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This paper presents a new method that effectively determines a Pareto front for bi-
objective optimization with potential application to multiple objectives. A traditional method 
for multiobjective optimization is the weighted sum method, which seeks Pareto optimal 
solutions one by one by systematically changing the weights among the objective functions. 
Previous research has shown that this method often produces poorly distributed solutions of 
a Pareto front, and that it does not find Pareto optimal solutions in non-convex regions. The 
proposed adaptive weighted sum method focuses on unexplored regions by changing the 
weights adaptively rather than by using a priori weight selections and by specifying 
additional inequality constraints. It is demonstrated that the adaptive weighted sum method 
produces well-distributed solutions, finds Pareto optimal solutions in non-convex regions, 
and neglects non-Pareto optimal solutions. This last point can be a potential liability of 
Normal Boundary Intersection, an otherwise successful multiobjective method, which is 
mainly caused by its reliance on equality constraints.  The promise of the algorithm is 
demonstrated with two numerical examples and a simple structural optimization problem. 

Nomenclature 
J  = objective function vector 
x  = design vector 
p  = vector of fixed parameters 
g  = inequality constraint vector 
h  = equality constraint vector 
α  = weighting factor 

iJ  = normalized objective function  
UJ  = utopia point 
NJ  = nadir point 
in  = number of further refinements for the i th segment 

il  = length of the i th segment 

avgl  = average length of all the segments at a stage 
C  = multiplier 

1P , 2P  = end point vectors of a segment 

Jδ   = offset distance along a piecewise linearized Pareto front 

iδ   = offset distance along the i th objective function 

1x∆ , 2x∆  =  grid size 
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I. Introduction 
In engineering, a designer often deals with more than one objective function or design criterion, and sometimes 

these multiple objective functions conflict with each other. For example, one may want to maximize the 
performance of a system while minimizing its cost. Such kind of design problems are the subject of multiobjective 
optimization and can generally be formulated as a MONLP (Multiple Objective Nonlinear Program) of the form: 
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where J  is an objective function vector, x  is a design vector, p  is a vector of fixed parameters, g  is an inequality 
constraint vector, and h  is an equality constraint vector. In this case there are z objectives, n design variables, m1 
inequality constraints and m2 equality constraints. Additionally, the design variables may be bounded by side 
constraints assuming that ix ∈ . 

After Pareto1 introduced the concept of non-inferior solutions now called Pareto-optimal solutions, Stadler2,3 
began to apply the notion of Pareto optimality to the fields of engineering and science in the 1970s. The applications 
of multiobjective optimization in engineering design grew over the following decades. One of the most widely used 
methods for solving multiobjective optimization problems is to transform a multiple objective (vector) functions into 
a series of single objective (scalar) functions: 

 weighted sum 1 1 2 2 z zJ w J w J w J= + + +  (2) 

where ( 1, , )iw i z=  is a weight for the thi objective function. If 1iw =∑  and 0 1iw≤ ≤ , the weighted sum is 
said to be a convex combination of objectives. When an appropriate set of solutions is obtained by the single 
objective optimizations, the solutions can approximate the Pareto front in objective space. The weighted sum 
method is a traditional, popular method that parametrically changes the weights among objective functions to obtain 
the Pareto front. Initial work on the weighted sum method can be found in Zadeh 4  with many subsequent 
applications and citations. Koski5, for example, studied the weighted sum method in the context of multicriteria truss 
optimization.  

Marglin6 developed the ε-constraint method, where one individual objective function is minimized with an upper 
level constraint imposed on the other objective functions7. Lin8 developed the equality constraint method that 
minimizes objective functions one by one by simultaneously specifying equality constraints on the other objective 
functions. Heuristic methods are also used for multiobjective optimization; Suppapitnarm 9  applied simulated 
annealing to multiobjective optimization, and multiobjective optimization by Genetic Algorithms can be found in 
Goldberg10 , Fonseca and Fleming11 , and Tamaki et al. 12  among others. Messac and Mattson13  used physical 
programming for generating a Pareto front, and they introduced the concept of s-Pareto fronts for concept selection14. 
Das and Dennis15 proposed the NBI (Normal Boundary Intersection) method where a series of single objective 
optimizations is solved on normal lines to the Utopia line. The NBI method gives fairly uniform solutions and can 
treat problems with non-convex regions on the Pareto front. It achieves this by imposing equality constraints along 
equally spaced lines or hyperplanes in the multidimensional case. 

