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Abstract—The goal of this study is to evaluate the efficiency 1. INTRODUCTION
of three possible two-dimensional search strategies in thE
context of autonomous rendezvous in space. As part of a
broader undergoin§pace Tugroject, a number of model- During the past decade there has been an increasing need to
ing challenges were addressed to validate the experimentaérvice vehicles in space. Satellites and entire missions have
results. A crucial problem was to reduce the complex spackeen lost due to misalignments, wrong placements in orbit
problem involving at least four degrees of freedom to a simpleand software errors. These problems have triggered efforts
two-dimensional model and to run two-dimensional searchet design a new type of vehicle called tBpace Tugalso

for an inert target using LEGO robots. The data collectedknown as the Orbital Express. Tl@pace Tugds a satellite

as well as results from simulations, showed strong trends ithat carries out rendezvous and docking with a target satel-
the relationship between time and energy expended durinlife. Its functions are to capture targets, change their position
the search. The project provided a starting point for the renand orbital elements by a preset amount and release them at
dezvous control system to be implemented 8pace Tuge-  destination safely. Th8pace Tudpas to be capable of orbital
hicle by showing which of the three strategies - random, semidebris removal, satellite rescue missions and tactical opera-
autonomous and autonomous - is most efficient in the twotions. The control system of the tug is a major aspect of this
dimensional case. It was found that the semi-autonomous al-

gorithm is the most energetically efficient approach, but the
most time-consuming. This finding disproved our initial be-
lief that the semi-autonomous strategy is the most efficient irsrwramemes
terms for both time and energy. Instead, the conclusion is the
an autonomous algorithm is more suitable for space applice
tions. The results also suggest that, depending on knowled¢
of the search space and the mission requirements, a hybr
approach might be more efficient. With knowledge of orbital
dynamics, the meaning of these results can be extended to t
space problem.
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A major technology risk in th&pace Tugroject is the target
identification and docking. Showing that such a process is
feasible would reduce this risk and would provide a possible
solution to the problem. In addition, given that the control
system of the&Space Tudpas thus far been modeled as a black
0-7803-8155-6/04$17.00/004 i box, the results of this research project could give clues as to
IEEEAC paper # 1281 what the architecture of the entire vehicle should be. Further-



more, successful search and rendezvous strategies could bece. Gelenbe’s paper [2] provides an example of the "com-
used in other aeronautical applications, such as autonomoyaiter science” point of view. The author models the au-
and formation flight. tonomous process in which an agent, a robot or a software
algorithm searching for information in a computer database,
Search strategies and algorithms for robots have been studiséarches the space around its current location for desired in-
extensively in the past years. As a result, the design part dbrmation. The search area is divided in a set of locations
this project was influenced by previous work done on searclix, y), defined in Cartesian coordinates. Associated with each
algorithms, notably by the MIT Department of Electrical En- location is a probability q(x, y) representing the likelihood
gineering and Computer Science. The basic strategies werd finding the information wanted at this location. Assuming
enhanced to fit the purpose of tBpace Tug Time and en- the environment is static, the space can thus be described as
ergy consumption, as well as the successful implementatioa probability space. The agent, which in the context of this
of three searching strategies, are the focus of this research eproject is the tug, always moves in the direction where the
deavor. The search strategies tested are: (1) random sensprobability q(X, y) is the greatest. Once the agent moves to
less search, (2) semi-autonomous with a human in the loofhe new location - from (x0, y0) to (xnew, ynew) -, the prob-
search and (3) fully autonomous search with sensors. Thosaility g(xnew, ynew) of finding information at the new point
were chosen to be general enough (representative of familig updated depending on what was found.
of algorithms), yet tailored to our purposes. At the onset, it
was expected that the semi-autonomous with a human in thehe algorithm thus continuously updates the probability
loop search will be the relatively most efficient approach.  space, until the agent finds the right information - the target
for the tug. The mathematical tools used in the greedy algo-
Hypothesis rithm were applied to the tug’s autonomous search strategy,

The use of a semi-autonomous search system with a humaince the underlying probabilistic decision-making processes

in the loop is the algorithm that is the most effective for ren-21¢ similar (e.g. the agent goes to the location with the great-

dezvous and docking strategies in terms of time and energ(gSt probap|l|ty in the gpace): The modelmg process gsed by
consumption elenbe in his experiment is also useful in developing the

model of the search space for the tug. In addition, the agent
is also able to build a map of the environment revealing the
exact location of the information with greater precision. Ge-
We looked at several references devoted to Mars rovers duenbe’s paper only discusses this simple strategy and does not
to the similar autonomy and energy requirements and coneonsider sensor range effects on the search efficiency.
straints of their missions.

2. PREVIOUS WORK

Another important aspect of rendezvous is target identifica-
Literature Review tion. Hillenbrand and Hirzinger [3] discuss object recognition

Morrison and Nguyen [1] describe the software used to conf’lS a tv'vo—pa.rt Process. First, a sequence of hypotheses abqut
. : . the object - its location, geometric shape, and movements - is
trol the motion of the rover on Mars. The constraints, in terms

o eqenerated, using exterior sensors. The second part of the pro-
of communication and energy, on the control system of th )
cess evaluates these hypotheses based on the object model.

