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We study the staged deployment of large telescope array configurations as an optimiza-
tion problem subject to cost, performance and network robustness. The LOFAR (LOw
Frequency ARray), the worlds largest telescope array, is planned to be built in stages, with
current funding allowing for O(100) stations over 100km. This new generation of telescope
arrays requires new system design principles and modeling techniques. We develop a staged
optimization framework, representing large telescope arrays as generalized networks, with
nodes as the telescope stations and edges as the cable links between them. We model net-
work design and growth with both graph-theoretical and physical metrics. Additionally,
we model the probability of failure of each topology from random failure of a node or a
link along the baseline. We make recommendations about the best cost-performance and
robustness trade-off configurations, while comparing two different staging principles. The
modeling framework introduced is applicable to various engineering problems susceptible to
network representation, in telecommunication networks, transportation routes, and space
exploration systems.

I. Introduction

Multiple antenna radio astronomy, also known as interferometry, uses many spread-out linked antennas
to create an aperture equivalent to the aperture of a telescope with the diameter of the antenna array.
Various size large telescopes exist, like the Very Large Array (VLA) in New Mexico and the Very Long
Baseline Interferometry (VLBI) projects, in which stations are too far to be linked with conventional cable,
and the data is recorded, transported remotely and then correlated. The applications of such grand-scale
astronomy go beyond deep space observation. Some scientific results due to the VLBI include the motion of
the Earth’s tectonic plates, definition of the celestial reference frame, understanding the deep structure of
the Earth, creating better atmospheric models, imaging high-energy particles being ejected from black holes
and imaging the surfaces of nearby stars at radio wavelengths.1

The design of large systems with such wide scientific applications is costly and difficult to plan. This
study models the staged deployment of telescope array configurations as an optimization problem subject
to performance, cost, and network robustness.

A. Motivation

The LOw Frequency ARray (LOFAR) is an example of an innovative effort to create a breakthrough in sen-
sitivity for astronomical observations at radio-frequencies below 250 MHz.4 Numerous clusters of antennas
collect signals to be sent to a receiver and analyzer. Half of the cost in designing such systems lies in the steel
and moving structure. This is why single apertures much larger than the equipment are unaffordable. With
large telescope arrays one can collect signals separately and interpret the image as a whole, while reducing
the infrastructure cost significantly. In the case of LOFAR, numerous simple antennas, on the order of 25000
in the full design, organized in clusters, are planned to be built in stages. Phase 1 is currently funded with
O(10000) antennas on maximum baseline of 100 km.
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Figure 1. Very Large Array, Socorro, New Mexico, (image courtesy NRAO / AUI / NSF)2,3

As envisioned such a complex system has not only to be designed to reach scientific objectives at afford-
able cost, but also designed to be extensible. Extensibility indicates the capability of the system to increase
performance under an increased load when more resources are added. In addition, an array with a diameter
on the order of hundreds of kilometers with thousands of stations has a large probability of failure, either
due to equipment resisting environmental conditions or random station or link failure along the baseline. To
ensure network resilience and sustained functionality after random failure, the array needs to be designed
both for extensibility and robustness.

To meet the above objectives, we modeled large telescope arrays as generalized networks, with nodes as
telescope stations and edges as the cable links between them. Their design and growth are modeled with
both graph-theoretical and physical metrics like resolution. Recommendations are made about the best
cost-performance and robustness trade-off configurations.

B. Problem Formulation

Our goal is to find an optimum configuration of telescope stations subject to performance and cost metrics
such that this configuration is expandable (optimally) and relatively robust (resilient to random failure).

Problem setup: The first stage has m stations with coordinates (~xm, ~ym), and the second stage has n
stations with coordinates (~xn, ~yn), all enclosed in a circular space of constant diameter d, scaled with the
size of the array. First-stage points are a subset of the second-stage points due to the legacy constraint. The
arc set of the first-stage array is also a subset of the arc set of the second-stage array, so that the original
infrastructure like laid cable, roads, trenches are kept and expenses for recabling and rebuilding the network
are avoided.

