comparison of the regions explored by both 
methods.  In terms of finding near-Pareto optimal designs, the optimization group�s results ("""") can clearly be seen 
to dominate those of the control group (!!!!) over most regions of the tradespace.  The control group, however, did a 
slightly better job in the low payload / low cost region of the tradespace. The control group did not, however, find 
any point that dominated any of the points contained in the optimization group�s �Pareto� front.  The price the 
optimization group paid for this increase in design performance is also visible in Fig. 12.  The optimization group�s 
points are scattered throughout the tradespace, with the vast majority of points dominated by other designs.  This 
scatter represents �wasted� time and effort by the design team, although this time can also be seen as an investment 
or cost for obtaining higher performing solutions. 

 Figure 13 shows the same data as the previous figure, only normalized against the two best anchor points 
found during the trials (in a 0-1 space).  Also shown are points (####) obtained by running a GA autonomously on the 
model, offline after the human trials. The offline GA found points that dominated those of both groups, but not over 
the entire trade space. No anchor points could be found by the autonomously running GA that were superior to the 
ones found by the design teams.  The important thing to notice is that the �true� Pareto front is relatively near the one 
predicted by the control group and very near the front predicted by the optimization group.   
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The performance of the two groups can be examined further by comparing the methods based on the metrics 

developed in Section O.  A summary of this comparison is shown in Table 4. 
 
 

Table 4 – Comparison of group design performance 
 Control 

Group 
Test (Opt.) 

Group 
ISLOCE % 

Improvement 
Min/Max objective values    
Maximum payload 35,948 kg 37,181 kg 3.4 
Minimum cost $449,640 $471,825 (- 5.0) 
# of point designs 26 33 26.9 
# of non-dominated designs 10 7 (- 30.0) 
Ratio of dominated to non-
dominated designs 

38% 21% (- 44.7) 

Normalized minimum 
utopia point distance 

   

intra-method 0.617 0.453 26.6 
overall 0.678 0.563 17.0 
Anchor point spread    
payload 16727 16633 (- 0.6) 
cost 117905 82907 (- 29.7) 

 
These results help illustrate in more detail the visual results from Figures 12-15.  The optimization group was 

able to locate the highest payload solution while the control group found the point design with the lowest cost.  The 
scale of these differences is relatively small, but in the aerospace industry, a 3.4% increase in payload or a 5% 
reduction in cost can have a major impact on the viability of a program.  The optimization (=test) group was able to 
develop about 25% more feasible point designs than the control group.  The optimization team was able to use many 
points directly from the optimization run while the control group was forced to develop all of their designs 
manually.  However, the majority of these points were poor overall designs.  The control group had nearly double 
the ratio of dominated to non-dominated solutions compared the optimization group.  Much of the optimization 
group�s time was spent evaluating supposedly good points recommended by the GA, only to find that most of them 
were dominated or infeasible solutions.  The payoff from this �wasted� time however is seen in the next metric.  The 
optimization group did a much better job at pushing their solutions closer to the utopia point.  The best �true� 
minimum distance found during trial post-processing was 0.520, 7% better than the best value found by the 
optimization team.  It should be noted that this best value was the result of a genetic algorithm (####) with many times 
more individuals and generations than the one run by the optimization team, and consequently ran for several hours 
rather than minutes.  Even more impressive is the fact that the optimization team was not using the full EFT model 
but instead used a series of NN approximations (Section I).  While these results are only from a single test, if the 
ISLOCE method is capable of consistently matching within 10% the performance of a full GA in a fraction of the 
time, its application in industry could lead to a significant increase in the productivity of conceptual design teams. 

V. Conclusions and Discussion 

R. Benefits and Impact 
 
This paper introduces a new method that attempts to unify multidisciplinary design optimization with problem 

decomposition in an integrated concurrent engineering (ICE) environment.  Known as ISLOCE (for �Integrated 
System-Level Optimization for Concurrent Engineering�), this method has the potential to put the power of modern 
system-level optimization techniques in the hands of engineers working on distributed problems while retaining the 
speed and efficiency of concurrent engineering practices.  

A parallel optimization approach to concurrent engineering could offer great benefits to any large scale project 
during conceptual design.  Traditionally, optimization has been conducted by a small group of people separated 
from the rest of the design team.  Their models are extremely complex and may take days, weeks or months to run.  
The results from such a team are useful but are not flexible enough to handle the rapid model changes that often 
occur during concurrent engineering. This might be one of the reasons why full-scale MDO techniques have had 
difficulty being infused into the mainstream design processes of major organizations.   The parallel approach 
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presented here brings the optimization team right into the design studio, allowing them to directly impact design in 
real time, while interacting with non-optimization disciplinary specialists.  The ability to quickly identify a set of 
interesting candidate solutions and guide an engineering team towards them will have a significant impact on the 
efficiency of design sessions. 