X . 2 “This paper describes a new technique for object recognition
to electrical and processing power limitations, the control sys: e ) o -

) : in a specific scene in a probabilistic framework. It also intro-
tem of the rover is unable to communicate and move at the

. " ; duces a new statistical criterion - the truncated object proba-
same time. In addition, due the transmit delay from Mars to_. . . .
Qt}mty - to produce optimal hypotheses about the object to be

Earth and back, the control system of the rover uses WaypoIlE, aluated for its match to the data collected by sensors. The

navigation and autonomous collision avoidance algorlt.hmsi";luthorfurtherdevelopsamathematical model to fit the search
In the absence of any obstacles, the rover proceeds direct

forward to the waypoint, including stops for proximity scan- syequence in the experiment. The object recognition technique

ning - for hazard detection. During proximity scanning pro- developed by Hillenbrand and Hirzinger is beyond the scope

. ; of the Space Tugproject. However, some of their concepts
cesses, the rover uses its on-board optical sensors to generate
) . . . are useful for the autonomous search strategy model.
an approximate map of the terrain map in front of the vehicle.

Based on height differences in the map, the navigation SySterRnother Mars Pathfinder mission deals with crater and rock

analyzes the possible locations of obstacles. . .
. . R hazard modeling for Mars landing [4]. Measures for safe
An alternate working mode of the control system is the "rock : :
landing on the rough and hazardous terrain of Mars are de-

finding” option, which uses the terrain map to detect a rock.

The navigation system corrects the rover heading, centering ﬂcnbed. The investigation examines simple models of crater

between the rock edges. This feature together with an adaptes('JZe frequency dl_strlbu_t|on, rock size frequency d'S”'bU“O’?
; Ny X and scaling relationships to determine the hazard probabil-
version of the collision-avoidance rover control system can be . . X
. ; ities and choose landing terrains. The approach to hazard
used as a basis for the tug control architecture.

modeling and navigation generated a useful idea. A search of

Search algorithms are thoroughly explored in computer Sci_satelllte sizes and geometries was performed in order to scale



the search space for the experimental setup [7]. For examplepint of view of the service vehicle (at the center of the el-
a 100-meter radius in space with a 2-meter long target trangipse). In its reference frame, the target appears to be in el-
lates to a 5-meter experimental radius with a 10-centimeteliptic orbit around it while performing its motion around the
robot target. This determines the grid size to search spadgarth.
diameter ratio which impacts the choice of search strate-
gies. Thus, the Pathfinder rock-frequency distribution modeThis shows that the Hill's relative frame allows the reduction
helped focus the search space domain while retaining the vaf the 3D model to two dimensions. To adapt the experiment
lidity of the experiment. to this model, the target has to be designed such that it will
move in a circle at the edge of a circular search space, thus
The previous stidues analyzed above show that the field ahaking the strategies implemented in 2D valid for the space
search algorithms is heavily explored. At the same time, th@roblem.
lack of an exact match to the problem at hand demonstrates
that theSpace Tugapplication has not been modeled thor- 3. EXPERIMENTAL APPROACH
oughly before bu't that one can gain by utilizing teChmlog'eSExperimental Overview
from other domains.
The experiment's main objective is to simulate tBpace
Applicable Theory Tugs rendezvous with its target in a simplified two-

The application of this experiment depends on the extendabi _|men5|onal environment. The space in which t.he Smce .
: . . . ug contains several degrees of freedom and is too compli-
ity of the obtained results. This demands proper reduction o

: : : . cated to reproduce in two dimensions. As a result, important
thethreedimensional space problem to ttveo-dimensional . : . .
rid search experiment. The main difference between reaIitmOdGIIng assumptions were made. The simulation makes use
g ' ¥ the relative positions of th8pace Tu@nd the target. The

and the model experiment is the number of degrees of free- . . ) .
. . . ; satellites are assumed to be in the same orbital plane relative
dom. All results obtained in thiSpace Tugexperiment are

valid only for target search in two dimensions. In order toto Earth. The target appears to be orbiting the service vehi-

SO . ' Fle on an elliptic orbit, but for modeling simplicity in 2D, the
make a conclusion, it is necessary to either find a reasonabéaX eriment was performed with a stationary target
reduction of the space problem to 2D or extend the meaning P P ytarget.

of th_e experimental results tp three dimensions. n th_is cas?.he experiment makes use of floor space for the search area
applicable k_nowledge of orb{tal dynam|cs.makes the f|r§ t @PWhose dimensions represent the appropriate ratio of search’
proach feasible and more suitable. In particular, assuming thgrea to tug/target sizes. This ratio was calculated using the

real sizes of these vehicles and the space around the target

created by position uncertainties. The experimental set up is
o Hills Orbl ———, shown in Figure 3. Th&pace Tugomputer has to search
Orbit: Satellite 1
& Satellite 1 :;’ \
& TOll's Sateflite {orbit around satellite 1) O g “'. ,*)

O Orbits Central Body .// ‘‘‘‘‘‘‘ s

command computer

T

Figure 2. The Hill's Orbit: Views from central body per-
spective and orbiting bodies frame.

tug spacecraft is within a short distance of the target satel :
lite, their relative dynamics can be described using the Hill’'s 4 o
frame. This means that with some approximation it can be

assumed that the target is in circular orbit around the tug (0 / © "t
. Two-dimensional discretized search space
vice versa). *

