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Recently, in the automotive industry, the pressure to improve profitability has been 
increasing sharply. We argue that, long-term profitable growth requires going beyond a 
simple cost cutting operation to holistically redesign man-centric processes and tools that 
eliminate waste and increase operational efficiency for the maximization of the value added 
to products. Product Development Computerization (PDC), i.e. the design activity carried 
out semi-automatically by CAx software, is believed to bring significant (about 50%) 
development cost and time savings and to enable unprecedented levels of business agility. In 
the present work, PDC has been applied to an exhaust manifold including a catalytic 
converter. The approach features a multi-disciplinary optimization executed in a highly 
integrated concurrent engineering software framework. Results are remarkably promising: 
projected development cost and time savings are higher than 70%, with important side 
effects of increased flexibility and product innovation. Technical challenges include the 
integration of disparate analysis codes as well as overcoming geometrical infeasibility of 
parametrized system designs. It was found that the Hooke-Jeeves algorithm was best 
equipped to explore the channels of feasibility in this problem. 
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  Variables              Abbreviations 
 

torqueµ  = average of torque values       CFD =  Computational Fluid Dynamics  

torqueσ  = standard deviation of torque values    EDF = Enhanced Development Framework 
0
ix  = i design variable of baseline design    FE  = Finite Element         
N
ix  = i design variable of Nth design     FEM = Finite Element Model 

               ICE = Integrated Concurrent Engineering 
               MDO =  Multi-disciplinary Design Optimization 
               PD  = Product DEvelopment 
               rpm = Revolutions Per Minute 
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I. Introduction and Motivation for the work 

T HE Automotive industry is facing a tough period. Production overcapacity and high fixed costs constrain 
companies’ profits and challenge the very existence of some corporations1. Strangulated by reduced profit 

margins and petrified by the organizational and products’ complexity, companies find themselves more and more 
challenged with the fast pace and the rate of change of consumers and regulators demands.  

To boost profits, nearly every company is pursuing aggressive cost cutting. However, aggressive cost cutting as 
the sole approach to increasing margins results invariably in a reduction of operational capabilities, which is likely 
to result in a decline in sales volume that leads to further cost reductions in a continuous death spiral2. 

Long-term profitable growth requires, instead, a continuous flow of innovative products and best-in-class 
processes. The focus should be, therefore, shifted from cost reduction to increased throughput3. Automotive 
companies need to change their business model, morphing into new organizational entities based on systems 
thinking and change, which are agile and can swiftly adapt to the new business environment. The advancement of 
technology and the relentless increase in computing power will provide the necessary means for this radical 
transformation. 

For this transformation to happen, the Product Development Process (PDP) has to break the iron triangle of cost, 
schedule and product performance that constrains it4. Any new approach should be applied to the early design 
phases, where the leverage is higher, and should be targeted to dramatic reduction of the time taken to perform 
design iterations, which, by taking 50-70% of the total development time, are a burden on today’s practice5. Multi-
disciplinary Design Analysis and Optimization, enabled by an Integrated Concurrent Engineering virtual product 
development framework has the required characteristics and the potential to be at the core of the “Product 
Development Computerization” transformation, which will respond to today’s and tomorrow’s challenges. 

The vision is to have the product or system not defined by a rigid, explicit CAD model which is then 
manipulated by product team engineers, but by a parametric flexible architecture handled by optimization and 
analysis software, with limited, but value-added, user interaction. In this environment, design engineers govern 
computer programs, which automatically select appropriately combinations of geometry parameters and drive 
seamlessly the analyses software programs (structural, fluid dynamic, costing, etc) to compute all the system’s 
performance attributes. Optimization algorithms explore the design space, identifying the Pareto optimal set of 
designs that satisfy the multiple simultaneous objectives they are given and at the same time satisfying the problem’s 
constraints. Human interaction is primarily required in setting up the framework, parameterizing the system, 
providing good initial starting points, selecting and tuning optimization algorithms, applying preference weights and 
selecting among the Pareto set of non-dominated designs. 

In the present work, a prototype of an Enhanced Development Framework (EDF) has been set up for a particular 
automotive subsystem: a maniverter (a combination of exhaust manifold and catalytic converter) for internal 
combustion engines capable of handling up to five different performance attributes at the same time (Figure 1). 

The platform, adequately simplified to cope with the research constraints, features a flexible bus architecture 
where the different analyses modules can be excluded and included with minor effort. Commercially available 
software is used, with some customization for the particular use. In contrast to many MDO applications in the 
automotive6,7,8,9,10,11,12, particular emphasis is placed on the breadth of the engineering disciplines considered – 
which include fluid dynamics, pressure waves propagation, thermal management, vibrational behavior and mass 
properties – and on the inclusion of business elements, in the form of a parametric cost model. 

 
The EDF with its high performance ICE platform is projected to enable a very fast execution of design iterations 

in the early phases of PD. Consequently, many solutions can be investigated at a relatively low cost. In addition, the 
MDO approach leads to evaluating each solution from all the relevant performance attributes standpoints. The 
combinations of the two factors, i.e. comprehensive design exploration and holistic perspective, is expected to 
reduce dramatically the cost of rework, thereby leading to the product’s value maximization13.  

II. The Case Study: an Exhaust System Maniverter 
In the present work, the EDF is built around a specific application. As a particular system an exhaust system 

manifold or, more precisely a maniverter (manifold+converter) for passengers cars, is chosen. The choice of this 
system is driven by multiple reasons. First and foremost, an exhaust maniverter is intrinsically a highly multi-
disciplinary system: in fact, its design is governed by fluid dynamics requirements (pressure losses, engine tuning), 
heat management issues (gas temperature drop, radiated heat) as well as structural constraints (resonance 
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frequencies, thermal stresses, vibration induced stresses), not to mention, packaging, manufacturability and cost. 
Second, the system is of a favorable medium-size complexity and therefore amenable to be managed with limited 
resources and yet it is not too simple to make the development trivial. Last, but not least, this is the type of systems 
which the writer, working for ArvinMeritor – one of the market leaders in exhaust system design – has first hand 
experience and can have direct access to related information. Specifically, we selected the four-cylinder Fiat Fire 
1.4L 16V engine as a baseline for the case study (Figure 1). However, 
results are generalizable to any 4-cylinder engine. 

