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Abstract 

This article introduces the concept of variable chromosome lengths in the context of an adaptive genetic algorithm 
(GA). This concept is applied to structural topology optimization with large numbers of design variables. In traditional 
genetic algorithms, the chromosome length is determined when the phenotype is encoded into a genotype. Subsequently, 
the chromosome length does not change. This approach does not effectively solve problems with large numbers of 
design variables and complex design spaces, e.g. structural topology optimization, because the design spaces are 
extremely large, and it is very difficult to explore the design spaces in their entirety with reasonable population sizes. 
The proposed GA starts with a short chromosome and finds an optimum solution in the simple design space. The 
optimum solution is then transferred to the following stages with a longer chromosome while maintaining diversity in 
the population. More refined solutions are obtained in subsequent stages. A strain energy filter is used in order to filter 
out inefficiently used cells, such as protrusions or isolated islands. The variable chromosome length genetic algorithm is 
applied to structural topology optimization problems of a short cantilever and the performance of the method is 
demonstrated. 
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1. Introduction 

Genetic algorithms (GA) have been popular in design optimization, operations research, and for general 
combinatorial search problems [1]. A key operator is the encoding step that results in a binary, real, or hexadecimal 
chromosome. The length of the chromosome, i.e. the number of alleles, in the genotype space is a surrogate for the 
amount of information describing an artifact in the phenotype space. Figure 1 shows two examples of design in the 
phenotype and their corresponding chromosomes in the genotype. Traditionally, in design optimization, the 
chromosome length is fixed a priori, and it cannot change with the evolution of subsequent generations.  Evolution in 
this sense is only understood as the process of approaching an optimal instantiation of alleles given a constant 
phenotype-genotype mapping and a fixed chromosome length.  

This traditional approach has some disadvantages. The best achievable fitness is inherently limited by the 
chromosome length. Hence, the fitness asymptote that is typically observed in genetic optimization is as much a result 
of problem formulation as of the number of design variables and their resolutions. Here the problem is that we do not a 
priori know how long “long enough” is. If short chromosomes are used, one may not obtain good solutions due to the 
lack of design freedom. On the other hand, if chromosome length is excessive for a particular problem, it will cause a 
high computational burden without much performance benefit. This article presents the development of an effective 
genetic algorithm that can change the chromosome length by implementing the design principle “from coarse to fine”. It 
can be expected that significant fitness improvements can be achieved by gradually increasing chromosome length. This 
approach of increasing the design freedom by extending chromosome length allows for the reduction of the 
computational cost for complex problems with large numbers of design variables. The initial population features a short 
chromosome, and the chromosome becomes longer as evolution proceeds. The increase in chromosome length is 
achieved either by an increase in the resolution of the design variables or by the addition of new design variables during 
encoding.  



CJK-OSM3, 2004, Kanazawa 

For shape optimization, Haug et al. [2] developed the theory for analytical sensitivity analysis based on the 
continuum approach. Kwak [3] reviewed structural optimization methods and shape sensitivity analysis. Bendsoe and 
Kikuchi [4] developed the homogenization method for topology optimization. The evolutionary structural optimization 
method, in which the von Mises stress was adopted as the measure of performance of each cell, was studied by Xie and 
Steven [5]. Later the principal stress-based method was developed to deal with tension-dominant or 
compression-dominant material. An adaptive multiscale, wavelet-Galerkin method was developed by Kim et al. [6] 

Kim and Kwak [7] proposed a generalized topology 
optimization formulation where the design domain enlarges 
in order to obtain new, better solutions that cannot be 
obtained by conventional methods. This work introduced the 
pivot phase, and the effect of new design cell addition is 
determined at the pivot phase using a contribution ranking 
based on sensitivity analysis. Extensive reviews of topology 
optimization can be found in Bendsoe [8]. The optimization 
strategies used for the above research are either 
gradient-based approaches or optimality criteria methods. The drawbacks of these methods are that (1) they may 
converge to a local optimum and that (2) often intermediate densities are obtained, which are not physically meaningful. 

Genetic Algorithms can remedy these problems effectively, albeit at an additional computational expense.  GA 
explore the entire design space and may not get trapped in local minima. Moreover, it is possible to have only binary 
values of density, ON (ρ=1) or OFF (ρ=0), at each cell. Jakiela et al. [9] used GA for continuum topology optimization 
with domain refinement. The chromosome length in this study does not change, and the domain is divided into four 
quadrants in every step. In order to create diversity, a high mutation rate was used. This work has been extended to 
several types of fitness functions [10]. 