As discussed in a number of studies by Messac and Mattson13, Das and Dennis16, and Koski17, the traditional 
weighted sum approach has two main drawbacks. First, an even distribution of the weights among objective 
functions does not always result in an even distribution of solutions on the Pareto front. Indeed in real applications, 
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solutions quite often appear only in some parts of the Pareto front, while no solutions are obtained in other parts. 
Second, the weighted sum approach cannot find solutions on non-convex parts of the Pareto front although they are 
non-dominated optimum solutions (Pareto optimal solutions). This is due to the fact that the weighted sum method is 
often implemented as a convex combination of objectives, where the sum of all weights is constant and negative 
weights are not allowed. Increasing the number of weights by reducing step size does not solve this problem. 
Eventually, this may result in selecting an inferior solution by missing important solutions on the concave regions. 

Despite the drawbacks aforementioned, it is true that the weighted sum approach is extensively used because it is 
simple to understand and easy to implement. Also, the weight itself has a physical meaning, which reflects the 
relative importance among objective functions under consideration. We propose a new adaptive method, based on 
the weighted sum approach, for multiobjective optimization. In this approach, the weight is not predetermined, but it 
evolves according to the nature of the Pareto front of the problem. Starting from a large step size of the weight, a 
coarse representation of the solution is generated and regions where more refinement is needed are identified. The 
specific regions are then designated as a feasible region for suboptimization by imposing inequality constraints in 
the objective space. The typical weighted sum multiobjective optimization is performed in the regions. When all the 
regions of the Pareto front reach a pre-specified resolution, the algorithm terminates. The methodology is formulated 
and demonstrated for bi-objective optimization where there are two objective functions. The potential for extension 
to greater numbers of objectives is briefly discussed. 

II. Adaptive Weighted Sum Method: Fundamental Concepts 
Figure 1 shows the concepts of the adaptive weighted sum method, compared with the typical weighted sum 

approach. The true Pareto front is represented by a solid line, and the solution points obtained by multiobjective 
optimization are denoted by small circles. In this example, the whole Pareto line is composed of two parts: a 
relatively flat convex region and a distinctly concave region. A typical way to solve the problem is to use the 
weighted sum method, which is stated as:  

 
 
Figure 1: The concept and procedure of the adaptive weighted sum method. 
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where 1J  and 2J  are two objective functions to be mutually minimized, 1,0J  and 2,0J are normalization factors for 

1J  and 2J , respectively, and α  is the weighting factor which reveals the relative importance between 1J  and 2J . 
When the typical weighted sum method is used, as shown in Fig. 1 (a), most solutions concentrate near the 

anchor points and the inflection point , and 
no solutions are obtained in the concave 
region. The figure illustrates the two typical 
drawbacks of the weighted sum method: 

(1) Generally, the solutions are not 
uniformly distributed.  

(2) The weighted sum method cannot find 
solutions that lie in non-convex regions of the 
Pareto front. Increasing the number of steps 
of the weighting factor does not resolve this 
problem. 

These are the main reasons that restrict 
the usage of the weighted sum method 
despite its simplicity and insight about the 
relative importance among objective 
functions. The ill-behaved nature of the 
method is frequently observed in realistic 
design optimization problems. 