 
The exhaust system carries exhaust gases from the engine’s combustion 

chamber to the atmosphere. Exhaust gases leave the engine in a pipework, 
travelling through an after-treatment sub-system, which often consists of a 
catalytic converter, and then through a silencing sub-system (muffler) 
before exiting through the tailpipe. Chemical reactions inside the catalytic 
converter change most of the hazardous hydrocarbons and carbon 
monoxide produced by the engine into water vapor and carbon dioxide, 
while the muffler attenuates the noise produced by the engine. 

The exhaust manifold, in particular, is the first stage of the exhaust 
system. It conducts the exhaust gases from the combustion chambers to the 
exhaust pipe. In this work, we assumed that the manifold is made from 
stainless steel. Sometimes, a catalytic converter is placed just after the 
point where pipes coming out of the engine ports join. This particular 
position is selected in order to achieve a reduction in the converter warm 
up time after the engine is cranked-up and consequently to speed-up the 
start of pollutants conversion. In this case, quite often the term 
“maniverter” (manifold+converter) is used14.  

Figure 1. Example of a maniverter 
system 

The design of an exhaust system maniverter is the result of a complex trade-off among different and equally 
important requirements: 

• Exhaust gases should be kept at a high temperature in the exhaust pipework, especially at low rpm 
conditions 

• For a non-sporty application, the engine torque curve should be as even as possible 
• The engine should have the highest possible torque level and, consequently, the highest power for a given 

rpm.  
• Particularly for sporty applications, the manifold should be designed in order for the sound emitted at the 

tailpipe to have a characteristic “color”.  
• Manifold system natural frequencies should not lie in the excitation frequency range of engine vibrations. 
• In any case, the manifold structure should maintain a sufficient stiffness to avoid localized resonances and, 

consequently, unacceptable radiated noise. 
• Thermal stresses arising from the thermal expansion that occurs when the manifold heats-up should be kept 

lower than the yield stress of the material. 
• Similarly, stresses generated from the vibrations induced by the engine should be below the fatigue limit of 

the material at the temperature working conditions. 
• The exhaust system manifold should fit the available space in the engine compartment and sufficient 

clearance for assembly tooling access in the production plant should be ensured. 
• The manifold surface temperature and distance from the surrounding components should be such that the 

latter are not exposed to a temperature that exceeds the maximum working limit allowed by material 
properties. 

• The manifold mass should be as low as possible. 
• Manifold pipework should be designed to allow the gas stream to impinge on the surface of the converter 

with a flow velocity distribution as even as possible and with levels that do not exceed a given threshold. 
• The manifold geometry (pipework, catalyst inlet and outlet cones, etc) has to satisfy the requirements of 

manufacturability and assembly with the available equipment of both the OEM and of the supply chain 
firms. 

• Last but not least, manifold cost should allow the exhaust system manufacturer having a competitive price in 
the marketplace, while preserving or enhancing its product margins.  

 
American Institute of Aeronautics and Astronautics 

 

3



 
Each of those requirements put 

particular strain on the design and may 
drive different design solutions. The 
interaction between the effects on the 
performance attributes of the different 
design choices is not, generally speaking, 
evident and experience is usually the only 
valid guide for a cost-effective successful 
design. 

We carefully scoped the activity 
described in this paper in order to create a 
framework which is adequately 
representative of the real environment but 
whose complexity is not so high as to 
impede any progress. For that purpose, 
we excluded aspects that were either of 
minor importance, or for which explicit 
knowledge did not exist within 
ArvinMeritor or that would require the 
use of excessively intensive calculations 
incompatible with the selected hardware 
platform. In addition, a deliberate 
decision was made to use commercially 
available software. 

Design aspect Included Motivation for exclusion (if 
excluded) or software used (if 
included) 

Catalyst Inlet temperature  1-D CFD. code (AVL BOOST) 
Torque evenness  1-D CFD code (AVL BOOST) 
Max torque  1-D CFD code (AVL BOOST) 
Min Backpressure  1-D CFD code (AVL BOOST) 
Tuning  1-D CFD (AVL BOOST) 
First natural frequency  FEA Code (MSC.Nastran) 
Fit in the available space  CAD package (Unigraphics NX2) 
Thermal induced-stresses  Computationally too expensive 
Vibration induced-stresses  Computationally too expensive 
Temperature of surrounding 
components 

 Secondary aspect 

Mass  CAD package (Unigraphics NX2) 
Flow distribution on the 
converter surface 

 Computationally too expensive 

Max flow velocity in the 
converter 

 Computationally too expensive 

Manufacturability and assembly  Usually based on experience. No 
software model available. 

Sound quality  Secondary aspect 
Radiated noise  Secondary aspect 
Cost  Spreadsheet (Microsoft Excel) Details of the design aspect included 

and excluded in the prototype EDF are 
presented in Table 1. Table 1. Design Aspects Included and Excluded in the Prototype EDF 

 

III. Building the Enhanced Development Framework 
Having identified the individual design domains, the next step was selecting a robust and yet flexible architecture 

that was to link them in a consistent framework. The trade-off was between integral and modular.  
Integral would have meant a deep interaction between 

the different software packages. In this sense, there are 
several attempts by different software vendors. The usual 
situation that is encountered is that CAD or CAE vendors, 
specialized in one domain with a flagship product, are 
trying to widen their area of action around that product 
offering an extension of their basic capabilities. No single 
CAE platform, however, exists that is able to incorporate 
seamlessly different codes of different vendors. This was 
one of the main motivations for the choice of the modular 
architecture. In this bus architecture a standardized and 
minimum set of data is exchanged among applications and 
the transfer occurs primarily between the bus and the 
individual module. The same software that handles the data 
transfer also handles the optimization process. A modular 
architecture has other advantages: 1) one CAE module can 

be replaced by another one, provided that the interfaces 
with the bus are the same; 2) if, at any time, an additional 
or enhanced CAE module becomes available, it can be 
easily integrated and only the interfaces with the bus (and 
not wi
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Figure 2. Overview of the ICE platform 
Architecture:  data flow,  client-server 
relationship 

th all other packages) need to be defined. 
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l eled with solid elements.  

Her e total number of 
parameters is 196, of which: 
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The routine, named KEFAOptimizer, has been devel

• t physical and 
masses. 