Two evaluation metrics are used. Total cable length, as a surrogate for cost, is computed as the sum of the
lengths of all edges in the network, as shown in Equation 1. Stations are linked by a minimal spanning tree,
so for any given set of points, there is a unique arc set A. The uv density, as a surrogate for performance, is
computed as the number of unfilled uv points directly from the station coordinates as shown in Equation 2.
These uv points are correlated with the points of a pre-computed uniform grid. A uv point is considered
filled if a uv point of the array is within a certain radius. Then the uv density metric is computed as the
percentage of unfilled points, as shown in Equation 3.

C(~x, ~y, A) =
∑

(i,j)∈A

√
(xi − xj)2 + (yi − yj)2, A − arc set of (~x, ~y) (1)

ui,j =
xi − xj

λ
, vi,j =

yi − yj

λ
, ∀i, j, λ − observation wavelength (2)

P (~x, ~y, λ) = 1− Nuvactual

Nuv
(3)

An example of a uniform grid and the filled uv points by a near log-spiral geometry is given in Figure 2.
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Figure 2. A nominal grid (left) used to calculate the filled uv points for a log-spiral seeded geometry

Problem statement (2 stages): For given number of stations m and n and site diameter dm, the
optimization problem is formulated as:

find (~xm, ~ym), (~xn, ~yn) (4)
whereby J = Jm + Jn is minimized (5)

Jm = w1C(~xm, ~ym, A) + w2P (~xm, ~ym, λ), Jm = w1C(~xn, ~yn, A) + w2P (~xn, ~yn, λ) (6)
subject to {(xi, yi)}m

i=1 ⊂ {(xj , yj)}n
j=1, and A(~xm, ~ym) ⊂ A(~xn, ~yn), where m < n (7)

0 ≤
√

x2
i + y2

i ≤ dm, 0 ≤
√

x2
j + y2

j ≤ dn, for i = 1 . . .m, j = 1 . . . n, dn = n
mdm (8)

0 ≤ w1, w2 ≤ 1 (9)

Here C and P are the cable length and uv density metrics as defined in Equations 1 and 3, A(~x, ~y) contains
the unique set of arcs between the points {~x, ~y}, and w1 and w2 are arbitrary constant weights.

This problem formulation can be extended to any number of stages, defined as nested subsets in Equation
7. The metrics can also be modified to reflect robustness, flexibility, modularity or alternative cost and
performance measures. Priorities (weights) can be assigned to different stages (in Equation 5) to account
for the varying importance of present and future objectives. Such weighting can have impact not only on
the resulting designs, but also on the optimization tools preferred to solve the problem.

C. Previous Work

1. Staged deployment and orbital reconfiguration of satellite constellations

Chaize studies the value of flexibility in design in an uncertain environment in the context of satellite
constellations like Iridium.5 The Iridium company believed it could attract about 3 million customers, but
was not designed to accommodate a variable marketplace, quickly transformed by the growth of terrestrial
cellular networks. Thirteen months after beginning operations, Iridium filed for Chapter 11 protection.
Chaize argues that this is a consequence of the traditional design of large capacity systems which optimizes
for a specific objective (global capacity) and fails to account for demand uncertainty. He proposes a staged
deployment strategy in which the system capacity is increased gradually and design decisions are made
dynamically at each deployment stage. Using a multi-objective optimization framework, he compares the
lifecycle costs obtained with flexibility with those obtained using traditional design techniques, and finds a
30% improvement in the lifecycle cost of flexible satellite constellations.

2. Studies on network topology, robustness and cost

An abundance of literature exists about network topology implications for cost, performance and robustness.
Good references on network theory are the two extensive reviews in Nature6 by Barabasi and in SIAM
Review7 by Newman. The three references presented below discuss topology optimization for performance
and robustness.

Yang and Kornfeld8 study the optimality of the hub-and-spoke architecture for a FedEx delivery problem.
They use mixed integer programming to model the network of next day air cargo delivery flights between
a small number of city pairs. It turns out that hub-and-spoke is not always the desired architecture, but
the preferred topology varies with the demand, aircraft type and city locations. Only aircraft flight-time
operating costs are considered, without robustness to uncertain demand. The original intent of the study
is to model the FedEx delivery network with 26 cities, which turn out to introduce more variables than the
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integer programming algorithms can handle. This study indicates that understanding network topology is
crucial to airlines costs modeling and operations, and also that heuristic algorithms might be more suitable
to deal with large nonlinear design spaces.

