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ABSTRACT 
 
This paper examines the optimal placement of nodes for a Wireless Sensor Network (WSN) designed to monitor a 
critical facility in a hostile region. The sensors are dropped from an aircraft, and they must be connected (directly or via 
hops) to a High Energy Communication Node (HECN), which serves as a relay from the ground to a satellite or a high-
altitude aircraft. The sensors are assumed to have fixed communication and sensing ranges. The facility is modeled as 
circular and served by two roads. This simple model is used to benchmark the performance of the optimizer (a Multi-
Objective Genetic Algorithm, or MOGA) in creating WSN designs that provide clear assessments of movements in and 
out of the facility, while minimizing both the likelihood of sensors being discovered and the number of sensors to be 
dropped. The algorithm is also tested on two other scenarios; in the first one the WSN must detect movements in and 
out of a circular area, and in the second one it must cover uniformly a square region. The MOGA is shown again to 
perform well on those scenarios, which shows its flexibility and possible application to more complex mission scenarios 
with multiple and diverse targets of observation. 
 
Keywords: Multi-objective genetic algorithm, wireless sensor network, network planning, node placement, facility 
monitoring, coverage. 

 
 

1. INTRODUCTION 
 
Recent military operations demonstrated the limitations of surveillance missions performed by high-altitude platforms 
(UAV, U2, satellite) even when equipped with state of the art sensors. Most of these limitations are inherent to this type 
of long-distance surveillance and cannot be resolved with any improvement in the onboard-sensor technology. Indeed 
these techniques are useful to detect features on the ground (such as facilities or vehicles), but they are often insufficient 
for identifying them with certainty and monitoring their activity. In order to gain a clear understanding of the situation 
on the ground, it is vital to observe from close range using remote sensing devices placed around the feature of interest, 
e.g. Wireless Sensor Networks (WSN). Since these missions will be performed in hostile areas, the placement of such 
sensors needs to be done without human personnel involved, e.g. via aerial deployment from an aircraft. Once the 
sensors are deployed on the ground, their data is transmitted back to the home base to provide the necessary situational 
awareness.  

The deployed units (the wireless sensors, called sensors in the following) fulfill two fundamental functions: sensing 
and communicating. The sensing can be of different types depending on the feature to observe (seismic, acoustic, 
chemical, optical, etc.), and the communication is performed wirelessly. However, the small size and energy storage 
capacity of the sensors prevent them from relaying their gathered information directly to the base. It is therefore 
necessary that they transmit their data to a high-energy communication node (HECN) able to provide the transmission 
relay to an aircraft or a satellite. All sensors must be able to transmit their data to this node, either directly or via hops, 
using nearby sensors as communication relays. In this paper an idealized model for the two characteristics of the sensors 
is used; they can communicate with one another if they are within a fixed distance RCOMM, and they can sense anything 
within their sensing radius RSensing. All sensors in the WSN are assumed to be identical. They also must be connected to 
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the HECN in order to transmit their data to the base. 
This is illustrated in Fig. 1, where the area covered by 
each sensor is shown as a circle (sensing disk) and 
arrows represent the communication links present 
between sensors. The HECN is placed on top of a 
building. 

Home base UAV

HECN

Facility 

 
Road

Sensor (with sensing disk)

Fig. 1. Example of the use of a WSN to monitor a facility, with 
the High Energy Communication Node (HECN) placed on top of 

a building.  

 Three case studies are conducted. In the first one 
(Case 1), the feature to monitor is a facility served by 
two roads. The WSN must provide a good coverage of 
the facility, i.e. it must be able to detect movement along 
the roads (where it is most likely to occur), but also 
around the facility as a whole. Moreover, since the area 
is hostile, the survivability of the WSN depends on 
whether the sensors will be detected or not. The closer to 
the facility sensors are placed, the greater the probability 
that they will be discovered. Finally the network is 
deployed from an aircraft that can only carry a limited 
payload, so the number of sensors must be minimized. In the second study (Case 2), movements in and out of a circular 
area are to be detected. This is akin to Case 1, except that this time there are no threats to the sensors. In the third one 
(Case 3), a square area is to be uniformly covered by the WSN, so that every point in it can be monitored. Note that in 
this last case the definition of ‘coverage’ is different than in the previous cases, since it is not limited to an ability to 
detect movement in and out, but everywhere in the area. These three case studies are basic mission scenarios that can 
form the building blocks (or primitives) of a more complex mission scenario. For example, consider a factory suspected 
to manufacture dangerous chemicals. An area close to it may have been identified as a possible location for waste 
disposal, and chemical sensors are to cover it uniformly in order to analyze the soil (Case 3). Also, seismic sensors  
placed around the plant can detect the movements in and out of it, which gives and indication of the plant’s activity 
(Case 1 or 2, depending on the threat level). All these sensors must then relay their data to a HECN placed nearby. 

