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ABSTRACT 

Current unfavorable market conditions have shifted 
the preference of commercial communication satellite 
operators from large spacecraft systems with high 
bandwidth capacities, to small and medium size 
spacecraft. However, most satellite manufacturers have 
not caught up yet with this trend and are still positioned 
as providers of large capacity satellite systems. This 
paper investigates the application of product family 
concepts to the design of commercial satellites in an 
effort to formulate an approach that allows a 
manufacturer to develop a series of satellites with 
varying sizes based on similar architectures. Applying 
product family concepts could allow satellite 
manufacturers to lower cost, shorten development 
cycles, and reduce market risk by catering to a number 
of market segments. This paper formulates the satellite 
product line design problem into a multiobjective 
optimization problem that characterizes the tradeoffs 
and resolves the tension between product line 
commonalities and the performance of each of the 
product line individual satellites. This research couples 
a Genetic Algorithm (GA), which is an evolutionary 
global search method that mimics the behavior of 
biological populations, with a satellite sizing model to 
find optimal product lines with common technology 
choices. The preliminary results demonstrate the 
effectiveness of the multiobjective optimization 
approach in applying product family concepts to the 
design of commercial communication satellites. 

NOMENCLATURE 

SAA   solar array area 

radiatorA    thermal radiator area 
c   penalty multiplier 

batteryC    battery capacity 

radiatord   thermal radiator depth  

DF  cells performance degradation factor 
e   surface emissivity 
f   fitness function 

OBOf   3 dB output back-off power scaling 
 factor 
g   inequality constraint function 

radiatorH   thermal radiator height 

OBOHPA   number of high power amplifiers at 3 
dB output back-off power 

activeHPA  total number of active high power 
amplifiers in each coverage area 

redundantHPA  number of redundant high power 
amplifiers 

spI   specific impulse 

dL   diode loss 

SAL   deployed length of solar array 
M   number of active components 

) 

  number of available components 
(M    mass of  

N
objN   number of objective functions 

GaAsN  number of gallium arsenide panels 

SiN   number of silicon panels  

cellsbatteryN   number of battery cells 

DCP   high power amplifier input DC power  
 PRF   amplifier output RF power 

BOLcellP   solar cell beginning of life power 

EOL

  power of 
cellP   solar cell end of life power 

) (P

Q&   dissipated heat flow rate 

) (R   reliability of 
s   Stefan-Boltzmann constant 
SF   scaling factor 

SHT   outer sink hot temperature 
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eclipseT   maximum eclipse time 

radiatorT   radiator maximum temperature 

dV   voltage per battery cell 

SNW /   spacecraft North/South panel width 
x   design variable vector 

V∆   change (“delta”) in velocity 
φ   vector of objectives 
φ   objective function 

EPCη   electric power conditioning efficiency  

HPAη   high power amplifier efficiency 

thrusterη    thruster efficiency  
λ   failure rate 

radiatorρ   radiator material density 

i

  there exists (at least) one i 
∀   for all i 

i∃

INTRODUCTION 

This research is an extension of the doctoral work 
of the first author in which optimization approaches 
were developed and investigated for the design of 
single spacecraft systems.1 This doctoral work included 
reliability-based spacecraft design using both 
multiobjective optimization approaches2 and 
probabilistic design approaches3. However, the present 
paper adds an original contribution to the design 
process of commercial communication satellites, which 
is the issue of designing for architecture modularity and 
platform commonalities using optimization approaches. 
The next few paragraphs will introduce the concept of 
“platforming” or designing product families and will 
present a brief literature review of the topic.  

Platforming strategies allow for the development of 
product families whose individual members must be 
optimized to survive market competition within their 
respective market segments, but also must share 
features, components, subsystems, and processes to 
minimize development costs to the manufacturer. To 
resolve the tension between these usually conflicting 
objectives, i.e. the objective of optimizing the 
performance of individual products and the objective of 
maximizing the commonalities between product family 
members, few researchers have applied optimization 
approaches. Applications of these approaches include: 
an automotive product line4, a family of blended-wing-
body (BWB) passenger airplanes5, a family of general 
aviation aircraft6, and a family of deep space 
exploration missions7. The application of product 
family concepts to spacecraft design is especially 
difficult because it involves very large investments, low 

production levels, and long development cycles. 
Caffery et al. summarize these strategic8, economic9 
and technical10 hurdles with a focus on NASA’s earth 
orbiting science programs. 

Figure 1 summarizes the product platform 
leveraging strategies that are suggested by Meyer and 
Lehnerd.11 In Figure 1, a generic market grid includes 
three market segments and three performance tiers. If 
commonalities are not considered in a product family 
design effort, an organization would have to 
independently develop nine different products to fully 
populate the market (Niche Platform Strategy). A 
Horizontal Leveraging Strategy allows components and 
subsystems from products serving the same 
performance tier to be shared across the different 
market segments. The main benefit of this strategy is 
that manufactures could reduce cost due to sharing of 
R&D, development and manufacturing costs. A 
Vertical Leveraging Strategy allows capabilities to be 
scaled up and down and functionalities to be added or 
removed across performance tiers and within a single 
market segment. Knowledge gain from lower 
performance tiers can be used for the development of 
upper tiers components instead of starting afresh. 
Finally, a Beachhead Approach combines ideas from 
both horizontal and vertical leveraging strategies with 
the objective of market dominance. 
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Figure 1:Leveraging strategies applied to the 
product platform segmentation grid (adapted 

from Ref. 10) 

The objectives involved in the development of a 
commercial communication satellite product line, 
which is the focus of study in this paper, match the 
description of the Horizontal Platform Leveraging 
Strategy that is depicted in Figure 1. Here, a number of 
satellites with varying payload capacities must be 
designed in a coordinated way to maximize common 
components and subsystems while also maximizing the 
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performance of individual satellites to allow them to 
compete within their respective market segments. This 
problem could be formulated as a multiobjective design 
optimization problem and could benefit from recent 
developments in design optimization approaches 
implemented in the design of complex systems.  

This paper presents a satellite product line 
architecting tool in which a multiobjective GA-based 
optimization approach is coupled with  satellite 
performance estimation models to trade system level 
design variables of all product line members 
simultaneously. Specifically, the product line 
investigated in this work includes three communication 
satellites with three levels of payload requirements 
operating in C and Ku frequency bands, which are 
common for telephony and television services 
respectively. The three satellites considered in this work 
are referred to throughout this paper as the “small”, 
“medium”, and “large” satellites based on their 
minimum payload requirements, which are summarized 
in Table 1 below.  

There are 27 discrete design variables that describe 
each of the three satellites in the product line. Those 27 
design variables can be grouped into three categories: 
13 variables describe technology choices for payload 
and bus subsystems, one variable describes the choice 
of the launch vehicles, and 13 variables describe the 
redundancy levels implemented in the payload and bus 
subsystems. The design variables that describe each of 
the three satellites are summarized in Table 2. The 
design variables are self explanatory but some 
clarification is needed as to how the payload repeaters’ 
technology choices and redundancy levels are described 
as design variables. 

In the three satellite sizes  described in Table 1, the 
C-band repeaters are required to have large numbers of 
operating HPAs; therefore, a single switch matrix is not 
sufficient to operate redundant HPAs when any of the 
active HPAs fails. Consequently, the active C-band 

HPAs are grouped into eight repeaters, each has its own 
switch matrix and redundant HPAs. Each of the C-band 
repeaters can use either a Traveling Wave Tube 
Amplifier (TWTA) or a Solid State Power Amplifier 
(SSPA) as the technology choice for its HPAs as 
described in design variables 1 to 8 in Table 2.  