 

S. Limitations and Caveats 
 
It is important to note that ICEMaker is not an all-in-one automated design generator, nor is it a high-end 

symbolic calculation tool.  It simply serves as a compliment to the ICE method by enabling multidisciplinary trades 
through parameter sharing.  The end designs developed using ICEMaker are only as accurate as the models they are 
based on.  With this in mind, there are many problems that are unsuitable for ICEMaker usage in the context of the 
framework presented here.  Typically, models for ICEMaker clients are developed with Excel or with software that 
is easily linked to Excel such as Matlab.  CAD or finite-element programs are more difficult to interface.  
Furthermore, the data that can be transferred through ICEMaker is limited to those formats capable of being 
expressed in an Excel cell, typically real numbers or text strings.  Approximate geometry, timelines, and other 
qualitative information are very difficult to express in this way.  ICEMaker is most powerful for tackling highly 
quantitative problems with well-defined interfaces between subsystems.  Recognizing both the potential and the 
limitations of ICEMaker is essential for proper usage. 

The number of design variables (6) in this study was well within what is considered to be within the human 
cognitive bandwidth (7 +/- 2)17, such that the control group (the non-optimization group) had no difficulty to 
navigate the design space. A person (here mainly the structures chair) can think in 7+/-2 dimensions quite readily. 
To expose the advantage of the formal ISLOCE method, one should probably use no less than a dozen of variables. 
In general, one would expect the MDO advantage grow with that number. 

The decomposition in the current version of ISLOCE occurs at the analysis-level only. The subsystems were 
specified but there is no internal optimization in each. The approximate models represent only the analysis results as 
opposed to the subsystem optimization results obtained using local variables for each setting of the input variables. 
This is not typical for a large engineering design and differs from the methods such as Bi-Level Integrated System 
Synthesis (BLISS) and Collaborative Optimization in which optimization does occur at both the subsystem and the 
system levels. Leveraging CO and BLISS in the context of ISLOCE remains for future work. 

 

T. Future Work 
 
The work presented here is of a preliminary nature, both in terms of formulation and implementation. Ideally, the 

optimization sheet would be general enough to be included as part of the basic initialization of every ICEMaker 
client from now on. Design teams could use it as needed, but its inclusion in the client would have no effect if 
optimization were not required. We will continue research in parallelism between system optimization and ICE in 
the future. These activities will focus on the following areas: 

 
1. Refinement of optimization client and optimization chair implementations 
2. Comparison of CO, BLISS and/or incorporation into ISLOCE for a set of benchmark problems 
3. Application of ISLOCE to an industrial strength problem in a professional organization (e.g. JPL, 

General Motors �) to obtain feedback from professional engineers 
4. Refinement  and test of other background optimizers such as Simulated Annealing or a self-tuning GA  
5. Better computation of GA-generated Pareto Front for EFT case, e.g. via mating restrictions 
6. Repetition of the live trials over a larger set of groups to ascertain the statistical validity of the results 
7. Allow matrix decomposition of systems according to both disciplinary and subsystem dimensions 
8. Extend the ISLOCE method to problems with more subsystems, more design variables (>12) and 

stronger coupling between subsystems 
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Appendix A � Results obtained by Control Group (ICE without System-Level Optimization) 
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Figure 14. Objective Space Results generated by the control group 

 
Table 5 – Design trajectory for control group 

Design # Payload Cost  Length Radius t_cy t_s t_co h/R 
nominal 30000 $511,424  41.5 4.50 0.0070 0.0080 0.0075 1.0 

1 24688 $500,018  40.0 4.60 0.0070 0.0090 0.0090 0.5 
2 16727 $487,343  30.0 5.20 0.0090 0.0100 0.0100 0.5 
3 16285 $501,558  26.0 5.50 0.0100 0.0100 0.0120 1.0 
4 18205 $466,533  22.0 5.80 0.0090 0.0110 0.0100 1.0 
5 19221 $449,640  20.0 5.90 0.0090 0.0105 0.0095 1.0 
6 15844 $454,868  18.0 6.15 0.0095 0.0110 0.0100 1.0 
7 18475 $471,703  16.0 6.15 0.0095 0.0110 0.0095 2.0 
8 29800 $548,232  45.0 4.25 0.0080 0.0080 0.0070 1.5 
9 2219 $716,579  40.0 4.50 0.0150 0.0150 0.0150 1.5 