A Multi-Objective Genetic Algorithm (MOGA) is used to find Pareto-optimal network layouts for these three case 
studies, layouts that maintain the communication connectivity between every sensor and the HECN. In Case 1 the 
coverage and survivability are maximized and the number of sensors is minimized, while in Cases 2 and 3 only the 
coverage and the number of sensors are considered. It is shown that the exact same MOGA works in all cases, which 
shows its flexibility and its possible use for more complex missions built upon these basic building blocks. 
 
 

2. LITERATURE REVIEW 
 
From the early 1990’s to a few years ago, a large body of research was devoted to the Base Station (BS) location 
problem for cellular phone networks. At that time the problem was to find the optimal location of BS (transmitters) in 
order to satisfactorily cover subscribers. Although this problem differs in many aspects from the sensor network 
planning problem (notably because in WSN the sensors (“BS”) also need to communicate with each other 
(connectivity)), it is insightful to review the methods used. These range from Dynamic Programming1, to Genetic 
Algorithms2,3 and Tabu Search4. Virtually every type of optimization technique was tested on this problem, many of 
which dealt with multiple objectives (though often blended into a single objective function, except Meunier3 who uses 
Pareto optimality) while using non-trivial communication models taking the terrain into account.  

The BS location problem is part of the larger topic of Facility Location in Operations Research5. Here a set of 
demand points must be covered by a set of facilities (which corresponds in WSN to covering an area with a set of 
sensors). The goal is to locate these facilities so as to optimize a certain objective (e.g. minimize the total distance of 
demand points to their closest facility). A classic example close to the WSN problem is the Maximal Covering Location 
Problem6,7 (MCLP), where as many demand points as possible must be covered with p sensors of fixed radius. It is also 
referred to as a location-allocation problem, since each demand point must be assigned to a certain sensor. Again in all 
these discussions, the main difference with WSN is that the nodes are not required to be connected. Another problem of 
interest is the Facility Location-Network Design problem, where facilities positions need to be determined (just as in 

 



MCLP) and the network connecting these facilities must also be optimized. Unfortunately, in WSN design it is 
impossible to decouple sensor placement and network design, since the location of the sensors determines the network 
topology.  

The past three years have seen a rising interest in sensor network planning, focusing mostly on optimizing the 
location of the sensors in order to maximize their collective coverage (a problem almost identical to the BS location 
problem). Several techniques were used, but the research on BS location is never mentioned. Chakrabarty8 used Integer 
Programming, while Bulusu9, Dhillon10 and Howard11,12 devised different greedy heuristic rules to incrementally deploy 
the sensors. Zou13 adapted Virtual Force Methods (often used for the deployment of robots12) for the sensor deployment. 
Only one objective is optimized in these methods, although in the greedy algorithms referenced above it is possible to 
obtain the trade-off between number of sensors and coverage (e.g. by continuing to add sensors and noticing how much 
coverage is gained each time). Particular to WSN is the relationship between optimal WSN layout and the ratio between 
the sensors sensing and communication radius. This interaction is studied in Jourdan14. 

Current work on WSN gives little or no attention to the communication requirement between sensors. Also, only a 
single objective is considered (almost always coverage), whereas it seems other considerations are also of vital practical 
importance in the choice of the network layout (survivability, robustness to node failure, etc.). This paper presents a 
method that starts addressing these gaps, while testing it on realistic (although simplified) scenarios. 
 