Table 2: Design variables for each of the three 
satellites in the product family.1, 2, 3 

Design 
Variable  Description and discrete values 

1 to 8 HPAa type (TWTAb or SSPAc) 
9 Launch vehicle (Ariane 5, Ariane 4, Sea 

Launch, Proton, Delta, Atlas, Long March, or 
H2A) 

10 Solar array cell type (GaAs single junction, 
GaAs multi-junction, Si thin, Si normal, or 
hybrid Si with GaAs multi-junction) 

11 Battery cell type (NiCd or NiH2) 
12 N/Sd Thermal Coupling (no coupling or 

coupling) 
13 N/S STKe thrust technology (Xenon plasma, 

arcjets, bi-propellant, or hydrazine) 
14 E/Wf STK thrust technology (bi-propellant 

or hydrazine) 
15 Redundancy level for Ku-Band transponder  
16-23 Redundancy levels for each of the 8 C-Band 

transponders 
24 Propulsion subsystem redundancy level (0 or 

full redundancy) 
25 Attitude Determination & Control subsystem 

redundancy level (0 or full redundancy) 
26 Telemetry, Command & Ranging subsystem 

redundancy level (0 or full redundancy) 
27 Solar array area redundancy level (0%, 2%, 

4% or 6% of solar array area) 
aHigh Power Amplifier, bTraveling Wave Tube 
Amplifier, cSolid State Power Amplifier, dNorth/South, 
eStation Keeping, fEast/West 

Table 1: Summary of payload requirements for 
the three satellites in a product line. 

     small    medium   large 
C-band HPAs 30 44 66 
Ku-band HPAs 6 12 16 
Antenna mass (kg) 100 140 180 
Maximum antenna 
diameter (m) 2.8 3.2 3.6 

Design variables 16 to 23 describe the redundancy 
levels for each of the eight C-band repeaters in each of 
the three satellites. These redundancy levels can be 
inferred by using both Table 2 and Table 3. For 
example, the medium size satellite has 44 required 
active C-band HPAs as shown in Table 2 and could 
have a maximum total of 66 available HPAs as shown 
in Table 3. This means that the number of redundant 
HPAs in the medium size satellite C-band repeater can 
vary from a minimum of zero units to a maximum of 22 
units. 
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In each of the three satellites, there is only one Ku-
band repeater that includes all Ku-Band HPAs because 
the required operating number of HPAs is rather small 
and can be handled with a single switch matrix. The 
Ku-band HPAs can only use TWTAs for their 
technology choices. 

The next two major sections of this paper describe 
the two building blocks of the satellite product line 
architecting tool, which are the optimization approaches 
implemented in this research and the satellite 
performance estimation models.  

OPTIMIZATION TOOLS 

GENETIC ALGORITHM (GA) 

The GA is a global search method that mimics the 
behavior observed in biological populations.12 The GA 
is modeled after Darwin’s Theory of Natural Selection; 
it employs the principal of survival of the fittest in its 
search process, and it has been applied successfully to 
the design of many complex systems. The GA differs 
from conventional optimization methods in four 
different ways (adapted from Ref. 12) that make the GA 
well suited to the conceptual design of spacecraft 
product lines. First, the GA works with a coding for the 
design variables that allows for a combination of 
discrete and continuous parameters in one problem 
statement. Second, the GA needs only fitness or 
objective function values; no derivatives are needed.  
This feature not only allows for discrete variables, but 
also allows for discontinuous objective and constraint 
functions. Additionally, this property means that the 
GA provides no information about optimality of the 
solution. Third, the GA employs probabilistic choices 
rather than deterministic rules to find new points with 
likely improvement. This probabilistic search technique 
means that the GA is likely to search across the entire 
design space; it will not easily become trapped in local 
minima. Fourth, the GA is a population-based search 
technique, which results in multiple designs with good 
performance after each run of the GA, rather than only 

one solution. Additionally, the population-based search 
nature of the GA means that several good solutions 
could be generated to characterize the tradeoffs 
encountered in multiobjective optimization problems. 

Table 3: Maximum available (active +maximum 
redundant) HPAs for payload repeaters  for each 

of the three satellites in a product line. 

     small    medium   large 
Maximum available 
C-band HPAs 52 66 82 

Maximum available 
Ku-band HPAs 10 16 20 

MULTIOBJECTIVE OPTIMIZATION  

In spacecraft design, or the design of any other 
complex system, there are usually several design 
objectives reflecting the interests of the various 
stakeholders. Those objectives evaluate the 
performance of various design concepts; in this 
research, the objectives evaluate various product 
families generated in the optimization run. If there is 
only one design objective, the design concept that 
measures the best against this objective should clearly 
be the concept of choice. However, when there are 
several competing design objectives, there are usually 
several good design concepts that measure differently 
against the individual objectives, but equally well 
against one measure that includes all the objectives. 
From the standpoint of a system engineer, it is highly 
desirable to obtain this set of design concepts, because 
they represent the tradeoffs between the various design 
objectives. An optimal tradeoff curve, surface or hyper-
surface depending on the number of objectives 
considered is commonly referred to as the Pareto 
front.13  For each of the Pareto-optimal set of designs, 
there is no other feasible design that is better on all 
objectives; in other words, these designs are non-
dominated or non-inferior. For example, a high 
performance satellite design featuring little 
commonality within the product family can be at one 
end of the Pareto front while a design sharing a large 
amount of commonalities and has low performance can 
be located at the other end of the front.. The goal in 
multiobjective design optimization problems is to 
minimize a vector function whose components are 
individual objectives as suggested by Equation 1. 

 minimize       (1) ( )

( )
( )

( )⎪
⎪
⎭

⎪
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⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨
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=

x

x
x

x

objNφ

φ
φ

M
2

1

φ

Mathematically, in a minimization formulation for the 
objectives, a design with a vector of objectives ν  
dominates a design with a vector of objectives  by 
meeting the conditions in Equation 2. 

u

 if iii uv ≤∀  and  iii uv <∃ objNi  , ,2 ,1 K=  (2) 

The Pareto set of solutions are often plotted in 
objective space as shown in Figure 2. Here, 1 φ  and 2 φ  
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are objectives to be minimized.  The area marked 
“feasible design space” represents the set of all feasible 
designs.  The red curve, with the non-dominated Pareto 
optimal points, ν , represents the Pareto front which 
marks the boundary between the feasible design space 
and the infeasible design space. The two end points on 
the Pareto front are commonly referred to as anchor 
points and the direction that minimizes both objectives 
contains the utopia point. In Figure 2, point ν  
dominates point  because although the two points 
have the same value for

u 
2 φ , point ν   has a smaller 

value for 1 φ  than point . u 

There are several approaches to finding the Pareto-
optimal set using GAs. This research implements an 
approach called the “N-Branch Tournament Selection 
GA”14, which exploits the population-based search of 
the GA to generate a large number of solutions to 
multiobjective problems in a single program run with 
nearly the same computational effort required to solve a 
single objective problem.2 This tool was implemented 
in this research to simultaneously optimize four 
objective functions. The first objective is to maximize 
the common technology choices shared by all three 
satellites in the product line. The remaining three 
objectives minimize the launch mass values of the three 
individual satellites in the product line. Here satellite 
launch mass is taken as the performance metric for each 
satellite; other metrics could be used if they could be 
evaluated using satellite performance estimation 
models. 