+ sensor

Figure 2 illustrates the two spacecraft relative positions. Thé:]gure 3 Test-bed environment for Tug/Target rendezvous
L , ; . . ; Simulation
left drawing in the figure depicts a service vehicle and its tar-

get satellite orbiting the Earth assuming that their orbits are — .
in the same plane but with different eccentricitieghe right through the space for the target, using its sensors. Itis under-

drawing looks at the same three-body problem but from thatood that the sensors ranges are_much smaller than the size of
the search space. Furthermore, in the case of the human-in-

T _ _the-loop search strategy, a computer is used to transmit com-
Usually, it is assumed that the two bodies are on the same orbits, with ds to th bot Usi ial icati t .
similar radii, eccentricities and inclinations, while only the true anomalies'1aNds 10 the robot using a serial communication system, In

differ. accordance with the sensor data that$ipace Tugomputer



sends to the human. For the other two search strategies, tloéradius 5 meters. Since the space is designed to be a square,
computer is used only to download the control system thathe sides of the search space will be 10 meters.

moves the robot and the decision-making software that tells it

where to go. Th&pace Tugs made with LEGO Mindstorms, Overview of Hardware

using an on-board _computer, a_nd the target |]§()a>< 20'. The robot simulating the orbital servicer is made of LEGO
centimeter box. While the target is non-cooperative and 'nertlvlindstorms parts. The on-board computer is a hand-held

the Space Tugarries, as mentioned previously, a collection :
of on-board sensors, including long and short-range infrare attery-powered microcontroller board,_ cal_led the Handy
' oard and developed by MIT. Shown in Figure 5(b), the

distance sensors and touch sensors. The first two collect d Lindy Board is based on the Motorola 68HC11 micropro-

3:ﬁilétlér;foﬁ108§'iﬁn SL,:Z? ttﬁégsi[é:’xulls :1; last one stops th?:essor and includes 32K of battery-backed static Random Ac-
going pace. cess Memory (RAM), outputs for four DC motors, inputs for
.a wide range of sensors and a 16x2 character Liquid Crystal

The independent measuring equipment shown in Figure 3 'Bisplay (LCD) screen [8]. Originally, the experiment was de-

used to record the time it takes for tBpace Tudpo find its tar- :
get and the energy consumed during the process. Using thls’sIgned to use the LEGO RCX 2.0 on-board computer, shown

data, the trade-off (in the form of a cost function) between' ' Figure 5(2). However, due to memory constraints on this

. . computer, the on-board controller had to be changed to the
time and energy can be evaluated, and the effectiveness .
andy Board, in order to be able to load the search map nec-

eac h strategy can be compared in order to assess the hypoes_sary for the random and autonomous searches. The func-
esis of the experiment. . 2. . .
tionalities of both computers are very similar, except in terms
of memory and communication. As mentioned earlier, the
Handy Board has more memory than the RCX and thus is
The size of the search space is an important aspect of the eable to handle the search algorithms. While the RCX com-
periment setup. It has to match the relative sizes of the satethunicates with the command computer through an infrared
lites in space. To calculate the size of the test search spacd@terface, the Handy Board uses a standard serial port. Hence,
some information such as global position system (GPS) acdhe communication problem in the semi-autonomous search
curacy, satellite sizes and sensor ranges was collected. In thests was solved by tethering the robot to the command com-
US Army Corps of Engineers manual [6], GPS accuracy is reputer, which also cut down on communication lags.
ported as approximately 100 meters. Once the target satellite
has been located, the space which$ipace Tudpas to search The Handy Board runs Interactive C. The latter is a cross-
was assumed to be of radius 100 meters, centered at the gxatform, multi-tasking version of the C programming lan-
pected location of the target. A database of satellite sizes waguage, which is perfectly adapted to make full use of the con-
searched and compared to the 100-meter search radius [Tloller's resources. A more detailed description of the soft-
It turns out that the average satellite geometry is 2x2x2 meware can be found in th@verview of Softwarsection.
ters which gives a 50:1 length scale with respect to the search
space radius. The space transformation process is shown The Space Tugimulator carries an array of sensors in order
Figure 4. As can be seen in the figure, the actual sphericdb carry out its search for the target. Added to the standard
touch sensors, the tug possesses two infrared distance sensors
with overlapping ranges, as can be seen in Table 1. The two

Design of Search Space

Table 1. Operating range fdpace Tugensors

Rmeier st i+ it ] Sensor | Long Range[ Short Range¢
Upper bound [meters 0.20 0.04
Figure 4. Search space transformation: orbital geometry Lower bound [meters] ~ 1.50 0.30
reduced to 2D, 10-m grid Resolution [meters] 0.01 0.005

space that the real orbital servicer will have to search is thrednfrared distance sensors are built by Sharp and are shown in
dimensional. However, since the target is not stationary, fouFigure 6. Even though they are essentially the same sensors,
variables are needed to define its position, a length, two artheir overlapping ranges provide an appropriate field of view,
gles and time. The space transformation involves going fronso that the target can be detected. The long-range sensor is
four dimensions to only two. As a result, the main modelingused in the semi-autonomous and autonomous searches, but
assumption that has to be made is that@pace Tugs ca-  not in the random search. On the other hand, the short-range
pable of insertion in the same orbit as the target. The spacgensor is used in all three searches to detect whether the target
is then modeled as a two-dimensional problem such that this found or not. Once a value high enough - corresponding to
tug and the target are in the same orbital plane with respect tapproximately 10 centimeters - is returned by the short-range
Earth. From Figure 4, it can be seen that, for a target of sizeensor, the search stops and the target is said to be found. The
0.1 meters, the size ratio is maintained if the search space Bharp sensors are available off the shelf and are fairly reliable.