 

3. MODELING 
 
3.1 WSN Modeling 
The area considered is a flat square of side 10 (in arbitrary units), centered on the origin. The sensors are identical and 
are characterized as follows. They can monitor anything within RSensing and they can communicate with any other sensor 
located within RCOMM. The HECN, with which each sensor must communicate (either directly or through hops using 
nearby sensors) is assumed to have been placed beforehand (presumably in a location with good line of sight to the relay 
aircraft or satellite). In this paper it is placed at the upper right corner of the area. This assumption is for convenience 
and does not prevent generalizability.  
 The design variables correspond to the horizontal and vertical coordinates of the sensors, and the maximum number 
of sensors MAX_NUM is a parameter fixed by the operator (it may correspond to the total number of available sensors). 
The vector DV containing the design variables is of size 2 x MAX_NUM: 
 
 [ ]NUMMAXNUMMAX yxyxDV __11 ...=                                                          (1) 

 
Although DV is of constant size, the number of sensors actually present in each design vector is allowed to vary (this is 
important for the optimization described below). For a WSN containing less than MAX_NUM sensors, the remaining 
entries are set to 0. So if xi and yi are both equal to 0, it signifies that there is no ith sensor. Therefore, for a WSN 
containing n sensors (with n less than MAX_NUM), MAX_NUM-n pairs of entries of DV will be equal to 0. Equation 2 is 
an example of a design for a network with at most 4 sensors, where only 2 sensors are present (the first and third 
sensors). 
 
                                                                  (2) [ 0000 3311 yxyxDV = ]
 
3.2 Objectives Calculation 
The operator designating the features of interest has the choice to select what type of surveillance action (s)he wishes to 
take. For example, the movements in and out of a facility may be of interest in order to identify the use of the compound 
(Case 1). It may also be the case that a “suspect” area has been selected, and the operator wishes to discover what kind 
of activity is taking place there. He may wish to monitor the movements in and out of it without placing sensors directly 
inside it, corresponding to perimeter monitoring (Case 2), or he may decide to cover it uniformly in order to have 
complete coverage (Case 3). These three cases illustrate possible mission scenarios for the WSN, and the following 
sections detail how the objectives are calculated in each case. In all cases, only the sensors connected to the HECN are 
taken into account in the calculation of the objectives.  

 



3.2.1 Case 1: Monitoring movements in and out of a facility served by two roads 
The facility is modeled as a circle of radius 1 centered at the origin. It is assumed that any sensor placed inside the 
facility will not be able to operate, so any entry (xi,yi) of DV belonging to this unit circle will not be taken into account 
in the calculation of the objectives (it is as if this sensor was not present). Two roads serve the facility, one horizontal 
going East, one vertical going North. This is illustrated in Fig 2a. 
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Fig. 2. Framework for Case 1: facility served by two roads (a, left); lines used to calculate the coverage objective (b, center); mapping 

of the probability of detection used for the survivability objective (c, right) 
 
 
The first objective is the coverage, by which is meant the ability of the network to monitor movements in and out of the 
facility. A series of radial lines stemming from the facility are generated, and represent the possible directions from 
which agents can enter or exit the facility. A sensor covers a line if its distance with the line is less than RSensing, i.e. if the 
line crosses its sensing disk. The coverage is equal to the number of lines covered by the sensors, divided by the total 
number of lines (so it is between 0 and 1). This is illustrated in Fig 2b. 

which agents can enter or exit the facility. A sensor covers a line if its distance with the line is less than RSensing, i.e. if the 
line crosses its sensing disk. The coverage is equal to the number of lines covered by the sensors, divided by the total 
number of lines (so it is between 0 and 1). This is illustrated in Fig 2b. 
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Since two roads serve the facility, it is likely that the activity in and out of the facility takes place mostly along them. 
Therefore, more lines are generated along these roads, so that these directions carry a greater weight and priority is 
given to covering the roads.  
 The second objective is the survivability of the network, by which is meant the likelihood that sensors will not be 
found. Each point in the area is assigned a probability of detection Pdetection. This probability depends on the proximity of 
the facility or the roads. It is assumed that if a sensor is placed close to a road (where most of the activity takes place) or 
to the facility, it is more likely to be found and disabled. In this paper the mapping (Fig. 2c) is generated using some 
exponential function decaying with the distance to these features (4). It is the sum of three components PFacility, ProadX 
and ProadY, corresponding to the three features that present a threat (facility and two roads). 
 