It is observed that the solutions obtained by the GA topology optimization method by Chapman et al. were quite 
noisy. This is primarily because of the large number of design variables involved and the algorithm for filtering out bad 
designs. In addition, it was not possible to impose mass constraints to the optimization problem in their work. The 
design space in topology optimization is typically very large as can be seen in their work. Hence, the GA require long 
computing times, despite the advantages of GA mentioned above. One of the main difficulties is producing new designs 
that are meaningful and that feature no disconnected regions or material zones without a load path. 

In this paper, we propose a new GA methodology for structural topology optimization. First, we develop a variable 
chromosome length GA that has a transition technique. This reduces the size of the design space for exploration for 
problems with large numbers of design variables. It also increases the likelihood of approaching the global optimum by 
gradually making the design space more sophisticated. This procedure allows a mass constraint imposition that 
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Fig. 1 Examples of designs in the phenotype
and corresponding chromosomes in the 
genotype domain. 
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gradually tightens up. Second, we adopt strain energy cell ranking as a measure for filtering out inferior designs. During 
the whole procedure, a Pareto front is formed, and it reveals the tradeoff between structural mass and compliance. 
 
2. Variable Chromosome Length Genetic Algorithm 
 Figure 2 shows the overall procedure of topology design optimization using the variable chromosome length GA. 
The inner loop is the typical topology optimization by GA. Strain energy ranking is used to ensure the connectivity of 
structural elements and to specify the mass constraint. Optimization starts from a short chromosome representation, and 
when it converges, it transitions to the next stage of longer chromosomes or higher refinement. 
   Convergence within the inner loop is achieved when the progress from one generation to the next, as measured by 
the average population fitness, falls below a numerical tolerance. Convergence of the outer loop is a more difficult 
question since this relates to the desirable fineness of design resolution. The final mass constraint or the final 
chromosome length is a typical termination criterion for the outer loop. 
   The example in this paper is a short cantilever whose left side is clamped and that is subject to a concentrated 
loading at the mid-point of the right side. The design domain is discretized into rectangular cells; then the normalized 
density of each cell becomes the design variable. The binary encoding is used, and the density is either zero (void) or 
one (solid), which leads to a binary 0-1 choice for each cell. In the computational implementation, the elasticity of a 
void cell is set to a very low value. The objective function to be minimized is the compliance of the structure. The 
optimization problem statement is 
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where iF  is the thi  component of force vector F , iz  is the thi  component of displacement vector z , Ω  is 
the design domain, ρ  is the normalized density of each cell, and 0M  is the maximum allowable mass which is often 
expressed as a percentage of the design domain volume. The design variables in this optimization are the densities of 
the cells. 
   In the proposed adaptive genetic algorithm, the design domain is initially discretized into coarse design cells, which 
are represented by short chromosomes in the early stages of design evolution. The optimal solution of this stage is 
transferred to a next stage that has more refined design cells or longer chromosomes. In this transition, the optimal 
solution is used to generate the initial population of the next stage. Some individuals of the next population are made by 
the exact mapping of the previous-stage optimum (elitism), and other members of the population are mutated variants 
stemming from the optimum. This seeding of the initial populations in progressively finer stages is the main mechanism 
by which information is transferred between stages. This allows us to keep the number of generations and population 
sizes small compared to a brute-force approach, in which topology optimization would start at the finest resolution level 
with a random initial population.  
   When making the mutants, the density of each cell is determined by the following equation: 
 
                                  New Previousround( random(0,1))k kρ α βρ γ= + + ·················································(2) 

 
where New

kρ  is the density of the thk  cell in the new stage, Previous
kρ  is the density of the thk  cell in the previous 