(a) (b)
Figure 5. Space Tugobot (parts and picture courtesy of LEGO) (a) and on-board compidterdyboardcourtesy of MIT
course 6.270) (b)

sor. There are two touch sensors used on a dynamic bumper
built on the vehicle. These sensors detect any pressure ap-
plied on the bumper arms. When no pressure is applied the
sensor reading is the passive reading on the analog port (255).
Once the robot bumps into an object, the current through the
analog port changes and and the sensor reading decreases
from the rest value of 255.

Overview of Software

The software for this project is developed in two steps. First,
the random and autonomous strategies are codédiatlab

simulations. The semi-autonomous search cannot be simu-
lated due to the involvement of a human operator. The first
purpose of the simulation is to validate the soundness and

Lhk  we® logic of the algorithms. Second, the algorithms are converted

4 to the C language to be uploaded on the Handy Board com-

puter. The compiler used is Interactive C, developed by New-

Figure 6.  Sharp Infrared Distance sensor, courtesy ofton Labs, and is specially adapted to load programs on the
SHARP Handy Board. Interactive C compiles the C code, customized
with special sensor and motor functions to use the computer’s
resources, and loads it onto the board. The Handy Board con-

They use an infrared beam, coupled with an optical trianglc;Irains firmware, called _the PCode, which then serves as an in-
tgrpreter for the compiled C code.

measuring method which reduces the influence of the readin
on the colors of the reflected objects and their reflectivity [9].

Y

The three search strategies are random sensor-less search,

In order to use these sensors with the Handy Board, the co emi-autonomous with a human decision maker search and

troller had to be physically modified. The Sharp sensors d uIIy_ autonomous with sensors search. The algorithms were
not work with the Handy Board unless the pull-up resistorsdes'_gned to be ge’?era' enough, so that they_span the space of
|| different strategies that could be used to find the target.

connected to the analog sensor ports are taken out of the Iooﬁ.

Hence, the Handy Board needs to be rewired. The leads . S i
the pull-up resistors were cut on analog ports 5, 6 and 7, an hg random sc_earch algorithm is |nsp_|red by the_ _Gr_eedy Al-
a wire was soldered to close the loop behind these three portgpr'thm” described by Gelgnbe [2]. 1t ISa prOba}b'“St'C search
The latter modification allows for the use of the analog portsWhere the agent - the tug in the experiment - is able to learn
8 through 16. A disadvantage caused by these hardware moad inf tion to the robot. In oth ds. when the robot
ifications is that it makes the readings from the sensors les¥ esmtorma |prt1 0 d?jro ot. tnfp diLW?r s,\t/v_tetr;] ekro 0
accurate. Furthermore, if the leads to the pull-up resistor oves 1o a point and does nat find the target, 1t then knows
are not cut completely, current spikes in the analog port ca at the target is not Iocgted at that point. Its knowledge'about
cause flawed sensor readings that can be misinterpreted l} £ sea_rch space has mcre_ased. Th_e search space IS trans-
the robot's control system software. rmed into a grid that contains a certain number of locations,
as shown in Figure 7. The distance between each point de-

The third type of sensor used on the tug robot is the touch Serp_ends on the size of tlépace Tugind the size of the target.

s it moves in the space. Each displacement in the space pro-



based on the new data, and so on until the target is found. In

: L B O Yl L order to transmit information, the tug is tethered and waits for
It the new command through its serial port. As a result, there is
it il a lag between the command transmission and the tug’s move.

Although the transmission could be time-consuming, it is a

good simulation of what happens with space transmission.
LR R Y 7y P For instance, as Morrison and Nguyen [1] describe, the Mars
Pathfinder also uses waypoint navigation and delayed trans-
mission to communicate with the Earth operator.

An important consideration for this strategy is human bias. A
Figure 7. Grid for random search: probability as a function human operator has to have no prior knowledge of the initial
of visited squares conditions on the search space, so that decisions will not be
influenced by that knowledge. Therefore, the operator cannot
see the experiment, but will only read sensor data on the com-
guter. Another part of human bias is the employment of a con-

. . . istent strategy by a single person. A variety of people should
lug and target sizes are .apprOX|ma.ter 20 cent|meters woul e invited to conduct the semi-autonomous search in order to
be of the order of two times the size of the objects, or 40

. . : . . ensure unbiased data. These logistics require prior organiza-
centimeters, ThSpace Tugtits starting Iocatpn has eight tion, communication with people external to the project and
possibilities for its next move. As can be seen in Figure 7, th

probability of going to any of the eight next locations is 1/8. aybe an additional expense.
Once the tug has moved, the probability associated with th

An appropriate separation between two points given that th

The fully autonomous search makes use of the long-range ul-

I~ . ‘?rasonic sensor to find the target in the test space. The au-
tug has now only seven possibilities for its next move. The g P