   Pdetection(X) = [ PFacility (x,y) + ProadX (x,y) + ProadY (x,y) ] / 4     (4) 
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 where L is the side of the area, RFacility the radius of the facility and ProadX (ProadY) is taken into account if x > RFacility 
(y > RFacility). Note that Pdetection is maximum at the “gates” (where the roads meet the facility, see Fig. 2c). 

 
It should be noted that any mapping is acceptable to the optimization method presented in this paper (MOGA, described 
below), since MOGA do not have any requirement about the continuity of the objectives.  There is therefore great 
freedom for the user in setting this probability profile. The survivability of the network is obtained by finding the sensor 
with maximum probability of detection, and subtracting this value from 1 (5). Note that since this metric only takes into 
account the sensor with highest probability of detection, it will not discriminate layouts where all sensors are highly 
detectable and layouts where only one is. 
 
 )(1 detection sensorsconnected2 PMaxitySurvivabilJ:Max −==      (5) 

 
Finally the third objective is the number of connected sensors, which is to be minimized. 
 
  sensorsof NumberJ:Min 3 =        (6) 
 
The first two objectives (coverage and survivability) are competing. For a fixed number of sensors, in order to have 
more coverage the sensors need to come closer to the facility and to the roads. However doing so decreases the 
survivability of the network. Likewise large survivability is obtained when all the sensors are far away from the roads 
and the facility, yielding a poorer coverage. Also, the more sensors the more coverage and the closer to the edges of the 
area the WSN can spread (yielding a good survivability). So the third objective is competing with the two others. 
 
3.2.2 Case 2: Monitoring movements in and out of a circular perimeter 
The area considered is a circle of radius 3, centered on the origin, as shown in Fig. 3a. It is assumed that there are no 
threats to the sensors, the goal is to obtain as much coverage with as few sensors as possible. 
 
 HECN HECN 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Framework for Case 2 (a, left) and Case 3 (b, right) 
 
 
The first objective is the coverage, as defined in Case 1. Lines are generated around the circle, and the calculation is 
similar. Sensors placed inside the circle are not taken into account. 
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The second objective is the number of sensors, to be minimized. 
 
  sensorsof NumberJ:Min 2 =        (8) 

 



 
Again, these two objectives are competing since placing more sensors yields a better coverage.  
 
3.2.3 Case 3: Uniform monitoring of a square area 
The area is a square of side 6, centered on the origin (Fig. 3b). The two objectives are those considered in Case 2, but 
this time the coverage is calculated differently. The goal is to cover uniformly the whole square, that is the WSN must 
be able to detect any movement inside the area, not only in and out. A point is covered if it is within RSensing to a sensor, 
so that the total coverage is equal to the intersection of the square with the union of all sensing circles, normalized by 
the square area. 
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The second objective is the number of sensors, to be minimized. 
 
  sensorsof NumberJ:Min 2 =                   (10) 
 
These two objectives are again competing. 
 
 