Figure 1 (b) illustrates the fundamental concepts and overall procedure of the proposed adaptive weighted sum 
method. It starts from a small number of divisions with a large step size of the weighting factor, α, using the 
traditional weighted sum method. By calculating the distances between neighboring solutions on the front in the 
objective space, regions for further refinement are identified. Only these regions then become the feasible regions 
for optimization by imposing additional inequality constraints in the objective space. Each region has two additional 
constraints that are parallel to each of the objective function axes. The constraints are constructed such that their 
distances from the solutions are 1δ  and 2δ  in 
the inward direction of 1J  and 2J . A 
suboptimization is solved in each of the 
regions, and a new solution set is identified. 
Again, regions for further refinement are 
selected by computing the distances between 
two adjacent solutions. The procedure is 
repeated until a termination criterion is met. 
The maximum segment length among the 
entire Pareto front is one measure for the 
convergence. The detailed procedure is 
elaborated in the following section. 

The adaptive weighted sum method can 
effectively solve multiobjective optimization 
problems whose Pareto front has (i) convex 
regions with non-uniform curvature, (ii) non-
convex regions of non-dominated solutions, 
and (iii) non-convex regions of dominated solutions. First, for a multiobjective optimization problem of non-uniform 
curvature Pareto front, most solutions obtained with the usual weighted sum method are concentrated in the region 
whose curvature is relatively high. Figure 2 (a) shows that very few solutions are obtained in the flat region when 

Figure 2: The adaptive weighted sum method for a convex 
Pareto front. 

Figure 3: The adaptive weighted sum method for non-
convex Pareto regions of non-dominated solutions. 
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the usual weighted sum method is used. Because the segment length between 1P  and 2P  is larger than others, a 
feasible region for further refinement is 
established in the segment,  in the adaptive 
weighted sum method. The optimization is 
then conducted only within this region, and 
more Pareto optimal solutions are obtained 
here. This makes the distribution of solutions 
more uniform, as shown in Fig. 2 (b).  

In the second case of a non-convex region 
of non-dominated solutions, there exist 
Pareto optimal solutions in the region that the 
usual weighted sum approach cannot reach. 
In Fig. 3 (a), no solutions are obtained 
between 1P  and 2P  if the usual weighted 
sum method is used. On the other hand, the 
adaptive weighted sum method finds 
solutions because the optimization is 
conducted only in the non-convex region, as 
shown in Fig. 3 (b). The region is made by imposing inequality constraints that are offset from 1P  and 2P  by 
distances of 1δ  and 2δ  in the direction of 1J  and 2J , respectively. In this case, only two solutions are obtained at 
the points where the Pareto front and the inequality constraints intersect with each other.  

In the third case of concave regions of dominated solutions, there are no Pareto optimal solutions in the region 
between 1P  and 2P , as shown in Fig. 4. No solution must be identified between 1P  and 2P   in this case. Indeed, the 
adaptive weighted sum method does not give optimum solutions because there is no feasible region within the 
imposed constraints, whereas the normal boundary intersection (NBI) method typically produces dominated 
solutions in this case. In summary, the adaptive weighted sum method produces evenly distributed solutions, finds 
Pareto optimal solutions in non-convex regions, and neglects non-Pareto optimal solutions in non-convex regions.  

III. Adaptive Weighted Sum Method: Procedures 
In this section, the detailed procedure of the adaptive weighted sum method is described. The description is valid 

for the bi-objective case. 
 
[Step 1] Normalize the objective functions in the objective space. When *ix  is the optimal solution vector for the 

single objective optimization of iJ , the normalized objective function iJ  is obtained as, 

 .
U

i i
i N U

i i

J J
J

J J
−

=
−

 (4) 

Here UJ  is the utopia point and is defined as 

 1* 2*
1 2[ ( ), ( )]U J J=J x x , (5) 

and NJ  is the nadir point and is defined as 

 1 2[ , ]N N NJ J=J  (6) 

where  

 1* 2*max[ ( ) ( )].N
i i iJ J J= x x  (7) 

Figure 4: The adaptive weighted sum method for non-
convex Pareto regions of dominated solutions. 
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[Step 2] Perform multiobjective optimization using the usual weighted sum approach with a small number of 

divisions, initialn . We use initial 5 ~ 10n = . The uniform step size of the weighting factor α  is determined by the 
number of divisions: 

 
initial

1
n

α∆ =  (8) 

By using a large step size of the weighting factor, α∆ , a small number of solutions is obtained. 
 