. tonomous strategy is based on a probabilistic model, in which
Space Tugomputer thus learns about the space as it mov 9y b

e . - L .
. ; . e algorithm develops a probability density function to de-
from point to point. The search ends when the target is found?cribe the search area. Since Bpace Tugnitially has no

which IS detect.ed by the short-range'mfrared distance SENSOfsormation about the location of the target, the probability
due to its relatively short range, this infrared sensor will only

. . density has to be uniform across the space. As can be seen in
detect the target once tispace Tugs on the same grid. y P

The basic concept for the semi-autonomous search is that the
decision-maker is a human controller. Using the on-board Search Space
sensors, the human operator moves3pace Tugo find the
target. Figure 8 shows a simplified flowchart for the proce-
dure to be followed during the semi-autonomous search with
human-in-the-loop. At any time, the tug can perform a 360-
degree sweep of the surroundings using the long-range in-
frared distance sensor. If the sensor does not report any pres-
ence of an object, then the human operator has to make a
decision about where to move next. The operator sends a
command to the tug on-board computer, which then moves
the vehicle to the next desired location. All sensor data at
each step is sent back to the human operator, in order to de-
cide the next move in the search. Another decision is made

et Figure 9. Autonomous search strategy; probability density

is redistributed
! Found
Intial Position Search at Initial ——

Posttien Figure 9, the symmetry and the uniformity of the distribution
lﬂ Inpit<limgtion places the center of mass - labeled "Cg0” - in the middle of
Search >l| Next Position the two-dimensional search area. At the start of the search se-
Surroundings - quence, the tug travels toward the center of mass of the prob-
H ability density distribution to its first waypoint. This location

has to be a point in the search space close enough to the cen-

ter of mass so that the latter is in range of the tug's long-range
Figure 8. Flow chart for semi-autonomous seargieen- infrared distance sensor. Once at its new location, the vehicle
autonomous decisiomed - input by operator performs a 360-degree sweep of the surroundings in an effort



to locate the target. During this process, the tug learns aboubrs are particularly important for the implementation of the
the search space. If the target is not found, the density of theandom and the autonomous search strategies.

swept area is set to zero. The probability density is then re-

distributed uniformly across the remaining space and the newrrors associated with energy and time measurements are eas-
center of mass is located - labeled Cgl in Figure 9. The proier to ascertain. The energy measurement is done using the
cess just described is then repeated. Once the target is foundmber of steps taken by the robot. Hence, it is calculated
in range of the long-range infrared distance sensorStiece  using the tug’s control system and the measuring procedure

Tugvehicle moves straight towards it for rendezvous. is embedded in the software. As a result, the number of steps
returned is exact. On the other hand, there exists some error
Testing Method and Error Calibration to the way the number of steps relates to the actual amount of

All of the experimental tests were run in a student residencé < 9Y depleted during the search. However, the size of the

on the MIT campus. A smooth surface was used for reduce&omparat'\./e erroris small and thus negligible for the purpose
of this project. Time was measured by tBpace Tugom-

friction. The search space was surrounded with a standard .=~ 7 " . . . .

. .~ puter’s internal clock in seconds with precision to approxi-
garden hose low enough for the robot to recognize the I|m-matel one millisecond
its with the touch sensors on the bumper without seeing the y '
hose with the infrared sensors. This avoided any confusio

between the limits of the search space and the target itself. The semi-autonomous search strategy, on the other hand, is

subject to a different kind of error. The human controller can
. be subject to decision-making bias in choosing the Tug’s next
Before each test, the appropriate control system was loadevﬁlgypoint during the search. It is important that the human

onto the Handy Board. Three of these were available, Correéé)erator has no knowledge of either the location of the tar-

sponding to the random, semi-autonomous and autonomoyy et or the type of search being run. Such information about

search algorithms. The search was then conducted with dif3 ~~ —.. ~ =~ 7F s s .
. o he situation introduces a bias in the human’s interpretation of
ferent target relative positions. Once the target was foun

. . e data and decision-making process. In order to eliminate

the Space Tugn-board computer displayed the time elapsed, . ) o :
. . his possible error, it is necessary to use an outside person
during the search and the number of steps taken to find the .
0 control the tug. The authors have extensive knowledge of
target. These measurements were recorded for each run. Tpe

S . e search strategies and the situation and therefore cannot be
operator could not see the search space, which is crucial %1 .
. ) . . las-free human controllers. To reduce this effect, searches
this strategy, in order to eliminate bias errors and make the

o were run with five different human operators. The best hu-
search realistic. S
man operator has minimal knowledge of the search except

The goal of the experiment was to evaluate a cost functiortlhe rules.

that relates time and energy consumption during the searc‘:est Matrix

strategies. As such, the relevant quantities that needed to be

measured are the time elapsed during the search and the €fhe independent and dependant variables chosen in the de-

ergy consumed from the tug’s batteries. The time data is takesign phase were kept the same for the experiment. The

using the Handy Board computer’s internal clock. The procethree types of strategies (random, autonomous and semi-

dure for measuring time is directly embedded in the softwareautonomous) were tested against three relative target posi-

in an effort to be as precise as possible. tions. Five trials were run for each of tl$e(3 x 3) tests.
Table 2 shows the relative target positions tested versus strate-

As for the energy, the number of steps taken as a simple megies. Target atz% means that the target is placed at a distance

sure. It was estimated that the difference in energy expendiroughlyz% of the search space diameter. For examiie%

ture per stepamong strategies is negligible as it is solely duemeans that upon start the target is located at the opposite cor-

the use of sensors. The power needed by the sensors was asr of a rectangular grid space.