10 20204 $624,032  50.0 4.10 0.0100 0.0100 0.0100 1.5 
11 34351 $551,885  50.0 4.10 0.0065 0.0080 0.0065 1.5 
12 33509 $563,704  51.5 4.10 0.0065 0.0080 0.0065 1.5 
13 32409 $535,983  45.0 4.30 0.0070 0.0080 0.0070 1.5 
14 35773 $556,479  45.0 4.20 0.0065 0.0075 0.0065 3.0 
15 35948 $567,545  45.0 4.15 0.0065 0.0075 0.0065 3.6 
16 33712 $542,187  40.0 4.40 0.0070 0.0080 0.0070 3.0 
17 30437 $534,968  35.0 4.70 0.0075 0.0085 0.0075 3.0 
18 27524 $525,780  30.0 5.00 0.0080 0.0090 0.0080 3.0 
19 28216 $497,903  25.0 5.20 0.0080 0.0095 0.0080 3.0 
20 26148 $493,678  22.0 5.40 0.0085 0.0095 0.0085 3.0 
21 26736 $498,049  23.5 5.28 0.0085 0.0095 0.0085 3.0 
22 21344 $508,555  20.0 5.70 0.0090 0.0100 0.0090 3.0 
23 25507 $492,148  21.0 5.48 0.0085 0.0100 0.0085 3.0 
24 21416 $498,273  18.0 5.80 0.0090 0.0105 0.0090 3.0 
25 18093 $495,035  14.0 6.15 0.0095 0.0110 0.0095 3.0 
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Appendix B � Results obtained by Test Group (using ISLOCE method) 
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Figure 15. Objective Space Results generated by the test group 

Table 6 – Design trajectory for test group 
Design # Payload Cost  Length Radius t_cy t_s t_co h/R 
nominal 30000 $511,424  41.5 4.50 0.0070 0.0080 0.0075 1.0 
1 20414 $636,561  50.00 4.10 0.0100 0.0100 0.0100 2.00 
2 28836 $481,042  30.43 5.00 0.0079 0.0089 0.0079 1.54 
3 28709 $485,913  29.70 5.05 0.0079 0.0089 0.0079 1.79 
4 29036 $491,730  30.40 4.99 0.0079 0.0089 0.0079 1.92 
5 27113 $567,546  50.00 4.10 0.0079 0.0089 0.0079 1.00 
6 20132 $568,309  20.00 5.30 0.0100 0.0100 0.0100 5.00 
7 25116 $540,505  20.00 5.30 0.0085 0.0094 0.0085 5.00 
8 23708 $609,920  32.00 4.68 0.0072 0.0100 0.0140 4.97 
9 16566 $624,993  27.50 4.90 0.0100 0.0100 0.0140 4.78 
10 29484 $557,806  32.70 4.70 0.0072 0.0087 0.0091 4.29 
11 27802 $511,695  32.70 4.90 0.0080 0.0087 0.0091 2.00 
12 16026 $598,294  55.00 4.00 0.0080 0.0087 0.0140 0.25 
13 29298 $565,132  30.75 4.67 0.0071 0.0089 0.0100 4.99 
14 29416 $583,020  35.00 4.50 0.0071 0.0089 0.0100 4.99 
15 25626 $559,545  25.00 5.00 0.0080 0.0089 0.0100 4.99 
16 20548 $471,825  25.00 5.50 0.0090 0.0100 0.0100 1.00 
17 24789 $487,696  25.00 5.40 0.0085 0.0095 0.0090 2.00 
18 27432 $481,221  30.58 5.00 0.0078 0.0099 0.0100 1.32 
19 32105 $524,101  38.52 4.60 0.0070 0.0086 0.0070 2.16 
20 33180 $526,384  39.73 4.50 0.0069 0.0086 0.0068 2.23 
21 32918 $553,254  45.00 4.30 0.0069 0.0086 0.0068 2.23 
22 34570 $545,937  45.00 4.30 0.0065 0.0075 0.0065 2.23 
23 32153 $505,230  40.00 4.50 0.0069 0.0080 0.0083 1.30 
24 31151 $511,836  42.00 4.48 0.0068 0.0078 0.0069 1.07 
25 33800 $505,394  40.00 4.47 0.0068 0.0078 0.0069 1.53 
26 37181 $554,732  50.00 4.05 0.0061 0.0071 0.0061 2.10 
27 15173 $549,933  10.00 6.20 0.0094 0.0109 0.0095 5.00 
28 1181 $539,942  10.00 7.00 0.0120 0.0140 0.0140 2.00 
29 22908 $536,792  16.55 5.60 0.0085 0.0098 0.0085 4.97 
30 20304 $559,528  18.43 5.41 0.0082 0.0110 0.0120 4.83 
31 27797 $550,454  44.70 4.30 0.0081 0.0087 0.0088 1.32 
32 26854 $542,026  50.00 4.21 0.0064 0.0082 0.0088 0.51 
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