GA FOR ARCHITECTING PRODUCT FAMILIES 

There have been other research efforts that 
investigated the design of product families using a GA-
based approach. One recent contribution in this field is 
that of Simpson and D’Souza6,15 who investigated the 
design of a family of general aviation aircraft with 
variable seating capacity. This work has demonstrated 
the successful use of multiobjective GA for the design 
of product families. However, Simpson and D’Souza’s 
approach restricted the common design parameters 
between the product family to a subset that was chosen 
prior to the optimization run using a design of 
experiments approach. Commonality was controlled by 
a dedicated commonality substring within the 
chromosome. The values of this set of common 
variables were then optimized for the product family 
using the GA. This approach can only produce sub-
optimal solutions rather than global ones because 
design parameters were optimized for only one aircraft 
configuration. To avert this shortcoming, the whole set 
of possible configurations with their associated design 
parameters for the members of the product family must 
be traded off in an optimization process to decide on the 
global optimum solution. In the research presented 
here, all combinations of satellite configurations are 
considered in the optimization run. This approach will 
allow for a near-global optimum solution for the 
product family design problem. The term near-global is 
used because there is no proof of optimality with the 
GA as it is a non-gradient-based method.  

u v 
feasible design space

anchor points

utopia point

(dominated point)

Pareto front

2 φ

1 φ

u v 
feasible design space

anchor points

utopia point

(dominated point)

Pareto front

2 φ

1 φ

Figure 2: Graph depicting Pareto optimality.

In this work, each chromosome describes three 
spacecraft comprising a product line that serves three 
different market segments. In other words, each 
chromosome is divided into three sub-chromosomes of 
equal length. Each sub-chromosome describes the 
technology choices and redundancy levels of one of the 
spacecraft. Each sub-chromosome describes a total of 
27 design variables that are encoded into 41 binary bit 
strings. Of the 27 design variables that describe each of 
the spacecraft in a product line, 13 variables describe 
the technology choices for components and subsystems, 
one describes the choice of the launch vehicle, and 13 
describe redundancy levels for components and 
subsystems. The commonality in each product line is 
evaluated based on the number of common technology 
choices shared by the three sub-chromosomes that 
describe three spacecraft sizes. There is a maximum of 
13 technology choices that can be shared among all 
three sub-chromosomes or spacecraft sizes as depicted 
in Figure 3. This chromosome structure describes 81 
design variables (27 variables for each satellite) and is 
encoded using 123 binary bit strings (41 bits for each 
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satellite). The encoding approach described in Figure 3 
is implemented with the multiobjective optimization 
tool “N-Branch Tournament Selection GA”14,2 and the 
satellite performance estimation models are described 
in the following section to optimize the three unit 
satellite product line configurations.  

SPACECRAFT PERFORMANCE ESTIMATION 

Few computational tools are readily available to 
predict spacecraft system level performance metrics 
such as mass, power, size, and reliability. Existing 
tools, if publicly available, are only capable of sizing 
specific classes of spacecraft. To the authors’ best 
knowledge, a high fidelity tool that is capable of sizing 
all classes of geosynchronous communication satellites 
with wide range of payload types and capacities is not 
available publicly. Such computational tool is needed to 
evaluate the performance of spacecraft architectures 
generated during the product family optimization run. 
In this preliminary work, the authors opted to use a 
satellite sizing tool that was developed by the first 
author of this paper in her doctoral work1 to specifically 
size medium size commercial communication satellites. 
In this product family design research, the tool was 
used to size spacecraft with small or large payload in 
addition to its original task of sizing medium size 
spacecraft. Future work will include the development of 
a higher fidelity tool that is based on a wide range of 
historical data describing all spacecraft sizes. 

The next two subsections describe in detail the 
original tool that was developed by the first author to 
size medium size spacecraft and is largely based on the 
author’s industrial experience and the basic approach 
outlined in Space Mission Analysis and Design by 
Wertz and Larson16. The satellite design tool consists of 
a satellite sizing model that predicts spacecraft mass, 
power, and size, and a satellite reliability prediction 
model. This satellite design tool is coded into 
MATLAB™ scripts and is coupled with the GA tools 

that were described in the previous section of this paper 
and are also coded in MATLAB™ scripts. In many of 
the following design estimating relationships, scaling 
factors are used to correlate a basic prediction (e.g. 
repeater weight) to actual values from a database of 
existing geosynchronous communication satellites.  The 
data for these known satellites is proprietary and cannot 
be shared here. 

SATELLITE SIZING MODEL 

The sizing tool predicts system level parameters for 
geosynchronous communication satellites, i.e. launch 
mass, required power, and size. The three satellite 
design missions (product family) that are under 
investigation in this research provide 
telecommunication services in C and Ku frequency 
bands common for telephony and television.  In the 
absence of cost models for commercial communication 
satellites, the estimated launch mass of the satellites 
product family members will be used as design 
objectives. In 1998, the estimated cost of launching one 
kg of payload into its orbital position ranged from 
$22,500 to $30,000.17 Furthermore, launch insurance is 
typically 25% of launch cost. The high launch cost 
means that launch mass could be considered as a 
surrogate for cost. Alternatively, satellite designers 
would often work with a fixed launch mass based on 
the choice of a launch vehicle and try to maximize 
payload mass. 

Payload Sizing 

Antennas and repeaters comprise the payload of a 
communication satellite. In the sizing model, antenna 
sizing is treated as a designer input because antenna 
design is mission specific. Determining specific 
antenna sizes requires running a commercial code that 
was not available during the course of this work. 
Payload antennas are shaped to provide different 
Effective Isotropic Radiated Power (EIRP) rates for a 
number of coverage areas based on market 
requirements, mission objectives and telecom 
applications. For higher satellite transmitted EIRP, the 
receiving antenna on Earth is smaller. While higher 
EIRP rates are favorable, they require large amount of 
repeater input DC power, which is limited by solar 
arrays and batteries capabilities.  

In this study, the results of antenna design tools are 
fed to the satellite sizing tool in terms of different 
coverage areas’ antenna gain values. Also for each of 
the coverage areas, the required EIRP rate is supplied to 
the sizing tool along with a standard estimate of the 
Transmitter-to-Antenna line power Loss (LTA). Using 

sub-chromosome 1 
small satellite 

C-Band : 30 minimum 
Ku-Band: 6 minimum 

sub-chromosome 2 
medium satellite 

C-Band : 44 minimum 
Ku-Band: 12 minimum 

13 13 1 13 13 1 
RL3 RL1 TC3 L3 TC1 L1 RL2 TC2 L2 

13 13 1

sub-chromosome 3 
large satellite 

C-Band : 60 minimum 
Ku-Band: 16 minimum 

TC: Technology Choices RL: Redundancy Levels L: Launcher 

Figure 3: Representation of chromosome 
structure for a family of communication 

satellites. 
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this information, the sizing tool calculates the output 
Radio Frequency (RF) power, , that must be 
supplied by each active HPA designated to a given 
coverage area as described in Equation 3.  

RFP

  (3) LTAGain= EIRPdBWin PRF +−    ) (

Two types of HPAs are modeled in the sizing tool, 
TWTA and SSPA. Based on the type of the HPA with 
standard efficiencies, HPAη , and the calculated values of 
required HPA output RF power (from Equation 3), the 
input power required to operate the HPA can be 
calculated.  An average TWTA efficiency is about 57% 
in Ku-band and 52% in C-band, whereas an average 
SSPA efficiency is about 35% in C-band.  To date, 
TWTAs are the only option for Ku-band HPAs; the 
sizing code follows this idea. To calculate the required 
overall repeater input DC power for each coverage area, 
the electric power conditioning (EPC) efficiency, EPCη , 
has to be accounted for (about 93% on average). The 
HPA input DC power, , is then calculated as 
shown in Equation 4.  