stage, “random(0,1)” is the uniform probability density function between 0 and 1, and “round( )” is the function that 
rounds off to the nearest integer. In this research, the values of the parameters,  α , β , and γ  are 0.1, 0.3 and 0.5, 
respectively. With these values, the probability of retaining the density of the previous stage in an individual cell is 80%, 
and the probability of reversing it is 20%. By adjusting the three parameters, the degree of diversity generated can be 
controlled, depending on the characteristics of a problem. This mechanism makes it possible to transfer the overall 
layout to a stage with a different chromosome length, maintaining diversity in the population.  
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3. Strain Energy Filter  
 One of the difficulties in applying GA to structural topology optimization is that often noisy designs are produced. 
In particular, designs with protrusions or islands are inferior solutions because these protrusions or islands contribute 
very little or nothing to the strength of a structure. In this work, we use strain energy as the contribution measure of 
each cell for GA-based topology optimization.  
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   kU  is the strain energy in the thk  cell, kΓ  is the domain of the thk  cell, kε  is the strain tensor of the thk  
cell , kσ  is the stress tensor of the thk  cell, and kD  is the elasticity tensor of the thk  cell. In each step, the strain 
energy of each cell is computed, and then the ranking of the cells in terms of their strain energy is determined. Void cells 
have strain energies that are almost zero, and cells whose strain energies are relatively low are protrusions or isolated 
islands to be deleted by the filter. This method determines the ranking of the cells according to their strain energy and 
then rejects one by one beginning from the last one until the mass constraint is met.  
   This scheme enables the mass constraint imposition of an arbitrary level in any stage. However, it has been our 
experience that the method performs better when the mass constraint is imposed gradually, reducing the allowable 
amount of mass with each subsequent stage of refinement until the ultimate mass constraint has been reached. The 
reason is that a tightened mass constraint produces slender, fine structures, which are difficult to be represented by large, 
coarse cells in the initial stages.  Therefore, starting optimization with a tightened mass constraint from the beginning 
is not a good strategy. 
 
4. Numerical Results 
 Figure 3 shows the results of the short cantilever topology optimization by variable chromosome length GA. The 
evolution starts with a domain refinement of 4 5× . As the generation proceeds, the domain is discretized, and more 
refined solutions are obtained. The final domain is discretized into 32 20× . 0M  in the figure denotes the maximum 
allowable mass in Eq. (1). Only half of the domain is modeled and optimized by the symmetric condition for the actual 
analysis. A population size of 50 is used for the first three stages, and the population size of the last stage is 150. The 
mutation rate is 1%, and the crossover probability is 100%. Because good solutions are often destroyed by mating with 
bad designs, the elitism scheme is used where the best individual replaces the worst 30% of individuals in each 
generation. The mass constraint gradually decreases from 90% mass of the total design domain to 25%. IMOS [11] is 
used for the finite element analysis. It is well known that checkerboards can be restricted to some extent if quadratic 
finite elements are used. Because IMOS does not have quadratic elements, four linear elements are used to represent 
one design cell.  
   The first stage starts with a randomly generated population, and then the optimum solution of the stage is transferred 
to the following generations by means of the diversity-generating scheme in Eq. (2). From the second generation on, the 
initial population design share a similarity among themselves, because they are generated based on the optimum 
solution of the previous stage. Because the allowable mass decreases gradually, the structure becomes more slender 
with increasing number of stages.   
   Figure 4 shows the chromosome length change over stages. The length in the first stage is 20, and it increases to 640 
in the last stage (More information is required to describe the more refined designs). Although we do not use a 
sophisticated multiobjective optimization technique [12,13], a Pareto front naturally emerges from the solutions 
obtained during the whole analysis. The Pareto front explores the tradeoff between mass and compliance, as shown in 
Fig. 5. Tightening the mass constraint does not increase the compliance severely in early stages. However, as the total 
mass approaches 20%, the mass reduction is achieved by sacrificing strength considerably.  
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5. Conclusions and Future Work 
 A novel GA method in which the length of a chromosome evolves is developed for structural topology 
optimization. The design domain is refined gradually in stages. The proposed method is applied to a short cantilever 
problem. The algorithm increases the likelihood of approaching higher levels of fitness, allows the solution of problems 
with large numbers of design variables, and broadens the notion of design evolution to include gradually increasing 
levels of complexity. The solution is compared with the one-time brute force approach, and it is demonstrated that the 
variable chromosome length GA finds a better solution with less computational cost. This approach is inspired by the 
gradual progression of biological systems from single cell organisms to higher life forms. In a similar fashion, design 
progresses from coarse stages to gradually higher levels of refinement. 
   An adaptive chromosome length GA, in which chromosome length changes adaptively according to the 
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characteristics of problems, will be developed as future work. Several convergence criteria for outer loop convergence 
will also be developed and tested. 
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