Another example is a study done jointly with the American Airlines Operations Research Department
and the Georgia Institute of Technology.9 The authors assess flight network robustness due to canceling
flights because of disruptions. Canceling a single flight causes cascading cancellations of a sequence of flights
that starts and ends at the same airport. It is claimed that fleet assignment and aircraft rotation with short
cycles will be less sensitive to cancelations. The lower bound for the number of cycles is estimated using the
hub connectivity of the fleet assignment. It is shown that solution models perform better than traditional
assignment models.

Mathias and Gopal10 study whether the small-world topology arises as a consequence of a trade-off
between maximal connectivity and minimal wiring. They perform a single-stage simulated annealing op-
timization with two opposing metrics: connectivity, modeled as the physical (Euclidean) distance between
any two nodes and wiring, modeled as the average distance between all pairs of vertices. The optimization
goal is to minimize the weighted sum of the two metrics. The authors claim that small-world behavior arises
when the two metrics are given equal priority and show results of hub emergence and evolution for varying
weights. This claim is proven by evaluating the generated networks with graph statistical measures. The
interesting conclusion from this study is that optimization in the tension of two opposing metrics gives rise
to scale-free and small-world networks. This has implications in our interest in telescope arrays robustness.

II. Algorithms - Heuristics for Two-stage Optimization

A. Static Multiobjective Optimization

The challenge of a multiobjective problem rests in the natural tension between vital objectives. For example,
optimizing a fighter jet for speed means sacrificing fuel efficiency. Understanding trade-offs between cost and
performance and schedule and risk to meet requirements11 is static multiobjective optimization - the problem
of finding a fixed-point design with multiple objectives.

The two design objectives, relevant to telescope array topology, are described by Equations 1 and 3.
The optimization goal is to position both the nodes and the links in the network. The placement of the
antennas (nodes) determines the fidelity of the obtained image, but it also affects the cost of building the
infrastructure, like the power distribution, site preparation and laying connecting cable. In network termi-
nology, the configuration of the nodes affects the coverage and the connectivity of the network. Various
metrics represent coverage and linkage, all naturally opposing. Intuitively, a spread-out net has good cover-
age, but large diameter, long shortest paths and overall large total linkage. Cohanim uses a genetic algorithm
framework to rapidly explore the objective space of the two cited metrics.12 Figure 3 shows results from
telescope configurations optimized for minimum cable length (left-most), maximum coverage (middle) and
both, equally weighted (right-most). The top plots show the geometry, the bottom show the corresponding
uv density points. The trade-off between cost and performance is clear: low-cost designs have the worst
relative coverage, while the best performance designs have the greatest cable length.

Figure 3. Telescope array configurations with 27 stations optimized for : (a) minimum cable length, a VLA-
like configuration, (b) maximum coverage or minimum uv density, a circular configuration, (c) both metrics, a
randomized log-spiral geometry
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B. Dynamic (Multistage) Optimization

Complex systems can scale with time (extend or shrink) or evolve or both. Extensibility (scaling) means
preserving the nature of the elements of the system and their function, while increasing their number or
size. Evolution means changing fundamental form and/or function. Here we consider only scaling, that is,
adding stations to a telescope array and connecting them to the existing infrastructure without changing it.
Single-step staging is defined as designing a m-station configuration and a n-station configuration such that
m < n and the n-array contains the m-array. The second stage is strictly larger than the first (n−m � 1)
since we are interested in extensibility, not accretion (slow small-scale growth).

Two diametrically opposite approaches are used to design arrays for extensibility: a forward-looking
technique, which optimizes the initial design; and a backward-looking technique, which optimizes the final
goal. In the forward approach, the GA-optimized first-stage array is augmented to second stage optimally
using a simulated annealing algorithm. In the backward approach, the GA-optimized second-stage array
is reduced optimally to first stage using the same simulated annealing algorithm. The simulated annealing
algorithm procedure is shown in Table 1. The overall algorithm procedure is presented in Figure 4. Notice

Table 1. SA algorithm steps for backward and forward staging techniques

Backward SA Forward SA
1. Start with a GA-optimized n-array and a m-
subset; set initial temperature and cooling step