DCP

 
EPCHPA

RF
DC

P= dBWin P
ηη   

 ) (  (4) 

If an HPA is intended to operate at some Output-
Back-Off (OBO) power, say 3 dB, the input DC power 
is generally reduced compared to the required power for 
an HPA working at normal mode (saturation). If the 
HPA is a TWTA, the 3 dB OBO required input power 
scaling factor, OBO , is equal to 75%; whereas, if it is an 
SSPA, the 3 dB OBO input power scaling factor is 
equal to 95%. Therefore, the number of HPAs working 
at 3 dB OBO, OBO , out of the total number of active 
HPAs, active , for each coverage area (repeater) must 
be specified. In the presence of HPAs working at 3 dB 
OBO, the total input DC power for a repeater, repeaterP , 
of a given coverage area with a total of 

active channels, can be calculated as shown in 
Equation 5.  

f

HPA
HPA

HPA

(( )OBOactiveOBOOBODCrepeater HPAHPAfHPA= PP −+   )  (5) 

The power lost from the HPAs and the EPCs is 
transformed into heat that is dissipated by the thermal 
radiators of the bus. The heat flow rate, , can be 
calculated as shown in Equation 6. 

repeaterQ&

  (6) repeateractiveRFrepeater PHPA= PdBWin Q −  ) (&

Although TWTAs have higher efficiencies (which 
means less heat dissipation and lower required input 

DC power) than SSPAs for the same output RF power, 
TWTAs are about twice as heavy as SSPAs. The type 
of the HPA and the total number of HPAs for each 
coverage area (including the number of active HPAs, 

, and the number of redundant ones, 
)  is used to calculate the overall repeater 

mass, , as shown in Equation 7.  

activeHPA

redundantHPA

repeaterM

  (7) ( )redundantactiveHPArepeater HPAHPAM= SFkgin M +   ) ( 1

Where  is the mass of one HPA. Here the number 
of redundant HPAs is a design variable. The repeater 
mass, , includes the mass of all available HPAs 
and all other repeater components such as channel 
amplifiers, frequency converters, multiplexers, 
switches, fasteners, and brackets. In Equation 7, a 
scaling factor, , accounts for all other components 
in the calculation of the overall repeater mass for each 
coverage area.  

HPAM

repeaterM

1SF

Finally, the overall payload required input DC 
power, dissipated heat, and mass, can be calculated as 
shown in Equations 8, 9, and 10 respectively. These 
equations use the calculations for each repeater (there is 
one repeater for each coverage area and each repeater 
has several HPAs), which are shown in Equations 5 
though 7. The output of payload sizing in terms of 
payload required input DC power, dissipated heat, and 
mass is used for sizing bus subsystems.  

  (8) ∑
=

repeatersN

i
repeaterpayload P= dBin P

1
i 

 ) (

  (9) ∑
=

repeatersN

i
repeaterpayload Q= dBWin Q

1
i 

 ) ( &&

  (10) ∑
=

+
repeatersN

i
repeaterantennaspayload MSF= Mkgin M

1
i 2     ) (

In Equation 10, the mass of the antennas, , is 
mission specific and therefore is an input to the sizing 
tool as was specified in Table 1. A scaling factor, 2 , 
is used in Equation 10 to account for the repeaters 
integration mass. 

 antennasM

SF

Although the scaling factors used in the 
calculations of the payload mass and in the remaining 
calculations implemented in the satellite sizing tool in 
general are empirical and are based on a small number 
of existing missions, the sizing framework is 
appropriate for the conceptual design stage and can use 
any other values for the scaling factors. Better scaling 
factors can be readily implemented if more information 
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is available from a larger number of missions and a 
wider range of spacecraft sizes. 

Bus Sizing 

Bus sizing is the second part of the sizing tool. The 
spacecraft bus includes six major subsystems: the 
Electrical Power Subsystem (EPS), the thermal 
subsystem, the propulsion subsystem, the Attitude 
Determination and Control Subsystem (ADCS), the 
Telemetry, Command and Ranging (TCR) subsystem, 
and the structures and mechanisms subsystem. 

To size the bus geometrically, the satellite sizing 
tool uses two pieces of information: the size of the 
launch vehicle fairing envelop and the size of the 
largest satellite side wall antenna (usually positioned on 
the East/West (E/W) panels of the satellite). Figure 4 
illustrates the panel naming convention. The maximum 
sidewall antenna diameter is mission specific and is an 
input to the sizing tool as was described in Table 1. The 
available payload (here refers to the launch vehicle 
payload, i.e. the satellite) envelope controls the size of 
the solar arrays, because they are usually attached to 
and stowed against the North/South (N/S) panels as 
shown in Figure 5. The envelope also affects the size of 
the thermal radiator, because the N/S panels are used as 
radiation surfaces to expel heat generated within the 
satellite.   

South 

Earth 

North 

North 

East 

West

South 

Nadir 

 

Figure 4: Satellite position in orbit showing panel 
naming convention. 

Equation 11 describes the relation between the 
sidewall antenna diameter, the launch vehicle fairing 
diameter and the N/S panel width, .  SNW /

 
 ( ) 22

/ 2 yrminW SN −=  (11) 

      where        adius fairing rminr =) (

    and      
2

20) ( .iameter  antenna d side wallminy +
=   

Equation 11 is derived by analyzing a top view of the 
stowed configuration of the satellite inside the launch 
vehicle fairing. The value of 0.2 m that is added to the 
side wall antenna diameter in Equation 11 accounts for 
a 20 cm allowance for the solar array stowage from 
both sides. The height of the fairing determines the 
maximum length of the solar array panels and the 
maximum height of the thermal radiators as illustrated 
in Figure 5.   

 

 
Figure 5: Stowed satellite configuration in 

launch vehicle fairing (adapted from Ref.18). 

Fairing diameter 

Stowed 
sidewall 
antenna 

Stowed    
solar array 

There are eight choices for the launch vehicle 
implemented in the sizing tool: Ariane 5, Ariane 4, Sea 
Launch, Proton, Delta, Atlas, Long March, and H2A.  
The information of each launch vehicle including 
fairing geometry, maximum lift mass and V∆ , are 
specified in the sizing tool.  represents the change 
of velocity the satellite needs to achieve to move itself 
in the transfer orbit after separation from the launch 
vehicle to its final location in the geosynchronous orbit.    

V∆

After defining the geometry of the bus, the sizing 
model estimates satellite power, , dissipated heat 

flow rate, , and dry mass, , based on payload 
power, heat flow rate and mass as shown in Equations 
12 through 14 respectively.  

satP

satQ& dryM

  (12) 10 
3 10 ) ( /payload

sat
P = SFWin P

  (13) 10 
4 10 ) ( /payloadQ

sat  = SFWin Q
&&

  (14) payloaddry  M= SFkin M 5 )g (

Here , , and  are empirical scaling factors. 
The total power during normal operations (sunlight) is 

3SF 4SF 5SF
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estimated using a larger value for  than the value 
used to estimate the total required satellite power during 
eclipse time. This is because the solar arrays are 
required to produce additional power to charge the 
batteries during sunlight. 

3SF

The satellite dry mass is then used to estimate the 
mass of four subsystems of the satellite (ADCS, TCR, 
propulsion and structures) using scaling factors. These 
scaling factors have been selected so that the sizing tool 
reasonably estimates mass of existing geosynchronous 
communication satellites from a proprietary database. 
The total mass of these four bus subsystems add up to 
35% of the satellite dry mass. The mass values of the 
remaining two subsystems, namely the EPS - including 
solar arrays and batteries - and thermal subsystem, are 
estimated more accurately based on the total required 
satellite power and the dissipated heat from the payload 
and the bus subsystems.  