[Step 3] Compute the lengths of the segments between all the neighboring solutions. Delete nearly overlapping 

solutions. It occurs often that several nearly identical solutions are obtained when the weighted sum method is used. 
The Euclidian distances between these solutions are nearly zero, and among these, only one solution is needed to 
represent the Pareto front. 

 
[Step 4] Determine the number of further refinements in each of the regions. The longer the segment is, relative 

to the average length of all segments, the more it needs to be refined. The refinement is determined based on the 
relative length of the segment: 

 for the th segmenti
i

avg

l
n round C i

l

 
=   

 
 (9) 

where in  is the number of further refinements for the i th segment, il  is the length of the i th segment, avgl  is the 
average length of all the segments, and C  is a multiplier. The usual value of C is between 1 and 2. The function 
‘ round ’ rounds off to the nearest integer. 

 
[Step 5] If in  

is less than or 
equal to one, no 
further refinement 
is conducted in the 
segment. For other 
segments whose 
number of further 
refinements is 
greater than one, 
go to the 
following step. 

 
[Step 6] 
 Determine the 

offset distances from the two end points of each segment. First, a piecewise linearized secant line is made by 
connecting the end points, 1P  and 2P  (Fig. 5 (a)). Then, the user selects the offset distance along the piecewise 
linearized Pareto front, Jδ . The distance Jδ  determines the final density of the Pareto solution distribution, because 
it becomes the maximum segment length during the last phase of the algorithm.  

In order to find the offset distances parallel to the objective axes,  the angle θ  in Fig. 5 (b) is computed as 

 
1 1

1 1 2
2 2

1 2
tan P P

P P
θ −  −
= −  − 

 (10) 

 
Figure 5: Determining the offset distances, 1δ  and 2δ , based on Jδ . 
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where 1
iP  and 2

iP  are the J1 and J2 positions of the end points, 1P  and 2P , respectively, in the objective space.  
Then, 1δ  and 2δ  are determined with Jδ  and θ  as follows, 

 1 2cos sin .J Jandδ δ θ δ δ θ= =  (11) 

 
[Step 7] Impose additional inequality constraints and conduct suboptimization with the weighted sum method in 

each of the feasible regions. As shown in Fig. 5 (b), the feasible region is offset from 1P  and 2P  by the distance of 

1δ  and 2δ  in the direction of 1J  and 2J . Perform suboptimization in this region. The suboptimization problem is 
stated as  

 

1 2

1 1 1

2 22

min ( ) (1 ) ( )

s.t. ( )

( )
( ) 0
( ) 0

[0,1]

x

y

J x J x

J x P

J x P
h x
g x

α α

δ

δ

α

+ −

≤ −

≤ −

=
≤

∈

 (12) 

where 1δ  and 2δ  are the offset distances obtained in Step 6, and x
iP  and y

iP  are the x  and y  position of the end 
points. The uniform step size of the weighting factor iα  for each feasible region is determined by the number of 
refinements, in , obtained in step 4: 

 1
i

in
α∆ =  (13) 

The segments in which no converged optimum solutions are obtained are removed from the segment set for 
further refinement, because in this case these regions are non-convex and do not contain Pareto optimal solutions. 

 
[Step 8] Compute the length of the segments between all the neighboring solutions. Delete nearly overlapping 

solutions. If all segment lengths are less than a prescribed maximum length, terminate the optimization procedure. If 
there are segments whose lengths are greater than the maximum length, go to Step 4. 

IV. Numerical examples 
Three numerical examples are presented in this section to demonstrate the performance of the adaptive weighted 

sum method. All optimizations were performed with the Sequential Quadratic Method in MATLAB. 