This approach works well in the case of a maniverter because the main interactio
em
 
iSIGHT, from Engineous15, was selected for the optimization / data 

transfer job. Through iSIGHT, a process flow of the different 
development steps is made, somewhat replicating the process in a 
normal product development environment: for example a CAD mod Geometry Parameters

Structural Module

Geometry Module

Cost Module

Fluid Dynamic Module

Performance Attributes

End

 Yes 

User Specify Application and optimization goals

Are goals reached?
 No 

enerated first and the structural analysis is performed afterwards.  
The user specifies the application (i.e. engine type and overall 

constraints) and the goals for the system performance attributes (max, 
min, selected value). The product development definition starts with a 
selection of a set of baseline parameters with which the geometrical 
configuration is defined and through the execution of the different 
modules, the CAD model is generated and the required performance 
attributes are calculated. At the end of the design loop, the calculated 
attributes are compared with the target. If the goal of the optimization is 
reached, the process ends, otherwise a new product definition is 
generated in the form of a new parameters set, which of 

ential of having performances closer to the specified goals. 
The loop features no iterations between the different modu
ause all Performance Modules depend on the Geometry Module. 
In what follows, a description of the individual modules i

Geometry Module13 
With appropriate simplifying assumptions, made to downsize 

design complexity to a manageable level, a maniverter parametric 
model is built which is able to represent a variety of configurations with 
a handful of parameters, the design variables. Unigrap

S PLM Solutions was used as the CAD package16.  
The choice is made to focus on a manifold product for a four cylinder engine, out of a single skin tubu

hnology with a 4>1 topology (i.e. four pipes joining into a single junction) and embedding a ceramic catalyst. 
The four pipes with a round cross section are connected to the inlet flange (which is imagined bolted on the 

cylinder head) and join in a plenum where all the gas streams mix. Then an inlet cone leads the exhaust gases to the 
catalytic converter and, when they exit from it, they are guided to the outlet pipe through an outlet cone. A bracket 
connected to the engine block supports the maniverter. It is 

Figure 3. Flowchart of the design loop 
execution. 

Figure 4. The Maniverter Parametric CAD 
Model 

licitly assumed that the maniverter is fo
nstream by an exhaust system where the silen

ced. 
Al components are mod
The resulting CAD model, is shown in Figure 4. 

e are some model figures. Th

• 118 are dependent 
• 78 are independent. Of these: 32 are fixed with the 

application and 46 can be varied with the application, 
i.e. during the optimization process 

 
ddition, special software was developed to han

metry regeneration in batch given a set of parameters and 
ct some required data from the model. 

• It allows the geometry model to be changed w/o user in
It extracts from the model some relevan
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• It exports the native UG model (.prt) in a format (Parasolid) that can be read by FE codes. 
 

• The list of parameters / expressions that KEFAOPtimizer will u
ated model. 

 

. 
 The data extracted from the updated CAD model. 

• A Parasolid model. 

 of the first 
res

and MSC.Nastran by
MS

onditions, fixed at the inlet 
flan

l choice fell on Tet-4 8 mm elements because 
the

aterials is isotropic, 
i.e. which has the same mechanical properties in all 

 elastic. 

 time of the catalytic converter and therefore the 
eng

mmercial code used is AVL BOOST 4.0.417. The 

The inputs to KEFAOptimizer are: 
• The UG model to be changed. 

se to modify the geometry. 

 

• The list of data to be extracted from the upd

The outputs that KEFAOptimizer provides are: 
• The modified UG model
•

 

B. Structural Analysis Module13 
The only structural analysis is the calculation

onance frequency. Design criteria state that this frequency 
should be as high as possible and not below 250 Hz. 

For the analysis, a Finite Element model is built using the 
software programs MSC.Patran 

C.Software Corporation. The FEM is based on the Parasolid 
file created by the Geometry Module. 

The system is considered in hot c
ge (which is connected to the cylinder head) and at the bracket 

(which is connected to the oil sump). 
As type of element, we chose to work with tetrahedra because 

they can fit irregular boundaries and allow a change in elements 
size without excessive distortion. In addition, fully-autom
methods for generating triangular/tetrahedral meshes are 
robust. The fina

atic 
well 

Model 

Maniverter 

Figure 5. The Maniverter Finite Element 

 solution time is vastly shorter than with the others 
options. 

In our application, for simplicity reasons, we considered 
that all metallic components of the maniverter are made of 
the same stainless steel material, which is known with the 
ANSI code AISI 304. In the working temperature range (at 
about 800°C) we also assume that the m

directions, and that it’s linearly

C. Fluid Dynamic Module13 
Two are the aspects that, with a fluid dynamic 

simulation, the EDF takes into account: 1) the engine 
performance that a maniverter design contributes to; 2) the 
warm-up

ine pollutants conversion capabilities of the maniverter 
system. 

A full 3D transient CFD calculation has been excluded 
because its computational cost is not balanced by an 
adequate added value, in terms of design information, for the 
specific application. A 1-D transient simulation has been 
preferred instead. This has been used to predict the effects of 
the different maniverter geometries on the engine power and 
torque curve as well as the catalyst conversion capabilities. 
The co

Figure 6. The Maniverter BOOST Model 
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out

d exhaust system (featuring the maniverter), 
since the performance characteristics of the engine are known to be influenced by all elements that are enclosed in 
the

n process, a single value that can work as a Performance index was elaborated. After extensive 
discussion with Fiat-GM Powertrain experts, the ratio of the mean and the standard deviation of the torque was 
ide : 

come of the calculation is the engine torque and the catalytic converter inlet temperature over the rpm working 
range. 

Similarly to the geometry module, the fluid dynamic module is actually made by two parts: the model itself and 
the routine that manages the execution of the calculations in batch.  

A BOOST model is built of the entire intake, Fire 1.4 16V engine an

 boundary that goes from the intake inlet to the tailpipe. (Figure 6).  
 
Since the engine torque over the rpm range cannot be easily handled as a performance attribute during the 

optimizatio

ntified
2

 µ 








=
torque

torqueIndexePerformanc
σ

    (1) 

For a conventional low to mid-size car (i.e. not 
a sporty one), which is the vehicle a Fire 1.4 16V 
engine is likely to equip, two are the important 
features that a maniverter has to contribute to: 1) 
The highest torque, for best acceleration 
characteristics, 2). The most regular torque 
behaviour for good driveability. The mean value 
of the torque across the rpm range was selected as 
a metric of the first factor and the standard 
deviation (around the mean) as a metric for the 
second. The ratio is raised to the second power to 
create an indicator, which is more sensitive to 
vari

stics. A weighted 
average temperature is selected where weights are 

rpm values. 

oduct’s / 
system’s cost drivers and, based on past costs, tries 
to establish relationships between them.  

ations. 
 