Electrical Power Subsystem Sizing 

The electrical power subsystem sizing includes 
solar array sizing and battery sizing. Solar array sizing 
requires four parameters: total required sunlight DC 
power (estimated from Equation 12), solar cell type, 
number of panels in each array, and required 
Operational Maneuver Life (OML) in years. There are 
two available solar array cell types: Silicon (Si) and 
Gallium Arsenide (GaAs). The choice of the cell type 
specifies the Beginning of Life (BOL) cell power, 

 and the performance degradation factor, 
BOLcellP DF , 

due to radiation. 

The solar cell End of Life (EOL) power output, 
, can be calculated as shown in Equation 15. The 

area of the solar array, , can then be calculated by 
dividing the total required sunlight power by the EOL 
cell power (worst case scenario) as shown in Equation 
16.  

EOLcellP

SAA

  (15) ( ) ( )
EOLcell

OML

EOLcell PDFW/minP  1      2 −=

 ( )
EOLcell

sat
SA P

Pin mA   2 =  (16) 

The total solar array mass includes the mass of the 
solar cells, substrate, deploying mechanisms, and 
connections. The mass of the solar cells, , can be 
estimated by multiplying the mass of one square meter 
of cells by the solar array area, . To account for the 
mass of the substrate, deploying mechanisms, and 
connections in the calculation of the overall solar array 

mass, , the mass of the cells is scaled up by a factor 
 as shown in Equation 17. Typically, there are four 

or five panels per array. The deployed length of the 
array, SA , and hence the length of each panel, can then 
be calculated by dividing the calculated area of the 
array by the width of the N/S panels, , as shown in 
Equation 18. 

cellM

SAA

SAM

6SF

L

SNW /

 ( ) SACellSA AMSFkginM         6=  (17) 

 ( )
SN

SA
SA W

AminL
/

     =  (18) 

Although GaAs has higher output power per square 
meter, it weighs about twice as much as Si cells, and 
GaAs is also more expensive. A recent trend in the 
design of geosynchronous communication satellites is 
to use hybrid solar arrays that have few panels made of 
GaAs and the rest made of Si. Assuming all the panels 
have equal areas, a number of Si panels Si , and a 
number of GaAs panels GaAs , Equations 16 and 17 can 
be re-written as shown in Equations 19 and 20 
respectively.  

N
N

 
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
=

EOLGaAs

GaAs

EOLSi

Si

GaAsSi

Sat
SA P

N
P
N

NN
P

A
 

    (19) 

( ) ( ) ( )GaAsGaAsSiSi
GaAsSi

SA
SA MNMN

NN
ASF

in kgM    
 

   6 +
+

= (20) 

The second part of EPS sizing is battery sizing. 
Batteries are used onboard of the satellite to provide 
power to satellite equipment during eclipse time. Solar 
arrays charge the batteries during sunlight. Battery 
sizing begins by choosing the type of battery cell. 
Traditional battery cell types in geosynchronous 
communication satellites are Nickel Cadmium (NiCd) 
and Nickel Hydrogen (NiH2). The lower the Depth of 
Discharge (DOD) value is, the more capacity the 
battery cell can handle. NiCd battery cells have higher 
DOD than NiH2 cells. Geosynchronous communication 
satellites always have two separate units of battery 
cells; both work simultaneously in eclipse time, but if 
one fails, the other can only support the subsystems that 
would keep the satellite in its orbital position until the 
end of eclipse (maximum eclipse time, , for the 
geosynchronous orbit is 72 minutes).  

eclipseT

The number of battery cells, cellsbatteryN  , in each unit 
usually varies between 25 to 35 cells depending on the 
DOD and the required satellite power during eclipse 
time (calculated in Equation 12). For reliability 
considerations, a redundant cell is added to each of the 
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battery units. Using a given discharge voltage per cell, 
, a diode loss, , battery capacity in Amp-hour, 

, can be calculated as shown in Equation 21.   
dV dL

batteryC

 ( )( )    1     2
  

   
 dcellsbatteryd

eclipsesat
battery LNVDOD

TP
C

−−
=  (21) 

The mass of the batteries, , can be calculated 
based on the capacity in W-hour as shown in Equation 
22 where  is determined by the cell type.  

batteryM

7SF

 ( )  
    2

      
7

 

SF
NVC

kginM cellbatterydbattery
battery =  (22) 

Finally, the total mass of the electrical power 
subsystem, , is the sum of the solar array mass 
and the battery mass in addition to the mass of the 
power conditioning units, processors, and the electrical 
as well as the mechanical integration. These are 
accounted for by the scaling factor, , as shown in 
Equation 23.  

EPSM

8SF

 ( ) ( )batterySAEPS MMSFkginM +=        8  (23) 

Thermal Subsystem Sizing 

The thermal subsystem radiates the heat produced 
by both the payload and the bus to ensure that all the 
satellite components remain at their nominal 
operational temperatures. The thermal radiators are 
placed on the N/S panels of the satellite. Since the 
North panel is more exposed to the sun than the South 
panel, sometimes N/S thermal coupling is implemented 
to transfer some heat from the North panel payload to 
the cooler South panel radiator. This adds the mass of 
the heat pipes to the thermal subsystem mass, but 
allows more heat transfer out of the spacecraft for a 
given radiator area or allows for a small radiator area 
for a given amount of heat flow rate. 

The sizing tool uses Stefan-Boltzmann Law to 
estimate the area of the thermal radiators. This involves 
estimating the heat flow rate from the spacecraft, satQ , 
as described in Equation 13. The material of the thermal 
radiators specifies the surface emissivity, . The 
maximum hot temperature of the outer sink (vacuum), 

, is 236.84 K. The radiator maximum temperature, 

radiator , is approximated in the model as 328 K. When 
there is no thermal coupling, the area of each radiator, 

, can be calculated as shown in Equation 24. 

&

e

HST
T

radiatorA

 ( ) ( )44
2

  
 0.5      

HSradiator

sat
radiator TTse

QminA
−

=
&

 (24) 

 In Equation 24, s  is Stefan-Boltzmann constant, 
which is equal to  5.67 × 10-8 W/m2 K4. The calculation 
in Equation 24 assumes worst case scenario, i.e. the 
sizing is based on the temperature of the North radiator, 

, which is hotter than the South Radiator (because 
of sun exposure). This approach oversizes the area of 
the South radiator. When thermal coupling is employed, 
some amount of heat flow rate is transferred from the 
North panel payload to the South radiator. This 
decreases the amount of heat that must be radiated from 
the hot North panel, and therefore decreases the 
required radiator area for worst case design. 

HST

The radiator height, , can be estimated 
based on the calculated radiator area, radiator , from 
Equation 24 and based on the calculated N/S Panel 
width, SN ,  from Equation 11 as shown in Equation 
25. The radiator height must not exceed the height of 
the launch vehicle fairing. Finally, the mass of the 
thermal subsystem is estimated based on the radiator 
area, radiator depth, radiator , and an estimate of the 
radiator material density, radiator

radiatorH
A

W /

d
ρ , as shown in Equation 

26. When N/S thermal coupling is employed, the mass 
of the thermal subsystem increases as it includes the 
mass of the heat pipes running from the North panel to 
the South panel. 

 ( )
SN

radiator
radiator W

AminH
/

      =  (25) 

 ( ) radiatorradiatorradiatorthermal AdkginM         ρ=  (26) 

At this point, a refined estimate of the bus can be 
made as shown in Equation 27. The bus mass includes 
the calculated masses of the structure subsystem, the 
propulsion subsystem, the attitude determination and 
control subsystem (ADCS), the electrical power 
subsystem (EPS), the thermal subsystem, the 
Telemetry, Command and Ranging (TCR) subsystem. 
The satellite dry mass includes the mass of the payload 
and the mass of the bus. It is a standard practice to add 
a 5% margin to the estimated dry mass during 
conceptual design as shown in Equation 28. The sizing 
tool follows this practice. 