1. Start with a GA-optimized m-array and a n-
superset; set initial temperature and cooling step

2. Evaluate the energy E(x̄m
i , ȳm

i ) of the m-array 2. Evaluate the energy Ei(x̄n
i , ȳn

i ) of the n-array
3. Perturb the m-array by removing and adding
a station from the n-array, while keeping the m −
array connected

3. Perturb the n-array by choosing another set of
n −m stations complimentary to the base m-array
from a randomly-generated larger sample

4. Evaluate the energy E(x̄m
i+1, ȳ

m
i+1) of the new m-

array
4. Evaluate the energy Ei(x̄n

i+1, ȳ
n
i+1) of the new

n-array
5. If E(x̄m

i+1, ȳ
m
i+1) < E(x̄m

i , ȳm
i ) then keep

{x̄m
i+1, ȳ

m
i+1} as the new solution

5. If E(x̄n
i+1, ȳ

n
i+1) < E(x̄n

i , ȳn
i ) then keep

{x̄n
i+1, ȳ

n
i+1} as the new solution

6. If E(x̄m
i+1, ȳ

m
i+1) > E(x̄m

i , ȳm
i ) then keep

{x̄m
i+1, ȳ

m
i+1} with probability e−∆/T , where ∆ =

E(x̄m
i+1, ȳ

m
i+1)− E(x̄m

i , ȳm
i )

6. If E(x̄n
i+1, ȳ

n
i+1) > E(x̄n

i , ȳn
i ) then keep

{x̄n
i+1, ȳ

n
i+1} with probability e−∆/T , where ∆ =

E(x̄n
i+1, ȳ

n
i+1)− E(x̄n

i , ȳn
i )

7. Update temperature according to cooling sched-
ule (cool step = 1.01): Tnew = T/1.01,T ≡ Tnew

7. Update temperature according to cooling sched-
ule (cool step = 1.01): Tnew = T/1.01,T ≡ Tnew

8. If E(x̄m
current, ȳ

m
current) ≤ 0.1E(x̄m

1 , ȳm
1 ) or T <

10−6 then terminate algorithm and save current so-
lution. Otherwise, iterate.

8. If E(x̄n
current, ȳ

n
current) ≤ 0.1E(x̄n

1 , ȳn
1 ) or T <

10−6 then terminate algorithm and save current so-
lution. Otherwise, iterate.

that in both staging principles, the legacy of the initial condition is preserved. In particular, for backward
optimization, a valid subset of the initial array is a locally connected subset of stations. An example is given
in Figure 5. The best subset of the second-stage circle is the semi-circle of filled points. We expect that the
backward staging principle is superior due to its embedded knowledge of the future.

III. Extensibility Results for Radio Telescope Arrays

A. Design Variables and Metrics

The design vector consists of station coordinates (~x, ~y) placed strategically in a circular space with diameter
proportionate to the array size. For 60 stations, the benchmark is 400 km, similar to the LOFAR plan.
This means that for 30 stations the site diameter will be 200 km. Each experiment is performed twice,
with forward and backward staging techniques. The optimization framework is tested for three stages, with
27, 60 and 99 stations per stage. To initialize the algorithm, regular array geometries (circular, Y -shaped,
triangular, Reuleaux triangular, log-spiral) and random configurations were seeded, shown in Figure 6. The
design objectives, cost and performance, are implemented as total array cable length and imagining quality
(uv density metric), as described in Section I.
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Figure 4. Algorithms flowchart, forward and backward staging principles in parallel

Figure 5. Example of backward staging. The filled circles segment in the left plot is the selected optimal
subset of the wider GA-optimized array; the right plot shows the first-stage array and the second-stage array
with their uv density plots

B. Static Optimization Insights

Cohanim performed optimizations for arrays of 27, 60, 100, and 160 stations with similar geometric seeds.12

It turns out that geometry types are clustered in the trade-off plot between decreasing cable length (cost)
and improving array performance. Our results confirm that circular geometries are best optimized for the uv
metric and VLA-like for the cable metric, so they assume the two corners of the Pareto front. Nadir-utopia
solutions can be regular geometries, like Reuleaux triangles, or they can be derived from regular geometries,
like slightly randomized VLA-like for minimum cable and circular shapes with inward protruding arms for
minimum uv density. Random and log-spiral geometries often remain sub-optimal. Figure 7 shows second-
stage geometries on the Pareto front for backward and forward runs.