timated as insignificant compared to the power taken by the

motors. As a result, the movements of the robot in the search 4. DATA ANALYSIS

space were modeled as based on a standard-sized step, whf:ghw Data Analvsi

was constant across all searches. aw bata Analysis

The experimental data presented in the next section was col-

Sources of error are associated either with measurementiscted and filtered on site. As a result, all the data points

taken or with logical error in the coding of the search strate-are considered valid. During testing, some runs were not

gies. Software or logic errors in the implementation of therecorded due to an error during the search. For instance,

search strategy are systematic errors that would be hard to ddue to the relatively low reliability of the hardware - both

tect. However, a thorough and detailed debugging and testintpe Handy Board and the sensors - inaccurate sensor readings

stage for each software component eliminated these erroraiould, on a few occasions, stop the robot even though the tar-

Furthermore, cross-checking of the code between the expenget was not in sight. These bad runs were not recorded and

menters reduced the chances of implementing a logical errdhe test trial was repeated. As a result, the data points shown

in the search strategy. Efforts to eliminate these systematic eand analyzed in the next sections are only the runs during



Table 2. Test matrix: Target position vs. strategy and

number of trials

Table 3. Random search data

10% Relative Distance |

Trial | Time [seconds] Energy [steps]
distance to target 1 429.36 134
2 12.06 3
j/ 3 58.11 19
4 25.98 7
| I il 5 558.08 165
50% Relative Distance
Trial | Time [seconds] Energy [steps]
" Vv Vi 1 101.56 35
2 47.19 13
3 275.10 96
4 229.31 75
Vil vii IX 5 981.20 315
type of strategy ] [ 100% Relative Distance |
Trial | Time [seconds] Energy [steps]
Pos-Strategy | Random| Autonomous| Semi- 1 485.56 156
autonomous 2 782.17 267
Target atl00% I Il Il 3 143.37 52
Target atb0% v \Y VI 4 373.70 119
Target atl 0% Wi VI IX 5 308.31 97

which the robot found the target successfully and without any
sensor errors. Table 3 shows the time and energy for the fiv
trials of the random search runs and Table 4 shows the da
points for the semi-autonomous search. In the latter, each tri
represents a different human operator. Finally, the results ¢
the deterministic run for the autonomous search is shown i
Table 5. It is difficult to see any trends in the data in ta-
ble form. The data was processed and graphed in order i
observe what is the relationship between time and energy fc
each search algorithm. Figure 10 shows all the experiment:
data points in the time-energy space. It is already possible t
observe some linear trends, especially with the measuremer
from the random search runs.
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Figure 11. All search strategies: target is at maximum dis-
tance, 100%

+Random
B Semi Autonomous .
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An important aspect of the results is to look at the distance
factor in the data. Figures 11, 12(a) and (b) show the re-
- sults for all strategies for the 100%, 50% and 10% relative
distance test cases, respectively. In Figure 11, the general
trend of the trade-off between time and energy for each strat-
" egy can be seen well. On average, the random search algo-
rithm is the strategy that expands the most energy, while the
semi-autonomous search algorithm is the slowest strategy. It
can also be observed that the autonomous search is more ef-
ficient in terms of both time and energy than the other two
. . . . r ies. Th me phenomenon can rved in Fig-
Figure 10. All search strategies, all experimental data pomtsztr:;_ezg(ae)s’ whereefr?e :uf)oneomooues s(,)ea?:h alI)geo(r)i?r?n(: isetcriwe mogt
efficient of all three strategies for the 50% relative distance
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Figure 12. All search strategies; experimental data: targébét (a) and target at0% (b); not clear if closer target takes less
time and energy to find on average

Table 4. Semi-autonomous search data Table 5. Autonomous search data

] | 10% Relative Distance | ] | 10% Relative Distance |
Trial | Time [seconds] Energy [steps] Trial | Time [seconds] Energy [steps]
1 352.36 81 1 254.90 67
2 70.55 23 ] | 50% Relative Distance |
3 49.86 ’ Trial | Time [seconds] Energy [steps]
4 245.65 75 1 33.05 9
= o113 | ’ | 100% Relative Distance |
’ | 50% Relative Distance ‘ Trial | Time [seconds] Energy [steps]
Trial | Time [seconds] Energy [steps] 1 354.35 93
1 245.84 30
2 211.54 28
3 53.88 16
4 150.25 46
5 366.01 45
| 100% Relative Distance ‘ The exkﬁ)erlmenltlalhaesg!]tcfs forttrt\e 1;)% Je:itlv?hdISt;]ncet test
: - case show a slightly different trend. Unlike the other two
Trial T|m(;7[55(.eé:gnds] Energl)éésteps] cases, as can be seen in Figure 12(b), the semi-autonomous
5 1066 1 168 search is the most efficient strategy, Wlth_ rega_lrds to both time
3 =679 139 and energy. The au_tonomous search in _thls case does not
- perform as well. Again, as mentioned earlier, the reason for
4 256.17 43 this phenomenon is the way the autonomous search was pro-
5 323.99 48 grammed. The robot goes very close to the center of the

search space as its first move. Hence, after that first move,

the Space Tudinds itself further away from the target than it
originally was.