 
( )

TCRthermalEPS

ADCSpropulsionstructurebus

MMM
MMMkginM

+++

++=

                       
      

 (27) 

 ( ) ( )buspayloaddry MM.kginM    051      +=  (28) 
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Propellant Sizing 

Propellant sizing determines the mass of the 
propellant needed for the spacecraft during its entire 
mission. There are two main propellant sizing steps. 
The first one determines the propellant needed during 
the transfer orbit; this quantity is mainly dependent on 
the transfer orbit provided by the launch vehicle. The 
standard technology to enter the geosynchronous orbit 
from the transfer orbit is a Liquid Apogee Engine 
(LAE), which utilizes bi-propellant thrusting. The 
satellite sizing tool assumes that this is the only option 
for orbit insertion. Based on the choice of the launch 
vehicle, the change in velocity, , needed for the 
transfer orbit is determined and is usually achieved in 
two or three apogee firings. The  needed to reach 
the geosynchronous orbit from the transfer orbit ranges 
from 1464 to 1828 m/s based on the choice of the 
launch vehicle. 

V∆

V∆

The second main propellant sizing activity 
determines the amount of propellant needed for Station 
Keeping (STK) and attitude control of the satellite 
during its OML. STK for a geosynchronous 
communication satellite commonly confines the 
satellite within a 1˚ wide square around its desired 
orbital location at all times. STK is usually performed 
every two weeks or once a month, based on the 
operational plan. Staying within the 1˚ square involves 
N/S STK and E/W STK. The N/S STK  is the more 
demanding maneuver requiring about 45 m/s/year, 
while the E/W STK  maneuver requires about 1.5 
m/s/year. The attitude control consumes very little 
propellant each year; it is less than one kg/year. These 
values are based on historical geosynchronous satellite 
requirements and are implemented in the sizing tool. 

V∆

V∆

The rocket equation provides the estimate for 
propellant mass, . An initial estimate of the 
satellite wet mass, , is needed to begin an 
iterative process as shown in Equations 29 and 30.  A 
quick survey of recent missions revealed that if the N/S 
STK uses plasma propulsion, the wet mass is about 
twice as much as the total dry mass, whereas for every 
other type of propulsion technology (arcjets, bi-
propellant thrusters, or hydrazine thrusters), the wet 
mass is about two and half times the dry mass. This 
estimated wet mass is used in the rocket equation along 
with the specific impulse, , and the efficiency of the 
thrusters, 

propellantM

initialM

spI

thrusterη , to estimate the mass of propellant 
used in the three firings of the LAE during the transfer 
orbit. The LAE propulsion assumes a liquid bi-
propellant. 

 
⎟
⎠
⎞

⎜
⎝
⎛∆−

=
thrusterspIgV

initialfinal eMM
η

 (29) 

   (30) finalinitialpropellant MMkginM −=) ( 

The propellant needed for STK and attitude control 
operations is calculated based on required V∆  on a 
yearly basis. The rocket equation is used for these 
calculations; the  and the efficiency of the system 
vary with the type of the propulsion technology. For 
N/S STK, there are four propulsion choices: plasma 
(Xenon), arcjets, bi-propellant, and hydrazine thrusters. 
Plasma has the highest  and lowest efficiency 
whereas Hydrazine thrusters have the lowest  and a 
standard efficiency. For the E/W STK, bi-propellant 
thrusters and hydrazine thrusters are available. Finally, 
the wet (launch) mass of the satellite can be estimated 
as shown in Equation 31. The satellite total launch mass 
is used as an objective function in the optimization 
problem formulation.  is the mass of the adaptor 
that mounts the satellite to the launch vehicle; it is taken 
here as 50 kg. 

spI

spI

spI

adaptorM

   (31) adapterpropellantdrywet MMMkginM ++=) ( 

SATELLITE RELIABILITY MODEL 

While approaches to predict satellite reliability 
exist, none appear to be available in open publications 
or as a computer code. In order to compute satellite 
reliability values for each of the three communication 
satellites in the product line, standard approaches were 
taken and coded into MATLAB™ scripts. This 
reliability model is also taken from the first author’s 
doctoral dissertation. The reliability model calculates 
the reliability of each subsystem based on the type of 
technology it utilizes and the level of redundancy 
implemented in the design of that subsystem.  The 
reliability model first calculates payload reliability, bus 
subsystems reliabilities, and then overall system 
reliability.  Launch vehicle reliability is also 
incorporated as a design constraint. Some of the 
reliability values used in this model are assumed 
because failure rates for some components and 
subsystems are not available in published data.  The 
assumptions are made based on the first author’s 
experience in the satellite industry.  For alternative 
technologies that are available for the same component 
or subsystem, higher reliability values are assigned to 
the older, more commonly used technologies and lower 
reliability values are assigned for the relatively new 
technologies, if no additional information was 
available.  It is assumed that in an actual spacecraft 
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design setting, these assumed failure rates would be 
replaced by better information available to the 
spacecraft manufacturer. 

A study by Goddard Space Flight Center showed 
an average of 1.7 failures per spacecraft during the first 
30 days compared to an average of less than 0.2 failures 
per spacecraft per month during the following five 
months.19  The high failure probability in the early stage 
of operation is due to the fact that design problems are 
more likely to become apparent in the early phase of 
operation.  The failure of any component or subsystem 
in the spacecraft during launch or orbit insertion has a 
much larger effect on the rest of the mission than 
failures in later phases of the mission.  Therefore, this 
research uses reliability values at the end of the 30th day 
of on-orbit operation to compute payload and system 
reliability values. 

Payload reliability is computed from the reliability 
of the antennas and repeaters serving all coverage areas.  
Each repeater’s reliability is calculated based on the 
type of the HPA and the number of the active HPAs out 
of the number available aboard the satellite.  The 
reliability of one HPA at the end of the first month of 
operation is calculated using an exponential distribution 
as shown in Equation 32.  The failure rate, λ , is 660 or 
880 failures per billion amplifier operating hours for 
TWTA or SSPA, respectively.20 This indicates that the 
reliability of a TWTA is higher than that of an SSPA. 
At  days, the reliability values for TWTAs and 
SSPAs that are implemented in the reliability model are 
99.95% and 99.94% respectively. 

30=t

  (32) ( )  tλ−= etR

Equation 33 is used to calculate total repeater 
reliability, , from individual HPA reliabilities, 

, for M active HPAs out of N available ones. This 
repeaterR

HPAR
M -out-of-  approach is often employed for 
spacecraft payloads. For example if 12 HPAs were 
needed for a repeater and 16 HPAs were available, 

N

12=M  and  would be used in Equation 33 to 
compute repeater reliability.  

16=N

  (33) ( iN
HPA

i
HPA

N

Mi
repeater RR

i
N

R −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ 1  )

To calculate the overall payload reliability, all repeaters 
and antenna reliabilities are multiplied as shown in 
Equation 34. Because antenna design is not part of the 
satellite sizing tool, the reliability values of antennas 
are taken to be equal to 100%. 