Figure 6. Geometric seeds: VLA (Y -shaped), circles, triangles, Reuleaux triangle, log-spirals and random
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Figure 7. Second-stage backward (left) and forward (right), 60 stations, Pareto fronts for different geometric
seeds: VLA-like (pluses), triangular (triangles), Reuleaux triangular (diamonds), circular (circles), random
(crosses) and log spiral (stars)

C. Dynamic Optimization Results

There are two sets of interesting questions related to extensible arrays. The first is about the benefit of
extensible design: is there a lifecycle cost saving compared to a traditional fixed-point design approach? The
second question is about the philosophy of staging. What approach, a forward or a backward-looking, will
be more favorable and in what cases?

1. Lifecycle Benefits of Staging Optimization

Redesigning large engineering systems during their lifetime is a complicated process which involves partial
or substantial replacement, or extension. Making scalability part of the design process, results in easier
operation, better performance and reduces overall cost. To compare the traditionally optimal designs with
the optimum for many stages, we compare single-stage nadir designs (closest to utopia in the population)
and the best design sequences for three stages with 27, 60 and 99 stations.

Figure 11 shows the three populations for both backward and forward strategies. Clearly, nadir-utopia
points in each stage are not the same historically (the evolution on the same array). The best design path
points are very close to the nadir-points of the population, and could even coincide with them, as in the
case of backward, third stage, but they can never overlap completely. The other interesting observation is
that the best design points are usually close to the Pareto front for their own stage, even though they do
not coincide with the nadir-point. For the designer this means that even for configurations where the best
metrics are not selected, the best trade-off is.

2. Backward versus Forward Staging Principles

The forward and backward staging principles have diametrically opposite optimality priorities. A goal of this
study is to assess their relative performance under different design objectives. Given their extremal nature,
it is unlikely that either is an ideal approach. As mentioned earlier, we expect backward to be superior in
most cases, because it assumes an optimal future.

• As designed, backward is more deterministic, while forward is more flexible with its greater degree
of randomness. Backward works with a static predetermined geometry, and hence produces reduced
versions of Pareto-optimal designs in the first stage. This makes the backward strategy almost pre-
dictable. Forward chooses new designs from a randomly generated set in the design space, thus allowing
for the emergence of new geometries. The forward strategy is much less predictable than the backward
approach, though certain behavior can be deduced from the goals of the optimizer.
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• Per stage comparison confirms that backward and forward are suitable for different stages, but it also
reveals consistent patterns in their relative performance. The first-stage results for 27 stations are
compared in Figure 8 (left). The first-stage forward stations are a GA result, hence a balanced set
of designs with satisfactory performance and best possible cable lengths for that performance. The
backward results for 27 stations are a second-time SA optimization of optimum 99-station designs. They
are naturally low-cost (lowest cable length), but because of the reductionist philosophy of backward,
they have poor performance.

Figure 8. Backward versus forward comparison per stage; left: first stage, 27 stations with random seeds,
middle: second stage, 60 stations with VLA-like seeds, right: third stage, 99 stations with circular seeds

The second stage comparison, given for VLA-like seeds in Figure 8 (middle), invokes similar conclusions,
though the differences are not as striking as in the first-stage case. This is the passing (intermediate)
stage between the domination stages of each strategy. Another viewpoint of the per stage comparison
is an assessment of the best each strategy can do at every stage. Results are shown in Figure 9. At
its best, the forward strategy is always more costly (Figure 9 right), but it outperforms the backward
strategy in the first-stage (Figure 9 middle).

In summary, the forward is always the more expensive approach and the better performer, except in
the case of third stage, where the backward strategy is the winner in both objectives.

• Our results show that the forward and backward principles are fundamentally different approaches.
The hypothesis that the backward strategy will be better overall has clearly been disproved. The
superiority of backward in the third stage cannot outweigh its poor performance in the early stages.
Backward is the strategy to follow only if the goal is to construct intermediate steps or building blocks
to reach a vital final goal. In an uncertain environment, with a lot of intermediate goals, and desired
sustained system performance at all times, forward is the strategy to take. It not only allows adaptation
to changing requirements, like budget or policy constraints, but it also allows attaching priorities to
different stages.