Similarly, the temperature at the catalyst inlet 

curve was transformed into a single value that 
could represent the attribute expressing the 
converter warm-up characteri

higher for the low 

D. Cost module 
It is rare in industry today that the cost of 

producing and maintaining a product is considered 
early in the design process. While much of the 
emphasis in Modelling & Simulation for design is 
on technology issues, integration of business 
issues is imperative to make a design that not only 
performs adequately, but also is cost-effective and 
gua

 

Mrantees adequate levels of profitability. For 
this reason, a cost model is included in the ICE 
platform.  The approach that we embrace and we applied 
in our MDO framework is what is called 
“Parametric Cost Estimating” (PCE).  In PCE 
costs are modelled based on past costs and “Cost 
Driver Parameters” are statistically/empirically fit. 
The assumption underlying PCE is that a clear 
linkage exists between cost and a product’s cost 
drivers.  PCE, therefore, search for pr

Value Units
Material Cost 12.86 [€]

Raw material 11.69 [€]
Inlet flange 2.57 [€]
Pipe A (AISI 304) 0.38 [€]
Pipe B (AISI 304) 0.42 [€]
Pipe C (AISI 304) 0.35 [€]
Pipe D (AISI 304) 0.41 [€]
Inlet cone 1.32 [€]
Converter can (AISI 304) 1.01 [€]
Mat 1.69 [€]
Outlet cone 1.57 [€]
Outlet pipe 1.38 [€]
Bracket 0.60 [€]

Freight 0.24 [€]
Dependent on Part Size [€]
Dependent on Part Weight 0.24 [€]

Material Overhead 0.94 [€]

Value Units
Production Cost 11.18 [€]

Labor cost 6.20 [€]
Labor cost per unit time 28.39 [€/h]

Machine Cost 4.98 [€]
Actual machine cost 4.52 [€]

Bending Cost 2.37 [€]
Cost per bending machine hours 35.00 [€/h]
No. Of hours of bending operations 0.07 [h]

Average time per bend [s]
Welding Cost 1.66 [€]

Welding Robot Cost 11.00 [€/h]
Total Welding Robot Time 0.15 [h]

No. Of Welds 14.00 -
Operations Time per weld 4.00 [s]
Welding length 974.16 [mm]
Welding time 487.08 [s]

Sawing, Deburring, Calibrating, Leak Testing 
Costs 0.50 [€]

Machine Overhead 0.45 [€]

Manufacturing Cost 24.04 [€]
aterial Cost 12.86 [€]

Production Cost 11.18 [€]

Total Cost 28.49 [€]
Manufacturing Cost 24.04 [€]
Scrap 0.24 [€]
Overhead 2.24 [€]
Alloy cost 1.97 [€]
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Table 2. The Maniverter Cost Structure 



 
 
The maniverter cost is made up by two components: material cost and production cost. Each of them and is then 

affected by an overhead which is usually a fixed factor of the cost component it is applied to.  
Maniverter components, as far as material cost is concerned, are classified in the following categories: tubes, 

metal sheets, stamped components, support mat. For each of those categories, the main cost drivers were identified 
and t proved to be a 
prominent cost driver. 

lationships between those data and the different cost components, gives back the maniverter cost. 
Since cost data are sensitive and proprietary to ArvinMeritor, a disguising factor was applied to the individual and 

 the
Deaign ite

1. attributes (mass, frequency, performance index, catalyst 
se, the 

2. 
3. nt to the parameters values and 

arasolid file needed by the subsequent structural analysis. 

7. Calculator receives the torque values and the catalyst inlet temperature over the 1000-

8. 

is achieved or the maximum number of iteration, the design 
process stops. Otherwise, depending on the optimization strategy, feeds back a new set of parameters 

simulation loop is about 20 min on a Pentium IV 1.8 GHz laptop with 1GB 
RA  T  

 15 min for fluid dynamic analysis 

ght once again that a loose coupling exists between the different applications. Interchanges occur only 
in t

d or upgraded or a new module can 
be e
powerfu stering scalability, both horizontally and vertically: 

, based on the extensive ArvinMeritor database, a statistical relationship worked out. Weigh

Production Cost consists of two components: the cost of machine operations and labour cost13. 
 
The resulting cost model is an Excel spreadsheet. As input it receives, from the Geometry Module, maniverter 

components masses and dimensions data (again KEFAOptimizer extracts those on purpose from the CAD model), 
and using the re

overall values. 

E. Working Mode of the EDF 
All  modules are then integrated in an ICE platform (Figure 7), which enables to run seamlessly design loops. 

rations are articulated in the following sequential steps. 
The user specifies which of the five performance 
average inlet temperature, cost) to be considered in the optimization process and, for each of tho
optimization goal (min, max or target value) 
The design loop starts with a baseline geometrical configuration defined by its parameters values  
The Geometry handler module creates the CAD model corresponde
calculates the geometrical and physical dimensions that will be used in the following steps. In addition, it 
creates the P

4. The Frequency Calculator module, reads the Parasolid file and feeds back to iSIGHT the first natural 
frequency  

5. The Cost Calculator module receives in input the necessary geometrical and physical data and feeds back 
the maniverter cost and its breakdown of material and production cost 

6. The Fluid Dynamic Module receives in input the geometrical data of the maniverter and feeds back the 
torque values and the catalyst inlet temperature over the 1000-6000 rpm range 
The Perfomance 
6000 rpm range and feeds back the Performance Index and the Weighted Average Catalyst Inlet 
Temperature 
The Optimizer receives from the different modules the five maniverter performance attributes, i.e. mass, 
the first natural frequency, cost, performance index and catalyst inlet weighted average temperature and, 
if the target of the performance attribute(s) 

values and a new loop starts (from point 3.) 
 
The execution time of a complete 
M. he breakdown is the following:
• 0.8 min for geometry creation 
• 3 min for structural analysis 
•
• 0.7 min for Excel execution and optimization algorithms 
 
We highli
he format of ASCII files (with the exception of the Parasolid file) through a data bus provided by the iSIGHT 

architecture. 
While this approach has some limitations, it gives two fundamental advantages: 1) interoperability is guaranteed 

because the communication media are ASCII files, 2) a module can be eliminate
add d with a minor effort because the interfaces are limited and simple. The latter feature, in its turn, has the 

l consequence of fo
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• Horizontal scalability: new performance attributes can be evaluated when the related prediction models 
become available; 

• Vertical scalability: a module can be generated to be rather simple in the beginning but it could be refined 
both in its capabilities and in its accuracy 
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Figure 7: ICE Platform Data Flow 

eferences. Since engineering decisions involve the resolution of design trade-offs, our approach is to 
identify the Pareto data first and to present them to the user to apply final preference weights and select the “best” 

ss and each design can be characterized along several 
dimensions. To enable effective engineering decisions, an appropriate method to harness this complexity and to 
transform data to information and to knowledge is required.19  

 
 
The EDF enables both the optimization of the design for a single performance attribute, or for multiple 

performance attributes at the same time. In the latter case, the Pareto set of non-dominated solution replaces the 
single optimized design as outcome. All solutions lying on the efficient frontier are potentially preferred by the 
decision makers and in order to ascertain which is actually preferred it is necessary to take into account the decision 
makers pr

solution. 