A. Example 1: Convex Pareto front 
The first example is a multiobjective optimization problem that was investigated in the context of the NBI 

method15. The problem statement is 

 

2 2 2 2 2
1 1 2 3 4 5

33
2 1 2 4 5

1 2 3 4 5
2

1 2 3 4 5
2 2 2 2 2
1 2 3 4 5

minimize  
3 2 0.01( )

3
subject to   2 0.5 2,

4 2 0.8 0.6 0.5 0,

10

J x x x x x
x

J x x x x

x x x x x

x x x x x

x x x x x

 = + + + +
 
 = + − + −  
+ − − + =

− + + + =

+ + + + ≤

 (14) 
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The Pareto front of this problem is convex, but the curvature is not uniform. Figure 6 (a) shows the optimal 
solutions obtained by the usual weighted sum method. The number of solutions on the Pareto front is 17, but most of 
the solutions are concentrated in the left upper region. The NBI method gives a very good approximation of the 
Pareto front by obtaining evenly distributed 
solutions, as shown in Fig. 6 (b).  

The adaptive weighted sum method converges in 
five iterations, obtaining fairly well distributed 
solutions (Fig. 6 (c)). The offset distance selected on 
the Pareto front, Jδ , is 0.1; and the offset distances, 

1δ  and 2δ , are calculated by Eq. (11). Multiplier C 
in Eq. (9) is 1.5. Table 1 provides a quantitative 
comparison of solutions in terms of computational 
cost (CPU time) and variance of segment lengths. 
The weighted sum method, the NBI method, and the 
adaptive weighed sum method are compared for the 
case of 17 solutions on the Pareto front. Although 
the weighted sum method has a small computational 
burden, its variance is very large. The NBI method 
has better performance both in terms of CPU time 
and secant length variance compared to the adaptive 
weighted sum method in this example. At this point 
it is not obvious why one might further pursue the 
adaptive weighted sum method. It has been 
observed that the NBI method usually performs 
better in the cases of well-conditioned 
multiobjective optimization problems with a convex 
Pareto front. However, the uniformity of the 
solutions obtained by the adaptive weighted sum 

 

(a) WS (Weighted 
Sum method) 

(b) NBI (Normal 
Boundary Intersection 
method) 

(c) AWS (Adaptive 
weighted Sum method) 

 
Figure 6: Results of multiobjective optimization with a convex Pareto front (example 1). 

 Design space (domain) Objective space (Range) 

Figure 7: Results by the usual weighted sum method 
for multiobjective optimization with a non-convex 
Pareto front (example 2). 

Table 1: Comparison of the results (example 1). 
 

 WS NBI AWS 
No of solutions 17 17 17 
CPU time (sec) 1.71 2.43 3.83 
Length variance (×10-4) 266 0.23 2.3 
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method is satisfactory according to the maximum length criterion, and the adaptive weighted sum method shows 
better performance in more complex problems, as demonstrated in the following example. The relatively heavy 
computational cost of the adaptive weighted sum approach is due to additional calculations, such as obtaining the 
distances between adjacent solutions and selecting segments for further refinement. This overhead will be less 
significant for large problems, where the cost of objective function evaluations typically dominates. 

B. Example 2: Non-convex Pareto front 
In the previous example, the Pareto front was convex, and the problem associated with the usual weighted sum 

approach was only that the solution distribution was not uniform. However, if the Pareto front is not convex, the 
weighted sum approach does not find concave parts, regardless of step size. In this example, a multiobjective 
optimization problem that has a partially non-convex Pareto front and that is not well-conditioned is considered. The 
problem statement18 is 

 

( ) ( )

( )

2 2 2 2 2 2
1 2 1 2 1 2

2 2 2 2 2 2
2 1 2 1 2 1

2 ( 1) ( 2)3 51
1 1 2 1 2

2 ( 1) (2 )3 52
2 2 1

3 1 10 3 0.5 2
5

minimize
3 1 10 3

5
subject to  3 3 , 1, 2.

x x x x x x

x x x x x x

i

xx e x x e e x x

xx e x x e e

x i

− − + − − − + −

− − − + − − − − −

  − − − − − + +  
  

  + − − + + −     
− ≤ ≤ =

 (15) 