  (34) repeatersantennaspayload RRR ×=

The bus reliability is a function of its six 
subsystems reliabilities. The reliability of the structures 
subsystem, , is assumed to be 99.00%.  This 
value was also assumed for both the Attitude 
Determination and Control Subsystem (ADCS) 
reliability, , and the Telemetry, Command, and 
Ranging (TCR) subsystem reliability, TCR .  In the 
reliability model, both ADCS and TCR can either be 
stand-alone systems or they can both have full duplicate 
redundancies, the reliability of which can be calculated 
from the single system reliability, , as in Equation 
35. 

structureR

ADCSR
R

sR

   (35) ( )
2

21 2 ssofout RRR −=−−−

The reliability of Electrical Propulsion Subsystem 
(EPS) is the product of the solar array reliability and the 
battery reliability.  For the solar array, it is assumed that 
Si cells have higher reliability than GaAs because GaAs 
cells are relatively new in the industry compared to Si 
cells.  The area of additional cell strings used to replace 
any failed string represents redundancy for the solar 
arrays.  In the satellite industry, a 5% additional solar 
array area is typically used for redundancy. The satellite 
reliability model allows for four options: no 
redundancy, 2% redundancy in solar array area, 4%, or 
6%. The solar array reliability value is computed  based 
on the M -out-of-  approach as shown in Equation 
36. Here 

N
%100=M  representing total required solar 

array area, and =N 100%, 102%, 104%, or 106% 
representing redundancy options.  

  (36) ( ) iN
cell

i
cell

N

Mi
arraysolar RR

i
N

R −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ 1  

 

For Hybrid solar arrays, the cell reliability value 
used in Equation 36 is implemented in the sizing tool as 
a weighted average of Si cell reliability (99.00%) and 
GaAs cell reliability (98.50%) as shown in Equation 37. 
Here Si  is the number of Si solar array panels and 

 is the number of GaAs panels. 
N

GaAsN

 ( ) ( ) 
  

    
GaAsSi

GaAsGaAs

GaAsSi

SiSi
cell NN

RN
NN
RN

R
+

+
+

=  (37) 

As for battery reliability, NiH2 cells are assumed to 
have higher reliability (99.00%) than NiCd cells 
reliability (98.00%) because NiH2 cells have a longer 
use history in commercial space applications. The EPS 
reliability value can be calculated as shown in Equation 
38. 

  (38) batterysolarArrayEPS RRR  =
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The reliability of the thermal subsystem, , is 
a function of its complexity.  If the thermal subsystem 
employs N/S thermal coupling, then its reliability value 
(97.37%) is less than the reliability of the no-coupling 
option (99.30%) because this additional component 
provides another failure mode.

thermalR

21   

As for the propulsion subsystem, it is assumed that 
bi-propellant thrusters have the highest reliability value 
(99.93%), followed by hydrazine thrusters (99.50%), 
arcjets (99.00%), and finally the new plasma thrusters 
(98.50%).  The propulsion subsystem included in the 
reliability model is used for station keeping and attitude 
control. The propulsion subsystem can either have one 
branch of thrusters or two fully redundant branches.  If 
two branches of thrusters are used, Equation 35 predicts 
the propulsion subsystem reliability, . Most 
commercial satellites are designed with two branches.  
Because the reliability model calculates the system 
reliability at the end of the 30

propulsionR

th day after launch, the 
Liquid Apogee Engine (LAE) is not accounted for in 
reliability calculations as it is used to move the satellite 
from its transfer orbit to its orbital location in the 
geosynchronous orbit and that usually occurs before the 
end of the first month after launch.  

The bus reliability, , and the spacecraft 
reliability, , can be calculated as shown in 
Equations 39 and 40.  

busR

spacecraftR

harnesspropulsionthermalEPSTCRADCSstructurebus RRRRRRRR       =   (39) 

   (40) buspayloadspacecraft RRR  =

Usually, failure during launch is covered by 
insurance and the launch service provider may offer the 
satellite owner another free launch, but this does not 
reflect the actual losses due to failure.  Investigations to 
establish responsibility for mission failure usually delay 
insurance reimbursement.  During this time, the satellite 
operator may lose revenue and customers until a 
replacement satellite is built and deployed, which can 
take about two to three years on average.22  Choosing a 
highly reliable launch vehicle may be worth the high 
cost, when the risk associated with failure is considered.  
Therefore, the launch vehicle reliability is included in 
the reliability model assembled for this research and in 
treated as a design constraint.  

Each of the available launch vehicles has a figure 
of merit representing its reliability based on the number 
of successful launches out of overall number of 
launches until 199923. Launch vehicles that have less 
than 50 successful launches were penalized an 
additional 25% below the 1999 published success rate. 

This somewhat arbitrary strategy was used to 
discriminate against launchers that have a high success 
rate with low number of launches.  Other strategies 
could be implemented, if enough data was available. 
The reliability rate for the eight launch vehicles, 
namely, Ariane 5, Ariane 4, Sea Launch, Proton, Delta, 
Atlas, Long March, and H2A, are 8%, 97%, 75%, 88%, 
98%, 75%, 85%, and 58% respectively.  

PROBLEM STATEMENT 

The optimization tools and the satellite 
performance estimation tools described in the previous 
two major sections are coupled to optimize a 
geosynchronous communication satellite product line 
with three varying payload requirements that are 
described in Table 1. There 81 design variables 
describing technology choices, launch vehicle choices, 
and redundancy levels for all three satellites in the 
product line. These 81 design variables are encoded in 
123 binary bit strings that can be combined in 2123 = 
1037 product family architectures. Table 2 summarizes 
the 27 design variables describing each of the three 
satellites. There are four objective functions that are 
optimized simultaneously using the N-Branch 
Tournament Selection GA14; these objectives are 
described in Equations 41 to 44. The first objective 
maximizes the number of common technology choices 
among the three satellite sizes in the product line. 
However, a minimization formulation is used for the 
objectives; hence, a negative sign must be added to the 
first objective. The remaining three objectives minimize 
the launch mass of each satellite.  

( ) Choices TechnologyCommon  ofNumber  1 −=xφ  (41) 

 ( ) MassLaunch  Satellite Small2 =xφ   (42) 

 ( ) MassLaunch  Satellite Medium3 =xφ   (43) 

 ( ) MassLaunch  Satellite Large4 =xφ   (44) 

There are 18 constraint functions; six for each of 
the three satellites. Those constraints are described in 
Equations 45 to 50. The first and second constraints 
ensure that the solar panel length and the radiator panel 
height computed by the satellite sizing model do not 
exceed the height of the fairing of the launcher as 
expressed mathematically in Equations 45 and 46, 
respectively and as demonstrated in Figure 5. 

 ( ) 0   1
 1 ≤−=
HeightFairing

L
g SAx     (45) 

 ( ) 0   1
 

 
2 ≤−=

HeightFairing
H

g radiatorx     (46) 
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The maximum allowable lift mass of the launch 
vehicle is used as a constraint on the satellite total wet 
mass, which is expressed in Equation 47. Two 
additional reliability measures are treated as constraints.  
The reliability of the launcher based on the number of 
successful launches out of the total number of launches 
was included, because this is generally a specific 
mission requirement.  A minimum reliability of 90% 
was chosen to represent high launch vehicle reliability 
requirement; this is shown in Equation 48. 

 ( ) 0   1
  3 ≤−=
MassLiftMaximum

M
g wetx     (47) 

 ( ) 0   
%90

 14 ≤−=
yReliabilitLauncherg x     (48) 

Finally, two constraints are imposed on the satellite 
payload reliability and the overall satellite reliability to 
be greater than 99% and 90% respectively as shown in 
Equations 49 and 50. Even though payload reliability is 
part of spacecraft reliability, this payload reliability 
constraint is added because payload reliability, separate 
from total spacecraft reliability, is generally a 
requirement for marketing competitiveness to ensure 
availability. 