F. Data Visualization13 
Design exploration and Multi-disciplinary Design Optimization processes generate a huge amount of data, 

which, depending on the multi-dimensionality, can easily surpass the human cognitive capabilities. Hundreds or 
thousands design alternatives can be analyzed in a MDO proce
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Raw data coming out of any MDO analysis can essentially be though of as filling an m x n matrix where each of 
the m lines refers to a particular design and each of the n columns is a specific response. Non-dominated (or Pareto) 
solutions are extracted from the 
complete data pool. For each of the 
performance attributes, the best and the 
worst are identified; then each value is 
ranked from 0 to 1 according to the 
proximity to the “best” point: 0 
identifies the worst and 1 identifies the 
best. To each of the values, a color is 
attributed. A typical resulting plot, 
generated with Poptools, is shown in 
Figure 8: each row corresponds to a 
design configuration and each column 
refers to a specific performance 
attribute.  
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IV. Using the Tool: Developing 
Products Efficiently  

Making use of the developed EDF we 
simulated the design task of developing a 
maniverter for the Fire 1.4 engine.  

Figure 8. Pareto Data Qualitative Rainbow Plot 

 
Given the high number of design variables (48 in total), the search for the most efficient frontier (which, in this 

case, is actually an hyper-surface) is done in two phases:  
• In Phase I, a sort of testing phase, only the centerline of the maniverter piperuns are allowed to change 

during the development process, while their diameters, thickness and the rest of the converter are fixed. This 
gives a total of 24 design variables. 

• In Phase II: all available design variables (48) are considered actually variable. 
 

In Phase II, the identified solutions are compared, in terms of performance and piece cost with a baseline, which 
was tuned to reproduce an actual design that ArvinMeritor developed in 2002 for the same application with the 
purpose to get an indication of the design improvement that the novel approach is capable of delivering. 

At the same time, development time is recorded and compared with a standard ArvinMeritor leadtime for this 
type of application to estimate the reduction in development costs and in time 
to market and the increased design flexibility enabled by the use of the EDF. 

G. Phase I: Testing the EDF on the maniverter 
Whenever a new problem is tackled, for which very little is known about 

the design space and the behavior of the system, good practice suggests 
exploring it in a systematic manner. Typical techniques used for this design 
exploration activity are DoE or Monte Carlo analysis20. In DoE, sample 
points are selected in the design space (several methods exist for point 
selection) and performance attributes computed. In Monte Carlo analysis, 
design variables are varied around baseline points according to a probability 
distribution. Design Space exploration can be an effective technique to locate 
the zones where optima are; in addition the sensitivity of performance attributes to the different design variables can 
often be easily established. 

3

1 2 4D

Figure 9. An example of 
unfeasible geometry 

However, both DoE and Monte Carlo analysis cannot be run in our EDF, since they are impaired by a major 
roadblock: geometry regeneration failures. Let’s illustrate the issue with a simple example. 

Let’s consider a pipe whose centerline is defined by 4 control points which are allowed complete freedom in the 
design space. Since there is no restriction in the choice of parameters values, a combination of control points which 
gives the path shown in Figure 9. If the pipe has the diameter D shown, we intuitively understand that the pipe 
cannot be geometrically generated: the curve between point 3 and point 4 is, in fact, too tight. We, therefore, 
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intuitively grasp that a loose coupling exists between the selected variables, even though the relationship cannot be 
straightforwardly determined. 

Generalizing, we can represent the design space as defined by “feasibility channels” where certain combinations 
of design variables give feasible solutions, delimited by ridges beyond which no solutions exist. To partly uncover 
the nature of this channel-like design 
space, a pseudo-Monte Carlo analysis 
is run. The strategy is the following. 
Starting from a baseline feasible 
design configuration, a “local” Monte 
Carlo analysis is performed where 
design variables are allowed to 
change by +/- 20% with respect to the 
baseline. This guarantees that a 
sufficient percentage of the runs are 
feasible. Then, the farthest point in 
the design space is selected, i.e. the 
design vector N, which features the 
highest design variables distance 

∑ −
n

i
N
i xx 20 )( , from the baseline 

and a new Monte Carlo analysis is 
run. A fixed number of advancement 
steps (100) and “local Monte Carlo 
analysis” (10) are set, for a total of 
1000 runs. 

Figure 10 collects a sample of 4 of 
the 276 pairwise scatter plots of the 
24 design variables. 

The points where the geometry 
generation failed are indicated by 
circles, the feasible points by full dots. 
The direction of the stochastic path is 
given by the arrows. 

Feasibility channels clearly emerge. Many different patterns appear: some of the variables are poorly or non-
correlated at all, some of them are loosely correlated and some others are highly correlated.  

Figure 10. Design Space Feasibility Channels 

The situation is further complicated by the fact that channels shape and dimensions change with the other design 
variables that were fixed in this testing phase, i.e. the pipe diameters and thicknesses. 

 
When running a DoE or a Monte Carlo analysis, values of the design variables are selected randomly in the 

whole design space. The morphology of the design space made by unpredictable narrow feasibility channels causes 
the majority of random combinations to generate unfeasible geometries. Out of a Monte Carlo trial we did with 
uniform probability distribution, we estimate that the feasible runs are about 1-3% of the total number of runs. Even 
though geometry regeneration time is remarkably low (<1 min), to have any given number of feasible geometry sets, 
a number of runs about 100 times larger would have to be executed (without imposing additional constraints). 
Constraints are not typically imposed apriori for DOE or Monte Carlo simulation. 

 
If, given the peculiar shape of the design space for this application, traditional design space exploration 

techniques are not affordable, on the other hand, gradient-based techniques proved to be effective. A particular 
effective method in “riding” the channels proved to be Hooke-Jeeves24. The Hooke-Jeeves search, in fact, is made 
especially for ridge-following.  Its strength is that it is able to find the ridges itself and can recover if a ridge comes 
to an end. With H-J feasible runs are about 70% of the total. 