test case. The fact that the efficiency difference between the
autonomous and semi-autonomous searches for this test caSgerall, it can be seen that the random search is not efficient
is so flagrant can be explained by the way the autonomouat all compared to the other two strategies. The autonomous
search works. The autonomous strategy favors the center skarch seems to be most efficient in terms of time and as ef-
probability space. Since the search space is initially overlayeéficient as the semi-autonomous strategy in terms of energy
with a uniform probability distribution, the center of mass of needed. Looking at only experimental data, the hypothesis
the distribution is right where the target has to be in the 50%s disproved, as the semi-autonomous search algorithm is not

relative distance case. The autonomous search always go#e most efficient. The following section presents the simula-
to the center of mass, and hence finds the target extremetion analysis which was used to verify and explain the exper-
quickly in this test case. imental results.



Simulation Analysis where the simulation data points match the experimental very

. . . . .. well, apart from one data point. A% target distance the
The simulation code for this experiment was developed with a :
s -experiment took longer and larger number of steps than the

twofold purpose. First, it was used as a way to create the logic : .
. . ; ... >’model because the robotissedthe target on its way to the

for each algorithm and test case. This logic form was wnttenCenter (center of probability density). To emphasize, the sim
in MatLab (because of the easy graphical interface) and then P y ' P '

translated to Interactive C to make it readable by the Hand

Board Computer Second tthab COde was Continuously Comparison between simulation and experiment: Auto Search, 10%, 50% and 100% distance
. T . 100 - :
used to validate the experimental results by comparing th n
. . . o
theoretical expected data with the actual numbers. Finally oo 1

key trends in the simulation were used to help draw importan
conclusions from the actual data.

80+ B

70+ B
From the three strategies only the random and the at

tonomous were simulated due to the complexity of modeling
human behavior which makes the semi-autonomous hard 1

60 &

50 ~

number of steps

¢ sim10%
model. For comparison, the first two strategies were teste ol . oo 1
in simulation under the following experimental conditions: a .
25 x 25 grid with the three relative target positions for each or O _exp 100% |

algorithm. Figure 13 shows the random data points plot ver 20} .
sus the experimental data points. A hundred simulation point

L Il 1 1 1 1
Comparison between simulation and experiment: Random Search, 100% distance 0 20 100 150 200 230 300 350 400
600 T T T T T T T time, seconds

w0 $o Figure 15. Autonomous search: simulation versus experi-

° ment; few datapoints because the search is deterministic
0o
b4
4001 " te 71 ulation results were not merely used for comparison and val-

8 PP idation but also to identify key trends in the data that would
~§300, . o | help the assessment of the hypothesis. One possible general-
£ o %qj; ization of the experimental design is to randomize the target
E o

location. Comparingl00 trials with a randomly generated

%6

o target location across the board produced the results in Fig-
&,ﬁ ° ure 16. According to this simulation, the autonomous algo-
- o@’ . | rithm is less time and energy-consuming for all data points.
o ® °° 9 _experiment The two questions arising from this result are whether the ex-
00 160 260 360 ) 460 560 660 760 800 Varying degree of autonomy
time, seconds 140 ; b - ; - . o
.0
Cd

Figure 13. Random search; experiment versus simulation 120 %d’ ]
target atl00% @ ®

100 Q° ° e
were plotted to demonstrate the expected trend and to remo 2 ¢
a possible bias due to the randomness. The experimental de é sor yf é = i
does not match exactly the model, but it is scattered aroun  §
the simulation trend. A better match can be see50ét and § %/ ¢ I
10% target distance plotted on Figure 14(a) and (b). For smal o &
number of steps and short times, the experimental points co or o o ’
relate with the simulation trend. In general, the experimenta - ;0 ° ©rencem
points always fall below the simulation scatter. This means »r 'dp" 7
that for a given number of steps, the experiment took longe ¢
than expected. The reason for that is that the simulation prok % 20 40 60 s 100 120 160 160 180 200

time, seconds

ably does not model well enough all the time delays caused b
the hardware. The autonomous results demonstrate a better
match between theory and practice because the autonomobigure 16. Simulation trends: random vs. autonomous; ran-
algorithm is deterministic. This is illustrated in Figure 15 domized target location



Comparison between simulation and experiment: Random Search, 50% distance Comparison between simulation and experiment: Random Search, 10% distance
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Figure 14. Random search; experiment versus simulation; targ&t%t(a) and target at0% (b); in simulation, the target
location is generated randomly for each test run

perimental data matches this behavior and also, where do tt . All Target Distances - All Strategies
semi-autonomous data points fall in this pattern. A complete + Random

. . . . . = Semi Autonomous
discussion and hypothesis assessment is done in the next st ., | . autonomous

tion. ——Linear {(Random)

— - - Linear {Semi Autonomous)
250 1— — Linear (Autonomous)

Comparison of Simulation and Experimental Data
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=
I=3

As suggested by the simulation analysis, the experimente
data confirmed the overall better performance of the au
tonomous algorithm. This makes sense even without the re o

sults because of the design of each strategy. The autonomo 00 1
strategy uses a larger sensor range, so it covers the seat
space much faster. The autonomous robot also goes to ma
likely areas of the grid, as opposed to the random which ca
get stuck in low-probability space and waste more energy. 0 200 400 600 800 1000 1200