 ( ) 0   
%99

15 ≤−= payloadR
g x     (49) 

 ( ) 0   
%90

16 ≤−= spacecraftR
g x    (50) 

The constraints in Equations 45 though 50 are 
formulated such that they are negatively valued when 
they are satisfied. Each set of constraints (there are 
three sets) is handled using external linear penalty 
function formulation, which means that the N-Branch 
Tournament  Selection GA handles four fitness 
functions (one unconstrained and three constrained) as 
shown in equations 51 though 54. The subscripts small, 
medium and large in Equations 52 to 54 refer to the 
product line three satellite sizes. This formulation 
penalizes the fitness function when constraints are 
violated. 

 ( ) ( )xx 11 φ=f    (51) 
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The N-Branch Tournament Selection GA was run 
several times to asses the repeatability of the results of 
the algorithm. This multiobjective GA was able to find 
24 Pareto optimal points that are feasible and non-
dominated with respect to the four objectives described 
in Equation 51 though 54. The Pareto optimal set of 
solutions are described in the following section. 
Additionally, a single objective GA was used to design 
each of the three satellites under consideration in 
separate runs. The results of these three single objective 
GA runs are compared to the results of the 
multiobjective GA run to assess the effect designing for 
common architectures on the performance of the 
individual satellites.  

ANALYSIS OF THE SPACECRAFT 
PLATFORMING OPTIMIZATION RESULTS  

The Pareto front includes 24 points; each point 
represents a product line that is composed of three 
satellite configurations with three payload sizes catering 
to three different market segments. The Pareto set was 
obtained on average in 75 generations corresponding to 
37,392 function evaluations [(75+0th generation) × 
population size (4×123)] and about 15 minutes of run 
time on a Pentium 4 processor using serial processing. 
The 24 points on the Pareto front are shown in Figure 6; 
this is a non-traditional Pareto front because four 
different objectives are all included in this two-
dimensional plot. 

The horizontal axis in Figure 6 represents the value 
of the first objective, which is the number of common 
technology choices among all three satellites. A 
maximum of 13 common technology choices can be 
achieved. There are five levels of commonalities on the 
Pareto front that are shown in Figure 6; these optimal 
numbers of common technology choices range from a 
minimum of nine to a maximum of 13. The vertical axis 
represents the aggregate launch mass of all three 
satellites in a product line. Although the aggregate 
launch mass of all three satellites is not one of the 
objective functions (the true objectives are the 
individual launch mass for each satellite), the aggregate 
mass is used in Figure 6 to allow the reader to visualize 
the Pareto front (hyper-surface) with all its four 
objectives. Some of the points in Figure 6 are numbered 
and labeled with the launch mass values of each of the 
three satellite configurations that are represented by the 
point. Those points are used in the analysis of the 
Pareto front. 
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The issue of non-dominance, or non-inferiority, in 
the Pareto front can be illustrated by investigating the 
product line architectures represented by single points 
in Figure 6. Every point (product line architecture) in 
this Pareto front is a non-dominated point. Compare, for 
example, product lines that have the same level of 
commonalities. Both Points 3 and 4 have 11 
commonalities and the same configuration for the 
medium size satellite (3467 kg); however, Point 3 has a 
heavier configuration for the large satellite (4486 kg) 
and Point 4 has a heavier configuration for the small 
satellite (2161). Now, compare two product lines on the 
Pareto front with different commonality levels. Points 5 
and 8 have the same small and medium size 
configurations (2118 and 3468 kg respectively); 
however, Point 5 has fewer commonalities and Point 8 
has a heavier configuration for the large satellite. These 
two examples illustrate the non-dominance 
characteristics of the discrete points or product line 
architectures on the Pareto front.  

The results of the single-objective GA runs that 
optimize the three satellites independently, i.e. without 
consideration to commonalities of technology choices, 

are summarized at the upper left corner of Figure 6. The 
GA runs for the optimization of the small, medium and 
large satellites converged on average in 57, 49 and 50 
generations respectively, which correspond to 9512, 
8200, and 8364 function evaluations respectively. Here, 
the function evaluations are computed as the product of 
number of generations (the 0th generation is added) and 
the population size. The population size is taken as four 
times the chromosome length (41 bits for single 
objective optimization runs), which is typical in GA 
problems formulation. It is noticed that the sum of the 
computational effort of the three single-objective GA 
runs is 70% of the computational effort of the 
multiobjective GA run. These results show that the N-
Branch Tournament Selection GA does not require 
much computational effort beyond what is required by a 
single-objective GA in the product family design 
problem. 

Figure 6 shows that the Pareto front does not 
exhibit a wide range of satellite configurations, and 
does not show a vast tension between the commonality 
objective and the individual satellite launch mass 
objectives. For example, the largest satellite has a 

06,

8,

8
1

2
3

4

5

6

7

8

9

10

 4511 kg)

(2118, 3468, 4486 kg)

(2118, 346  4517 kg)

(2167, 3494, 4512 kg)

(2113, 346 , 4546 kg)

Single Objective Optimization Results:
- Small Satellite:          2086 kg
- Medium Satellite:     3404 kg
- Large Satellite:          4420 kg
(each satellite optimized independently)

Figure 6: Pareto Front for a three unit satellite product line. 
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minimum launch mass of 4461 kg (Point 1) and shares 
nine technology choices with the other two satellites. 
This large satellite has a maximum launch mass of 4517 
kg (Point 8) with a configuration that shares the 
maximum allowable 13 technology choices with the 
other two small and medium satellites. The difference 
in launch mass values between these two extreme 
points on the Pareto front (anchor points) for the large 
satellite available configurations is only 56 kg. This 
little extra mass can be easily accommodated in the 
design of the large satellite because the benefit of a 
maximum commonalty level is more valuable. 
Furthermore, this largest configuration of the large 
satellite (Point 8) is only 97 kg heavier than the optimal 
satellite configuration (4420 kg) when it is optimized 
independently using its launch mass as a single 
objective function.  

The lack of variability in satellite configurations in 
the Pareto front, hence the lack of tension between the 
objectives, is due to the limitation imposed by the 
satellite performance estimation models on the analysis. 
The models implemented in this work were specifically 
developed for use with medium size satellites. However 
these models were used in this work to estimate the 
performance of small and large satellites because there 
were no other better models that are publicly available 
and could be used in the analysis. Future work will aim 
at developing high fidelity models that can accurately 
estimate the performance of multiple satellite sizes. 
These models will be incorporated within the successful 
framework that this paper has established for the 
optimization of communication satellites product 
families. 

CONCLUSIONS 

This paper presents an optimization-based 
framework that incorporates product family concepts in 
the concurrent design of multiple geosynchronous 
communication satellites with variable payload 
requirements catering to multiple market segments. The 
suggested framework integrates multiobjective 
optimization approaches with system level satellite 
performance estimation models to generate optimal 
product line architectures with maximum common 
technology choices that are shared by all satellites in 
the product family, and with minimum launch mass 
satellite configurations. The multiobjective approach 
generates a Pareto optimal set of product line 
architectures that resolve the tension between the 
maximum technology choices commonality objective 
and the independent satellites’ optimal performance 
objectives. The Pareto optimal set of product line 

architectures can help systems engineers and decision 
makers identify major tradeoffs and evaluate several 
product line concepts across all the design objectives.  
The approach also enforces design constraints, and 
filters the solutions for feasibility to ensure that all 
designs included in the approximate Pareto set are 
feasible designs.  Providing this type of information 
about the satellite product line design space should 
reduce both the time and the cost of the conceptual 
design phase.  

The horizontal platform leveraging strategy that is 
employed in this research allows components and 
subsystems from products serving different market 
segments to be shared among all the satellites in a 
product family. The main benefits of this strategy are 
the flexibility it provides to manufactures and the 
potential cost reductions associated with sharing of 
R&D, development and manufacturing costs, which can 
all lead to market dominance and maximum profit 
margins. 
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