 
Using the H-J algorithm, the following single-objective runs were performed and the following results obtained: 
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• Min mass. The total mass was reduced by 479g (from 5946g to 5467g), i.e. by 8%; however, if we take 
into account that all maniverter’s design variables were fixed, except for the piperuns, whose mass is 
1224g, we get a more sensible figure of 39% mass reduction  

• Max Performance. The performance index was increased by 7%, from 130 to 139. A closer look at the 
components of the performance index, i.e. the mean value of the torque and its standard deviation, 
reveals that the improvement arises from the reduction in the standard deviation, more than from the 
increase in the mean value. The optimization process led to an evening of pipe lengths which is 
consistent with manifold design best practices that recognize the benefit of having even pipe lengths on 
the regularity of the torque. 

• Min Cost. Even if with disguised cost figures, we note that the cost reduction has been remarkably high, 
from €36.8 to €24.6, i.e. nearly 35%. Maniverter cost was reduced essentially by leveraging production 
cost, while material cost remained essentially the same. Production cost is reduced by reducing the 
number of bends and the bend angle of the four pipes. The cost model for pipe bending appears to be 
highly sensitive to curvature. 

 
Single-objective runs allowed getting first results from the framework. The results are sensible since they match 

common design experience 
and offer intriguing 
insights from a business 
perspective.  

After the single-
objective preparation runs, 
we turned to the main goal, 
which is multi-objective 
optimization. 

For multiobjective 
optimization, Genetic 
Algorithms (GAs) are very 
effective. One of the most 
recent (2002), the 
Neighborhood Cultivation 
Genetic Algorithm 
(NCGA), was used for the 
maniverter multi-objective 
analysis. 
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NCGA is selected for 
maniverter development 
because, in addition of 
being a powerful GA for 
Pareto set extraction, its 
iSIGHT’s implementation 
gives the possibility to give 
a start population that the algorithm evolves. This is the mechanism that we exploited, together with the results of 
the previous single-objective runs, to overcome the feasibility issue. In fact, if we tried to run any GA without a 
special initialization, since the starting population is generated through a random selection of design variables 
combination, we would face the same feasibility problem with many generated solutions being infeasible. What we 
interestingly found, on the other hand, in our particular application is that “feasibility” appears to be a characteristic 
of the “DNA” of any feasible solution. This has, as a consequence, that if the GA starts with a population of feasible 
solutions, it proceeds without encountering any major obstacle because, crossing over two “feasible” members 
results, in general, in feasible offspring. This is not always true in other problems, where destructive mating between 
two feasible solutions can occur if they are far from each other in x-space, as measured by the Euclidian distance 
metric mentioned above. Therefore we successfully followed the steps of generating feasible solutions with a pattern 
search algorithm such as H-J and then composing the population to be given as the initial set to the NCGA. 
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Figure 11. Phase I: Testing Phase – Performance-Cost Trade-Space 

In Phase I the multi-objective analysis was limited to two out of the five different performance objectives only. 
The two populations generated in the previous cost minimization and performance maximization runs are 
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considered. Ten members are selected from both populations to form the starting set, which is then carried forward 
for 10 generations, for a total of 100 runs. About 90% of the runs were feasible. 

In  Figure 11 results are reported in the Performance-Cost trade-space, see Eq. 1 for performance index, see 
Table 2 for cost calculation. Green squares identify the results of the previous max performance runs, purple squares 
are the results of the previous min cost run, orange squares are the solutions generated by the NCGA process. 

We note that a good coverage of the performance attributes space is achieved thanks to the diversity of the initial 
set and that some very interesting solutions were found which have higher performance than the baseline at a much 
lower cost. 

H. Phase II: Running the EDF with full capabilities 
In this last phase of the research, we released all the variables that are allowed by the parametric model. This 

allows the optimization algorithm to consider the following elements: piperun centerlines, pipe diameters, position 
and inclination of the converter, thicknesses of pipes and inlet / outlet cones. For each of the design variables 
adequate lower and upper boundaries were set. 

Following the methodology identified in Phase I, the development run, has been articulated in two consecutive 
phases: 

• “Anchor   points” identification with single optimization runs: min mass,  max frequency, max performance 
index, max catalyst inlet temperature, min cost. Approximately 100 runs of a single objective optimization 
for each of the five selected performance attributes have been done. The algorithm used was Hooke-Jeves. 
The five single objective runs totalled 7 days of computing time. 

• Pareto hyper-surface extraction. Four design configurations per each of the five performance attributes 
among the best of those identified in the exploratory runs have been selected for a total of twenty designs. 
These were used to compose the initial population used in the Pareto set extraction run. The initial 
population of feasible designs was instrumental to keep feasibility as high as 80%. The NCGA algorithm 
was used for this purpose. The population was advanced for 25 generations for a total of 500 runs. As for the 
500 preliminary runs, 7 days of computing time were required. 

 
The Pareto set was 

generated automatically by 
iSIGHT’s NCGA’s 
algorithm and included 12 
designs solutions. Pareto 
data were transformed into a 
rainbow plot13. The 
quantitative version is 
represented in Table 4. The 
dark red cells identify 
“good” performances, the 
light red or white cells, “bad” 
performance levels. The 
yellow header block on the 
left contains actual numerical 
values, while the white header on the right shows the percentage ranking (100% being best).  
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Index

Maniverter
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4.93 1188.86 5238.26 136.01 15.83 28.48% 11.28% 70.42% 79.41% 100.00%
415.26 1204.38 5556.17 152.96 18.56 86.92% 41.48% 48.65% 100.00% 96.44%

319.92 1190.33 5150.39 133.48 25.28 40.61% 14.14% 76.44% 76.34% 87.69%
268.17 1183.06 4806.43 70.79 28.49 15.47% 0.00% 100.00% 0.20% 83.52%

440.06 1208.96 6266.49 139.27 35.09 98.97% 50.39% 0.00% 83.38% 74.92%
3.48 1183.89 4918.21 70.62 35.27 18.06% 1.61% 92.34% 0.00% 74.69%
91 1210.14 6146.74 139.31 35.47 93.07% 52.68% 8.20% 83.42% 74.43%

442.18 1209.00 6208.10 139.20 39.16 100.00% 50.47% 4.00% 83.28% 69.63%
346.86 1234.46 6019.93 137.27 40.64 53.70% 100.00% 16.89% 80.94% 67.70%

236.31 1208.38 5947.09 139.67 42.43 0.00% 49.26% 21.88% 83.85% 65.36%
361.97 1210.38 5689.49 138.36 61.50 61.04% 53.15% 39.52% 82.26% 40.53%
243.15 1210.02 5853.49 139.45 92.64 3.32% 52.45% 28.29% 83.59% 0.00%

Table 3. Final Run – Pareto Data Quantitative Rainbow Plot 

The rainbow plot conveys pictorially and intuitively several qualitative important information: 
• Maniverter mass and Catalyst Inlet temperature are negatively correlated, i.e. good values (i.e. low) of the 

former correspond to bad (i.e. low) values of the latter. This is evident by observing that strong red colors in 
mass column are, in general, associated to light colors in temperature column. 