Time [seconds]

nergy [steps]
o
L)

50 4

The key result concerns the semi-autonomous strategy. Ttﬁgure 17 All data as in Figure 10 with trendlines:

experimental data on Figure 17 not only confirms the simu- . ;
; . . autonomous trendlindalls between random and semi-
lations trends (Figure 16). Moreover, the semi-autonomous
. autonomous

scatter appears below the trend-lines of the other two algo-

rithms. The human operator strategy turns out to be the most
energy efficient, but also the most time-consuming. One les-

son from the trials is that human operators make good geglonomous approach. On the other hand, a larger search with

cisions but take too long to decide. Since fuel and propul-rnore uncertai_nty might _be accomplished better with a hybrid
sion design is often a larger constraint than time for spac@pproaCh' This conclusion has already been explored compu-

applications, the semi-autonomous search seems like a go&lt'ona"y'

strategy. On the other hand, time can be more important oln lusion. th ; h perf bestin t
a smaller scale like for eclipses in LEO and phasing with n conciusion, the autonomous search performs best in terms

the target satellite. The communication delay also makes h@' both Znergy and tlr?e. A (E)St ;unct!on W'rt]h Eq du.a.l dwelgrtl tof
autonomous algorithm look better. Finally, these argument me an ent_ni_rgy IIS alinegr= xTEnctllon Wh'c hIVI est ed
suggest that a hybrid approach might the most efficient. A; nergy vs. Timglane in two. The algorithm whose trend-
combined autonomous with human operator approach willn® approaches best this line (falls in the middle of all strate-

depend on the background, motivation and knowledge of thgies) is the best suitable for an equally weighted cost func-

mission. For example, a smaller search space or more irfion. With that assumption in mind, the autonomous strategy

formation about the target coordinates would favor an aulVas established as the most robust performer. Clearly, a dif-

ferent cost function caused by different customer or mission



requirements might incite a different conclusion. The successful hypothesis assessment together with our con-
clusions about autonomy make this experiment an important
asset for the gener&8pace Tugroject. The analysis of the
results demonstrates a lot of potential for a new phase of mod-

eling and experimentation.

Experiment Validation and Future Work

The primary goal for designing this two-dimensional target
search experiment was to solve a subset of the geBeade
Tug problem. The results from this project support one of
the key themes in the servicing vehicle concept - autonomy.
Depending on the mission, the tug can have different degreebhis project would not have seen the light without the sup-
of autonomy which corresponds to the hybrid search concepport of the MIT Aero/Astro staff and faculty. The many sug-
A higher-fidelity experiment can be designed with a greateigestions made by the technical staff during the oral presen-
level of detail, mission and customer requirements to assegation and team meetings have provided the necessary infor-
the same hypothesis for a larger design trade space. mation to make this project report complete. Moreover, the
feedback from the faculty, Professors Edward Greitzer, John
In summary, this project successfully models an importanDeyst, Earll Murman and Jennifer Pixley, has been of great
aspect of the gener&8pace Tugproblem by assessing uncer- importance in the shaping of this experiment. The authors
tainty and autonomy with a simple scheme. Future work inwould also like to acknowledge Danny Craig and Greg Mark
this area might involve modifications in both the model andfor their comments and support throughout the project.
the experiment design. There are a number of possible ways
to improve the experiment as designed. For example, obtainFhe authors also thank the human operators - Victoria Davis,
ing more data might give more insight into important trendsCarlos Pinedo, Devijit Chakravarti, Danny Craig and Jennifer
and possibly point towards better versions of the strategieShih - who took time out of their busy schedules to help
used. Also, randomizing the target location (as done in simuus collect the necessary data. Furthermore, the experiment
lation) will remove some of the bias in the algorithms relativewould not have been possible without a few friends and class-
performance. Furthermore, for higher precision of the datamates who were there to support and help this team through
metrology on the robot can be implemented to close the conts worst times. Their assistance is more than greatly appreci-

6. ACKNOWLEDGEMENTS

trol loop and thus approach better the situation in space.

The experiment design can also be modified in a variety of
ways. For instance, the Hill's frame scheme can be imple-
mented by designing a target which moves on the edge of H]
circular search space. Thus the robot will have to find, track
and phase with the target satellite, which is much closer to
the real scenario in orbit. Another potential arising from the
semi-autonomous data is to develop a separate human factors
experiment which would model decision-making and human
behavior in comparison with automated logic. Together with
all the above, a higher-fidelity simulation will be needed to
precede the spacecraft software and testing programs devel;iZJ
opment for the reabpace Tug This would involve not only
modeling the orbital dynamics, but also all hardware effects.

5. SUMMARY AND CONCLUSIONS

In view of the results presented above, the designed experi-
ment was implemented successfully to assess the starting h
pothesis. The theory based in simulation was confirmed by
the tests. As expected, the autonomous strategy outperforms
the random, which is the most time and energy inefficient
overall. Moreover, it was found that the semi-autonomous al-
gorithm is the most energetically efficient approach, but the
most time-consuming. This finding disproved our hypoth-
esis which stated that the semi-autonomous strategy is t
most efficient in terms for both time and energy. Instead, we
conclude that an autonomous algorithm is more suitable for
space applications. The results also suggest that, depending
on knowledge of the search space and the mission require-
ments, a hybrid approach might be more efficient. (5]

ated.
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