The solutions obtained by the usual weighted sum method are shown in Fig. 7. This figure shows the efficient 
designs in the design space on the left and the Pareto optimal solutions in the objective space on the right. The entire 
range in the objective space is obtained by a full combinatorial analysis. The difficulty in performing optimization 

for this non-linear problem is that the convergence to an optimal solution is highly dependent on an initial starting 
point and determining the starting point is not straightforward. The solution dependence on the initial starting point 
is even more severe in the case of the NBI method and the adaptive weighted sum method than the usual weighted 
sum method. This is because the two methods use additional constraints and so it is difficult to find feasible regions 
that satisfy all the constraints. In the usual weighted sum method, three points ([1.5 0], [1 1] and [0 2]) are used as a 
starting point, and the best among the solutions is selected. As shown in Fig. 7, trying these three initial starting 
points always yields the optimum solutions for the usual weighted sum method. However, the solutions cluster 

 Design space (domain) Objective space (Range) 

non-Pareto 
solution 

suboptimum 

non-Pareto 
solution 

non-Pareto 
solution 

non-Pareto 
solution 

suboptimum 

(a) Case 1 (b) Case 2 

(c) Case 3 (d) Case 4 

Design space (domain) Objective space (Range) 

 
Figure 8: Results by the NBI method for multiobjective optimization with a non-convex Pareto front 
(example 2). 



 
American Institute of Aeronautics and Astronautics 

 

10

around three small regions. The vast 
area of the two concave regions is 
not revealed by the traditional 
weighted sum method, which 
confirms the second drawback of the 
method mentioned in Section 2. 

The NBI method and adaptive 
weighted sum method successfully 
find solutions on the non-convex 
regions. However, the solution 
dependence on the initial starting 
point is a serious concern for these 
methods. Hence, full combinatorial 
trials of initial starting points are 
used to better understand this issue. 
The domain is discretized into a grid 
composed of segments whose 
lengths are 1x∆  and 2x∆ . The 
optimization is then started from all 
intersections of the grid. The best 
solution is then selected from among all the solutions obtained. Four different cases of the starting grid were tested 
for the NBI method and the adaptive weighted sum method:  

Case 1: 1 2 2.0x x∆ = ∆ =  
Case 2: 1 2 1.5x x∆ = ∆ =  
Case 3: 1 2 1.0x x∆ = ∆ =  
Case 4: 1 2 0.5x x∆ = ∆ =  
The solutions obtained by the NBI method for each of the cases are shown in Fig. 8. In all the four cases, one 

non-Pareto solution is obtained, which is dominated by its two neighboring solutions. Because of this problem, a 
Pareto filter needs to be applied for the NBI method after finding solutions. In addition, some suboptimal solutions 

are obtained: two suboptimal solutions for Case 1 and one suboptimal solution for Case 3. When the adaptive 
weighted sum method is used, on the other hand, all the solutions obtained are truly Pareto optimal, as shown in Fig. 
9. Only one case is represented in the figure because the solutions are identical for all four cases. The offset distance 
on the Pareto front, Jδ , is 0.1. Multiplier, C, is 1.0. Note that non-Pareto optimum or suboptimal solutions are not 
obtained in the adaptive weighted sum method. The reason for its robustness in finding Pareto optimal solutions is 
that it uses inequality constraints rather than equality constraints, which makes it easier to find the feasible domain 
during optimization.  

This example demonstrates the advantages of the adaptive weighted sum method: (1) it finds solutions of even 
distribution; (2) it can find solutions on non-convex regions; (3) non-Pareto solutions on the non-convex regions are 
not considered as an optimum because they are not in the feasible region bounded by the additional constraints; (4) it 

 Design space (domain) Objective space (Range) 

 
Figure 9: Results by the adaptive weighted sum method for 
multiobjective optimization with a non-convex Pareto front 
(example 2). Case 1, Case 2, Case 3 and Case 4 give the same results.
 

Table 2: Comparison of the results (example 2). 
 