• Mass is positively correlated with Cost, i.e. lower mass corresponds to lower cost. This is testified by the 
fact that designs are associated similar colors in the cost column and in the mass column. 

• The inverse happens with Mass and Performance: high levels of performance attributes are generally 
associated with poor (i.e. high) values of mass. This is consistent with design experience which states that 
high performance is achieved with long piperuns. 

• Torque performance does not exhibit huge variability and it is particularly insensitive to the variation of the 
other performance attributes. This is the highlighted by the fact that its related column features a red-side 
color for most of the designs. 
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• High levels of all performance attributes at the same time are difficult to achieve. This is witnessed by the 
fact that no rows with red color marked in all columns exists. 

 
Since there is no design which 

shows good values in all the five 
performance dimensions, we 
isolated designs with, at least, four 
distinctively good performance 
attributes (highlighted in bold). 

Cos

Performance Attribute
Optimization 

Target Baseline
Selected 
Solution Difference

Torque Performance Index 129.70 152.96 17.94%

t [€] 36.83 € 18.56 -€ 18.27

1st Natural Frequency [Hz] 340.71 415.26 74.55

Catalyst Inlet Temperature [°C] 1178.68 1204.38 25.70
Mass [g] 5945.63 5556.17 -389.46

We then applied a preference set, 
which estimates as too high a mass 
of 6200g. The choice, then, fell on 
the solution with 5556 g (boxed in 
blue, Table 3). 

 
In Table 4, the identified 

“Pareto-optimal” solution is compared with the baseline design that was the starting point in our optimization work 
and which, as mentioned, constitutes a solution that took ArvinMeritor about 9 weeks to develop and to optimize for 
the particular application in 2002. Even though the results are as good as the underlying models, the new solution 
appears far better in all dimensions: it has better torque performance (+20%), better vibration characteristics (+75 
Hz), better pollutant conversion characteristics by ensuring faster warm-up of the catalytic converter (+25 °C) and 
lower mass (-389g). Last but not least, it has a remarkable 50% lower cost, mainly driven by the pipe bending radii.  

Table 4. Performance Attributes Comparison: Optimized vs. Baseline 
Solution 

 
The new design looks odd to the eye of an “experienced” designer because of the different pipe diameters and 

different thicknesses and in no way this would be the result of a typical manual development effort (Figure 12). We 
note that similar situations, i.e. high performance solutions that do not correspond to well-established design 
patterns, are likely when performing automatic optimization. Optimization algorithms, in fact, are not forced to ride 
the old paths of experience but are only governed solely by the goals they are given. In addition, contrary to current 
practice, fast execution of design iterations enables many designs to be checked and the “sweet spots” to be 
identified.   

The designer must be therefore be 
willing to replace the natural scepticism 
with an authentic open mindset and be 
ready to accept the solution proposed by 
the optimization process. Sanity checks 
are anyway required to avoid making a 
mistake due to modelling errors, or 
forgetting important constraints, but 
when they will give confirmation of the 
performance of the optimised solution, 
the design engineer should take the time 
to reflect on the reasons why the 
performances of the identified solution 
are so good. That phase is a fruitful 
moment of knowledge creation. 

 
As a possible physical explanation of 

some of the good performances of the 
optimized solution, after an accurate 
analysis of its design features, we 
mention: 

Best Solution Baseline Solution

 
• The two external pipes, with 

their higher diameters, 
contribute to raising the first 

Figure 12. Baseline (right) and Optimized (left) Maniverter 
Geometry 
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natural frequency, which corresponds to a lateral movement. 
• The higher total pipe cross sectional area, in addition, contributes to lowering the backpressure. 
• The maniverter mass is lower, thus raising the frequency and lowering the cost 
• The number of bends is lower and bends with smaller values of diameter/bending radius ratios, lower 

bending cost. 
• The pipework mass is lower, thus raising the average catalyst inlet temperature 
• Pipe diameters are different to compensate for different lengths and bends: 1) smoothness of piperun is a 

factor for backpressure reduction and can be balanced against a smaller radius; 2) the same tuning frequency 
can be achieved with a longer pipe with small radius or with a shorter pipe of a big radius.  

    
In a nutshell, we postulate therefore that semi-automatic multi-disciplinary design optimization, compared with 

the traditional design process, has several benefits:  
 

• Lower development time (14 days of computation against 60+ of normal practice) 
• Lower development costs (related to development time and resource allocation) 
• Better product performance, given the better design exploration (1000 maniverter designs checked) 
• Innovation, ease and speed with which new variants can be designed 
• Knowledge Increase 

 

V. The value of the tool: summary of insights 
Besides the good results exposed in the previous section, throughout the whole research project, in the setup, 

building, testing and utilization phases, we came across several findings that, even if strictly limited to the specific 
application, are believed to have the potential to constitute general insights. We deemed useful to group all of them 
together in a list of lessons learned. Hereafter they are listed from general design related items to more specific 
MDO implementation related issues. 

I. Design: 
 
• Design solutions exist with similar performance along one dimensions but much different along at least one 

other. 
• Design solutions with extremely good performance attribute levels in many dimensions represent a tiny 

subset of the design space. 
• The majority of the current product designs are characterized by inefficient performance if compared with 

what those systems have the potential to deliver because normal design practice, limited by time and budget 
constraints, results in poor design space exploration. Even if product experience may guide to explore good 
design areas, in general only 50-60% of the value that could be obtained by a system is extracted. Therefore 
a huge opportunity exists for both product cost reduction or product performance enhancement. 

• Relationships between performance attributes are not intuitively obvious for complex systems and not even 
for simple ones. Intuition, engineering knowledge and experience usually drive the design: design engineers 
use them to correlate performance attributes to design characteristics. However, for complex systems, the 
interrelations between physical phenomena is so intertwined that human limited cognitive capabilities may 
fail to find the right relationships, even in the case of relatively simple systems. A false intuition pushes the 
designer in wrong directions.  