4. MULTI-OBJECTIVE GENETIC ALGORITHM DESCRIPTION 
 

Although the terrain considered (flat surface) is idealized, the design space of the WSN optimization remains highly 
non-linear. This is due notably to the binary nature of the communication connectivity requirement between sensors; 
moving a sensor by a small amount can cause large changes in all the objectives, especially if it becomes disconnected. 
This is illustrated in Fig. 4 on a scenario from Case 1. Four sensors are fixed (Fig. 4d), while the fifth one is moved 
throughout the area; the objectives are mapped according to this sensor position. Discontinuities can be observed in all 
three objectives, although only one sensor is moved in this example. These discontinuities correspond to positions 
where the fifth sensor becomes disconnected to the rest of the network. As shown in Fig. 4d, as long as it is inside the 
communication region of one of the fixed sensors (solid circles), its coverage contributes to the overall coverage (when 
it is in places not already covered by the fixed sensors). But once it leaves this region, it cannot communicate anymore 
with the WSN (and therefore it cannot transmit its data to the HECN) so the coverage drops abruptly. The maximum for 
the coverage and the survivability is found on a sharp edge of the design space, with a sudden drop on one side. The 
same is observable for the number of sensors. The combined effect of all sensors renders these discontinuities even 
more severe. 
 In addition, the number of sensors is discrete, which makes the optimization harder. Therefore Genetic Algorithm 
(GA) was chosen as the optimization tool, because it has proven to work well for non-linear problems. It also handles 
multiple objectives easily. As we will see in the next section, it is also very flexible and can be used without any 
modifications on different scenarios with different objectives. The MOGA is aimed at providing the end-user with a set 
of Pareto-optimal layouts from which to choose. This is interesting because it expresses the trade-off between the 
objectives. For example it provides the amount of additional coverage that can be attained by deploying an additional 
sensor, and the operator, depending on his preference, can decide whether it is worth it or not. Because it explores the 
whole search space, the MOGA will find Pareto-optimum network topologies (structure of the network). Local search 
methods can then be used to refine these “raw” results by fine-tuning the position of each sensor; this will not be treated 
in this paper. 
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(a) Coverage (maximize) 

(c) Number of sensors (minimize) 

(b) Survivability (maximize)

(d) Layout of the 4 fixed sensors

Fig. 4. Design space analysis conducted on a Case 1 scenario, with arrows pointing at discontinuities 

 Due to the homogeneity of the design variables (the coordinates of all sensors), there is no need for encoding as is 
done in traditional GA. The design vector DV (1) is therefore used as it is as a chromosome in the GA. The GA is taken 
from Han2, where the number of sensors per chromosome varies dynamically (as indicated before, a sensor is present at 
(xi,yi) if this pair is different from (0,0)). An initial population of N parent individuals (represented by their 
chromosome) is generated, where the number of sensors present in each individual as well as the positions of the 
sensors are chosen at random. Each parent is then mated with another (crossover) to produce two children, with the 
crossover point chosen at random. The children are then mutated with probability m, so that each element of DV is 
modified with a probability m. The mutation affects the coordinates of the sensor as well as whether or not this sensor is 
kept at all in the chromosome2. The objectives of these children are then computed, and a fitness value is assigned to 
every parent and children. This fitness is based on the Pareto dominance developed by Fonseca15, and is proportional for 
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Fig. 5. MOGA description

 



each individual to the number of individuals that dominate it (in the Pareto sense). The selection in the pool of parent 
and children is done using deterministic elitism, so that the N individuals with best fitness are passed on to the next 
generation. This enables the Pareto-optimal individuals to be passed on to the next generation, so that the population 
keeps improving while maintaining its diversity. The process continues until the maximum number of generations is 
reached. This is summarized in Fig. 5.  

 
 

5. CASE STUDIES RESULTS 
 
The values chosen for the sensors properties are 1.8 for RSensing and 4 for RCOMM (the sensing range is about half the 
communication range). For a discussion on the influence of these parameters on the optimal layout of the WSN, see 
Jourdan14. The MOGA optimizations were performed with 300 generations, a population of 100 individuals (N) and a 
mutation rate of 0.1 (m). They were implemented using MATLAB 6.1 on a computer with a Pentium 4 processor 
running at 1.8 GHz. 
 

(a) Objectives graph with Pareto-optimal 
designs marked with small circles 
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(c) Pareto-optimal layout with 7 sensors

(d) (c) 
(b) 

(b) Pareto-optimal layout with 9 sensors

(d) Pareto-optimal layout with 5 sensors

Fig. 6. MOGA results for Case 1. Objectives graph with Pareto Front and instances of Pareto-optimal WSN layouts 
(see legend of Fig. 4d) 

 