 WS NBI AWS 
Initial starting point case  Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
No of solutions 15 15 15 15 15 15 15 15 15 
CPU time (sec) 0.4 17.8 24.5 52.9 165.6 28.1 44.0 87.6 289.2 
Length variance (×10-4) 632 11 3.6 8.8 3.6 4.3 4.3 4.3 4.3 
No of suboptimum 
solutions 0 2 0 1 0 0 0 0 0 

No of non-Pareto solutions 0 1 1 1 1 0 0 0 0 
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is potentially more robust in finding optimum solutions than other methods that use equality constraints. The 
solution comparison of each method for this example is provided in Table 2. 

C. Example 3: Three-bar truss problem 
Finally, the adaptive weighted sum method is applied to a three-bar truss problem first presented by Koski17. 

Figure 10 illustrates the problem and shows the values of the parameters used. A horizontal load and a vertical load 
are applied at Point P, and the objective functions are the total volume of the trusses and the displacement of point P. 
The mathematical problem statement is 

 
lower limit upper limit

lower limit upper limit

1 2

1 2 3

volume ( )
minimize

( )
subject to , 1, 2,3

, 1,2,3

where 0.25 0.75
and [ ].

i

i

i

A A A i

A A A

σ σ σ

δ δ

 
 ∆ 

≤ ≤ =

≤ ≤ =

∆ = +
=

A
A

A

 (16) 

The Pareto front for this example is non-convex, and the Pareto line is separated into two regions by a segment 
of dominated solutions, as shown in Fig. 11. The adaptive weighted sum method with 0.1 of offset Jδ  is used. 
Multiplier, C, is 1.5. The optimization history is shown in the figure. The adaptive weighted sum method converges 

in three phases, and the solutions are quite evenly distributed. Note that there is no solution obtained in the non-
Pareto region, without using a Pareto filter. If one changes the value of the offset distance, Jδ , the density of final 
solutions changes. Figure 12 shows the two results when 0.2 and 0.05 are used as the offset distance, Jδ . The 
adaptive weighted sum method gives 8 and 32 evenly distributed Pareto solutions for each case. Again in this 
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Figure 10: The three-bar truss problem17. 
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example, the distribution is uniform; the Pareto optimal solutions on the non-convex region are identified; and the 
non-Pareto optimal solutions are ignored. The parameter Jδ  is used to tune the desired density of Pareto points 
generated by the algorithm. 

V. Discussion 
The adaptive weighted sum method effectively approximates the Pareto front by gradually increasing the number 

of solutions on the front. In that sense it gradually “learns” the shape of the Pareto front and concentrates 
computational effort where new information can be gained most effectively. This is in contrast to other Pareto 
generation methods such as traditional weighted sum or NBI, which generally explore the Pareto front in a 
predetermined fashion. Because it adaptively determines where to divide further, the adaptive weighted sum method 
produces well-distributed solutions. In addition, performing optimization only in feasible regions by imposing 
additional inequality constraints enables the method to find Pareto solutions on non-convex regions. Because the 
feasible region includes only the regions of non-dominated solutions, it automatically neglects non-Pareto optimal 
solutions. It is potentially more robust in finding optimal solutions than other methods where equality constraints are 
applied.  

This article does not claim superiority of the adaptive weighted sum method over other methods such as NBI in 
all cases. Rather the method presents itself as a potential addition to the growing suite of Pareto generators, with 
potential advantages for ill-conditioned problems. Further work is needed to understand the nature of this advantage 
in terms of starting points, imposition of inequality constraints versus equality constraints and computational cost. It 
must also be said that while the traditional weighted sum method has known limitations, it remains the method 
offering greatest transparency to non-expert users. The adaptive weighted sum approach is an effective extension of 
traditional weighted sum optimization, but some of the transparency is invariably hidden from the user due to the 
adaptive scheme. The adaptive weighted sum method needs to be applied to multidimensional multiobjective 
optimization problems where there are more than two objective functions. Some multiobjective optimization 
algorithms perform well for bivariate problems, but perform poorly in the presence of multiple objectives. It remains 
to be seen how well adaptive weighted sum optimization can be scaled to problems of higher dimensionality. 
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