• Effective designs can be found by exploiting the characteristics of the Pareto frontiers. Inter-dependence of 
performance attributes is, in general, not linear. Regions of the design space can exist where, by worsening 
slightly the performance attribute A, a huge benefit can be obtained in attributes B and/or C, etc. Moving 
from one area of the design space to the other, the relationship may invert, i.e. attributes B and/or C, etc. 
may be insensitive even to a huge variation of the attribute A. The inflexion point can represent a zone 
where to search for the “best design”. 

• Semi-automatic Optimization widens design knowledge paths but requires an open mindset. We’ve seen that 
optimization algorithms in some cases confirmed current maniverter design practices. However, they are not 
constrained by “common sense” and “past experience”, but they chase only numerical minima or maxima. 
In doing that, they are not restrained from riding new design avenues and, by doing that, they become a 
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means for innovation. Design engineers must be open-minded, take the solution proposed by the EDF tool 
and find the necessary confirmation. In some cases loopholes are exploited because of missing constraints, 
in other cases truly new designs are discovered within the bounds set by the problem parameterization. If 
performances are confirmed, the innovation is real and the examination of the root causes leads to extended 
current product knowledge. 

• Multi-disciplinary analysis shifts the engineering focus from design to performance evaluation and decision-
making. Quite often, in a design review, the question is asked, by management or customers, “what if I 
wanted more of this attribute?” or “what if I needed less of that attribute, can I get something in exchange?” 
The request invariably starts a design iteration, which consequently results in lengthening the development 
time. With enhanced development tools such as the one object of the current study, all the design solutions 
are evaluated in advance and trade-offs explored at the outset. Data are presented to the design engineer / 
manager for him/her to take the ultimate decision. 

J. MDO implementation: 
 
• Geometry generation importance cannot be overemphasized. If a CAD tool is used, its flexibility in 

representing with completeness the design family and its robustness with respect to parameters variation are 
key to the successful execution of the design search process and to the significance of the obtained 
outcomes. 

• Knowledge-based design can be used proficiently to generate an adequate geometry for optimization. 
Embedding design rules in the geometry generation is an efficient way of establishing the dependence 
relationships between the parameters. This greatly helps in making the design space more continuous and 
consequently in having a simpler and faster design exploration. 

• If the design space is discontinuous and characterized by channel–like feasibility zones, the Hooke-Jeeves 
algorithm shows good performances in single-objective optimization: it locates ridges of a channel and 
follows them efficiently up to the optimum. However, it shows its weaknesses when a channel is forking: 
the algorithm, in fact, follows the branch of the channel, which looks more promising, completely 
neglecting the other(s). Future research might resolve this issue. 

• Design of Experiments, Monte Carlo Design Space Exploration, and Genetic Algorithms have difficulty 
exploring design spaces made up primarily of feasibility channels. Only a few percent of the randomly 
generated solutions fall into the feasibility channels, the rest cause those algorithms to be so highly 
inefficient as to be useless. However, Genetic algorithms with explicit Pareto optimality management, 
suitable for Pareto hyper-surface extraction, if properly fed with an initial population of feasible solutions, 
may generate feasible offspring and be able to locate the Pareto front efficiently. 

• Software interoperability and interface management are key in the success of any MDO approach. Clear and 
comprehensive analysis of requirements of each analysis module must be done at the outset to ensure 
efficient execution. 

• In designing any engineering tool for analysis of complex systems, information processing capabilities of 
human users must be taken into account. Failure to recognize the essential role of the tool/human interface 
may lead to develop tools that, despite their power, are perceived as too complicated and ultimately rejected 
by the engineering users community. That’s why it’s particularly important to develop adequate methods of 
presenting the huge amount of data coming out of the design space exploration in a way that captures the 
attention of decision-makers and allows using the powerful capabilities of intuition and synthesis of the 
human brain. 

• The semi-automated MDO process has the potential to identify solutions with performance attributes levels 
much higher than with traditional manual processes at vastly lower cost and time, provided the initial cost in 
setting up the MDO environment can be amortized over time. Key in time savings are: 1) the resolution of 
the interfaces issues once for all the design iterations; 2) efficient jobs scheduling allowed by computerized 
queuing; 3) 24/7 activity possible only with machine operations (downtime excluded).  

• Modular architecture for the ICE platform is to be preferred. MDO requires different analyses to be 
performed at the same time. For an effective implementation, it’s important that incremental development is 
possible: whenever a new analysis module becomes available, it must be inserted seamlessly in the platform; 
similarly, whenever an existing module needs to be removed or upgraded, the operation needs to be 
transparent for the platform. Only a modular architecture and particularly a bus architecture (see Figure 2) 
gives the required flexibility. 
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VI. Conclusions and Future Outlook 
Automakers and Tier1 suppliers search ways to increase their speed, agility, situational awareness and ability to 

innovate and, in consequence, improve their competitive position. Following our industry and PDP analysis13, MDO 
in an ICE framework is viewed and proposed as a mindset and a methodology to cope with the challenging demands 
that the market is imposing on automotive manufacturing firms, helping the transition in the product-development 
and engineering processes from a "test, analyze, and fix" paradigm toward an industry-ideal "design-right-the-first-
time" for value maximization. In a case study of an automotive system such as an exhaust system maniverter, the 
improvements in the design process have been impressive: from 60 days of the current design practice to 20 min for 
one single design iteration loop, with the consequent reduction in design costs. The fast design iteration allowed 
1000 different configurations to be analysed in 14 days, with the consequent increase in performance characteristics 
of the final design. 

 
Our vision for the future of engineering design, and for automotive systems design in particular, is that of a 

environment where it is possible to perform the Multidisciplinary Design Optimization of complex engineering 
systems using computational tools. These tools, taking advantage of the interoperability of the different systems, 
will automate much of the design configuration process, putting product engineering at the heart of the design 
process. This automation will not be "black-box" engineering, but rather the efficient execution of known 
engineering steps to evaluate design alternatives, providing engineers with information to make better decisions and 
to rapidly respond to defined and projected needs at manageable cost. 

The ability to re-engineer products rapidly and the emphasis on design assessment, comparison and improvement 
will almost inevitably lead to better engineering solutions to product design problems and to solutions configured 
instantaneously to meet fast changing customer needs. 

The optimization algorithms, not constrained within the well-known ridges of common sense and practice could 
venture safely in new areas of the design space leading to innovative, high performance designs. 

The freeing of experts from team supervision, teaching and routine engineering work will further enhance their 
ability to discover engineering improvements and allow them to devote to research and innovation, triggering a 
virtuous growth spiral. 
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