Figure 9. Lowest achievable energy per state for backward and forward strategies (left); minimum uv density
metric (middle) and minimum cable length (right); evidently forward staging always costs more than backward
staging, but in terms of coverage the two methods are superior in different stages
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IV. Network Analysis; Robustness

Robustness is defined as the system’s ability to respond to changes in the external conditions or internal
organization while maintaining relatively normal behavior. Topological robustness is the impact of a distur-
bance on structural integrity. For example, if an airline hub airport is suddenly closed, most of the airline’s
flights will not be able to follow their normal itinerary, will not be able to fly at all, or will have to be
rerouted. Functional and dynamical robustness reflects changes in the network dynamics and functionality
due to environmental or internal disturbances. In the airline example, this corresponds to the inability of
the airline to transport passengers, or serve certain destinations. Loss in function can result in loss of market
share and thus revenue (or profit) loss. This is why understanding network class types and their relative
robustness is essential to designing networks and preventing failure.

We calculate topological and functional robustness as the percentage of surviving nodes and percentage
loss of function respectively, after a random node or link failure. Single node/edge failures are averaged over
all nodes/edges to provide a network-wide measure. Here, we briefly outline some of our results.

As expected, we find that robustness is a function of the network topology - similar geometric patterns
have similar robustness metric. Figure 10 shows color-coded robustness on a cable length versus uv density
plot. The dark and light patterns correspond to different geometries. These robustness patterns can be
mapped to Figure 7 (left). The dark low-robust patch in the center of Figure 10 corresponds to circles on
Figure 7. Using this color mapping, we establish that random configurations are relatively the most robust
of all, with some really good designs (white squares) away from the Pareto front. VLA-like geometries (top
left corner of Figure 10) also perform well, as expected, followed by Reuleaux triangles, triangles and down
to the least robust circles.

Figure 10. Topological robustness metric indicated by color scale for each design point in objectives space
(lighter is more robust), second-stage backward strategy, all geometries, 60 stations

A. Tension between Pareto optimality and Robustness

One of the primary reasons for studying the robustness of telescope arrays is the belief that optimal designs
are not necessarily robust to external influence. This conjecture is shown to be a strong statement. The
intuition behind comes from the vulnerability of highly-optimized systems argument.13 In the context of
graphs, this means that the network may be designed to be highly resilient to random deletion of nodes, but
lose structure and functionality if targeted at specific high-degree nodes.

As seen in Figure 10, the most robust designs (color-coded in white) are usually far from the Pareto
front, while the robustness of the Pareto designs varies considerably. In fact, robustness has little to do with
optimality, but more with topology. Scale-free arrays like random and Y -shaped are more robust compared
to uniform-degree arrays like circular, triangular and Reuleaux triangular.
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The tension between Pareto optimality and robustness is evident when comparing the best design paths
based on cost and performance and the best robustness paths. Figure 11 shows three subsequent stages for
both backward and forward techniques. For both strategies, the most robust path is far behind the Pareto
front and the best cost-performance trade-off path. The good news is that for different strategies, the robust
design choice requires a sacrifice in only one metric. In the case of backward staging, robustness is achieved
at greater cost but relatively the same performance. For forward staging, the cost to design robustly is the
same as the optimal path’s, but the performance is worse with a higher uv density. With this insight, we
can clearly term the backward strategy a cost-optimizer, and the forward a performance-optimizer.

Figure 11. Three stages, backward (left) and forward (right), with best design paths in terms of traditional
metrics (black diamonds close to the Pareto front) and robustness (red diamonds behind the Pareto front);
first stage (27 stations) is shown in grey, second stage (60 stations) in blue and third stage (99 stations) in
green

V. Conclusion

This work extended previous studies done on network optimization of telescope arrays to multiple stages.
It was confirmed that the best extensible configurations are not the single-stage winners, due to penalties
for extensibility paid in the first or last stage of the design depending on the strategy. Another hypothesis
confirmed is that robust arrays do not reside at the trade-off front of cost and performance, but are instead
suboptimal.

Perhaps the most surprising conclusion is that the backward staging strategy is not superior for the
staging of telescope arrays. It was found suitable only when the end state of the system is the primary
goal, for which intermediate building blocks are needed. For sustained performance throughout all stages,
embedded flexibility in the design to future budget or demand uncertainties, forward is the recommended
strategy.
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