5.1 Case 1 
The objectives graph is shown in Fig. 6a, where the objectives of the individuals from all 300 generations are plotted. 
The approximate Pareto Front can be observed, from which the user can view the trade-off between the three objectives 
and choose a design based on his or her preference. The utopia point is where coverage and survivability are 1, and the 
number of sensors is 0. The remaining plots of Fig. 6 are examples of Pareto-optimal designs, to illustrate the trade-off 
between coverage, survivability and number of sensors. This optimization took 24 minutes to complete. 
 These results confirm the intuition about this problem. Higher survivability is achieved by placing the sensors far 
away from the facility and the roads (Fig. 6b), and to maintain full coverage of the movements more sensors are needed 
(compare (b) and (d)). The cost for using less sensors (and requiring the same full coverage) is a lower survivability: it 
drops of 39% from that with 9 sensors (0.73) to that with 5 sensors (0.44). The layouts selected in Fig. 6 all have a 
coverage value close to 1. However it may be the case that the survivability is the greatest concern for a particular 
mission (e.g. if we want the WSN to stay on site for a long time), so that we are ready to sacrifice some coverage in 
order to gain some survivability. Given a certain number of sensors (from 9 to only 1), Pareto-optimal layouts with the 
largest survivability are found to have the same structure as in Fig. 6b, with the coverage decreasing as more and more 
sensors are removed from the original layout shown in Fig 6b. 
 
5.2 Case 2 
The objectives graph is shown in Fig. 7a, this time with only two objectives, coverage and number of sensors. The 
approximate Pareto Front is plotted as a black line. It shows the trade-off between coverage of the area versus number of 
sensors. This optimization took 20 minutes to complete.  

 
Fig. 7. MOGA results for Case 2: Objectives graph with Pareto Front (a, left) and WSN layout with 6 sensors (b, right) 

 
 
Fig. 7b displays the layout with almost full coverage (obtained with 6 sensors). These results are intuitive, the MOGA 
provides the actual numerical values of the trade-off. The goal of this example is to show that the same MOGA than in 
Case 1 can be used. This is shown again in the following example. 
 
5.3 Case 3 
Results of the MOGA are shown in Fig. 8. These results agree again with the intuition, showing that the MOGA finds 
optimal layouts (notice the symmetrical structures that appear). Although in this case study the coverage is calculated in 
a different way, the very same MOGA used in Cases 1 and 2 works well. This illustrates the flexibility of this algorithm 
to the modeling and the choice of objectives. This optimization took 25 minutes to complete. 
 
 
 
 
 

 



(a) Objectives graph with Pareto Front

(c) Pareto-optimal design with 7 sensors (d) Pareto-optimal design with 9 sensors

(b) Pareto-optimal design with 5 sensors

Fig. 8. MOGA results for Case 3

 
 

6. CONCLUSIONS AND FUTURE WORK 
 
The automated planning of WSN will become crucial in the near future. However, little research has gone into devising 
a planner that accounts for the specificities of WSN (e.g. the communication connectivity requirement between sensors 
and the multi-objective aspect). Also, the variety of missions that WSN will be asked to perform calls for a flexible 
optimization technique. 
 In this paper we first described the modeling used for the terrain and the sensors, and then three mission scenarios 
were proposed: the monitoring of the movements in and out of a facility served by two roads (with hostile threats to the 
WSN), the monitoring of the movements in and out of a perimeter, and the uniform monitoring of an area. These three 
examples are not comprehensive of all scenarios that will come up in reality, but they provide important basic building 
blocks of more complex missions.  
 The Multi-Objective Genetic Algorithm (MOGA) used to perform the optimization was then described, and the 
results on the three above scenarios were presented. It was shown that the MOGA successfully generated the Pareto 
Front of non-dominated network designs, providing the decision-maker with useful trade-off information between the 
objectives. Also, the very same algorithm was used in all three instances, where the only change is in the objective 
functions. This shows the flexibility of the algorithm chosen, and it is promising for more complex scenarios. 
 
More work is required on the MOGA itself in order to increase its efficiency, especially by tailoring it more to the 
specificities of WSN. Also, a case study involving several of the basic mission scenarios described in this paper, as well 

 



 

as multiple HECN, should be performed. Other objectives such as the robustness of the WSN to node failure should also 
be explored. The fact that the network will be dropped by an aircraft is also of major importance, since it will incur 
some uncertainty in the final positions of the sensors. Integrating the airdrop uncertainty in the WSN planner will 
provide more robustness to the deployment process and increase the chances that the WSN actually placed on the 
ground will perform as planned. Finally a more realistic model for the terrain should be implemented, where an uneven 
terrain produces non-circular sensing and communicating ranges. 
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